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A B S T R A C T

Rust is a new programming language developed by Mozilla in re-
sponse to the fact that C and C++ are unsafe, inefficient, and uner-
gonomic –particularly when applied to concurrency. Version 1.0 of
Rust was released in May 2015, and appears to be performing excel-
lently. Rust code is memory-safe by default, faster than C++, easier to
maintain, and excels at concurrency.

Yet little analysis exists of the semantics and expressiveness of
Rust’s type system. This thesis focuses on one of the core aspects
of Rust’s type system: ownership, a system for expressing where and
when data lives, and where and when data can be mutated.

In order to understand ownership and the problems it solves, we
survey several classical memory safety errors that ownership is ef-
fective at eliminating: use-after-free, indexing out of bounds, iterator
invalidation, and data races. We also consider the problem of memory
leaks, which ownership is useful for, but insufficient to solve.

We observe that these problems are all related by the problem of re-
gions of code trusting data to uphold certain invariants. For instance,
indexing out of bounds occurs when one incorrectly trusts an index
to agree with an array’s length. Since ownership is about controlling
the mutation and lifetime of data, it is therefore well-aligned for solv-
ing this kind of problem.

We demonstrate how ownership is useful for constructing safe and
ergonomic low-overhead abstractions, even when built upon unsafe
foundations. For example, iterators in Rust provide an interface for
indexing into an array without bounds checks while being statically
immune to invalidation. Two of these interfaces, drain and entry, were
developed by us for Rust’s standard library.

We also survey some of the limits of ownership. In particular, we
explore how the lack of proper linear typing makes it difficult to guar-
antee that desirable operations are performed, such as freeing unused
memory or repairing invariants. However we provide some tricks for
ensuring that operations are performed (at the cost of ergonomics), or
simply mitigating the impact of not performing them.

Finally, we compare Rust’s system of ownership to the similar sys-
tems found in Cyclone and C++. These are the two closest systems
to ownership in Rust that we’re aware of, and therefore merit some
discussion.
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1
I N T R O D U C T I O N

Modern systems are built upon shaky foundations. Core pieces of
computing infrastructure like kernels, system utilities, web browsers,
and game engines are almost invariably written in C and C++. Al-
though these languages provide their users the control necessary to
satisfy their correctness and performance requirements, this control
comes at the cost of an overwhelming burden for the user: Undefined
Behaviour. Users of these languages must be ever-vigilant of Unde-
fined Behaviour, and even well-maintained projects fail to do so [31].
The price of invoking Undefined Behaviour is dire: compilers are al-
lowed to do absolutely anything at all.

Modern compilers can and will analyze programs on the assump-
tion that Undefined Behaviour is impossible, leading to counter-intuitive
results like time travel, [14] wherein correct code is removed because
subsequent code is Undefined. This aggressive misoptimization can
turn relatively innocuous bugs like integer overflow in a print state-
ment into wildly incorrect behaviour. Severe vulnerabilities subse-
quently occur because Undefined Behaviour often leads to the pro-
gram blindly stomping through memory and bypassing checks, pro-
viding attackers great flexibility.

As a result, our core infrastructure is constantly broken and ex-
ploited. Worse, C and C++ are holding back systems from being as
efficient as they could be. These languages were fundamentally de-
signed for single-threaded programming and reasoning, having only
had concurrency grafted onto their semantics in the last 5 years. As
such, legacy code bases struggle to take advantage of hardware par-
allelism. Even in a single-threaded context, the danger of Undefined
Behaviour encourages programs to be written inefficiently to defend
against common errors. For instance it’s much safer to copy a buffer
than have several disjoint locations share pointers to it, because un-
managed pointers in C and C++ are wildly unsafe.

In order to address these problems, Mozilla developed the Rust
programming language. Rust has ambitious goals. It intends to be
more efficient than C++ and safer than Java without sacrificing er-
gonomics. This is possible because, as we discussed, C++ code is of-
ten designed inefficiently in order to defend against its own unsafety.
Although Rust 1.0 was released less than a year ago [10], early results
are promising. To see this, we need look no further than the Servo
project, a rewrite of Firefox’s core engine in Rust [12].

Preliminary results [16] have found that Servo can perform layout
two times faster than Firefox on a single thread, and four times faster
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2 introduction

with four threads. Servo has also attracted over 300 contributors [13],
in spite of the fact that it’s not production ready and written in a
language that was barely just stabilized. This demonstrates that Rust
has some amount of usability, and that applications written in it have
actually be maintained by novices (since almost everyone using Rust
is new to it). There’s little data on safety and correctness in Servo, but
we’ll see throughout this thesis that Rust provides powerful tools for
ensuring safety and correctness.

It should be noted that Rust doesn’t desire to invent novel systems
or analyses. Research is hard, slow, and risky, and the academic com-
munity has already produced a wealth of rigorously tested ideas that
have little main-stream exposure. As a result, to a well-versed pro-
gramming language theorist Rust can be easily summarized as a list
of thoroughly studied ideas. However, Rust’s type system as a whole
is greater than the sum of the parts. As such, we believe it merits
research of its own.

Truly understanding Rust’s type system in a rigorous way is a mas-
sive undertaking that will fill several PhD theses, and Derek Dreyer’s
lab is already working hard on that problem [11]. As such, we will
make no effort to do this. Instead, we will focus in on what we con-
sider the most interesting aspect of Rust: ownership. Ownership is an
emergent system built on three major pieces: affine types, region analy-
sis, and privacy. Together we get a system for programmers to manage
where and when data lives, and where and when it can be mutated,
while still being reasonably ergonomic and intuitive (although with
an initially steep learning curve).

Ownership particularly shines when one wants to develop concur-
rent programs, an infamously difficult problem. Using Rust’s tools
for generic programming, it’s possible to build totally safe concur-
rent algorithms and data structures which work with arbitrary data
without relying on any particular paradigm like message-passing or
persistence. Rust’s crowning jewel in this area is the ability to have
child threads safely mutate data on a parent thread’s stack without
any unnecessary synchronization, as the following program demon-
strates. (If you aren’t familiar with Rust, a brief introduction is pro-
vided in the next chapter)

[dependencies]
crossbeam = 0.1.6

-----

extern crate crossbeam;

fn main() {
// An array of integers, stored on the stack
let mut array = [1, 2, 3];



introduction 3

// Create a scope to know when to join all threads
crossbeam::scope(|scope| {

// Get pointers to each element in the array
for x in &mut array {

// Spawn a thread to increment this element
scope.spawn(move || {

// Child thread mutates parent thread
// This is neither atomic, nor specifically
// synchronized.
*x += 1;

});
}

// Block on all the child threads joining here
});

println!("{:?}", array);
}

The most amazing part of this program is that it’s based entirely on
a third- party library (crossbeam [3]). Rust does not require threads
to be modeled as part of the language or standard library in order for
these powerful safe abstractions to be constructed. All of the follow-
ing operations won’t just fail to work, but will fail to compile: sharing
non-threadsafe data with the scoped threads, giving the same pointer
to two threads, keeping a pointer for too long, or accessing the array
while the threads are still running. The fact that misuse is a static
error is incredibly important for concurrent programs, because run-
time errors are more difficult debug due to the need to isolate and
reproduce the behaviour.

In order to understand how this program works and why it’s safe,
we’ll need to build up some foundations.

In chapter 2, we provide a brief introduction to some of Rust’s
syntax.

In chapter 3, we establish the basic principles of safety and correct-
ness that we’re interested in. Since these are ultimately vague con-
cepts in a practical setting, we do this by surveying several classic
errors that all languages must deal with in one way or another.

In chapter 4 we provide an analysis of these problems in terms of
trust. In particular, we observe that these problems can be reduced to
how different regions of code trust each other with data. We identify
three major strategies for handling these trust issues, and briefly cate-
gorize some common solutions to these problems according to these
strategies.
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In chapter 5 we introduce ownership. We show how affine types,
region analysis, and privacy contribute to Rust’s ability to model and
enforce trust between different pieces of code. Although this is mostly
describing concepts that are well-understood at an intuitive level in
the Rust community, this work is the first to actually write them down
completely, and in terms of trust.

In chapter 6 we analyze several standard Rust interfaces use owner-
ship for trust. We demonstrate how Rust’s story surrounding index-
ing into arrays exactly aligns with our strategies for trust. Of interest
is that tagged unions use ownership to provide values that must be
checked for validity to be accessed, and iterators use ownership to
provide safe unchecked indexing. We use the entry API, which was
developed as part of this work, to demonstrate how ownership can be
used to externally expose the execution of an algorithm, producing
more flexible designs that gives greater control to users.

In chapter 7 we discuss some of the limitations of Rust’s version
of ownership. We show how ownership struggles with ad-hoc cyclic
data structures, and some of the community’s solutions to this prob-
lem. We use the drain API, another interface developed as part of this
work, to demonstrate how ownership is mostly only able to model
things that must not be done by an interfaces user, but struggles to
model things that must be done. Finally, we review how the scoped
thread API works.

