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In recent years, machine learning has made remarkable progress, providing
novel capabilities like the creation of sophisticated, computable
representations of text and images. These capabilities have enabled new
products, such as image searches based on image content, automatic
translation between many languages, and even the synthesis of realistic images
and voice. Simultaneously, machine learning has seen widespread adoption in
the enterprise for classic use cases (for instance, predicting customer churn,
loan defaulting, and manufacturing equipment failure).

Where machine learning has been successful, it has been extraordinarily so.

In many cases, that success can be attributed to supervised learning on large
volumes of training data (combined with extensive computation). Broadly,
supervised learning systems excel at one task: prediction. When the goal is to
predict an outcome, and when we have many examples of that outcome arising,
as well as the features associated with it, we may turn to supervised learning.

As machine learning has gained popularity, its sphere of influence in business
processes has expanded beyond narrow prediction and into decision making.
The results of machine learning systems are routinely used to set credit limits,
anticipate manufacturing equipment failures, and curate our various news
feeds. As individuals and businesses seek to learn from the information
provided by such complex and nonlinear systems, more (and better) methods
for interpretability have been developed, and this is both healthy and important.

However, there are fundamental limits to reasoning based on prediction alone.
For instance, what will happen if a bank increases a customer’s credit limit?
Such questions cannot be answered by a correlative model built on previously
observed data, because they involve a possible change in the customer’s
choices as a reaction to the change in credit limit. In many cases, the outcome
of our decision process is an intervention - an action that changes something in
the world. As we’ll demonstrate in this report, purely correlative predictive
systems are not equipped for reasoning under such interventions, and hence
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are prone to biases. For data-informed decision making under intervention, we
need causality.

Even for purely predictive systems, which is very much the forte of supervised
learning, applying some causal thinking brings benefits. Causal relationships are
by their definition invariant, meaning they hold true across different
circumstances and environments. This is a very desirable property for machine
learning systems, where we often predict on data that we have not seen in
training; we need these systems to be adaptable and robust.

The intersection of causal inference and machine learning is a rapidly expanding
area of research. It is already yielding capabilities that are ready for mainstream
adoption - capabilities which can help us build more robust, reliable, and fair
machine learning systems.

This report is an introduction to causal reasoning as it pertains to much data
science and machine learning work. We introduce causal graphs, with a focus on
removing the conceptual barriers to understanding. We then use this
understanding to explore recent ideas around invariant prediction, which brings
some of the benefits of causal graphs to high dimensional problems. Along with
the accompanying prototype, we show how even classic machine learning
problems, like image classification, can benefit from the tools of causal
inference.



In this chapter, we discuss the essentials of causal reasoning (particularly in
how it differs from supervised learning) and give an informal introduction to
structural causal models. Grasping the basic notions of causal modeling allows
for a much richer understanding of invariance and generalization, which we
discuss in the next chapter, Causality and Invariance.

Why are we interested in causal
inference?
Imagine a bank that would like to reduce the number of business loans which
default. Historical data and sophisticated supervised learning techniques may
be able to accurately identify which loans are likely to default, and
interpretability techniques may tell us some features that are correlated with (or
predictive of) defaulting. However, to reduce the default rate, we must
understand what changes to make, which requires understanding not only
which loans default, but why the loans default.

Background: Causal
Inference
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It may be that we find small loans are more likely to default than larger loans.
One might naively assume that the bank ought to stop making small loans.
However, perhaps it is really the case that smaller businesses are more likely to
fail than large businesses, and also more likely to apply for small loans. In this
case, the true causal relationship is between the size of the business and
defaulting, and not between the size of the loan and defaulting. If this is so, our
policy decisions should be influenced by business size, rather than loan size.

Unfortunately, supervised learning alone cannot tell us which is true. If we
include both loan size and business size as features in our model, we will
simply find that they are both related to loan defaulting, to some extent. While
that insight is true - as they are both statistically related to defaulting - which
causes defaulting is a separate question, and the one to which we want the
answer.

Causality gives us a framework to reason about such questions, and recent
developments at the intersection of causality and machine learning are making
the discovery of such causal relationships easier.

A bank would like to decide which business loans to grant based on true,

causal relationships.



The shortcomings of supervised learning
Supervised machine learning has proved enormously successful at some tasks.
This is particularyly true in dealing with tasks that require high-dimensional
inputs, such as computer vision and natural language processing. There has
been truly remarkable progress over the past two decades, and it should be
noted that an acknowledgment of supervised learning’s shortcomings does not
in any way diminish that progress.

With success have come inflated expectations that autonomous systems be
capable of independent decision-making, and even human-like intelligence.
Current machine learning approaches are unable to meet those expectations,
owing to fundamental limitations of pattern recognition.

One such limitation is generalizability (also called robustness or adaptability),
that is, the ability to apply a model learned in one context in a new environment.
Many current state-of-the-art machine learning approaches assume that the
trained model will be applied to data that looks the same as the training data.
These models are trained on highly specific tasks, like recognizing dogs in
images or identifying fraud in banking transactions. In real life, though, the data
on which we predict is often different from the data on which we train, even
when the task is the same. For example, training data is often subject to some
form of selection bias, and simply collecting more of it does not mitigate that.



Another limitation is explainability, that is, machine learning models remain
mostly “black boxes” that are unable to explain the reasons behind their
predictions or recommendations, thus eroding users’ trust and impeding
diagnosis and repair. For example, a deep learning system can be trained to
recognize cancer in medical images with high accuracy, provided it is given
plenty of images and compute power, but - unlike a real doctor - it cannot
explain why or how a particular image suggests disease. Several methods for
understanding model predictions have been developed, and while these are
necessary and welcome, understanding the interpretation and limitations of
their outputs is a science in itself. While model interpretation methods like
LIME and SHAP are useful, they provide insight only into how the model works,
and not into how the world works.

The real world is often distributed differently than our training data.

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1705.07874


And finally, the understanding of cause-and-effect connections - a key element
of human intelligence - is absent from pattern recognition systems. Humans
have the ability to answer “what if” kinds of questions. What if I change
something? What if I had acted differently? Such interventional, counterfactual,
or retrospective questions are the forte of human intelligence. While imbuing
machines with this kind of intelligence is still far-fetched, researchers in deep
learning are increasingly recognizing the importance of these questions, and

using them to inform their research.[1]

Predictions alone are often not useful unless accompanied by an

explanation.



All of this means that supervised machine learning systems must be used
cautiously in certain situations - and if we want to mitigate these restrictions
effectively, causation is key.

What does causality bring to the table?
Causal inference provides us with tools that allow us to answer the question of
why something happens. This takes us a step further than traditional statistical
or machine learning approaches that are focused on predicting outcomes and
concerned with identifying associations.

Causality has long been of interest to humanity on a philosophical level, but it
has only been in the latter half of the 20th century (thanks to the work of
pioneering methodologists such as Donald Rubin and Judea Pearl), that a
mathematical framework for causality has been introduced. In recent years, the
boom of machine learning has enhanced the development of causal inference
and attracted new researchers to the area.

Humans use counterfactual reasoning all the time. This is enabled by our

unconcious understanding of cause and effect.



Identifying causal effects helps us understand a variety of things: for example,

user behavior in online systems,[2] effect of social policies, risk factors of
diseases. Questions of cause-and-effect are also critical for the design of data-
driven applications. For instance, how do algorithmic recommendations affect
our purchasing decisions? How do they affect a student’s learning outcome or a
doctor’s efficacy? All of these are hard questions and require thinking about the
counterfactual: what would have happened in a world with a different system,
policy, or intervention? Without causal reasoning, correlation-based methods
can lead us astray.

That said, learning causality is a challenging problem. There are broadly two
situations in which we could find ourselves: in one case, we are able to actively
intervene in the system we are modeling and get experimental data; in the
other, we have only observational data.

The gold standard in establishing causal effects is a Randomised Controlled Trial
(RCT) and this falls under the experimental data category. In an RCT, we try to
engineer similar populations using random assignment (as choosing the
populations manually could introduce selection effects that destroy our ability
to learn causal relations) and apply an intervention to one population and not
the other. From this, we measure the causal effect of changing one variable as a
simple difference in the quantity of interest between the two populations.



We can use RCTs to establish whether a particular causal relation holds.
However, trials are not always physically possible, and even when they are, they
are not always ethical (for instance, it would not be ethical to deny a patient a
treatment that is reasonably believed to work, or trial a news aggregation

algorithm designed to influence a person’s mood without informed consent).[3]

In some cases, we can find naturally occurring experiments. In the worst cases,
we’re left trying to infer causality from observational data alone.

In general, this is not possible, and we must at least impose some modeling
assumptions. There are several formal frameworks for doing so. For our purpose
of building intuition, we’ll introduce Judea Pearl’s Structural Causal Model (SCM)

framework in this chapter.[4]

The ladder of causation
In The Book of Why, Judea Pearl, an author of much foundational work in
causality, describes three kinds of reasoning we can perform as rungs on a

ladder. These rungs describe when we need causality, and what it buys us.[5]

Randomised controlled trials are the gold standard in establishing

causal effects.

http://bayes.cs.ucla.edu/BOOK-2K/
http://bayes.cs.ucla.edu/WHY/


On the first rung, we can do statistical and predictive reasoning. This covers
most (but not all) of what we do in machine learning. We may make very
sophisticated forecasts, infer latent variables in complex deep generative
models, or cluster data according to subtle relations. All of these things sit on
rung one.

Example: a bank wishes to predict which of its current business loans are likely
to default, so it can make financial forecasts that account for likely losses.

The second rung is interventional reasoning. Interventional reasoning allows
us to predict what will happen when a system is changed. This enables us to
describe what characteristics are particular to the exact observations we’ve
made, and what should be invariant across new circumstances. This kind of
reasoning requires a causal model. Intervening is a fundamental operation in
causality, and we’ll discuss both interventions and causal models in this chapter.

Example: a bank would like to reduce the number of loans which default, and
considers changing its policies. Predicting what will happen as a result of this
intervention requires that the bank understand the causal relations which affect
loan defaulting.

The ladder of causation, as described in The Book of Why.

http://bayes.cs.ucla.edu/WHY/


The third rung is counterfactual reasoning. On this rung, we can talk not only
about what has happened, but also what would have happened if circumstances
were different. Counterfactual reasoning requires a more precisely specified
causal model than intervention. This form of reasoning is very powerful,
providing a mathematical formulation of computing in alternate worlds where
events were different.

Example: a bank would like to know what the likely return on a loan would have
been, had they offered different terms than they did.

By now, we hopefully agree that there is something to causality, and it has much
to offer. However, we have yet to really define causality. We must begin with a
familiar refrain: correlation is not causation.

From correlation to causation
Spurious correlations

The ladder of causation describes the kind of question we can answer

depending on the sophistication of our causal model.



Very many things display correlation. The rooster crows when the sun rises.[6]

The lights turn off when you flick a switch. Global temperatures have risen
alarmingly since the 1800s, and meanwhile pirate numbers have dwindled to

almost nothing.[7]

These examples show us that while correlation can appear as a result of
causation, as in the case of the light switch, correlation certainly does not
always imply causation, as in the case of the pirates.

Correlated things are not always related.[8] It’s possible to find many
correlations with no readily imaginable causal interaction. The internet treasure
Spurious Correlations collects many amusing examples of this. These spurious
correlations most likely arise as a result of small sample size and coincidences
that are bound to happen when making many comparisons. We should not be
surprised if we find something that has low probability if we try many
combinations.

In real world systems, spurious correlations can be cause for serious ethical
concerns. For instance, certain characteristics may be spuriously associated
with individuals or minority groups, and these characteristics may be highly
predictive. As such, the model weights them as important during a learning task.
This can easily embed bias and unfairness into an algorithm based on the
spurious correlations in a given dataset.

The Principle of Common Cause

Figure source: Spurious Correlations.

https://www.tylervigen.com/spurious-correlations
https://www.tylervigen.com/spurious-correlations


In a posthumous 1956 book, The Direction of Time, Hans Reichenbach outlined
the principle of common cause. He states the principle this way:

“If an improbable coincidence has occurred, there must exist a common
cause.”

Our understanding of causality has evolved, but this language is remarkably
similar to what we use now. Let’s discuss how correlation may arise from
causation.