In chapter 8 we briefly survey how ownership in Rust compares to
similar systems in other languages. In particular, Cyclone and C++,
Rust’s two closest relatives.



2
R U S T S Y N TA X P R I M E R

Since this thesis is focused on Rust in particular, it will include a lot
of Rust source code. Although our code is slightly unidiomatic in or-
der to avoid overloading the reader with the finer details of Rust’s
syntax and semantics, this section exists for readers who are com-
pletely unfamiliar with Rust. A significant portion of Rust’s syntax
and semantics will be explained as it’s needed throughout the thesis,
but the following doesn’t really fit in anywhere. If one is interested in
learning Rust properly, The Rust Programming Language is the officially
recommended book, as it is free and written by the Rust developers.
If you’re familiar with Rust already, feel free to skip this chapter.

2.1 basic syntax

First and foremost, Rust has the same basic control constructs and
operators as every other C-style language. if, else, while, and return
behave exactly as expected. Assignment is performed with =, com-
parison with ==, and so on. The only notable exception is that Rust
does not provide the traditional C-style for-loop. Instead, Rust only
provides the simpler for-each construct:

for x in iter {
// do stuff with x

}

Variables in Rust are declared with a let statement. Variables are
immutable by default, and can be made mutable with the mut key-
word. The type of a variable is usually inferred, but can be explicitly
specified with a colon.

let x = true; // x is an immutable boolean
let mut y = false; // y is a mutable boolean
let z: i32 = 0; // z is an immutable 32-bit integer

Functions in Rust are written as follows:

// A function called ‘add‘ that takes two 32-bit integers
// and returns their sum (also a 32-bit integer).
fn add(x: i32, y: i32) -> i32 {

return x + y;
}

5
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6 rust syntax primer

There are two major composite data types in Rust, structs and
enums. Structs are exactly like structs in C – a series of named and
typed fields that are all stored inline. Fields can be accessed through
the dot operator, as in most C-like languages.

// A struct called Foo
struct Foo {

x: u32, // x is a u32
y: bool, // y is a boolean

}

// Get the x field of the given Foo
fn get_x(data: Foo) -> u32 {

return data.x;
}

Enums, on the other hand, are a bit different from C. Like C enums,
Rust enums are a simple way to represent a type whose value can be
one of a small set of variants. However Rust enums are tagged unions,
which means each variant can have arbitrary data associated with it.

// An enum called Bar with three variants A, B, and C
// A contains a u32
// B contains a boolean
// C has no data associated with it
enum Bar {

A(u32),
B(bool),
C,

}

In order to access the data in an enum’s variant, one must pattern
match against the enum to determine what state it is in. Matching and
binding the data to a variable is performed as a single step to ensure
that one does not access the data as if it were a different variant.

// An exhaustive match of all possible variants that the value
// ‘data‘ could have.
match data {

A(count) => {
return count;

},
B(is_one) => if is_one {

return 1;
} else {

return 0;
},
C => {



2.2 generics and implementations 7

return -1;
},

}

// A fallible match of only a single variant. The code inside
// an ‘if-let‘ is executed only if ‘data‘ matches the pattern.
if let A(count) = data {

return count;
}

Rust uses & for the address-of operator, as well as the pointer type
itself. ∗ is the dereference operator. The dot operator will automati-
cally dereference pointers as necessary.

let x: i32 = 0; // x is an i32
let y: &i32 = &x; // y is a reference to an i32
let z: i32 = *y; // z is an i32 (copied from x)

struct Foo { data: i32 }
let x: Foo = Foo { data: 0 };
let y: &Foo = &x;
let z: i32 = y.data; // automatic dereferencing with ‘.‘

2.2 generics and implementations

Functions can be associated with a particular type by using an impl
block. This is just a convenience for grouping functionality, and does
not imbue the code with any particular semantic. However it is nec-
essary to implement traits which are Rust’s version of an interface.

struct Foo {
x: i32,
y: i32,

}

// Associate the following code with a Foo
impl Foo {

// A static function, in this case a constructor.
// ‘new‘ has no special meaning in Rust, it’s just a convention.
// Invoked as ‘Foo::new()‘
fn new() -> Foo {

return Foo { x: 0, y: 1 };
}

// A member function that takes a Foo by-reference
// invoked as ‘some_foo.get_x()‘
fn get_x(&self) -> i32 {
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return self.x;
}

// A member function that takes a Foo by-value
// invoked as ‘some_foo.consume()‘
fn consume(self) {

let id = self.get_x();
delete_the_database(id);

}
}

// An interface for things that can be converted to integers.
trait ToInt {

fn to_int(&self) -> i32;
}

// Implementing that interface for Foo
impl ToInt for Foo {

// Trait implementations are invoked just like
// any other member function
fn to_int(&self) -> i32 {

return self.x;
}

}

impl, fn, struct, enum, and trait can all be generic over arbitrary
types. Generics in Rust are implemented in a similar manner to C++
templates, but are type-checked before any usage like Java generics.
In order to facilitate this, generic arguments can be specified to im-
plement particular traits.

// ‘Compare‘ is generic over some type T, allowing
// implementors to be compared against multiple things.
trait Compare<T> {

fn is_larger_than(&self, other: &T) -> bool;
}

// The ‘Generic‘ struct can be made for any type.
struct Generic<T> {

data: T,
}

struct Concrete {
data: i32,

}

// Implementing the Compare trait concretely
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impl Compare<Concrete> for Concrete {
fn is_larger_than(&self, other: &Concrete) -> bool {

return self.data > other.data;
}

}

// Because Compare is generic, we can implement it multiple
// times, as long as the generic arguments are different.
impl Compare<i32> for Concrete {

fn is_larger_than(&self, other: &i32) -> bool {
return self.data > other;

}
}

// Implementing the Compare trait generically. We declare that
// this implementation applies only if T itself implements Compare
// with a ‘where‘ clause.
impl<T> Compare<Generic<T>> for Generic<T>

where T: Compare<T>
{

fn is_larger_than(&self, other: &Generic<T>) -> bool {
return self.data.is_greater_than(&other.data);

}
}

// A function generic over any two types which can be compared.
fn compare<R, L: Compare<R>>(left: &L, right: &R) -> bool {

return left.is_larger_than(right);
}

Traits implementations may have specific types associated with
them. For instance, if we wanted to make Compare incredibly generic,
we could make the result of is_larger_than be defined by the imple-
mentor:

trait Compare<T> {
// The type of Result must be given by the implementor
type Result;

// And must be used as the return type for is_larger_than
fn is_larger_than(&self, other: &T) -> Self::Result;

}

impl<T> Compare<Generic<T>> for Generic<T>
where T: Compare<T>

{
// My result type is bool
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type Result = bool;

fn is_larger_than(&self, other: &Generic<T>) -> bool {
return self.data.is_greater_than(&other.data);

}
}

Associated types are essentially the same as generic trait argu-
ments, except that they cannot be declared independently. Because
Compare is Generic over T, a type can declare that it can be com-
pared to different things. Previously we used this to specify that a
Concrete could be compared to another Concrete, or an i32. How-
ever associated types don’t let us do this. The associated types must
be uniquely determined by the generic arguments. If a trait has no
generic arguments, but does have associated types, that means it can
only be implemented once per type.

2.3 closures

Closures are anonymous functions that can refer to local variables
that are defined outside of the function. Closures are declared with
pipes, as follows:

fn main() {
let mut x = 0;
// A closure that takes an ‘increment‘
// and increases ‘x‘ by that amount.
let mut func = |increment: i32| { x += increment; };

func(1); // x += 1;
func(2); // x += 2;

}

How values should be captured is generally inferred based on us-
age, but Rust will only do this for capturing things by-reference. To
indicate that something should be captured by value, the move key-
word must be used:

fn main() {
let x = 0;

// A closure that takes an ‘increment‘,
// increases ‘x‘ by that amount, and returns it.
// Effectively takes a snapshot of what ‘x‘ was
// when the closure was made.
let func = move |increment: i32| {

return x + increment;
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};

let y = func(1);
let z = func(2);

// prints 1
println!("{}", y);
// prints 2, because each call uses a fresh copy of ‘x‘
println!("{}", z);

}
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3
S A F E T Y A N D C O R R E C T N E S S

Programming is hard. [citation needed]
We would like our programs to be correct, but we seem to be very

bad at doing this. In fact, any assertion that a non-trivial program is
totally correct will be met with deep suspicion. This isn’t unreason-
able: any non-trivial property one might be interested in is usually
undecidable, even in trivial programming languages. [27] It’s possible
to formally verify systems, but this is generally an incredibly difficult,
constraining, and expensive process. In practical terms, this means
most programs are essentially validated in a sloppy best-effort man-
ner. [17] Still, some bugs are more pervasive and pernicious than oth-
ers. It’s one thing to get a poorly rounded output, but another thing
altogether to join a botnet because of a sloppy integer parser.

For this reason, it is common to distinguish one major category of
bug from all others: memory safety. A system is said to be memory-safe
if access to memory is properly restricted. More concretely, a memory-
safe system should prevent accessing beyond the bounds of the object
addressed by a pointer, accessing unallocated memory, and reading
uninitialized memory. [25] At the heart of memory safety are two ma-
jor concerns: preventing secrets from being stolen, and systems from
being hijacked. It is of course possible to design a memory-safe sys-
tem that liberally leaks secrets and blindly takes arbitrary commands
from the public internet, but an absence of memory safety makes
even innocuous systems trivial to exploit in this way.

Most importantly, programs must have some restriction on what can
be read and written by what. If a function can freely read and write
all the memory in a process, then compromising that function can
almost certainly make it do anything and everything. In particular,
overwriting return pointers in a program’s call stack can often enable
an attacker to execute arbitrary computations, even in a system with
proper code-data separation and address space layout randomization.
[20]

Even “only” being able to read arbitrary memory can be an ex-
ploit, particularly as reading memory often implies writing the value
somewhere else. This is the basis for the infamous Heartbleed attack,
where clients could ask servers to send them random chunks of its
memory, leaking the server’s private key . [28]

Upholding memory safety is a difficult task that must often be ap-
proached in a holistic manner, because two interfaces that are memory-
safe on their own can easily be unsafe when combined. For instance,
dereferencing a pointer that is known to be valid is safe, and offset-

13
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ting a pointer is technically safe (it’s just adding integers), but being
allowed to dereference and offset is unsafe, because this allows arbi-
trary memory to be accessed.

In addition to the matter of memory safety, there is also the broader
problem of overall correctness. It is of course impossible for a system
to enforce that all programs are correct, because it requires the pro-
grammer to correctly interpret and encode their program’s require-
ments. Computers can’t possibly understand if requirements reflect
reality, so they must trust the programmer in this regard. That said,
it is possible for a system to understand common errors. Where it’s
impractical to prevent these errors in general, a language can orient
itself to make these errors less likely. For instance, few programs ex-
pect integers to overflow, so a system that does more to prevent inte-
ger overflow or mitigate its consequences may be regarded as safer.

Rust is fundamentally committed to being memory-safe. If memory
safety can be violated, this is a critical issue in Rust’s design and must
be fixed. That said, Rust also tries to be safer in general. All else equal,
if an interface can prevent misuse, it should. The question is if all else
is really equal, or if preventing an error comes at significant ergonomic
or performance costs.

While the techniques demonstrated in this thesis can be applied
generally, we will be focusing on a few particularly common prob-
lems that can lead to memory safety violations: use-after-free, in-
dexing out of bounds, iterator invalidation, and data races. In ad-
dition, we will consider the problem of memory leaks, which aren’t a
memory-safety problem, but still problematic.

We will see how all of these problems occur in two of the most
prolific programming languages of all: C and C++. It’s worth noting
that the practices encouraged by “modern” C++ can significantly mit-
igate or eliminate these errors, but unfortunately these are only con-
ventions, and must be rigorously followed and understood to work
correctly. A C++ programmer who is unaware of these practices gains
little safety from using the latest C++ release, particularly since the
unsafe practices are often the most convenient and well-supported.

3.1 use-after-free

A use-after-free is one of the two canonical memory safety violations.
It occurs when some memory is marked as unused (freed), but the
program continues to use that memory. Here’s two simple versions
of this problem, as seen in C:

// use-after-free with heap allocation

#include <stdlib.h>
#include <stdio.h>
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int main() {
// Get some memory from the allocator
char* string = (char*) calloc(3, 1);
string[0] = ’h’;
string[1] = ’i’;

// Give the memory back to the system allocator
free(string);

// Use the memory anyway
printf("%s\n", string);

}

// use-after-free with stack allocation

#include <stdio.h>

int main() {
char* ptr = 0;

if (!ptr) {
char data = 17;
// take a pointer to ‘data‘
ptr = &data;

}
// data is now out of scope, and undefined

// read it anyway
printf("%u\n", *ptr);

}

In principle, a use-after-free can be harmless if the code in ques-
tion gets lucky. The system may never look at this memory again,
allowing it to continue to behave in an allocated manner. However
the system has been given permission to do whatever it pleases with
this memory, which can lead to several problems.

First, the memory can be returned to the operating system. If such
memory is used, this will cause a page fault, causing the program to
crash. This is annoying, but also arguably memory-safe in the sense
that the memory is never successfully used after it is freed. The prob-
lematic case is when the allocator reuses the memory. Any subsequent
allocation may receive the freed memory, leading the memory to be
used for two different purposes. This violates memory safety, allow-
ing code to read or write memory that it wasn’t supposed to.

Use-after-frees are solved by almost all languages by requiring per-
vasive garbage collection. See for example: C#, D, Dart, F#, Go, Haskell,
Java, JavaScript, Lisp, Lua, ML, OCaml, Perl, PHP, Python, Ruby,
Scala, Scheme, Swift, Visual Basic and many, many, more.
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C and C++ are the two major exceptions, which by default don’t
use any garbage collection mechanisms. In these two languages use-
after-free is a rich source of exploits to this day. As we will see, this is
no coincidence; the solution taken by most languages is unacceptable
to those who traditionally use C or C++.

Use-after-frees are the canonical example of the more general prob-
lem of using something after it has been logically destroyed. For in-
stance, a similar problem applies to using file handles after they’re
closed. However the use-after-free is particularly problematic because
most system allocators pool and reuse pages of memory acquired
from the operating system, which prevents it from understanding
misuse.

File handles, on the other hand, are generally not pooled like this.
That said, it’s possible for new handles to match the value of old
handles (like pointers, they’re ultimately just integers). This can lead
to a similar scenario as a use-after-free, where two distinct handles
are independently trying to use the same file.

The more general category reveals a fundamental weakness of garbage
collection: it only solves a use-after-free, and no other kind of use-
after. Although all resources could be garbage collected, it’s common
to manually manage many other resources because they’re much
more limited, and have externally observable effects. For instance, file
writes may not be committed to disk until the file is properly closed.
Unfortunately, allowing manual management necessitates misuse to
be guarded against at runtime. Since any program that tries to use-
after is certainly wrong, it’s desirable to prevent programs that do this
from compiling at all.

3.2 index out of bounds

An index out of bounds is the second canonical memory safety viola-
tion. It occurs when the index used to access an array is too large or
small. A simple C version:

#include <stdio.h>

int main() {
// An array of 5 elements
char data[5] = {1, 2, 3, 4, 5};

// Print out the 17th element
printf("%u\n", data[17]);

}

The consequence of an index out of bounds is quite straight-forward:
it reads or writes memory that happens to be near the array. For ar-
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rays sitting on the stack, this is an easy vector for overwriting a func-
tion’s return pointer.

Like general use-afters, this problem is usually resolved through
runtime checks. Simply have every operation that takes an index com-
pare it to the length of the array. However C and C++ provide no
guards by default, and in some cases array length isn’t even known,
making it impossible to check.

3.3 iterator invalidation

Iterator invalidation occurs when a collection is mutated while it’s
being iterated over. It’s a particularly interesting problem because it’s
similar to a use-after-free or indexing out of bounds, but can require
more pervasive checking to guard against. A simple example in C++:

#include <vector>
#include <stdio.h>
using namespace std;

int main() {
// a growable array of four 5’s
vector<char> data (4, 5);

// loop over the array to print the elements out
for (auto it = data.begin(); it != data.end(); ++it) {

printf("%u\n", *it);

// if this is the first step of the iteration
// push ‘0‘ onto the back of the array
if (it == data.begin()) {

data.push_back(0);
}

}
}

When an iterator is invalidated it will start acting on outdated in-
formation, potentially stomping through memory that is no longer
part of the collection. For instance, when we executed this program it
produced 22(!) values. Evidently the array’s backing storage had been
reallocated in a different location on the heap, conveniently only a few
bytes over. The it variable simply walked forward through the heap
until it found the new end of the array. In other words, we managed
to index out of bounds and use-after-free at the same time.

Even if an iterator isn’t invalidated, mutating a collection while
iterating it is an easy way to produce a nonsensical program. For
instance, unconditionally inserting into a collection while iterating
into it may lead to an infinite memory-consuming loop. That said, it
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can be be desirable to mutate a collection while iterating it. Removing
elements while processing them is a rather common operation.

In order to guard against this, any operations which can invalidate
an iterator need to somehow know about any outstanding iterators,
or otherwise signal to them that a change has been made. One way
to do this is to have the collection contain a timestamp of when it
was last modified, and have iterators repeatedly verify that it hasn’t
changed. This is exactly how OpenJDK’s ArrayList is implemented
[6].

Once again, neither C nor C++ provide any guards against this
sort of thing by default. Even in Java there’s no automatic solution
to this problem. The programmer just needs to think about iterator
invalidation and ensure that it can’t happen.