We will do this in the framework of Structural Causal Models (SCMs). An SCM is
a directed acyclic graph of relationships between variables. The nodes
represent variables, and the edges between them point from cause to effect.
The value of each variable depends only on its direct parents in the graph (the
other variables which point directly into it) and a noise variable that
encapsulates any environmental interactions we are not modeling. We will
examine three fundamental causal structures.

Causal Terminology

A causal graph is a directed acyclic graph denoting the dependency
between variables.

A structural causal model carries more information than a causal graph
alone. It also specifies the functional form of dependencies between
variables.

Remarkably, it’s possible to do much causal reasoning - including a
calculation of the size of causal effects - via the graph alone, without
specifying a parametric form for the relationships between causes and
effects.

1. Direct causation

The simplest way in which correlation between two variables arises is when one
variable is a direct cause of the other. We say that one thing causes another
when a change in the first thing, while holding everything else constant, results

https://www.goodreads.com/book/show/848892.The_Direction_of_Time


in a change in the second. In the business loan defaulting example discussed
earlier, we could create a two node graph with one of the nodes being whether
or not a business is small (say “small business” with values 0 or 1) and the
other node being “default” indicating whether or not the business defaulted on
the loan. In this case, we would expect that a small business increases the
chances of it defaulting.

This setup is immediately reminiscent of supervised learning, where we have a
dataset of features, X, and targets, Y, and want to learn a mapping between
them. However, in machine learning, we typically start with all available features
and select those that are most informative about the target. When drawing a
causal relationship, only those features we believe have an actual causal effect
on the target should be included as direct causes. As we will see below, there
are other diagrams that can lead to a predictive statistical relationship between
X and Y in which neither directly causes the other.

2. Common cause

Direct causation gives rise to statistical dependence between two

variables. In this fictional example, the indicator variable for Small

businesses has a direct causal effect on the Loan Defalt indicator

variable.



A common pattern is for a single variable to be the cause of multiple other
variables. If a variable, Z, is a direct cause of both X and Y, we say that Z is a
common cause and call the structure a “fork.” For example, unemployment
could potentially cause both loan default and reduced consumer spend.

Because both consumer spend and loan default depend on unemployment,
they will appear correlated. A given value of unemployment will generate some
values of consumer spend and loan default, and when unemployment changes,
both consumer spend and loan default will change. As such, in the joint
distribution of the SCM, the two dependent variables (consumer spend and loan
default) will appear statistically related to one another.

However, if we were to condition on unemployment (for instance, by selecting
data corresponding to a fixed unemployment rate), we would see that consumer
spend and loan default are independent from one another.

The common cause unemployment confounds the relationship between
consumer spend and loan default. We are unable to correctly calculate the

Two effects appear statistically dependent, but only because of a common

cause. If the common cause, Unemployment, is fixed, then Consumer Spend

and Loan Default become statistically independent.



relationship between consumer spend and loan default without accounting for
unemployment (by conditioning). This is especially dangerous if unnoticed.

Unfortunately, confounders can be tricky or impossible to detect from
observational data alone. In fact, if we look only at consumer spend and loan
default, we could see the same joint distribution as in the case where consumer
spend and loan default are directly causally related. As such, we should think of
causal graphs as encoding our assumptions about the system we are studying.
We return to this point in How do we know which graph to use?

3. Common effect

The opposite common pattern is for one effect to have multiple direct causes. A
node that has multiple causal parents is called a “collider” with respect to those
nodes.

A collider is a node that depends on more than one cause. In this example, loan
defaulting depends on both commercial credit score and number of liens (a

Variables that share a common effect are independent, until we fix the

effect. For a given value of Loan Default, there is an induced

dependency between the Number of Liens and Credit Score.



“lien” refers to the right to keep possession of property belonging to another
entity until a debt owed by that entity is discharged), so we call loan default a
collider.

Colliders are different to chains of direct causation and forks because the
conditioning behaviour works oppositely. Before any conditioning, commercial
credit score and number of liens are unconditionally independent. There is no
variable with causal arrows going into both commercial credit score and number
of liens, and no arrow linking them directly, so we should not expect a statistical
dependency. However, if we condition on the collider, we will induce a
conditional dependence between commercial credit score and number of liens.

This may seem a bit unintuitive, but we can make sense of it with a little thought
experiment. Loan default depends on both commercial credit score and number
of liens, so if either of those changes value, the chance of loan default changes.
We fix the value of loan default (say, we look only at those loans that did
default). Now, if we were to learn anything about the value of commercial credit
score, we would know something about the number of liens too; only certain
values of number of liens are compatible with the conditioned value of loan
defaulting and observed value of commercial credit score. As such, conditioning
on a collider induces a spurious correlation between the parent nodes.
Conditioning on a collider is exactly selection bias!

Structural Causal Models, in code

The small causal graphs shown above are an intuitive way to reason about
causality. Remarkably, we can do much causal reasoning (and calculate
causal effects) with these graphs, simply by specifying qualitatively which
variables causally influence others. In the real world, causal graphs can be
large and complex.

Of course, there are other ways to encode the information. Given the
graph, we can easily write down an expression for the joint distribution: it’s
the product of probability distributions for each node conditioned on its
direct causal parents. In the case of a collider structure, x  → z  ← y , the
joint distribution is simply p(x,y,z) = p(x) p(y) p(z|x,y) . The
conditional probability p(z|x,y)  is exactly what we’re used to estimating
in supervised learning!



If we know more about the system, we can move from this causal graph to
a full structural causal model. An example SCM compatible with this graph
would be:

from numpy.random import randn 
 
def x(): 
  return -5 + randn() 
 
def y(): 
  return 5 + randn() 
 
def z(x, y): 
  return x + y + randn() 
 
def sample(): 
  x_ = x() 
  y_ = y() 
  z_ = z(x_, y_) 
  return x_, y_, z_ 

Each of the variables has an independent random noise associated with it,
arising from factors not modeled by the graph. These distributions need
not be identical, but must be independent. Notice that the structure of the
graph encodes the dependencies between variables, which we see as the
function signatures. The values of x  and y  are independent, but z
depends on both. We can also see clearly that the model defines a
generative process for the data, since we can easily sample from the joint
distribution by calling the sample  function. Doing so repeatedly allows us
to chart the joint distribution, and see that x  and y  are indeed
independent; there’s no apparent correlation in the scatter chart.



Now that we have a model in code, we can see a selection bias effect. If
we condition the data to only values of z  (the collider node) greater than
a cutoff (which we can do easily, if inefficiently, by filtering the samples to
those where z > 2.5 ), the previously independent x  and y  become
negatively correlated.

Left: Histograms of the observational distributions of x, y and z.

Right: Scatter plot of the observational joint distribution of x

and y. Since x and y are not causally connected except through the

collider z, they are completely uncorrelated.



From prediction to intervention
Now that we have some understanding of what a causal model is, we can get to
the heart of causality: the difference between an observation and an
intervention.

When we introduced the ladder of causation, we mentioned the notion of
intervention, something that changes the system. This is a fundamental
operation, and it is important to understand the difference between
intervention and observation. It may not at first seem natural to consider
intervening as a fundamental action, evoking a similar sense of confusion to
when one first encounters priors in Bayesian statistics. Is an intervention
subjective? Who gets to define what an intervention is?

Simply, an intervention is a change to the data generating process. Samples
from the joint distribution of the variables in the graph may be obtained by
simply “running the graph forward.” For each cause, we sample from its noise
distribution and propagate that value through the SCM to calculate the resulting

Left: We have conditioned on z > 2.5 by filtering the samples (note

the change of scale), which changes the x and y distributions;

they’re both shifted right. Right: The conditional joint

distribution of x and y, with a line showing a linear fit, which

illustrates the induced negative correlation.



effects. To compute an interventional distribution, we force particular causes
(on which we are intervening) to some value, and propagate those values
through the equations of the SCM. This introduces a distribution different from
the observational distribution with which we usually work.

There is sometimes confusion between an interventional distribution and a
conditional distribution. A conditional distribution is generated by filtering an
observed distribution to meet some criteria. For instance, we might want to
know the loan default rate among the businesses to which we have granted a
loan at a particular interest rate. This interest rate would itself likely have been
determined by some model, and as such, the businesses with that rate will
likely share statistical similarities.

The interventional distribution (when we intervene on interest rate) is
fundamentally different. It is the distribution of loan defaulting if we fix the
interest rate to a particular value, regardless of other features of the business
that may warrant a different rate. This corresponds to removing all the inbound
arrows to the interest rate in the causal graph; we’re forcing the value, so it no
longer depends on its causal parents.

Clearly, not all interventions are physically possible! While we could intervene to
set the interest rate, we of course would not be able to make every business a
large one.

Interventions in code

It is easy to make interventions concrete with code. Returning to the
collider example, to compute an interventional distribution, we could
define a new sampling function where instead of drawing all variables at
random, we intervene to set x  to a particular value. Because this is an
intervention, not simply conditioning (as earlier), we must make the
change, then run the data generating process again.

def sample_intervened(): 
  x_ = -3 
  y_ = y() 
  z_ = z(x_, y_) 
  return x_, y_, z_ 

Performing this intervention results in a new distribution for z , which is
different from the observational distribution that we saw earlier. Further,



the relationship between x and y has changed; the joint distribution is now
simply the marginal distribution of y , since x  is fixed. This is a strikingly
different relationship than when we simply conditioned the observational
distribution.

Interventions in customer churn
In our interpretability report, we present a customer churn modeling use case.
Briefly, given 20 features of the customers of a telco - things like tenure,
demographic attributes, whether they have phone and internet services, and
whether they have tech support - we must model their likelihood of churning
within a fixed time. To do this, we turn to a dataset of customers and whether
they churned in the time period. This can be modeled as straightforward binary
classification, and we can use the resulting output scores as a measure of how
likely a customer is to churn.

The model used to calculate the churn score is an ensemble of a linear model, a
random forest, and a simple feed forward neural network. With appropriate
hyperparameters and training procedure, such an ensemble is capable of good

Left: We have intervened to fix x in the data generating process,

which changes z, but not y. Right: When we intervened on x, the

joint distribution of x and y became just the marginal distribution

of y.

https://ff06-2020.fastforwardlabs.com/


predictive performance. That performance is gained by exploiting subtle
correlations in the data.

To understand the predictions made, we apply LIME. This returns a feature
importance at the local level: which features contributed to each individual
prediction. To accompany the analysis, we built Refractor, an interface for
exploring the feature importances. Examining these is interesting, and highlights
the factors that are correlated with a customer being likely to churn. Refractor
suggests which features most affect the churn prediction, and allows an analyst
to change customer features and see the resulting churn prediction.

Because we have a model that provides new predictions when we change the
features, it is tempting to believe we can infer from this alone how to reduce
churn probability. Aside from the fact that often the most important features
cannot be changed by intervention (tenure, for instance), this is an incorrect
interpretation of what LIME and our model provide. The correct interpretation of
the prediction is the probability of churn for someone who naturally occurred in
our dataset with those features, or, for instance, what this same customer’s
churn probability will look like next year (when tenure will have naturally
increased by one year), assuming none of their other features change.

The Refractor prototype

https://arxiv.org/abs/1602.04938
https://refractor.fastforwardlabs.com/
https://refractor.fastforwardlabs.com/


Of course, there are some features that can be changed in reality. For instance:

the telco could reduce the monthly fee for a customer, or
try to convince them to change contract type from monthly to yearly (one
does not have to think too hard about why this changes the short-term
churn probability), or
upgrade the service from DSL to fiber-optic.

Which of these interventions would most decrease the probability that the
customer churns? We don’t know. Our model alone - for all its excellent
predictive accuracy - can’t tell us that, precisely because it is entirely
correlative. Even a perfect model, that 100% accurately predicts which
customers will churn, cannot tell us that.

With some common sense, we can see that a causal interpretation is not
appropriate here. LIME often reports that having a faster fiber-optic broadband
connection increases churn probability, relative to slower DSL. It seems unlikely
that faster internet has this effect. In reality, LIME is correctly reporting that
there is a correlation between having fiber-optic and churning, likely because of
some latent factors - perhaps people who prefer faster internet are also
intrinsically more willing to switch providers. This distinction of interpretation is
crucial.