Iterator invalidation can be generalized to the invalidation of any
“view” into another type. Iterators are particularly nasty because they’re
often low-level and performance sensitive, but any view can be made
inconsistent by mutating what it intends to represent.

3.4 data races

A data race occurs when two separate threads attempt to access the
same location in memory in an unsynchronized manner, and one of
them is writing. Unlike the other problems discussed here, a data race
is primarily an issue of correctly expressing intent to the compiler.

Many of the optimizations we expect a good optimizing compiler
to perform are completely broken in a concurrent context. Consider
the following code:

step = 7;
while (step != 0) {

if (step == 2) {
do_stuff();

}
do_other_stuff();
step -= 1;

}

One reasonable rearrangement of this code is as follows:

step = 7;
while (step != 2) {

do_other_stuff();
step -= 1;

}

do_stuff();
do_other_stuff();
do_other_stuff();
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This eliminates the need to perform the extra check in the loop,
a clearly desirable optimization. However this transformation is un-
sound if another thread can modify the value of the step variable,
causing the branch to be taken multiple times. Worse, if the step vari-
able is kept in a register (yet another desirable optimization), any
writes another thread performs will be completely ignored. In order
to deal with this, one needs to communicate to the compiler that data
accesses need to be properly synchronized.

Correctly preventing data races is a difficult problem. As always,
C and C++ generally leave this up to the programmer. They expose
intrinsics for performing atomic operations that inhibit optimizations
and emit atomic hardware instructions, but nothing prevents misus-
ing these operations or simply ignoring them completely. Some sys-
tems solve this problem by simply forbidding one of the ingredients
of a data race: sharing (message passing), mutability (pure functional
programming), or concurrency (JavaScript-style event loops). Java is
notable for allowing all three, but still eliminating data races by mak-
ing aggressive guarantees about atomicity [18].

However Java programs still permit the more general problem of
race conditions, which are much more difficult to address. A race con-
dition is any situation in which the order in which two threads run
their instructions leads to incorrect behaviour. Even if all instructions
are atomic, it’s quite easy to have a race condition. For instance, if
two threads are trying to insert into a growable array, they may both
atomically read the length of the array, write to the end of the array,
and then update its length. However this valid execution will produce
incorrect results:

thread A: read length
thread B: read length
thread A: write to end
thread A: increment length
thread B: write to end
thread B: increment length

In this execution thread B will overwrite the element inserted by
A, and the length will be incremented twice, leading to uninitialized
memory being exposed in the last index of the array. This can easily
lead to a memory-safety violation if the uninitialized element is read,
even though no data races occurred.

3.5 memory leaks

Memory leaks are unlike any of the other errors above. The other
errors are a matter of doing a thing that shouldn’t have been done.
Leaks, on the other hand, are failing to do something that should have
been done. In contrast to a use-after-free, a memory leak occurs when
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memory is never returned to the allocator. We can demonstrate a mem-
ory leak by just removing the call to ‘free‘ from our use-after-free
example:

#include <stdlib.h>
#include <stdio.h>

// memory leak with heap allocation
int main() {

// Get some memory from the allocator
char* string = (char*) calloc(3, 1);
string[0] = ’h’;
string[1] = ’i’;

printf("%s\n", string);

// Don’t bother to release the memory
}

Leaks aren’t a memory-safety issue. Leaks just waste resources
which can seriously impact performance, or even cause a crash. Crash-
ing is obviously not good, so leaks should be avoided if possible. That
said, leaks can be benign or even desirable under the right circum-
stances. For instance, our example of a leak is actually totally fine.
Operating systems reclaim a process’ memory on exit anyway, so fid-
dling with the allocator is just slowing down the program’s execution
for no good reason.

Most languages handle memory leaks with garbage collection. C++
primarily handles memory leaks with destructors. C doesn’t provide
anything for avoiding memory leaks. Regardless, no strategy is per-
fect because properly eliminating leaks may require semantic under-
standing of how an application works. For instance, none of the strate-
gies mentioned can deal with forgetting to remove unused values
from a collection. Even ignoring these “undetectable” cases, these
strategies can also fail to properly collect truly unreachable memory
due to implementation details.

Memory leaks generalize to the leaking of basically any other re-
source such as threads, file descriptors, or connections. Arguably,
leaks are just a special case of forgetting to do any final step at all.
Garbage collection does nothing for these errors, while destructors
work just as well for them all.

Leaks are a sufficiently special case that we’ll be skipping over them
for the bulk of this thesis. For now we’ll only focus on the errors that
can lead to programs behaving incorrectly, instead of just poorly.
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The memory safety errors we described in the previous section, and
many more like them, can be reduced to a single issue: data trust. All
programs require or expect data to have certain properties. This trust
is so pervasive that it’s easy to forget that we’re even making assump-
tions about how data will behave. This trust has many aspects:

First, there is the property of the data that is trusted. The simplest
form of trust is trusting that certain values don’t occur: booleans are
either ‘true‘ or ‘false‘, but never ‘FileNotFound‘. This kind of property
is generally quite manageable because it’s easy to verify on demand,
or enforce with basic type-safety.

The more complex property is trusting that separate pieces of data
agree. This is the kind of property that we see in our memory-safety
errors. Indices need to agree with the length of the array, the allocator
needs to agree that dereferenced pointers are allocated, and iterators
need to agree with the collection they iterate. CPUs need to agree
on the value stored in memory. This is the kind of trust we will be
focusing on for the bulk of this work.

Second, there is the who to trust with data. For most applications,
it’s reasonable to design an interface that assumes that the language,
hardware, and operating system are well-behaved. Of course, bugs in
any of these systems may necessitate workarounds, but we don’t con-
sider this aspect to be particularly interesting. At some limit, these
systems just work the way they work, and any oddities can be re-
garded as a nasty corner case to be documented.

The aspect of who to trust that we consider really interesting is
within the boundary of a process. Within a single program, functions
need to decide whether to trust other functions. It’s fairly reasonable
to trust a single concrete function to be well-behaved. For instance,
if one wishes to invoke a print function that claims to only read its
inputs, it’s reasonable to rely on that fact. We consider it reasonable to
extend our trust here because it’s being done in a closed manner. That
is, it’s in principle possible to test or otherwise verify that the print
function doesn’t mutate its input, especially if the source is available.

The problematic case is when we need to extend our trust in an
open manner. Public functions can be called by arbitrary code, and as
such need to worry about trusting their caller. Do we trust the caller
to pass us correct inputs? Do we trust the caller to invoke us at the
right time? Similarly, generic or higher-order functions need to worry
about trusting the arbitrary functions that they’re given. If we were
given a printing function instead of getting to call some concrete one,
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we then have to worry if that print function will uphold its promise
not to mutate the input.

Being safe in an open context is particularly important for imple-
menting safe libraries, which the implementors of a language and stan-
dard library must concern themselves with. It’s possible to solve this
problem by giving parts of a standard library a privileged position,
effectively being “magic” and inexpressible by other consumers of the
language. Core data structures being inexpressible are fairly common,
such as the growable array types in JavaScript and Go. The downside
to this strategy is that users of the language are unable to build new
libraries with these privileges, limiting the language’s ecosystem. As
such, it’s desirable to minimize magic wherever possible.

Third, there is the consequences of the trust; what happens if trust is
violated? Consequences for an application can range from marginal
to catastrophic; it could perform slightly worse, produce nonsensical
output, crash, delete the production database, or compromise the sys-
tem it’s running on. The consequences of an assumption can easily
shape whether that assumption is made at all. Certainly, leaving the
system vulnerable is not something to be taken lightly.

Fourth and finally, there is the justification of the trust. At one ex-
treme, one may simply blindly trust the data. Indexing is unchecked;
pointers are assumed to be allocated; and booleans are assumed to be
true or false.

At the other extreme, one can statically guarantee that data is cor-
rect. Static type checking can help ensure that a boolean doesn’t con-
tain FileNotFound, control flow analysis can determine if a pointer is
used after it’s freed, and normalized databases ensure that there is a
single source of truth for each fact.

Somewhere in between these two extremes, one can validate or cor-
rect data at runtime. Indices may be checked against an array’s length;
inputs may be escaped; and iterators can check that their collection
hasn’t been modified.

We respectively call these three approaches naivety, paranoia, and
suspicion. As we will see, they each have their own strengths and
weaknesses that makes them appropriate for different tasks. As such,
basically every piece of software relies on a combination of these
strategies to strike a balance between the competing demands of con-
trol, safety, and ergonomics. That said, some systems clearly favour
some strategies more than others.

4.1 naivety

A naive interface isn’t a fundamentally bad interface. It’s just one that
trusts that the world is great and everyone is well-behaved. Providing
a naive interface is a bit like giving everyone you meet a loaded gun
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and trusting that they use it wisely. If everyone is well-behaved, then
everything goes great. Otherwise, someone might lose a leg.