The model can only tell us what statistical dependencies exist in the dataset
we trained it on. The training dataset was purely observational - a snapshot of a
window of time with observations about those customers in it. If we select
“give the customer access to tech support” in the app, the model can tell us
that similar customers who also had access to tech support were less likely to
churn. Our model only captures information about customers who happened to
have some combination of features. It does not capture information about what
happens when we change a customer’s features. This is an important
distinction.

To know what would happen when we intervene to change a feature, we must
compute the interventional distribution (or a point prediction), which can be
very different from the observational distribution. In the case of churn, it’s likely
the true causal graph is rather complex.

Interpretability techniques such as LIME provide important insights into
models, but they are not causal insights. To make good decisions using the



output of any interpretability method, we need to combine it with causal
knowledge.

Often, this causal knowledge is not formally specified in a graph, and we simply
call it “domain knowledge,” or expertise. We have emphasized what the model
cannot do, in order to make the technical point clear, but in reality, anyone
working with the model would naturally apply their own expertise. The move
from that to a causal model requires formally encoding the assumptions we
make all the time and verifying that the expected statistical relationships hold in
our observed data (and if possible, experimenting). Doing so would give us an
understanding of the cause-effect relationships in our system, and the ability to
reason quantitatively about the effect of interventions.

Constructing a useful causal model of churn is a complex undertaking, requiring
both deep domain knowledge and a detailed technical understanding of causal

inference.[9] In Causality and Invariance, we will discuss some techniques that
are bridging the gap between a full causal model and the supervised learning
setup we use in problems like churn prediction.

When do we need interventions?



When do we need to concern ourselves with intervention and causality? If all
we want to do is predict, and to do so with high accuracy (or whatever model
performance metric we care about), then we should use everything at our
disposal to do so. That means making use of all the variables that may correlate
with the outcome we’re trying to predict, and it doesn’t matter that they don’t
cause the outcome. Correlation is not causation, but correlation is still

predictive,[10] and supervised learning excels at discovering subtle correlations.

Some situations in which this pure supervised learning approach is useful:

We want to predict when a machine in our factory will fail.
We want to forecast next quarter’s sales.
We want to identify named entities in some text.

Conversely, if we want to predict the effect of an intervention, we need causal
reasoning. For example:

We want to know what to change about our machines to reduce the
likelihood of failures.
We want to know how we can increase next quarter’s sales.
We want to know whether longer or shorter article headlines generate more

clicks.[11]

How do we know which graph to
use?
Knowing the true causal structure of a problem is immensely powerful. Earlier in
this chapter, we discussed three building blocks of causal graphs (direct
causation, forks, and colliders) but for real problems, a graph can be arbitrarily
complex.

The graph structure allows us to reason qualitatively about what statistical
dependencies ought to hold in our data. In the absence of abundant
randomized controlled trials or other experiments, qualitative thinking is
necessary for causal inference. We must use our domain knowledge to
construct a plausible graph to test against the data we have. It is possible to
refute a causal graph by considering the statistical independence relations it
implies, and matching those against the expected relations from the causal
structure. For example, if two variables are connected by a common cause on



which we have not conditioned, we should expect a statistical dependence
between them.

Causal Discovery

The independence relationships implied by a graph can be used for causal
discovery. Causal discovery is the process of attempting to recover causal
graphs from observational data. There are many approaches appropriate
for different sets of assumptions about the graph. However, since many
causal graphs can imply the same joint distribution, the best we should
hope for from causal discovery is a set of plausible graphs, which, if we are
fortunate, may contain the true graph. In reality, inferring the direction of
causation in even a two variable system is not always possible from data

alone.[12]

It is not, in general, possible to prove a causal graph, since different graphs can
result in the same observed and even interventional distributions. The difficulty
of confirming a causal relationship means that we should always proceed with
caution when making causal claims. It is best to think of causal models as giving
results conditional on a set of causal assumptions. Two nodes that are not
directly connected in the causal graph are assumed to be independent in the
data generating process, except insofar as the causal relations described above
(or combinations of them) induce a statistical dependence.

The validity of the results depends on the validity of the assumptions. Of
course, we face the same situation in all machine learning work - and it is to be
expected that stronger, causal claims require stronger assumptions than merely
observational claims.



One case in which we may be able to write down the true causal graph is when
we have ourselves created the system. For instance, a manufacturing line may
have a sufficiently deterministic process that makes it possible to write down a
precise graph encoding which parts move from which machine to another. If we
were to model the production of faulty parts, that graph would be a good basis
for the causal graph, since a machine that has not processed a given faulty part
is unlikely to be responsible for the fault, and causal graphs encode exactly
these independences.

TL;DR
Causal graphical models present an intuitive and powerful means of reasoning
about systems. If an application requires only pure prediction, this reasoning is
not necessary, and we may apply supervised learning to exploit subtle
correlations between variables and our predicted quantity of interest. However,
when a prediction will be used to inform a decision that changes the system, or
we want to predict for the system under intervention, we must reason causally -
or else likely draw incorrect conclusions. That said, behind every causal

Sometimes it can be difficult to establish the causal direction even in

very simple graphs.



conclusion there is always a causal assumption that cannot be tested or verified
by mere observation.

Even without a formal education in causal inference, there are advantages to
the qualitative reasoning enabled by causal graphical models. Trying to write
down a causal graph forces us to confront our mental model of a system, and
helps to highlight potential statistical and interpretational errors. Further, it
precisely encodes the independence assumptions we are making. However,
these graphs could be complex and high dimensional and require close
collaboration between practitioners and domain experts who have substantive
knowledge of the problem.

In many domains, problems such as the large numbers of predictors, small
sample sizes, and possible presence of unmeasured causes, remain serious
impediments to practical applications of causal inference. In such cases, there
is often limited background knowledge to reduce the space of alternative causal
hypotheses. Even when experimental interventions are possible, performing
the many thousands of experiments that would be required to discover causal
relationships between thousands or tens of thousands of predictors is often
not practical.

Given these challenges, how do we combine causal inference and machine
learning? Many of the researched approaches at the intersection of ML and
causal inference are motivated by the ability to apply causal inference
techniques to high dimensional data, and in domains where specifying causal
relationships could be difficult. In the next chapter, we will bridge this gap
between structural causal models and supervised machine learning.



Supervised machine learning is very good at prediction, but there are useful
lessons we can take from causal models even for purely predictive problems.

Relative to recent advancements made in the broader field of machine learning,
the intersection of machine learning and causal reasoning is still in its infancy.
Nonetheless, there are several emerging research directions. Here, we focus on
one particularly promising path: the link between causality and invariance.
Invariance is a desirable property for many machine learning systems: a model
that is invariant is one that performs well in new circumstances, particularly
when the underlying data distribution changes. As we will see in this chapter,
invariance also provides a route to some causal insights, even when working
only with observational data.

The great lie of machine learning
In supervised learning, we wish to predict something that we don’t know, based
on only the information that we do have. Usually, this boils down to learning a
mapping between input and output.

To create that map, we require a dataset of input features and output targets;
the number of examples required scales with the complexity of the problem.
We can then fit the parameters of a learning algorithm to the dataset to
minimize some loss function that we choose. For instance, if we are predicting a
continuous number, like temperature, we might seek to minimize the mean
squared difference between the prediction and the true measurements.

If we are not careful, we will overfit the parameters of the ML algorithm to the
dataset we train on. In this context, an overfit model is one that has learned the
idiosyncrasies (the spurious correlations!) of our dataset. The result is that
when the model is applied to any other dataset (even one with the same data
generating process), the model’s performance is poor, because it is relying on
superficial features that are no longer present.

Causality and Invariance
CHAPTER 3



To avoid overfitting, we employ various regularization schemes and adjust the
capacity of the model to an appropriate level. When we fit the model, we shuffle
and split our data, so we may learn the parameters from one portion of the data,
and validate the resulting model’s performance on another portion. This gives
us confidence that the learned parameters are capturing something about all
the data we have, and not merely a portion of it.

Whatever procedure we use (be it cross-validation, forward chaining for time
series, or simpler train-test-validation splits), we are relying on a crucial
assumption. The assumption is that the data points are independent and
identically distributed ( i.i.d.). By independent, we mean that each data point was
generated without reference to any of the others, and by identically distributed,
we mean that the underlying distributions in the data generating process are the
same for all the data points.

Paraphrasing Zoubin Ghahramani,

the i.i.d. assumption is the great lie of machine learning.

Rarely are data truly independent and identically distributed. What are the
ramifications of this misassumption for machine learning systems?

Dangers of spurious correlations
When we train a machine learning system with the i.i.d. assumption, we are
implicitly assuming an underlying data generating process for that data. This
data generating process defines an environment. Different data generating
processes will result in different environments, with different underlying
distributions of features and targets.

When the environment in which we predict differs from the environment in
which our machine learning system was trained, we should expect it to perform
poorly. The correlations between features and the target are different - and, as
such, the model we created to map from features to target in one environment
will output incorrect values of the target for the features in another
environment.

Unfortunately, it’s rarely possible to know whether the data generating process
for data at predict time (in a deployed ML system, for instance) will be the same
as during training time. Even once the system is predicting in the wild, if we do

https://www.youtube.com/watch?v=x1UByHT60mQ&feature=youtu.be&t=37m34s


not or cannot collect ground truth labels to match to the input features on which
the prediction was based, we may never know.

This problem is not academic. Recognition in Terra Incognita points this out in
humorous fashion (see also Unbiased Look at Dataset Bias). Both of these
papers highlight that computer vision systems trained for visual recognition of
objects, animals, and people can utterly fail to recognise the same objects in
different contexts. A cow on the slopes of an alpine field is easily recognised,
but a cow on a beach is not noticed at all, or poorly classified as a generic
“mammal.”

These failures should not come as a surprise to us! Supervised machine
learning is designed to exploit correlations between features to gain predictive
performance, and cows and alpine pastures are highly correlated. Neural
networks are a very flexible class of models that encode the invariants of the
dataset on which they’re trained. If cows dominantly appear on grass, we
should expect this to be learned.

When is a correlation spurious?

In supervised learning, we learn to use subtle correlations, possibly in high
dimensional spaces like natural images, to make predictions. What

Figure from Recognition in Terra Incognita, where annotations were

provided by ClarifAI.com.

https://arxiv.org/abs/1807.04975
http://people.csail.mit.edu/torralba/publications/datasets_cvpr11.pdf
https://arxiv.org/abs/1807.04975
https://www.clarifai.com/


distinguishes a genuine correlation from a spurious one? The answer
depends on the intended use of the resulting model.

If we intend for our algorithm to work in only one environment, with very
similar images, then we should use all the correlations at our disposal,
including those that are very specific to our environment. However, if - as
is almost always the case - we intend the algorithm to be used on new
data outside of the training environment, we should consider any
correlation that only holds in the training environment to be spurious. A
spurious correlation is a correlation that only appears to be true due to a
selection effect (such as selecting a training set!).

In Background: Causal Inference, we saw that correlation can arise from
several causal structures. In the strictest interpretation, any correlation
that does not arise from direct causation could be considered spurious.

Unfortunately, given only a finite set of training data, it is often not possible
to know which correlations are spurious. The methods in this section are
intended to address precisely that problem.

When a machine learning algorithm relies heavily on spurious correlations for
predictive performance, its performance will be poor on data from outside the
dataset on which it was trained. However, that is not the only problem with
spurious correlations.

There is an important and growing emphasis on interpretability in machine
learning. A machine learning system should not only make predictions, but also
provide a means of inspecting how those predictions were made. If a model is
relying on spurious correlations, the feature importances (such as those
calculated by LIME or SHAP) will be similarly spurious. No one should make
decisions based on spurious explanations!

Invariance
To be confident of our predictions outside of our training and testing datasets,
we need a model that is robust to distributional shifts away from the training
set. Such a model would have learned a representation which ignores dataset-
specific correlations, and instead relies upon features that affect the target in all
environments.

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1705.07874


How can we go about creating such a model? We could simply train our model
with data from multiple environments, as we often do in machine learning
(playing fast and loose with the i.i.d. assumption). However, doing so naively
would provide us with a model that can only generalize to the environments it

has seen (and interpolations of them, if we use a robust objective).[13] We wish
our model to generalize beyond the limited set of environments we can access
for training, and indeed extrapolate to new and unseen (perhaps unforeseen)
environments. The property we are looking for - performing optimally in all
environments - is called invariance.

The connection between causality and invariance is well established. In fact,
causal relationships are - by their nature - invariant. The way many intuitive
causal relationships are established is by observing that the relationship holds
all the time, in all circumstances.

Consider how physical laws are discovered. They are found by performing a
series of experiments in different conditions, and monitoring which
relationships hold, and what their functional form is. In the process of
discovering nature’s laws, we will perform some tests that do not show the
expected result. In cases where a law does not hold, this gives us information

to refine the law to something that is invariant across environments.[14]



For example, water boils at 100° Celsius (212° Fahrenheit). We could observe
that everywhere, and write a simple causal graph: temperature → water boiling.
We have learned a relationship that is invariant across all the environments we
have observed.

Then, a new experiment conducted on top of a tall mountain reveals that on the
mountain, water boils at a slightly lower temperature. After some more
experimentation, we improve our causal model, by realising that in fact, both
temperature and pressure affect the boiling point of water, and the true
invariant relationship is more complicated.

The mathematics of causality make the notion of invariance and environments
precise. Environments are defined by interventions in the causal graph. Each
intervention changes the data generating process, such that the correlations
between variables in the graph may be different (see From prediction to
intervention). However, direct causal relationships are invariant relationships: if
a node in the causal graph depends only on three variables, and our causal
model is correct, it will depend on those three variables, and in the same way,
regardless of any interventions. It may be that an intervention restricts the

We learn causal relationships by observing under different experimental

conditions. Causal relationships are those that are invariant across the

environments created by these conditions.



values that the causal variables take, but the relationship itself is not changed.
Changing the arguments to a function does not change the function itself.

Invariance and machine learning
In the machine learning setting, we are mostly concerned with using features to
predict a target. As such, we tend to select features for their predictive
performance. In contrast, causal graphs are constructed based on domain
knowledge and statistical independence relations, and thus encode a much
richer dependency structure. However, we are not always interested in the
entire causal graph. We may be interested only in the causes of a particular
target variable. This puts us closer to familiar machine learning territory.

We will now examine two approaches to combining causal invariance and
machine learning. The first, invariant causal prediction, uses the notion of
invariance to infer the direct causes of a variable of interest. This restricted form
of causal discovery (working out the structure of a small part of the graph in

In supervised learning, we often use all available variables (or a

subset selected for predictive performance) to predict an outcome. With

structural causal models, we encode a much richer dependency structure

between variables.



which we are interested) is appropriate for problems with well defined variables
where a structural causal model (or at least causal graph) could be created - in
principle, if not in practice.

Not all problems are amenable to SCMs. In the following section, we describe
invariant risk minimization, where we forego the causal graph and seek to find a
predictor that is invariant across multiple environments. We don’t learn anything
about the graph structure from this procedure, but we do get a predictor with
greatly improved out-of-distribution generalization.

Invariant Causal Prediction
Invariant causal prediction (ICP) addresses the task of invariant prediction
explicitly in the framework of structural causal models.

Often, the quantity we are ultimately concerned with in a causal analysis is the
causal effect of an intervention: what is the difference in the target quantity

when another variable is changed?[15] To calculate that, we either need to hold
some other variables constant, or else account for the fact that they have
changed. If we are only interested in the causes that affect a particular target,
we do not need to construct the whole graph, but rather only determine which
factors are the true direct causes of the target. Once we know that, we can
answer causal questions, like how strongly each variable contributes to the
effect, or the causal effect of changing one of the input variables.

The key insight offered by ICP is that because direct causal relationships are
invariant, we can use that to determine the causal parents (the direct causes).
The set-up is similar to that of machine learning; we have some input features,
and we’d like a model of an output target. The difference from supervised
learning is that the goal is not “performance at predicting the target variable.” In
ICP, we aim to discover the direct causes of a given variable - the variables that
point directly into the target in the causal graph.

https://arxiv.org/abs/1501.01332


To use ICP, we take a target variable of interest, and construct a plausible list of
the potential direct causes of that variable. Then we must define environments
for the problem: each environment is a dataset. In the language of SCMs, each
environment corresponds to data observed when a particular intervention
somewhere in the graph was active. We can reason about this even without
specifying the whole graph, or even which particular intervention was active, as
long as we can separate the data into environments. In practice, we often take
an observed variable to be the environment variable, when it could plausibly be
so.

For instance, perhaps we are predicting sales volume in retail, and want to
discern what store features causally impact sales. The target is sales volume,
and the potential causes would be features like store size, number of nearby
competitors, level of staffing, and so on.

Environments might be different counties (or even countries) - something that
is unlikely to impact the sales directly, but which may impact the features that
impact the sales. For instance, different places will have different populations,

We are not always interested in the full causal graph, and instead only

seek to find the direct causes of a given target variable. This brings

some of the advantages of a causal model into the supervised learning

paradigm.



and population density is a possible cause of sales volume. Importantly, the

environment cannot be a descendent of the target variable.[16]

To apply ICP, we first consider a subset of features. We then fit a linear
(Gaussian) regression from this subset to the target in each environment we
have defined. If the model does not change between environments (which can
be assessed either via the coefficients or a check on residuals), we have found
a set of features that appear to result in an invariant predictor. We iterate over
subsets of features combinatorially. Features that appear in a model that is
invariant are plausible causes of the target variable. The intersection of these
sets of plausible causes (i.e., the features which are predictive in all
environments) is then a subset of the true direct causes.

We fit a model in multiple environments, and monitor which features are

consistently predictive.



In machine learning terms, ICP is essentially a feature selection method, where
the features selected are very likely to be the direct causes of the target. The
model built atop those features can be interpreted causally: a high coefficient
for a feature means that feature has a high causal effect on the target, and
changes in those features should result in the predicted change in the target.

Naturally, there are some caveats and assumptions. In particular, we must
assume there is no unobserved confounding between the features and the
target (recall that a confounder is a common cause of the feature and target). If
there are known confounders, we must make some adjustments to account for
them, as detailed in the ICP paper. The authors provide an R package,
InvariantCausalPrediction, implementing the methods.

The restriction of using a linear Gaussian model - and that environments be
discrete, rather than defined by the value of a continuous variable - are

removed by nonlinear ICP.[17] In the nonlinear case, we replace comparing

residuals or coefficients with conditional independence tests.[18]

The features that are consistently predictive of a target are likely the

causal parents in the (unknown!) causal graph.

https://arxiv.org/abs/1501.01332
https://cran.r-project.org/web/packages/InvariantCausalPrediction/index.html


Invariant Risk Minimization
When using Invariant Causal Prediction, we avoid writing the full structural
causal model, or even the full graph of the system we are modeling, but we
must still think about it.

For many problems, it’s difficult to even attempt drawing a causal graph. While
structural causal models provide a complete framework for causal inference, it
is often hard to encode known physical laws (such as Newton’s gravitation, or
the ideal gas law) as causal graphs. In familiar machine learning territory, how
does one model the causal relationships between individual pixels and a target
prediction? This is one of the motivating questions behind the paper Invariant
Risk Minimization (IRM). In place of structured graphs, the authors elevate
invariance to the defining feature of causality.

They also make the connection between invariance and causality well:

“If both Newton’s apple and the planets obey the same equations, chances
are that gravitation is a thing.” – IRM authors

Like ICP, IRM uses the idea of training in multiple environments. However,
unlike ICP, IRM is not concerned with retrieving the causal parents of the target
in a causal graph. Rather, IRM focusses on out-of-distribution generalization:
the performance of a predictive model when faced with a new environment.
The technique proposed aims to create a data representation, on which a
classifier or regressor can perform optimally in all environments. The paper
itself describes the IRM principle:

“To learn invariances across environments, find a data representation such
that the optimal classifier on top of that representation matches for all
environments.” – IRM authors

Said differently, the idea is that there is a latent causal structure behind the
problem we’re learning, and the task is to recover a representation that encodes
the part of that structure that affects the target. This is different from selecting
features, as in Invariant Causal Prediction. In particular, it provides a bridge from
very low level features (such as individual pixels) to a representation encoding
high level concepts (such as cows).

The causal direction

https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1907.02893


The idea of a latent causal system generating observed features is particularly
useful as a view of computer vision problems. Computer vision researchers
have long studied the generative processes involved in moving from real world

objects to pixel representations.[19] It’s instructive to inspect the causal
structure of a dataset of cow pictures.

In nature, cows exist in fields and on beaches, and we have an intuitive
understanding that the cow itself and the ground are different things. A neural
network trying to predict the presence of a cow in an image could be called an
“anti-causal” learning problem, because the direction of causation is the
opposite of the direction of prediction. The presence of a cow causes certain
pixel patterns, but pixels are the input to the network, and the presence of a
cow is the output.

However, a further sophistication can be added: the dataset on which we train a
neural network is not learning from nature, but rather from annotations provided
by humans. This changes the causal direction: we are now learning the effect
from the cause, since those annotations are caused by the pixels of the image.

When the features are the causes of the target, we say we are learning

in the causal direction. When effects are the features, we are learning

in the anti-causal direction.



This is the view taken by IRM,[20] which thus interprets supervised learning

from images as being a causal (rather than anti-causal) problem.[21]

Not all supervised learning problems are causal. Anti-causal supervised learning
problems arise when the label is not provided based on the features, but by
some other mechanism that causes the features. For example, in medical
imaging, we could obtain a label without reference to the image itself by
observing the case over time (this is not a recommended approach for
treatment, of course).

Learning in the causal direction explains some of the success of supervised
learning - there is a chance that it can recover invariant representations without
modification. Any supervised learning algorithm is learning how to combine
features to predict the target. If the learning direction is causal, each input is a
potential cause of the output, and it’s possible that the features learned will be
the true causes. The modifications that invariant risk minimization makes to the
learning procedure improve the chance by specifically promoting invariance.

How IRM works
To learn an invariant predictor, we must provide the IRM algorithm with data
from multiple environments. As in ICP, these environments take the form of
datasets - and, as such, the environments must be discrete. We need not
specify the graphical or interventional structure associated with the
environments. The motivating example of the IRM paper asks us to consider a
machine learning system to distinguish cows from camels, highlighting a similar
problem to that which Recognition in Terra Incognita does: animals being
classified based on their environment, rather than on the animal itself. In this
case, cows on sand may be misclassified as camels, due to the spurious
correlations absorbed by computer vision systems.

https://arxiv.org/abs/1807.04975


Simply providing data from multiple environments is not enough. The problem
of learning the optimal classifier in multiple environments is a bi-level
constrained optimization problem, in which we must simultaneously find the
optimal data representation and optimal classifier across multiple separate
datasets. IRM reduces the problem to a single optimization loop, with the trick
of using a constant classifier and introducing a new penalty term to the loss
function.

IRM loss = sum over environments (error + penalty) 

The error  is the usual error we would use for the problem at hand - for
example, the cross entropy for a classification problem - calculated on each
environment. The technical definition of the new penalty  term is the squared
gradient norm with respect to a constant classifier, but it has an intuitive
explanation. While the error measures how well the model is performing in each
environment, the penalty measures how much the performance could be
improved in each environment with one gradient step.

By including the penalty term in the loss, we punish high gradients (situations in
which a large improvement in an environment would be possible with one more

In the IRM setup, we feed the algorithm data from multiple environments,

and we must be explicit about which environment a data point belongs to.



epoch of learning). The result is a model with optimal performance in all
environments. Without the IRM penalty, a model could minimize the loss by
performing extremely well in just one environment, and poorly in others. Adding
a term to account for the model having a low gradient (roughly, it has converged)
in each environment ensures that the learning is balanced between
environments.

To understand the IRM paradigm, we can perform a thought experiment.
Imagine we have a dataset of cows and camels, and we’d like to learn to classify
them as such. We separate out the dataset by the geolocation of photos - those
taken in grassy areas form one environment, and those taken in deserts form
another.

As a baseline, we perform regular supervised learning to learn a binary classifier
between cows and camels. The learning principle at work in supervised learning
is referred to as empirical risk minimization, (ERM); we’re just seeking to

minimize the usual cross-entropy loss.[22] We’ll surely find that we can get
excellent predictive performance on these two environments, because we have
explicitly provided data from both.

The trouble arises when we want to identify a cow on snow, and find that our
classifier did not really learn to identify a cow; it learned to identify grass. The
holdout performance of our model in any new environment we haven’t trained
on will be poor.