First and foremost, a naive interface is simply the easiest to im-
plement. The implementor doesn’t need to concern themselves with
corner cases or invalid input, because they are simply assumed to
not occur. This in turn gives significant control to the user of the in-
terface because they don’t need to worry about the interface checking
or mangling inputs. It’s up to the user to figure out how correct us-
age is ensured. Since the user has the most context, they’re the best
poised to identify when assumptions can or can’t be made.

Naive interfaces may also expose lower-level details more freely,
on the assumption that they will be used correctly. This empowers
users to efficiently and reliably perform operations that may never
have been envisioned by the original implementor, or were simply
deemed too much work to develop and maintain. Control is abso-
lutely the greatest strength of naive interfaces. They empower excel-
lent programmers to produce excellent code where it matters. As
such, exposing a naive interface may be one way to minimize the
extent to which a standard component is magically privileged.

For similar reasons, naive interfaces are also, in principle, ergonomic
to work with. In particular one is allowed to try to use the interface
in whatever manner they please. This enables programs to be trans-
formed in a more continuous manner. Intermediate designs may be
incorrect in various ways, but if one is only interested in exploring
a certain aspect of the program that doesn’t depend on the incorrect
parts, they are free to do so.

The uncontested champion of this approach is C. In particular, its
notion of Undefined Behaviour is exactly naivety. C programs are ex-
pected to uphold several non-trivial properties, and the C standard
simply declares that if those properties don’t hold, the program is un-
defined. This naivety can be found in relatively small and local details
like unchecked indexing, as well as massive and pervasive ones like
manual memory management.

Undefined Behaviour demonstrates the extreme drawback of naive
interfaces. Breaking C’s trust has dire consequences, as the compiler
is free to misoptimize the program in arbitrary ways, leading to mem-
ory corruption bugs and high severity vulnerabilities. Modern com-
pilers try to give a helping hand with debug assertions and static
analysis, but blind trust is evidently too deeply ingrained into C. Pro-
grams written in C(++) continue to be exploited, and no end to this
is in sight.

If the consequences of misuse are high or the contracts that must be
upheld are too onerous, the ergonomic benefits of naive interfaces can
be undermined. Having to be always vigilant against incorrect usage
can be mentally exhausting. The problems that result from misusing
a naive interface can also be cryptic and difficult to debug, due to the



24 trust

fact that they tend to silently corrupt the system, rather than causing
an immediate crash.

That said, the control that C’s trusting design provides is highly
coveted. Operating systems, web browsers, game engines, and other
widely used pieces of software continue to be primarily developed in
C(++) because of the perceived benefits of this control. Performance
is perhaps the most well-understood benefit of control, but it can also
be necessary for correctness in e.g. hardware interfaces. Languages
without this control are simply irrelevant for many projects.

4.2 paranoia

Paranoid designs represent a distrust so deep that one believes things
must be taken away so as to eliminate a problem a priori. Where the
naive would give everyone a loaded gun, the paranoid are so con-
cerned with people getting shot that they would try to make it im-
possible by eliminating bullets, guns, or even people.

There are two major families of paranoid practices: omissions and
static analysis.

Omissions represent pieces of functionality that could have been
provided or used, but were deemed too error-prone. The much-maligned
goto is perhaps the most obvious instance of a paranoid omission,
but it’s not the most interesting. The most interesting omission is
the ability to manually free memory, which is one that all garbage
collected languages effectively make. Some less popular examples in-
clude nullable pointers (Haskell, Rust), concurrency (JavaScript), and
side-effects (pure functional programming).

Static analysis consists of verifying a program has certain proper-
ties at compile-time. Static typing is the most well-accepted of these
practices, requiring every piece of data in the program to have a stati-
cally known type. Various static lints for dubious behaviours also fall
into this category, including code style checks. This analysis also in-
cludes more exotic systems like dependent-typing, which expresses
requirements on runtime values (such as x < y) at the type level.

The primary benefit of paranoid practices is maximum safety. Ide-
ally, a paranoid solution doesn’t just handle a problem, it eliminates
that problem. For instance, taking away memory-freeing completely
eliminates the use-after-free, because there is no “after free” (garbage
collection being “only” an optimization). Similarly, a lack of concur-
rency eliminates data races, because it’s impossible to race. Lints may
completely eliminate specific mistakes, or simply reduce their proba-
bility by catching the common or obvious instances. Dependent typ-
ing can eliminate indexing out of bounds, by statically proving that
all indices are in bounds [32].

The cost of this safety is usually control or ergonomics. Paranoid
practices point to the pervasive problems that unchecked control leads
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to, and declare that this is why we can’t have nice things. Certain opera-
tions must be forbidden or require burdensome annotation. It’s worth
noting that a loss of control does not necessarily imply a loss in perfor-
mance. In fact, quite the opposite can be true: an optimizing compiler
can use the fact that certain things are impossible to produce more
efficient programs [21].

That said, paranoid practices do generally take away a program-
mer’s ability to directly construct an optimized implementation. One
must instead carefully craft their program so that it happens to be
optimized in the desired manner. This leaves the programmer depen-
dent on the compiler to understand how to produce the desired id-
iom, and may require significant annotations to convince it that this is
desirable. In some cases, this means that the desired output is simply
impossible.

The ergonomic impact of paranoid practices is a tricky subject. For
the most part, paranoid practices err on the side of producing false
negatives – better to eliminate some good programs than allow bad
programs to exist! This can lead to frustration if one wishes to pro-
duce a program they believe to be a false negative.

Omissions are generally much more well-accepted in this regard,
particularly when an alternative is provided that handles common
cases. The absence of manual free is quite popular because freeing
memory is just annoying book-keeping. Freeing memory has no in-
herent semantic value, it’s just necessary to avoid exhausting system
resources. The fact that garbage collection just magically frees mem-
ory for you is pretty popular, as evidenced by its dominance of the
programming language landscape (C and C++ being the most no-
table exceptions). However some omissions can be too large to bear;
few systems are designed in a pure-functional manner.

Static analysis is much more maligned, as the developers of Cover-
ity found [19]. It’s easy to forgive an omission, particularly if one
isn’t even aware that an omission occurred. There’s no reason for a
JavaScript programmer to even be aware of goto. Static analysis, on
the other hand, is active and in the programmer’s face. It continu-
ously nags the programmer to do a better job, or even prevents the
program from running. Static typing, one of the less controversial
strategies, is rejected by many popular languages (JavaScript, Python,
Ruby). Meanwhile, dependent types struggle to find any mainstream
usage at all. These practices can also harm the ability to continuously
transform a program, forcing the programmer to prove that everything
is correct in order to test anything.

Regardless, embracing paranoia can be liberating. Once a paranoid
practice is in place, one never needs to worry about the problems it
addresses again. Once you start collecting your own rainwater, why
worry about what’s being put in the water supply?
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4.3 suspicion

Finally we have the position of compromise: the suspicious practices.
A suspicious design often looks and acts a lot like a trusting design,
but with one caveat: it actually checks at runtime. The suspicious
stance is that some baseline level of safety is important, but categori-
cally eliminating an error with a paranoid practice is impractical. The
suspicious might give everyone guns, but make them explode when-
ever a HumanPointerException is detected.

Suspicious practices can skew to be implicit or explicit, in an at-
tempt to fine-tune the tradeoffs.

In languages where pointers are nullable by default, it’s common
for all dereferences to silently and implicitly check for null. This may
cause the program to completely crash or trigger unwinding (throw
an exception). This allows the programmer to write the program in a
trusting way without worrying about the associated danger.

Other interfaces may require the author to explicitly acknowledge
invalid cases. For instance, an API may only provide access to its data
through callbacks which it invokes when the data is specifically cor-
rect or incorrect. This approach is often more general, as it can be
wrapped to provide the implicit form. Compared to implicit checks,
explicit checks give more control to the user and can improve the clar-
ity of code by making failure conditions more clear. But this comes at
a significant ergonomic cost; imagine if every pointer dereference in
Java required an error callback!

Regardless of the approach, suspicious practices are a decent com-
promise. For many problems the suspicious solution is much easier
to implement, work with, and understand than the paranoid solution.
Array indexing is perhaps the best example of this. It’s incredibly sim-
ple to have array indexing unconditionally check the input against the
length of the array. Meanwhile, the obvious paranoid solution to this
problem requires an integer theorem solver and may require signifi-
cant programmer annotations for complex access patterns. That said,
paranoid solutions can also be simpler. Why check every dereference
for null, when one can simply not let pointers be null in the first
place?

One significant drawback of suspicious practices, particularly of
the implicit variety, is that they do little for program correctness. They
just make sure that the program doesn’t do arbitrary unpredictable
things with bad data, usually by reliably crashing the program. This
can be great for detecting, reproducing, and fixing bugs, but a crash
is still a crash to the end user. This can be especially problematic for
critical systems, where a crash is essentially a vulnerability.

Suspicious solutions also often have the worst-in-class performance
properties of the three solutions. Trusting solutions let the program-
mer do whatever they please while still aggressively optimizing. Para-
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noid solutions give the compiler and programmer rich information
to optimize the program with. But suspicious solutions get to assume
little, and must bloat up the program with runtime checks which fur-
ther inhibit other optimizations. That said, a good optimizing com-
piler can completely eliminate this gap in some cases. Bounds checks
in particular are easily eliminated in common cases [22].
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R U S T

Rust is intended to be a practical language. Its developers understand
that each perspective has advantages and drawbacks, and they try
to pick the best tool for each job, rather than dogmatically taking a
stance that everything should be done in one way. Naive, paranoid,
and suspicious interfaces are all have compelling use cases.

Rust uses naive interfaces to provide low-level interfaces for users
to extend the language and its libraries with. Very little of the stan-
dard library uses the kind of magic that an external library can’t pro-
vide, and we are frequently evaluating ways to remove any remaining
magic. This is necessary to compete in the space of C and C++, where
abandoning standard libraries altogether is common.

But these naive interfaces aren’t intended to be the common case in
Rust. Everyday usage is expected to be safe. As such, we also need to
provide paranoid and suspicious interfaces. Everyday usage is, how-
ever, also expected to provide fairly low-level control and excellent
performance. Garbage collection, for instance, should be exceptional.
Certainly, nothing in the standard library expects garbage collection
to be used. Rust therefore needs some way for efficient and safe low-
level interfaces to be built on top of unsafe ones.

Part of Rust’s solution to this problem is simply using our favourite
solutions for each specific problem: static types, runtime bounds checks,
no nulls, wrapping arithmetic, and so on. However these solutions
are ad hoc and tailored to the simpler trust problems. For the hard
trust problems, Rust has one very large holistic solution, and it’s what
separates it from most other languages: ownership. Rust’s ownership
model has two major aspects: controlling where and when data lives;
and controlling where and when mutation can occur. These aspects
are governed by three major features: affine types, regions, and pri-
vacy.

5.1 affine types

At a base level, Rust manages data ownership with an affine type sys-
tem. The literature often describes affine types as being usable at most
once [26], but from the perspective of ownership, affine typing means
values are uniquely owned (there is no semantic distinction here, only
a matter of perspective). To C++ developers, affine typing can be un-
derstood as a stricter version of move semantics.

If a variable stores a collection, passing it to a function by-value, or
assigning it to another variable, transfers ownership of the value to
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the new location. The new location gains access to the value, and the
old location loses access. Whoever owns the value knows that it’s the
only location in existence that can possibly talk about the contents of
the collection. This allows the owner of the collection to soundly trust
the collection; any properties it observes and wishes to rely on will
not be changed by some other piece of code without its permission.
Perhaps more importantly, the owner of the collection knows that
it can do whatever it pleases with the collection without interfering
with anyone else – no one else is trusting it.

A simple example:

fn main() {
// A growable array
let data = Vec::new();

// transfer ownership of ‘data‘ to ‘data2‘
let data2 = data;
// ‘data‘ is now statically inaccessible,
// and logically uninitialized

// transfer ownership of ‘data2‘ to ‘consume‘
consume(data2)
// ‘data2‘ is now statically inaccessible,
// and logically uninitialized

}

fn consume(mut data3: Vec<u32>) {
// Mutating the collection is known to be safe, because
// ‘data3‘ knows it’s the only one who can access it.
data3.push(1);

}

The greatest of these rights is destruction: when a variable goes out
of scope, it destroys its value forever. This can mean simply forgetting
the value, or it can mean executing the type’s destructor. In the case of
a collection, this would presumably recursively destroy all contained
values, and free all of its allocations.

Affine types are primarily useful for eliminating the use-after family
of bugs. If only one location ever has access to a value, and a value is
only invalidated when that one location disappears, then it’s trivially
true that one cannot use an invalidated value. For this reason, the
most obvious applications of affine typing are with various forms of
transient resources: threads, connections, files, allocations, and so on.

However it turns out that a surprising number of problems can
be reduced to a use-after problem. For instance, many APIs require
some sequence of steps to be executed in a certain order. This can
be encoded quite easily using affine types. Functions can produce a
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“proof of work” by returning a type that only they have permission to
produce. Similarly, functions can require a proof of work by consum-
ing such a type:

fn first() -> First;
fn second(First) -> Second;
fn third(Second) -> Third;
fn alternative(First) -> Alternative;

We can therefore use affine types to model valid control flow and
statically ensure correct usage. Session types are the logical extreme
of this technique, where programs effectively “write themselves” due
to their type constraints. Munksgaard and Jespersen [24] have an ex-
cellent analysis of session typing in Rust, so we won’t dwell on this
topic.

It should be noted that affine typing isn’t mandatory in Rust. Unique
ownership doesn’t make sense or simply isn’t important for many
types like booleans and integers. Such types can opt into copy seman-
tics. Copy types behave like any other value with one simple caveat:
when they’re moved, the old copy of the value is still valid.

Copy semantics can have surprising consequences though. For in-
stance, it may be reasonable for a random number generator to be
copyable, as its internal state is generally just some integers. It then
becomes possible to accidentally copy the generator, causing the same
number to be yielded repeatedly. For this reason, some types which
could be copied safely don’t opt into copy semantics. In this case,
affine typing is used as a lint against what is likely, but not neces-
sarily, a mistake.

5.2 borrows and regions

Affine types are all fine and good for some problems, but if that’s all
Rust had, it would be a huge pain in the neck. In particular, it’s very
common to want to borrow a value. In the case of a unique borrow,
affine types can encode this fine: you simply pass the borrowed value
in, and then return it back. This is borrow threading.

Threading is, at its best, just annoying to do. In particular, in must
be written out in the types, and performed explicitly in the code.
With only affine types, any process that borrows some data and has
an actual return value requires all of the data to be mixed in with the
return value. Say we’d like to write something like:

fn main() {
let input = get_input();
let pattern = get_pattern();
if matches(&input, &pattern) {

println!("input {} matches {}", input, pattern);
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}
}

fn matches(input: &Data, pattern: &Pattern) -> bool {
// ...
return found_match;

}

with only affine types we’d get something like:

fn main() {
let input = get_input();
let pattern = get_pattern();

// Need to recapture all the data we loaned
let (matches, input, pattern) = matches(input, pattern);

if matches {
println!("input {} matches {}", input, pattern);

}
}

fn matches(input: Data, pattern: Pattern)
-> (bool, Data, Pattern)

{
// ...
return (found_match, input, pattern);

}

Affine types really hit a wall when data wants to be shared. If several
pieces of code wish to concurrently read some data, we have a serious
issue. One solution is to simply copy the data to all the consumers. If
each has their own unique copy to work with, everyone’s happy.

However, even if we’re ignoring the performance aspect of this
strategy (which is non-trivial), it may simply not make sense. If the
underlying resource to share is truly affine, then there may be no way
to copy the data in a semantic-preserving way. For instance, one can-
not just blindly copy a file handle, as each holder of the handle could
then close it while the others are trying to use it.

At the end of the day, having only values everywhere is just dang
impractical. Rust is a practical language, so it uses a tried and true so-
lution: pointers! Unfortunately, pointers make everything more com-
plicated and difficult. Affine types “solved” use-after errors for us,
but pointers bring them back and make them far worse. The fact that
data has been moved or destroyed says nothing of the state of point-
ers to it. As C has demonstrated since its inception, pointers are all
too happy to let us view data that might be destroyed or otherwise
invalid.
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Garbage collection solves this problem for allocations, but does
nothing to prevent trying to use an otherwise invalidated value, such
as a closed file. Rust’s solution to this problem is its most exotic tool:
regions [29].

Like affine types, regions are something well-established in both
theory and implementation, but with little mainstream usage. Al-
though Rust primarily cribs them from Cyclone, they were first de-
scribed by Tofte and Talpin [30] and used in MLKit. That said, Cy-
clone’s version of regions is most immediately recognizable to a Rust
programmer.

The idea of a region system is that pointers are associated with
the region of the program that they’re valid for, and the compiler
ensures that pointers don’t escape their region. This is done entirely
at compile time, and has no runtime component.

For Rust, these regions correspond to lexical scopes, which are
roughly pairs of matching braces. The restriction to lexical scopes
is not fundamental, and was simply easier to implement for the 1.0
release. It is however sufficient for most purposes. Rust calls these
regions lifetimes.