With IRM, we perform the training across (at least) two environments, and
include the penalty term for each in the loss. We’ll almost certainly find that our
performance in the training environments is reduced. However, because we
have encouraged the learning of invariant features that transfer across
environments, we’re more likely to be able to identify cows on snow. In fact,
the very reason our performance in training is reduced is that we’ve not
absorbed so many spurious correlations that would hurt prediction in new
environments.

It is impossible to guarantee that a model trained with IRM learns no spurious
correlations. That depends entirely on the environments provided. If a
particular feature is a useful discriminator in all environments, it may well be
learned as an invariant feature, even if in reality it is spurious. As such, access
to sufficiently diverse environments is paramount for IRM to succeed.

However, we should not be reckless in labeling something as an environment.
Both ICP and IRM note that splitting on arbitrary variables in observational data
can create diverse environments while destroying the very invariances we wish
to learn. While IRM promotes invariance as the primary feature of causality, it
pays to hold a structural model in the back of one’s mind, and ask if an

If we rely on empirical risk minimization, we learn spurious

correlations between animals and their environments.



environment definition makes sense as something that would alter the data-
generating process.

Considerations for applying IRM
IRM buys us extrapolation powers to new datasets, where independent and
identically distributed supervised learning can (at best) interpolate between
them. Using IRM to construct models improves their generalization properties
by explicitly promoting performance across multiple environments, and leaves
us with a new, closer-to-causal representation of the input features. Of course,
this representation may not be perfect (IRM is an optimization-based
procedure, and we will never know if we have found the true minimum risk
across all environments) but it should be a step towards latent causal structure.
This means that we can use our model to predict based on true, causal
correlations, rather than spurious, environment-specific correlations.

However, there is no panacea, and IRM does come with some challenges.

Often, the dataset that we use in a machine learning project is collected well
ahead of time, and may have been collected for an entirely different purpose.
Even when a well-labeled dataset that is amenable to the problem exists, it is
seldom accompanied by detailed metadata (by which we mean “information
about the information”). As such, we often do not have information about the
environment in which the data was collected.



Another challenge is finding data from sufficiently diverse environments. If the
environments are similar, IRM will be unlikely to learn features that generalize
to environments that are different. This is both a blessing and a curse - on the
one hand, we do not need to have perfectly separated environments to benefit
from IRM, but on the other hand, we are limited by the diversity of
environments. If a feature appears to be a good predictor in all the
environments we have, IRM will not be able to distinguish that from a true
causal feature. In general, the more environments we have, and the more
diverse they are, the better IRM will do at learning an invariant predictor, and
the closer we will get to a causal representation.

Most datasets are collected in a variety of environments, and without

the metadata necessary to separate them. This presents a challenge for

invariance-based approaches.



No model is perfect, and whether or not one is appropriate to use depends on
the objective. IRM is more likely to produce an invariant predictor, with good
out-of-distribution performance, than empirical risk minimization (regular
supervised learning), but using IRM will come at the expense of predictive
performance in the training environment.

It’s entirely possible that for a given application, we may be very sure that the
data in the eventual test distribution (“in the wild”) will be distributed in the
same way as our training data. Further, we may know that all we want to do with
the resulting model is predict, not intervene. If both these things are true, we
should stick to supervised learning with empirical risk minimization and exploit
all the spurious correlations we can.

IRM relies on representative data from diverse environments. If we

cannot collect enough data from sufficiently diverse environments, we

may still learn spurious correlations.



The promise of Invariant Risk Minimization (greatly improved out-of-distribution
generalization using a representation that is closer-to-causal) is tempting. The
IRM paper performs some experiments that clearly show the method works
when applied to an artificial structural causal model. Further, an experiment in
which an artificial spurious correlation is injected into the MNIST dataset (by
coloring the images) is detailed, and works.

In order to gain a better understanding of the algorithm and investigate further,
we wanted to test the same technique in a less artificial scenario: on a natural
image dataset.

The Wildcam dataset
The iWildCam 2019 dataset (from The iWildCam 2019 Challenge Dataset)
consists of wildlife images taken using camera traps. In particular, the dataset
contains the Caltech Camera Traps (CCT) dataset, on which we focus. The CCT
dataset contains 292,732 images, with each image labeled as containing one of
13 animals, or none. The images are collected from 143 locations, and feature a
variety of weather conditions and all times of day. The challenge is to identify
the animal present in the image.

Prototype
CHAPTER 4

https://www.kaggle.com/c/iwildcam-2019-fgvc6


Experimental setup
This setup maps naturally to the environmental splits used in IRM. Each camera
trap location is a distinct physical environment which is roughly consistent,
allowing for seasonal, weather, and day/night patterns. No two environments are
the same, though the camera locations are spread around roughly the same
geographic region (the American Southwest).

The objects of interest in the dataset are animals, which are basically invariant
across environments: a raccoon looks like a raccoon in the mountains and in
your backyard (though the particular raccoon may be different). The images are
not split evenly between environments, since there is more animal activity in
some places than others. Nor are the animal species evenly distributed among
cameras. Some cameras will primarily produce images of one species or
another, depending on the animals active in the area.

If we were to naively train a model using empirical risk on a subset of cameras,
we could well end up learning exactly those class imbalances. If 99% of the
images from camera 1 are labeled as deer, then we could have a 99% accurate
classifier by learning to recognize the fallen tree that is present only in camera
1, rather than the deer themselves. Clearly such a classifier has not really
learned to recognize deer, and would be useless for predicting in another
environment.

Left, a coyote in its natural environment. Right, a raccoon in the same

location at night. Image credit: The iWildCam 2019 Challenge Dataset,

used under the Community Data License Agreement.

https://arxiv.org/abs/1907.07617
https://cdla.io/permissive-1-0/


We want to learn to recognize the animals themselves. The IRM setup seems
ideally suited to address this challenge.

To validate the approach, we restricted our experiment to only three cameras
and two animal species, which were randomly chosen. Of the three cameras,
two were used as training environments, and one as a held-out environment for
testing. The task was binary classification: distinguish coyotes from raccoons.
We used ResNet18, a pretrained classifier trained on the much larger ImageNet
dataset, as a feature extractor with a final fully connected layer with sigmoid
output, which we tuned to the problem at hand.

Each of the environments contained images of both coyotes and racoons. Even
this reduced dataset exhibited several challenges typical to real world computer
vision: some images were dark, some were blurred, some were labeled as
containing an animal when only the foot of the animal was visible, and some
featured nothing but a patch of fur covering the lens. We saw some success
simply ignoring these problems, but ultimately manually selected only those
images clearly showing an identifiable coyote or raccoon.

Results
When tackling any supervised learning problem, it’s a good idea to set up a
simple baseline against which to compare performance. In the case of a binary
classifier, an appropriate baseline model is to always predict the majority class
of the training set. The three environments had a class balance as shown in the
table below. The majority class in both train environments is coyote, so our
baseline accuracy is the accuracy if we always predict the animal is a coyote,
regardless of environment or input image.

Train environment 1 Train environment 2 Test

Coyotes 582 512 144

Raccoons 276 241 378

Baseline accuracy 68% 68% 28%

When we treated the problem with empirical risk minimization (minimizing the
cross-entropy between classes), we found good performance in the train
environments, but very poor performance in the test environment. We report
the metrics over 120 epochs of training in the table below. The best test
accuracy is achieved at epoch 40, after which ERM (empirical risk minimization)
begins to overfit. In the case of IRM (invariant risk minimization), we paid a

https://arxiv.org/abs/1512.03385


small price in train set accuracy, but achieved much better test results - again,
reporting the highest test accuracy achieved in 120 epochs (at epoch 120).

ERM outperforms the baseline in all environments, but not by too much in the
new test environment. This can be attributed to the learning of spurious
correlations. The network was able to effectively distinguish between raccoons
and coyotes in the training environments, but the features it relied upon to do
so were not general enough to help prediction much in the test environment.

In contrast, IRM loses a single percentage point of accuracy in the train
environments, but performs almost as well in the test environment. The feature
representation IRM constructs has translated between different environments
effectively, and proves an effective discriminator.

As a practical point, we found that IRM worked best when the additional IRM
penalty term was not added to the loss until the point at which ERM had
reached its best performance - in this case the 40th training epoch. As such,
ERM and IRM had identical training routines and performance until this point.
When we introduced the IRM penalty, the IRM procedure continued to learn
and gain out-of-distribution generalization capability, whereas ERM began to
overfit. By the 120th epoch, IRM had the accuracy reported above, whereas

Table comparing metrics on the combined train set and test set for

empirical risk minimization (ERM) and invariant risk minimization (IRM).



ERM had achieved 91% in the combined training environments, at the cost of
reducing its test accuracy by a few percentage points to 33%.

Interpretability
IRM yields impressive results, especially considering how hard it is to learn
from these images. It has a clear and significant improvement in when
compared to ERM in a new environment. In this section, we examine a few
concrete examples of successes and failures of our prototype model and our
speculations as to why they may be.

It would be nice to have a better sense of whether IRM has learned invariant
features. By that we mean, whether it has learned to spot a raccoon’s long
bushy tail or a coyote’s slender head, instead of the terrain or foliage in the
image. Understanding which parts of the image contribute towards IRM’s
performance is a powerful proposition. The classification task itself is hard: if
you closely look at some of the images in the Wildcam dataset, at a first glance
it’s even hard for us, humans, to point out where exactly the animal is. An
interpretability technique like Local Interpretable Model-agnostic Explanations
(LIME) provides valuable insights into how that classification is working.

LIME is an explanation technique that can be applied to almost any type of
classification model — our report FF06: Interpretability discusses these
possibilities — but here we will consider its application to image data. LIME is a
way to understand how different parts of an input affect the output of a model.
This is accomplished, essentially, by turning the dials of the input and observing
the effect on the output.

Let’s first try and understand how LIME works at a high level - including what
inputs we need to provide, and what to expect as output - through a sample
image in the test set. The image on the left of the figure below is a sample raw
image of a coyote with dimensions height=747 and width=1024, as were all
images in the dataset.

https://arxiv.org/abs/1602.04938
https://ff06-2020.fastforwardlabs.com/


To use the IRM model, we must first perform some image transformations like
resizing, cropping, and normalization - using the same transformations that we
did when training the model. The input image then appears as shown on the
right of the figure above, a normalized, 224 * 224 image. The transformed image
when scored by the IRM model outputs a probability of 98% (0.98) for the
coyote class! So yes, our model is pretty confident of its prediction.

Now, let’s see how LIME works on this image. First, LIME constructs a local
linear model, and makes a prediction for the image. For the example image, the
predicted score is 0.95, pretty close to the IRM model. When trying to explain
the prediction, LIME uses interpretable representations. For images,
interpretable representations are basically contiguous patches of similar pixels
called superpixels. The superpixels for an image are generated by a standard
algorithm, QuickShift, in the LIME implementation. The left panel in the figure
below shows all of the 34 superpixels generated by LIME for the example
image.

Left: a raw Wildcam image. Right: Having been cropped and scaled to the

input dimensions required by ResNet18.



It then creates versions of the original image by randomly masking different
combinations of the superpixels as shown in the middle and right panes of the
above figure. Each random set of masked superpixels is one perturbation of the
image. The modeler chooses the number of perturbations; in our case, we used
1000 perturbations of the original image. LIME then builds a regression model
on all these perturbed images and determines the superpixels that contributed
most towards the prediction, based on their weights.

The figure below shows the superpixel explanations (with the rest of the image
grayed out) for the top 12 features that contribute towards the prediction of the
coyote classification. While there are quite a few features that are mostly
spurious covering the foliage or terrain, one of them covers the entire body of
the coyote. Looking at these explanations provides an alternative way of
assessing the IRM model and can enhance our trust that the model is learning
to rely on sensible features.

LIME masks random combinations of superpixels, generated by QuickShift,

to build a local linear model.



Now when we generate the top 12 LIME explanations for the same image but
based on the ERM model, they seem to capture more of the surroundings,
rather than any of the coyote’s body parts.

The non-grayed-out pixels correspond to the top 12 superpixels that

contribute positively to the Coyote classification for the IRM model.