At a base level, all a region system does is statically track what
pointers are outstanding during any given piece of code. By combin-
ing this information with other static analysis it’s possible to com-
pletely eliminate several classes of error that are traditionally rele-
gated to garbage collection. For ownership, region analysis allows us
to statically identify when a value is moved or destroyed while being
pointed to, and produce an error to that effect:

fn main() {
// Gets a dangling pointer
let data = compute_it(&0);
println!("{}", data);

}

fn compute_it(input: &u32) -> &u32 {
let data = input + 1;
// Returning a pointer to a local variable
return &data;

}

<anon>:11:13: 11:17 error: ‘data‘ does not live long enough
<anon>:11 return &data;

^~~~
<anon>:8:36: 12:2 note: reference must be valid for the

anonymous lifetime #1 defined on the block at 8:35...
<anon>: 8 fn compute_it(input: &u32) -> &u32 {
<anon>: 9 let data = input + 1;
<anon>:10 // Returning a pointer to a local variable
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<anon>:11 return &data;
<anon>:12 }
<anon>:9:26: 12:2 note: ...but borrowed value is only valid

for the block suffix following statement 0 at 9:25
<anon>: 9 let data = input + 1;
<anon>:10 // Returning a pointer to a local variable
<anon>:11 return &data;
<anon>:12 }

On its own, this is pretty great: no dangling pointers without the
need for garbage collection! But when combined with affine types,
we get something even more powerful than garbage collection. For
instance, if you close a file in a garbage collected language, there is
nothing to prevent old users of the file from continuing to work with
it. One must guard for this at runtime. In Rust, this is simply not
a concern: it’s statically impossible. Closing the file destroys it, and
that means all pointers must be gone. At least in simple cases like this,
we’ve enabled pointers to be used without having to worry about a
use-after.

Unfortunately, this doesn’t solve problems like iterator invalida-
tion. When an iterator is invalidated, the collection it was pointing
to wasn’t destroyed, it was just changed. In order to handle iterator
invalidation, we require something more than checking for moves.

The most extreme solution is to simply forbid internal pointers.
Only allow pointers to borrow variables on the stack, and everything
else has to be copied out. Then we never have to worry about point-
ers being invalidated. Unfortunately, this would be a very limiting
system. It would make composition of affine types useless, because
you could never access the components without destroying the ag-
gregate. It also doesn’t really solve the problem the way we wanted.
Most iterators we’d be interested in providing would become inex-
pressible under this model. For instance, one couldn’t yield interior
pointers from an iterator. Depending on the details, any kind of tree
iterator may be completely impractical.

Another extreme solution would be to forbid mutation of data. Mu-
tations can be emulated by creating a new object with the necessary
changes, so this is in principle possible. However this suffers from
similar issues as borrow threading: It’s really annoying, and would
also be make it difficult to obtain the same control as C(++).

Yet another way is to treat all pointers into a collection as pointers to
the collection, and forbid mutation through pointers. All mutating op-
erations could require by-value (and therefore unique) access, which
could be done with borrow-threading. This is unfortunate because
we were trying to avoid borrow-threading by introducing pointers in
the first place, but at least we could share data immutably, which is a
definite win.
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Rust basically takes this last approach, but in order to avoid the
annoying pain of threading borrows, it includes two different kinds
of pointer: mutable references and shared references denoted &mut and &
respectively. Shared references are exactly as we described: they can
be freely aliased, but only allow you to read the data they point to.
On the other hand, mutable references must be unique, but enable
mutation of the data they point to. This means that taking a mutable
reference to some data is like moving it, but then having the compiler
automatically insert all the boiler-plate to move it back into place
when the mutable reference is gone (the compiler does not actually
move the data around when you take a mutable reference).

Let’s look at some simple examples:

let mut data = 0;

{
// Allowed to take multiple shared references
let data_ref1 = &data;
let data_ref2 = &data;

// Allowed to read through them,
// and still read the value directly
println!("{} {} {}", data_ref1, data_ref2, data);

// Not allowed to mutate through them (compiler error)
// *data_ref1 += 1;

}

{
// Allowed to take one mutable reference
let data_mut = &mut data;

// Allowed to read or write through it
println!("{}", data_mut);
*data_mut += 1;

// Allowed to move the mutable reference to someone else
data_the_second = data_mut;

// Not allowed to get an aliasing shared reference
// (compiler error)
// let data_ref = &data;

// Not allowed to get an aliasing mutable reference
// (compiler error)
// let data_mut2 = &mut data;



36 rust

// Not allowed to directly access data anymore
// (compiler error)
// println!("{}", data);

// But can get use the new location fine
println!("{}", data_the_second);

}

// All borrows out of scope, allowed to access data again
data += 1;
println!("{}", data);

5.3 mutable xor shared

This is Rust’s most critical perspective on ownership: mutation is mu-
tually exclusive with sharing. In order to get the most out of this
perspective, Rust doesn’t allow mutability to be declared at the type
level. That is, a struct’s field cannot be declared to be constant. In-
stead, the mutability of a value is inherited from how it’s accessed: as
long as you have something by-value or by-mutable-reference, you
can mutate it.

This stands in contrast to the perspective that mutation is some-
thing to be avoided completely. As we’ve seen, mutation can cause se-
rious problems. This has lead some to conclude that mutation should
be avoided as much as possible. Never mutating anything does in-
deed satisfy Rust’s requirement that sharing and mutating be exclu-
sive, but in a vacuous way (mutating never occurs). Rust takes a more
permissive stance: mutate all you want as long as you’re not sharing.
The Rust developers have found that this eliminates most of the prob-
lems that mutation causes in practice.

In particular, this statically eliminates iterator invalidation. For in-
stance, consider the following program:

fn main() {
let mut data = vec![1, 2, 3, 4, 5, 6];
for x in &data {

data.push(2 * x);
}

}

What exactly the programmer intended here was unclear, and what
exactly will happen if this were allowed to compile is even more un-
clear. Thankfully, in Rust we don’t need to wonder what the program-
mer meant or what will happen when this is run, because it doesn’t
compile:

<anon>:4:9: 4:13 error: cannot borrow ‘data‘ as mutable
because it is also borrowed as immutable
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<anon>:4 data.push(2 * x);
^~~~

<anon>:3:15: 3:19 note: previous borrow of ‘data‘ occurs
here; the immutable borrow prevents subsequent moves
or mutable borrows of ‘data‘ until the borrow ends

<anon>:3 for x in &data {
^~~~

<anon>:5:6: 5:6 note: previous borrow ends here
<anon>:3 for x in &data {
<anon>:4 data.push(2 * x);
<anon>:5 }

^

This strategy also nicely generalizes to a concurrent context. Recall
that a data race is defined to occur when two threads access a piece
of data in an unsynchronized way, and one is writing. This is exactly
aliasing and mutation, which is forbidden by Rust’s scheme. As such,
everything in Rust is thread-safe by default.

Of course, perfectly good concurrent algorithms and data struc-
tures are rife with aliasing and mutability. Mutexes exist precisely to
enable aliasing and mutation in a controlled manner. As a result, al-
though inherited mutability is the default way to do things in Rust, it
is not the only way. A few key types provide interior mutability, which
enables their data to be mutated through shared references as long as
some runtime mechanism ensures that access is properly restricted.
The most obvious example of this is exactly the standard library’s
Mutex type, which allows an &Mutex<T> to become an &mut T by ac-
quiring its lock:

use std::sync::Mutex;

fn main() {
// A Mutex owns the data it guards. In this case,
// an integer. Note that ‘data‘ is not declared
// to be mutable, which normally would make it
// impossible to update the value of the integer.
let data = Mutex::new(0);

{
// Acquire the lock
let mut handle = data.lock().unwrap();
// A handle behaves like an ‘&mut‘ to the data
*handle += 1;
// But when it goes out of scope here,
// it releases the lock.

}
}
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Why is this interface sound? First and foremost, any attempt to
acquire the lock will block if it’s already acquired. This ensures that
only one handle exists at any given time. However, we must also
guarantee that the handle doesn’t outlive the mutex, and the pointer
we get out of the handle doesn’t outlive the handle. These problems
are handled by ownership. Affinity and region analysis ensures that
the pointers and handles aren’t duplicated or allowed to outlive the
type they refer to.

However the entire reason we care about Mutexes is for sharing
across threads. This means there is one additional problem we must
worry about: the shared data not being thread-safe. As we have noted,
almost everything in Rust is actually thread-safe by default precisely
because of ownership, but two things can potentially break this: bor-
rows, and interior mutability. Borrows aren’t trivially safe to share
between two threads because they’re based around sequential scopes.
They don’t really make sense with concurrent executions. Interior mu-
tability isn’t thread-safe because it’s precisely sharing and mutation.

A Mutex provides interior mutability in an inherently thread-safe
way, but not all types do. In particular, the Cell and RefCell types
aren’t thread-safe. So how do we ensure that these problematic types
aren’t shared across threads? For borrows, there’s actually a way to
declare that a type is expected to not contain borrows, so anything
that can pass data to another thread requires that. However the in-
terior mutability problem requires a completely different solution:
Traits.

Traits are Rust’s version of an interface. Rust actually captures
thread-safety as traits that types can implement, called Send and
Sync. If a type can be moved to another thread safely, then it is Send.
If a type can be shared between two threads safely, then it is Sync.
These traits are automatically derived compositionally; if you consist
entirely of Send types, then you are Send. This works because of
affinity and ownership. We know that if we own something that is
thread-safe, then we are the only ones who can access it. So if we’re
accessed in a thread-safe way, then it’s accessed in a thread-safe way.