And then there are instances where LIME explanations seem to rely on
spurious features. For example, in the figure below, the original image is
classified as a coyote by the IRM model with a probability of 72% (0.72),
whereas the LIME score is close to 0.53. The superpixels contributing towards
the classification for both the IRM and ERM models usually cover the terrain or
foliage, though some outline the coyote’s body.

The non-grayed-out pixels correspond to the top 12 superpixels that

contribute positively to the Coyote classification for the ERM model. In

this case, they didn’t catch much of the coyote.



We observe that the explanations make more intuitive sense when the LIME
score is close to the model score.

IRM can only learn to be invariant with respect to the invariants that the
environments encode. If there are spurious correlations that are the same
across environments, IRM will not distinguish them from invariant features.

One feature that appears invariant in this dataset is the day or night cycle.
Raccoons appear exclusively at night, and IRM could well learn that night means
raccoon, and rely on it heavily. This correlation is spurious; a raccoon is still a
raccoon during the day! However, we would need more environments, including
images of raccoons in the daytime, to disentangle that.

The representation that IRM extracts from an environment should theoretically
be closer to encoding the latent causal structure of the problem than that which
ERM extracts. In our scenario, we might expect that IRM learns to focus more
on the actual animal in the picture, since the presence of the animal is the
cause of a given annotation. The animals change little between environments,
whereas environmental features (like foliage) are completely different at
different camera trap locations. Thus, the causal features ought to be invariant
between environments.

That said, although the IRM results appear promising for some samples, it is
hard to confirm that there is an obvious pattern, and this can be attributed to
both the model and the interpretability technique. We chose to train only the
last layer of ResNet18 to come up with the IRM model. This choice has an
inherent drawback: the capacity for feature learning is low. As such, we
wouldn’t expect perfect results, since it’s unlikely that the pretrained ResNet

representations map perfectly to raccoons and coyotes.[23]

In this instance, both models seem to be relying on environmental

features to predict Coyote.



Further, although an explanation of an image provides some reassurance of the
quality of the model, it’s probably still insufficient to provide an overall picture
of the kind of features a given model is using, aggregated from all the individual
explanations. And even though explanations for multiple images are insightful,
these have to be judiciously selected. When it comes to text or tabular data,
there are ways to determine the global feature importances, because the
features in tabular data or vocabulary stay consistent across all the data points.
The superpixels of an image cannot be consistent across all the images, which
makes it really hard to assess whether the explanations make sense.
Developing tools to understand large image datasets is a worthy endeavour!

Product: Scene

To accompany this report, we built a prototype called Scene that takes you on a
guided tour through the dataset, models, and results of our experiment. With
Scene, we really wanted to give people a feel for the images that make up the
dataset. Each panel of the tour features 16 images from the dataset, cropped
and resized to the same dimensions of the images that the model is trained on.
Many of the images featured are randomly sampled from the dataset when we
generate the page, while others we specifically selected to use as examples.
We hope that the amount and variety of images shown helps people get an
intuitive feel for the dataset.

The Scene prototype

https://scene.fastforwardlabs.com/
https://scene.fastforwardlabs.com/


If you want to go even deeper, we included an all page, which shows all 2,133
images in the dataset, along with the predictions and interpretability
visualizations for each model. It’s nice to be able to use these visualizations to
check intuitions (like which features are important to each model) with your
own eyes. Of course, even having access to all the images doesn’t mean you
can see “the big picture.” It’s difficult to hold everything you’ve seen in your
head as you scroll through. If you’re not careful, you’ll end up generalizing the
patterns you’ve seen most recently to the entire dataset. This is the challenge
of visualizing the scale of the data that machine learning systems take in. Other
techniques, like embeddings (as seen in our Active Learner prototype) can help
you visualize patterns, but then you lose some of the detail gained by being
able to see the images up close. No one technique can give you the whole
picture; data visualization requires a variety of techniques.

Generating such a large number of images, complete with text labels and
interpretability overlays, was an interesting technical challenge. Originally, we’d
planned to have Scene animate transitions between the original image and the
interpretability overlays. To do this efficiently in a browser, you generate a
“sprite sheet” - a large image that contains all the different animation states
you’ll transition through (a technique borrowed from video games). It was while
we were generating the sprite sheets that we decided that, rather than
transitioning through them one at a time, it would be more effective to show the
entire sheet. Having more images visible together made comparisons easier and

View all the images in the dataset on the all page.

https://scene.fastforwardlabs.com/all
https://activelearner.fastforwardlabs.com/
https://scene.fastforwardlabs.com/all


the scale of the dataset more clear. We ended up using the node-canvas
package to crop and place the images, overlay the interpretability layers, and
apply the labels through a node script. Since we do all the work of generating
images locally, we guarantee the user as snappy an experience as possible.
Static site generation has seen renewed interest as a web-development
strategy, and could be especially useful for large-scale data-visualization.

https://activelearner.fastforwardlabs.com/


Causality spans a broad area of topics, including using causal insights to improve
machine learning methods, adapting it for high-dimensional datasets and
applying them for better data-driven decision making in real-world contexts. We
also discussed in Causality and Invariance how the collected data is rarely an
accurate reflection of the population, and hence may fail to generalize in
different environments or new datasets. Methods based on invariance show
promise in addressing out-of-distribution generalization.

Use Cases
As we demonstrated in the Prototype chapter, Invariant Risk Minimization is
particularly well suited to image problems in diverse physical environments.
However, an environment need not mean only the scenery in an image, and
when it does, it need not be fixed to a single value. Here we suggest some
applications in and beyond computer vision.

Healthcare
In healthcare, medical images have to be manually annotated by radiologists to
identify abnormalities. These annotated images are then used to train and build
diagnostic models. Often the devices (like MRI scanners) which generate these

medical images exhibit some kind of variation.[24] That is, due to mechanical
configurations, vendor differences, or any number of other reasons, the images
that are generated by one MRI scanner could be systematically different from
another for the same patient. As such, a diagnostic model that was built on the
images generated by an old MRI scanner may perform poorly when tested on
the images generated by a new scanner. One way to solve this problem is to
have the radiologist annotate the images generated by the new scanner and
then retrain the model. But that could be expensive and time-consuming. Plus,
this isn’t a permanent solution; every time there’s a new scanner or changes to
the configuration, it would be necessary to retrain the existing model with an
entirely new set of images.

Landscape
CHAPTER 5



A diagnostic model based on invariant prediction that treats scanners as
environments could be immune to these noisy device variations and change its
decisions accordingly. This could save the time and money needed to annotate
images from the new scanner.

Robotics

Autonomous systems need to detect and adapt to different environments.
These systems rely on sophisticated sensors, cameras, and large amounts of
labeled and diverse real-world datasets (which are difficult to acquire). Take, for
example, the task of autonomously following a man-made trail that is traversed
by hikers or mountain bikers. This is a mostly unsolved task for robotics, but yet

an important one for applications like search and rescue.[25]

While many types of robots (such as the quadrupedal robot) can be efficient at
locomotion, successfully navigating real-world forest trails is hard. Apart from
the mechanics of the problem, perceiving real-world trails is difficult. The
appearance of the wilderness area may vary a lot depending on the location,
unpaved roads generally have less structure (and tend to blend in with the

Autonomous systems trained in the lab or in limited environments will

struggle to adapt to the diversity present in the real world.



surrounding grass areas, vegetation, and such), and trails change over time. It
would be impossible to have a comprehensive dataset of all trails, in all weather
and lighting conditions.

In such cases, a possible solution is to cast the trail perception problem as an
image classification task and adopt an invariance based approach that operates
directly on the image’s raw pixel values. Successful application could allow for
out-of-distribution generalization to new trails, since the features learned are
more transferable than environment-specific signals. Naturally, similar ideas are
relevant for autonomous vehicles in urban areas.

Activity recognition systems
Smart devices (phones, watches, fitness trackers) carry a large array of sensors:
accelerometers, gyroscopes, magnetometers, barometers, ambient lights
sensors, and many more. Categorizing this data by the activity being performed
at the time of recording - such as sitting, standing, or swimming - has allowed
for the development of machine learning-based human-activity recognition
systems. Correctly predicting a wearer’s activity enables a host of contextual
applications, in particular in (but not restricted to) the health and wellness

space.[26]

Unfortunately, it is hard to satisfactorily model this data due to the diversity
exhibited in the real world. A single individual can perform a given activity
slightly differently day-to-day, or the device may be unusually placed, or held or
worn in a variety of orientations. Of course, different users are also physically
diverse, and devices have intrinsic differences in their sensors and systems.
This means that we either need a labeled dataset that captures the activity for
each user and device (which is prohibitively expensive) or another way of
identifying attributes that generalize better. Methods based on invariance could
be particularly useful and well-suited in this scenario, capturing the essence of
“sitting,” rather than the particular sensor activations for a particular user sitting
on a particular chair.

Natural language processing



Invariant prediction approaches are of course not restricted exclusively to
image problems. In natural language processing, texts from different publication
platforms are tricky to analyze due to different contexts, vocabularies, and
differences between how authors express themselves. For instance, financial
news articles use a vocabulary and tone that differs from culture or society
articles. The former is likely terse, whereas the latter may have an entertaining
or personal tone. Similarly, online product reviews are linguistically different
from tweets. Sentiment classification also relies heavily on context; different
words are used to express whether someone likes a book versus an electronic
gadget.

Two recent papers, An Empirical Study of Invariant Risk Minimization and
Invariant Rationalization, apply the idea of IRM to a sentiment classification
task, and find it improves out of distribution generalization. In particular,
invariance acts to remove spurious reliance on single words which correlate
highly with the target. Like images, text corpora form very high-dimensional
datasets (there are many possible words!), making spurious correlations
extremely unlikely to be noticed “manually.” As such, invariance based
approaches are especially promising here.

Environments are everywhere. For instance, different sources of natural

language.

https://arxiv.org/abs/2004.05007
https://arxiv.org/abs/2003.09772


Recommender systems

Recommendation systems are algorithms designed to present relevant items to
users on the web (for example, suggesting which movie to watch, a book to
read, or a product to buy). As such, making good recommendations is an
important problem: we want to make relevant recommendations for a user
based on a record of their historical activities, from which we must infer their
preferences.

The training data is either explicit (e.g., a rating a user left on a book) or implicit
(e.g., linger time on a webpage or click data). There is a well-known exposure
problem in recommender systems: a user simply cannot click on an item with
which they have not been presented. Modeling the data without accounting for
this is akin to the assumption of independent and identically distributed data,
and is false: users do not select items randomly and independently of one
another. For instance, a user may choose between two competing movies to
watch, rather than selecting whether to watch each independently.

The data a recommender system collects is inherently biased by the

suggestions it makes. We can untangle this bias with causal inference.



ReySys are a classic application for causality, which allows us to correct for this
exposure bias by treating the selection of items to present to a user as an
intervention. Applying causal approaches to recommendation naturally

improves generalization to new data,[27] and it seems likely that methods using
invariant prediction could enhance this.

Tools
The invariance-based approaches to causality we have discussed do not
require dedicated tooling - ICP and IRM are procedures that could be
implemented with general purpose machine learning frameworks.

Nonetheless, the authors of the ICP papers [28] provide corresponding R
packages: InvariantCausalPrediction and nonlinearICP. The packages make the
techniques easy to use, and include additional utilities, such as dedicated plots
for confidence intervals on causal coefficients. We are not aware of a package
for IRM, but the authors have provided a code repository which reproduces the
paper results.

Below, we list a handful of open source projects that aid in traditional, SCM-
based causal inference.

DoWhy
Microsoft Research is developing the DoWhy python library for causal
inference, incorporating elements of both causal graphical models and potential
outcomes. The library is oriented around pandas DataFrames, and fits easily into
a Python data analysis workflow. In particular, DoWhy makes a separation
between four stages of causal inference:

1. Modeling - defining a causal graph, or else the assumptions necessary for a
potential outcomes approach (the common causes of the treatment and the
outcome variable).

2. Identification - identifying the expression it is necessary to evaluate, in
terms of conditional probability distributions.

3. Estimation - estimating the treatment effect. There are many estimation
methods available in DoWhy, including machine learning-based methods
from another of Microsoft’s causal libraries: EconML.

https://cran.r-project.org/web/packages/InvariantCausalPrediction/index.html
https://cran.r-project.org/web/packages/nonlinearICP/index.html
http://github.com/facebookresearch/InvariantRiskMinimization/
https://microsoft.github.io/dowhy/
https://github.com/microsoft/EconML


4. Refutation - assessing the robustness of the conclusion. Given the reliance
of causal inference on modeling assumptions, it is especially important to
find ways to test our conclusions. DoWhy provides several methods for this,
such as introducing a dummy common cause or replacing the treatment with
a random placebo.

In addition to the above, DoWhy includes a novel algorithm, the “do-sampler.”
In much of causal inference, the quantity of interest is a single number - for
instance, the difference in the outcome variable when a binary treatment
variable is applied (“what is the average causal effect of smoking on cancer
incidence?”). The do-sampler extends the pandas DataFrame API directly, and
moves beyond calculating causal effects to allow sampling from the full
interventional distribution. Having done so, we can then compute arbitrary
statistics under this intervention. The do-sampler is new, but provides a very
promising direction for further research, and a potential avenue to making
causal inference accessible to many more data science practitioners.

CausalDiscoveryToolbox
The Causal Discovery Toolbox provides implementations of many algorithms
designed for causal discovery - attempting to recover the full causal graph from
observational data alone. There are many approaches to causal discovery, and
the library is relatively comprehensive, including both algorithms pairwise causal
discovery (inferring the direction of causation between a pair of variables),
graph skeleton creation (creating an undirected graph of potential causal
relationships), and full graphical causal model discovery.

Discovery of entire causal graphs does not yet appear mature enough that we
can naively trust its conclusions about the causal structure of a problem. This
makes sense, given the difficulty of the task! Inferring the whole causal
structure from only observational data is about the hardest imaginable problem
we could face with data.

CausalNex
CausalNex is a very recently released (at time of writing) toolkit by
QuantumBlack to help data scientists do causal reasoning. It provides both a
graph structure learning component to help build the causal graph and tools to
fit that graph as a Bayesian network.

https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.html
https://causalnex.readthedocs.io/en/latest/


The structure learning component is an implementation of DAGs with
NOTEARS, an algorithm that casts structure learning as a continuous
optimization problem. In its simplest form, it assumes linear relationships
between variables (but unlike some causal discovery methods, does not
assume Gaussian noise). Further, the algorithm assumes that all variables are
observed (i.e., there is data for all variables). Unfortunately, this is rarely the
case in causal problems.

Within these limitations, the algorithm is performant, and allows the user to
specify hard constraints (such as, “these variables cannot be child nodes,” or
“there is no causal relationship between these two variables”). This facilitates
directly encoding domain knowledge into the graph, and using the structure
learning component as an aid in places where the causal connection is not
known.

Pyro
Uber’s Pyro probabilistic programming library is primarily intended for
implementing deep probabilistic models and fitting them with variational
inference. However, in addition to tools for conditioning on observed data, the
library implements a do operation to force a variable to take a certain
distribution. This allows simulating from interventional distributions, provided
the structural causal model (including equations) is known. The intersection of
probabilistic programming with causal inference is nascent, but promising!

https://arxiv.org/abs/1803.01422
http://pyro.ai/


Machine learning is playing an increasingly critical role in our society. Decisions
that were previously exclusively made by humans are more frequently being
made algorithmically. These algorithmic systems govern everything from which
emails reach our inboxes, to whether we are approved for credit, to whom we
have the opportunity to date – and their impact on our experience of the world
is growing. Furthermore, our understanding of how these systems work is still
lacking. We can neither explain nor correct them when their predictions are
unfairly discriminatory or their outputs are reinforcing existing biases. Causal
reasoning gives us a framework for thinking about these problems.

Causal graphs make assumptions
explicit
Even without employing the full machinery of causal inference, when one
approaches a new problem, it can be informative to try to write down the causal
graph. This forces us to confront our assumptions about a system. It also allows
someone else to understand our assumptions, and gives a precise framework to
debate.

Ethics
CHAPTER 6



Making our assumptions explicit aids transparency, which is a win. However, it
doesn’t protect against bad assumptions. Establishing causal relationships is
hard. Unless we are able to perform sufficient experiments to validate our
hypotheses, causal reasoning from observational data is subject to untested
(sometimes untestable) assumptions.

We should make any causal claim with humility. As ever, we should be careful of
dressing up a bad analysis with additional formalism.

Omitting protected attributes is
not enough
It is unethical, and in many places illegal, to discriminate on the basis of a
protected attribute, such as age, race, or disability. Avoiding direct discrimination
(whereby some individuals with particular protected attributes are treated
unfavourably) is comparatively easy. Appropriately, these protected attributes
are frequently omitted from machine learning systems. Using a protected
attribute as a feature directly is inviting discrimination based on that attribute.

Writing down a causal graph provides a principled way to specify and

discuss causal assumptions.



More difficult to detect and avoid is indirect causal discrimination. Many
features that are not themselves protected attributes are nonetheless highly
predictive of a protected attribute. For instance, geographic location can
correlate very highly with race, religion, and age. In denying loans to any
individual with a particular zipcode, a bank could be committing indirect, but
very real, discrimination against a protected attribute.

Another sub-category of discrimination is indirect spurious discrimination.
These are instances when there are no pathways from causal attributes to the
outcome. However, as we saw in From correlation to causation, correlations can
arise from numerous causal structures. As such, merely omitting the protected
attribute does not omit its effects. A system is not guaranteed to be non-
discriminatory on a protected attribute simply because it does not include that
attribute directly. More simply, just because a feature does not cause the target
does not mean that it will not be predictive of the target. This presents a
particular challenge to algorithmic systems that are designed to find subtle
correlations, especially since much historical data on which algorithms are
trained is subject to selection bias (and other biases).

Since removing protected attributes is not enough, we must evaluate the
resulting model for its discrimination and fairness properties. There are many
possible measures of fairness, and it is generally impossible to optimize for all

of them.[29]

Several recent papers[30], for instance) have proposed causality as a route to
understanding and defining fairness and discrimination. In particular, if we have
a causal graphical model of a system, we can see which paths are impacted by
protected attributes, and correctly account for that impact. There have also
been contributions in non-parametric structural causal models that allow one to
detect and distinguish the three main discriminations - namely, direct, indirect

and spurious.[31]

That said, the difficulty lies in constructing the causal graph. A causal graph
could, of course, be used to embed all kinds of biases and prejudices, but at
least provides a basis for argument.

Invariance as a route to fairness



An interesting idea is proposed in the final section of the IRM paper: treating
groups over which we want fairness as the environments. When we seek to
learn an invariant model (be that by ICP or IRM), we are explicitly trying to learn
a model that performs optimally in different environments. We could construct
those environments by separating out groups having different values for
protected attributes. Then, by learning a model that seeks to perform optimally
in each environment, we are explicitly trying to guarantee the best performance
for each protected attribute.

Said differently, invariant features are exactly those that are consistent across
groups. Consider again a bank granting loans, this time directly to individuals.
The bank does not wish to discriminate on the basis of protected attributes. By
treating the protected attributes as the groups, they are looking to learn what
impacts loan defaulting invariantly across those groups.

The idea of learning an invariant predictor across environments is that the
representation used is capturing something true about the generative process
of the data. This representation would be, to some degree, disentangled, in the
sense that each dimension of the representation (a vector) should correspond
to something meaningful. On the Fairness of Disentangled Representations
shows experimentally that disentangled representations improve fairness in
downstream uses.

https://arxiv.org/abs/1905.13662


At the outset, causal reasoning provides a conceptual and technical framework
for addressing questions about the effect of real or hypothetical actions or
interventions. Once we understand what the effect of an action is, we can turn
the question around and ask what action plausibly caused an event. This gives
us a formal language to talk about cause-and-effect. That said, not every
question about cause is easy to answer. Further, it may not be a trivial task to
find an answer or even to interpret it. Causal graphs that we discuss in the
Background: Causal Inference chapter provide a convenient way to discuss
these notions, and allow us to reason about statistical dependencies in
observed data.

Structural causal models take a step further to this intuitive way of reasoning by
making formal assumptions about the parametric form of how the variables
interact.

However, causal graphs and SCMs become difficult to construct as the number
of variables increases. Some systems are hard to model in this way. How do we
draw a causal graph for pixels of an image? Or words in text? The problem gets
out of hand quickly.

Fortunately, not all problems require the entire causal graph. Often, we are
interested only in the causal relations associated with one particular target
variable. This is where methods based on invariance (like IRM) step in to allow
the model to capture stable features across environments (that is, different data
generating processes). This paradigm enables out-of-distribution
generalization. As opposed to causal graphs or structural causal models, where
the only way to validate assumptions of the variable interactions is through
experimentation, IRM allows us to test them on an unseen test set!

Comparable approaches
So, at this point we probably agree that methods based on invariance are
promising. How else might we approach out-of-distribution generalization? In

Future
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general, there are two families of approaches; those that learn to match the
feature distributions (or estimate a data representation) and those that employ
some kind of optimization technique.

Domain adaptation
Domain adaptation is a special case of transfer learning. In domain adaptation,
the model learns a task in a source domain, which has some feature
distribution, and we would like it to be able to perform the same task well in a
target domain, where the feature distribution is different. Domains play the
same role as environments in invariance-based approaches; a source domain is
an environment that was trained in, and a target domain is any environment that
was not trained in.

Domain adaptation also enforces a kind of invariance - it seeks a representation
that is distributed the same across source and target domains (so, across

environments).[32] However, truly invariant, causal features need not follow the
same distribution in different environments. A snowy cow will not generate
quite the same pixel distribution as a sandy cow, and the causal feature we wish
to represent is the cow itself.

Robust learning
The idea of learning across multiple environments is not novel to invariance-
based approaches. Robust Supervised Learning is a family of techniques that
uses the same multi-environment setup as IRM (but much predates it), with a
similar goal of enabling or enhancing out-of-distribution generalization. Said
differently, the goal is a predictor that is robust to distributional shifts of the
inputs.

The difference from the IRM setup we have covered is the loss function. The
key idea is to add environment-specific “baseline” terms to the loss, and try to
fix these terms such that particularly noisy environments where the loss may be
high do not dominate. Then, minimizing the loss should guarantee good
performance across all the known environments. Further, a robust predictor will
perform well in new environments that are interpolations of those seen in
training. This certainly improves out-of-distribution generalization, but does not
allow extrapolation outside of what was seen in training, whereas IRM can
extrapolate, thanks to relying on an invariant predictor.

https://www.aaai.org/Library/AAAI/2005/aaai05-112.php


Meta-learning
Approaches like domain adaptation, robust learning, and (in general) transfer
learning try to alleviate the problem of out-of-distribution generalization to
some extent. Unfortunately, learning invariant features with varying distributions
across environments is still challenging. These approaches are good at
interpolation, but not extrapolation.

This is where meta-learning approaches like Model Agnostic Meta Learning

(MAML)[33] come into play. The underlying idea for meta-learners generally is to
attempt to learn tasks with a small number of labeled examples. Training meta-
learners is a two-step process involving a learner and a trainer. The goal of the
learner (model) is to quickly learn new tasks from a small amount of new data;
hence, it is sometimes called a fast learner. (A task here refers to any
supervised machine learning problem - e.g., predicting a class given a small
number of examples.) This learner is trained, by the meta-learner, to be able to
learn from a large number of different tasks. The meta-learner accomplishes
this by repeatedly showing the learner hundreds and thousands of different
tasks.

Learning then, happens at two levels. The first level focuses on quick
acquisition of knowledge within each task with a few examples. The second
level slowly pulls and digests information across all tasks. In case of MAML
(which is optimization-based), the learner (or the first level) can achieve an
optimal fast learning on a new task with only a small number of gradient steps
because the meta-learner provides a good initialization of a model’s parameters.
This approach is close to the problem of learning an optimal classifier in
multiple environments, and could be explored further to learn invariant features
within the data.

Some recent works have made the connection between causality and meta-

learning explicitly.[34]

Looking ahead
In this section, we discuss future possibilities with causality in general, as well
as with methods based on invariance.



Causal Reinforcement Learning
Reinforcement learning is the study of how an agent can learn to choose
actions that maximize its future rewards in an interactive and uncertain
environment. These agents rely on plenty of simulations (and sometimes real
data) to learn which actions lead to high reward in a particular context. Causality
is also about calculating the effect of actions, and allows us to transfer
knowledge to new, unfamiliar situations. These two disciplines have evolved
independently with little interaction between them until recently. Integrating
them is likely to be a fruitful area of research, and may extend the reach of both

causality and reinforcement learning.[35]

There is a natural mapping between the concept of intervention in causal
inference and actions taken in reinforcement learning. Throughout an episode
of reinforcement learning (an episode is formed of one run of the system, for
example, a complete game of chess, or go), an agent takes actions. This defines
a data generating process for the reward that the agent ultimately cares about;
different sequences of actions will generate different rewards. Since the agent
can choose its actions, each of them is an intervention in this data generating
process. In making this connection, we can leverage the mathematics of causal
inference. For instance, we could use counterfactuals, the third level of the The
ladder of causation, to reason about actions not taken. Applying such causal
techniques may reduce the state space the agent needs to consider, or help
account for confounders.

Methods based on invariance, like IRM, in principle, learn to discover unknown
invariances from multiple environments. We could leverage this attribute in
reinforcement learning. An episode of RL consists of all the states that fall in
between an initial state and a terminal state. Since each episode is independent
of another, in IRM terminology they could be viewed as different environments.
An agent could then learn robust policies from each of these episodes that
leverage the invariant part of behaviour or actions that lead to reward.

While reinforcement learning itself is still in nascent stages when it comes to

commercial applications, combining it with causality offers great potential.[36]

But prior to that, we need to address some questions. For example, how do we
combine programming abstractions in causal modeling with reinforcement
learning to help find the best decisions? What tools and libraries are necessary
to enable commercial applications in this space?



IRM and environments
IRM uses the idea of training in multiple environments to achieve out-of-
distribution generalization. Unfortunately, few datasets come with existing
environment annotations. There are at least two ways we can try to address this
problem.

The first is to be mindful of the environment when collecting data, and collect
metadata alongside it. This may be easy (for example, collecting the geo-
location of photos in settings where this is possible and does not violate a
user’s privacy), or extremely hard (requiring much post-collection manual
labeling).

Another compelling but untested option is to try combining IRM with some sort

of clustering to segment a single dataset into environments.[37] The question
would be how to cluster in such a way that meaningful and diverse
environments are defined. Since existing clustering approaches are purely
correlative, and - as such - vulnerable to spurious correlations, this could prove
challenging.

Studying the impact of environment selection, and how to create or curate
datasets with multiple environments would be a valuable contribution to making
invariance-based methods more widely applicable. (The authors of An Empirical
Study of Invariant Risk Minimization reach the same conclusion.)

Causal reasoning for algorithmic fairness
In the Ethics chapter, we reviewed some notions of fairness in prediction
problems and shared how tools of causal reasoning can be leveraged to address
fairness. They depart in the traditional way of wholly relying on data-driven
approaches and emphasize the need to require additional knowledge of the
structure of the world, in the form of a causal model. This additional knowledge
is particularly valuable, as it informs us how changes in variables propagate in a
system (be it natural, engineered, or social). Explicit causal assumptions remove
ambiguity from methods that just depend upon statistical correlations. Avoiding
discrimination through causal reasoning is an active area of research. As efforts
to aid more transparency and fairness in machine learning systems grow, causal
reasoning will continue to gain significant momentum in guiding algorithms
towards fairness.

https://deepai.org/publication/an-empirical-study-of-invariant-risk-minimization


Structural causal models give us a framework for thinking precisely about cause
and effect, and encoding our assumptions about data generating processes.
Knowing the complete model for a system is immensely powerful, allowing us
to reason about how the system will behave when we intervene in the data
generating process, and correct for selection biases.

In machine learning, we’re often concerned only with prediction, for which we
do not need causal inference. However, even in this scenario, taking a causal
approach brings some benefits. Notably, causal relationships are invariant - they
do not change between environments - and when we learn predictors based on
them, we get greatly improved out-of-distribution generalization.

For many problems, constructing a causal graph is prohibitively hard, and always
relies on assumptions. When working with only observational data, these
assumptions are especially important, since they cannot be validated through
experiments. Fortunately, by relying on the correspondence between causal
relationships and invariance, we can still construct the relevant part of the
causal graph for some problems using Invariant Causal Prediction. For high
dimensional inputs like image and text, we can use Invariant Risk Minimization
to learn a predictor that greatly enhances our out-of-distribution performance
by learning not to rely on dataset-specifc spurious correlations.

Research at the intersection of causality and machine learning is blooming, with
many major ML conferences hosting dedicated workshops. Invariance-based
approaches are an especially promising development and are ripe for industrial
application. As algorithmic systems become increasingly prevalent, and their
influence on decisions grows, the need for causal reasoning becomes all the
more acute. We think it is important that practitioners have an understanding of
causality, and hope to see causal approaches gain significant traction in
mainstream data science practice. We hope this report has sparked some causal
curiosity in you!

Conclusion
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1. See for instance, recent works by Yoshua Bengio, like A Meta-Transfer
Objective for Learning to Disentangle Causal Mechanisms. ↩ 

2. See, for instance, Using Causal Inference to Improve the Uber User
Experience. ↩ 

3. Facebook performed such an experiment in 2012, and received much
criticism as a result. The ethical problem is not so much with the experiment
itself, but rather that the subjects had not given informed consent, in
violation of basic ethical guidelines for psychological research. ↩ 

4. An alternative popular framework is the Neyman-Reuben causal model, also
known as Potential Outcomes. The frameworks are equivalent in that they
can compute the same things, though some causal queries may be easier to
reason about in one or the other. ↩ 

5. See also Pearl’s article: The Seven Tools of Causal Inference, with
Reflections on Machine Learning. ↩ 

6. Some farm-experienced members of the CFF team are keen to point out
that roosters crow pretty much all the time. ↩ 

7. See this article in Forbes. ↩ 

8. On a technical note, correlation measures only linear association. For
instance, x  squared is uncorrelated with x , despite being completely
dependent on it. When we say “correlation is not causation,” we really mean
“statistical dependence is not causation.” ↩ 

9. Alas, it requires a far more detailed technical knowledge than we can
provide in this report. We recommend the textbook Causal Inference in
Statistics: A Primer for a succinct introduction to Structural Causal Models.
An abbreviated overview, (Causal Inference in Statistics: An Overview) is
freely available as a PDF. The textbook Elements of Causal Inference
(available through Open Access) also covers structural causal models, and
includes several chapters explicitly drawing connections between causal
inference and machine learning. ↩ 

10. We will examine the nuances of this statement in Causality and invariance.
Correlation is predictive in distribution. ↩ 

https://arxiv.org/abs/1901.10912
https://eng.uber.com/causal-inference-at-uber/
https://www.pnas.org/content/111/24/8788
https://www.theatlantic.com/technology/archive/2014/06/everything-we-know-about-facebooks-secret-mood-manipulation-experiment/373648/
https://www.cambridge.org/core/books/causal-inference-for-statistics-social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB
https://cacm.acm.org/magazines/2019/3/234929-the-seven-tools-of-causal-inference-with-reflections-on-machine-learning/fulltext
https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/#5cb710453a67
http://bayes.cs.ucla.edu/PRIMER/
https://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
https://mitpress.mit.edu/books/elements-causal-inference


11. Adam Kelleher and Amit Sharma have an excellent blog post describing this
problem, and introducing a new causal sampling technology to make solving
it easier. ↩ 

12. See Distinguishing cause from effect using observational data: methods and
benchmarks. ↩ 

13. See Robust Supervised Learning. ↩ 

14. The scientific process of iterated hypothesis and experimentation can also
be applied to constructing a causal model for business purposes. The
popular George Edward Box quote is pertinent here: “all models are wrong,
but some are useful” (see All models are wrong). ↩ 

15. Judea Pearl’s do-calculus is a set of rules to calculate exactly which
variables we must account for - and how - to answer a given causal query in
a potentially complicated graph. This is not trivial; often there are
unobserved variables in a graph, and we must try to express the query only
in terms of those variables for which we have data. ↩ 

16. There is a subtlety here. We said environments were defined by
interventions. Naturally, it is impossible to intervene on the country a store
is built in once the store is built. This turns out not to matter for the
purposes of inferring the direct causal parents of the sales volume, so long
as the country is further up the graph, and changing country alters the data
generating process. ↩ 

17. (See Invariant Causal Prediction for Nonlinear Models. ↩ 

18. Nonparametric conditional independence testing is an area of active
research, and is generally hard - and made more so by having finite data.
The nonlinear ICP paper also introduces the notion of defining sets;
sometimes no single set of variables is accepted as the set of causal
parents, but there are similar sets differing by only one or two variables that
may be related. While the algorithm has failed to find a single consistent
model, it is nonetheless conveying useful causal information. ↩ 

19. Longer than you may think! See, for instance, Machine perception of three-
dimensional solids, published in 1963. ↩ 

20. The final section of the IRM paper includes a charming socratic dialogue
that discusses this distinction, as well as the reason that regular supervised

https://medium.com/@akelleh/introducing-the-do-sampler-for-causal-inference-a3296ea9e78d
http://jmlr.org/papers/v17/14-518.html
https://www.aaai.org/Library/AAAI/2005/aaai05-112.php
https://en.wikipedia.org/wiki/All_models_are_wrong
https://arxiv.org/abs/1706.08576
https://dspace.mit.edu/handle/1721.1/11589


learning is so successful, from an invariance standpoint. ↩ 

21. See On Causal and Anticausal Learning for a description of the insight
considering the causal direction of a problem brings to machine learning. ↩ 

22. Technically, loss is the error on the training set, and risk is the error across
the whole data distribution. With finite training data, minimizing the loss on
the training set is a proxy for minimizing the risk. ↩ 

23. Imperfect interpretability results notwithstanding, using ResNet as a feature
extractor is representative of how CV systems are used in the real world,
and the resulting out-of-distribution performance improvements are
impressive. ↩ 

24. This example is given in An introduction to domain adaptation and transfer
learning, and an empirical study using transfer learning was reported in
Transfer Learning Improves Supervised Image Segmentation Across
Imaging Protocols ↩ 

25. A Machine Learning Approach to Visual Perception of Forest Trails for
Mobile Robots ↩ 

26. Scaling Human Activity Recognition via Deep Learning-based Domain
Adaptation outlines the problem and some applications in this space. ↩ 

27. See Causal Inference for Recommendation and The Deconfounded
Recommender: A Causal Inference Approach to Recommendation. ↩ 

28. Causal inference using invariant prediction: identification and confidence
intervals and Invariant Causal Prediction for Nonlinear Models. ↩ 

29. See Inherent Trade-Offs in the Fair Determination of Risk Scores). ↩ 

30. See Causal Reasoning for Algorithmic Fairness and Avoiding Discrimination
through Causal Reasoning. ↩ 

31. See Fairness in Decision-Making – The Causal Explanation Formula). ↩ 

32. Domain adversarial training of neural networks ↩ 

33. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ↩ 

https://arxiv.org/abs/1206.6471
https://arxiv.org/abs/1812.11806
https://ieeexplore.ieee.org/document/6945865
http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf
https://ieeexplore.ieee.org/document/8444585
http://www.its.caltech.edu/~fehardt/UAI2016WS/papers/Liang.pdf
https://arxiv.org/abs/1808.06581
https://arxiv.org/abs/1501.01332
https://arxiv.org/abs/1706.08576
https://arxiv.org/abs/1609.05807
https://arxiv.org/abs/1805.05859
https://arxiv.org/abs/1706.02744
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16949
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/1703.03400


34. See A Meta-Transfer Objective for Learning to Disentangle Causal
Mechanisms. ↩ 

35. There is a nice introduction to causal reinforcement learning in the paper
Reinforcement learning and causal models. The blog post Introduction to
Causal RL contains a shorter description, and also suggests some medical
applications. ↩ 

36. We are grateful to David Lopez-Paz (one of the Invariant Risk Minimization
authors) for sharing his thoughts and ideas about possible extensions and
applications of IRM with us, including applications to reinforcement
learning. ↩ 

37. This idea was also suggested to us by David Lopez-Paz. ↩ 

https://arxiv.org/abs/1901.10912
http://gershmanlab.webfactional.com/pubs/RL_causal.pdf
https://causallu.com/2018/12/31/introduction-to-causalrl/
https://arxiv.org/abs/1907.02893