Very few types are thread-unsafe, so almost everything is Send and
Sync. However some types are specifically thread-safe even though
they’re based on parts that aren’t. For instance, Mutex itself is based
on parts that aren’t thread-safe, but it is of course thread-safe as long
as it contains thread-safe data. As such, types can manually claim to
be Send or Sync. Of course, it’s possible to make this claim incorrectly,
so how is this safe to expose?

It’s not safe. In fact, it’s explicitly unsafe to implement these inter-
faces.



5.4 unsafe rust 39

5.4 unsafe rust

Most languages are considered memory-safe. However with few ex-
ceptions, this isn’t actually true. In fact, basically every language has
unsafe bits. The most fundamental of these is quite simple: talking to
C. C is the lingua-franca of the programming world. All major oper-
ating systems and many major libraries primarily expose a C inter-
face. Any language that wants to integrate with these systems must
therefore learn how to interface with C. Because C is definitely unsafe
and can do just about anything to a program, these languages then
become transitively unsafe. For instance a C library could pass an
otherwise safe language a dangling pointer, and there’s no way for
the safe language to defend against this. See for instance, Python’s
ctypes module and Java’s JNI framework.

Rust is no different, but it embraces this reality a little more than
most other languages. Rust is actually two languages: Safe Rust, and
Unsafe Rust. Safe Rust is the Rust we have been focusing on for the
most part. It is intended to be completely safe with one exception: it
can talk to Unsafe Rust. Unsafe Rust, on the other hand, is definitely
not a safe language. In addition to being able to talk to C (like any safe
language), it enables the programmer to work with several constructs
that would be easily unsound in Safe Rust. Most notably, for us, it
allows Send and Sync to be implemented. However Unsafe Rust is
most commonly used because it includes raw C-like pointers which
are nullable and untracked.

At first glance, Unsafe Rust appears to completely undermine Rust’s
claims about safety, but we argue that it in fact improves its safety
story. In most safe languages, if one needs to do something very low
level (for performance, correctness, or any other reason) the general
solution to this is “use C”. This has several downsides.

First, there’s a cognitive overhead. Such an application now has its
logic spread across two completely different languages with different
semantics, runtimes, and behaviors. If the safe language is what a
development team primarily works in, it’s unlikely that a significant
percentage of the team is qualified to actively maintain the C com-
ponents. Second, it incurs non-trivial runtime overhead. Data must
often be reformatted at the language boundary, and this boundary is
usually an opaque box for either language’s optimizer. Finally, falling
back to C is simply a huge jump in unsafety, from “totally safe” to
“pervasively unsafe”.

Unsafe Rust largely avoids these issues with one simple fact: it’s
just a superset of Safe Rust. Lifetimes, Affine Types, and everything
else that helps you write good Rust programs are still working exactly
as before. You’re just allowed to do a few extra things that are unsafe.
As a result, there’s no unnecessary runtime or semantic overhead for
using Unsafe Rust.
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Of course one does need to understand how to manually uphold
Safe Rust’s various guarantees when using Unsafe Rust’s extra parts,
and this isn’t trivial. However this is still a better situation than us-
ing C, because the unsafety is generally much more modular. For in-
stance, if you use Unsafe Rust to index into an array in an unchecked
manner, you don’t suddenly need to worry about the array being null,
dangling, or containing uninitialized memory. All you need to worry
about is if the index is actually in bounds. You know everything else
is still normal.

In addition, Unsafe Rust doesn’t require any kind of complicated
foreign function interface. It can be written inline with Safe Rust on
demand. Rust’s only requirement is that you write the word “unsafe”
somewhere to indicate that you understand that what you’re doing
is unsafe. Since unsafety is explicitly denoted in this manner, it also
enables it to be detected and linted against if desired.

Rust’s standard library (which is written entirely in Rust) makes co-
pious use of Unsafe Rust internally. Most fundamentally, Unsafe Rust
is necessary to provide various operating system APIs because those
are written in C, and only Unsafe Rust can talk to C. However Unsafe
Rust is also used in various places to implement core abstractions like
mutexes and growable arrays.

It’s important to note that the fact that these APIs use unsafe code is
entirely an implementation detail to those using the standard library.
All the unsafety is wrapped up in safe abstractions. These abstractions
serve two masters: the consumer of the API, and the producer of the
API. The benefit to consumers of an API is fairly straight-forward:
they can rest easy knowing that if something terrible happens, it
wasn’t their fault. For producers of the API, these safe abstractions
mark a clear boundary for the unsafety they need to worry about.

Unsafe code can be quite difficult because it often relies on stateful
invariants. For instance, the capacity of a growable array is a piece
of state that unsafe code must trust. In order to be sound, these safe
abstractions need to rely on the final element of ownership: privacy.

Privacy in Rust is much the same as in most other languages. Fields
and functions may be marked as public or private, and only code that
is within some boundary may access anything that is marked private.

Returning to our example, the capacity of a growable array is marked
as private. Since the abstraction boundary is often exactly the privacy
boundary in Rust, end users of a growable array are therefore pre-
vented from directly manipulating the capacity. Within the array’s
privacy boundary, this state can be arbitrarily manipulated, but this
is a closed set of code to audit and verify. The code within the privacy
boundary can therefore trust that the capacity field is only updated
by a small set of trusted code.

This rest of this thesis focuses primarily on these safe abstractions.
A good safe abstraction must have many properties:
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1. Safety: Using the abstraction inappropriately cannot violate Rust’s
safety guarantees.

2. Efficiency: Ideally, an abstraction is zero cost, meaning it is as
efficient at the task it is designed to solve as an unabstracted
solution (with a decent optimizing compiler).

3. Usability: A good abstraction should be more convenient and
easy to understand than the code it’s wrapping.

It would be excellent if the implementation was also completely safe,
but we do not consider this a critical requirement, as Rust’s standard
library demonstrates.

It should be noted that Rust’s reliance on safe abstractions is, in
some sense, unfortunate. For one, it makes reasoning about the per-
formance characteristics of a program much more difficult, as it re-
lies on a sufficiently smart compiler to tear away these abstractions.
This in turn means Rust’s unoptimized performance is in a rather
atrocious state. It’s not uncommon for a newcomer to the language
to express shock that a Rust program is several times slower than
an equivalent Python program, only to learn that enabling optimiza-
tions makes the Rust program several times faster than the Python
program (and indeed, as fast as one would expect from the equiva-
lent C++). However it is our opinion that this is simply fundamental
to providing a programming environment that is safe, efficient, and
usable.
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6
D E S I G N I N G A P I S F O R T R U S T

It has been our experience that almost everything you want to express
at a high level can be safely, efficiently, and usably expressed in an
ownership-oriented system. However this does not mean that you can
express it however you please! In order to be safe, efficient, and usable
the API itself must be designed in terms of data trust. If the API isn’t
designed with trust and ownership in mind, these goals will likely be
compromised.

We have already seen how ownership eliminates use-afters, view
invalidation, and data races. However we have not yet seen how in-
dexing is addressed.

6.1 indexing

Arrays are overwhelmingly the most common and important data
structure in all of programming. Basically every program will do
some array processing – even hello world is just copying an array of
bytes to stdout. Array processing is so pervasive that Rust provides
no less than four different ways to index into an array, each corre-
sponding to one of the trust strategies: naive, paranoid, implicitly
suspicious, and explicitly suspicious.

First and foremost, Rust provides the two most popular interfaces:
completely unchecked indexing (via Unsafe Rust), and implicitly checked
indexing (which unwinds the program if it fails). Nothing particularly
surprising or novel there.

Slightly more interesting is how Rust provides an explicitly checked
option. Explicit checking is most commonly done through the Option
and Result types in Rust. If an operation can fail, it will return one
of these types. These types are tagged unions, which means they can
contain different types at runtime. ‘Option<T>‘ can be ‘Some(T)‘ or
‘None‘, while ‘Result<T, E>‘ can be ‘Ok(T)‘ or ‘Err(E)‘. By owning
the data they wrap, these types can control how it’s accessed. Both
of them provide a multitude of ways to access their contents in an
explicitly checked way.

Explicitly checked indexing returns an Option, so if we want to
explicitly handle the failure condition, we can do any of the following:

// Exhaustively match on the possible choices
match array.get(index) {

Some(elem) => println!("Elem: {}", elem),
None => println!("Nothing"),

}
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// Only handle one pattern
if let Some(elem) = array.get(index) {

println!("Elem: {}", elem);
}

// Execute a callback if the value is Some
array.get(index).map(|elem| {

println!("Elem: {}", elem);
});

// ... and more

It’s worth noting that checked indexing is surprisingly performant
here. First off, these bounds checks are by definition trivially pre-
dictable in a correct program. So the overhead at the hardware level
is quite small. That said, having to do the checks at all is the worst-
case. A good optimizing compiler (like LLVM) can optimize away
bounds checks in many “obviously correct” cases. For instance, the
following code doesn’t actually perform any bounds checks when op-
timized, because LLVM can see that the way the indices are generated
trivially satisfies the bounds checking.

let mut x = 0;
for i in 0 .. arr.len() {

// implicit checked indexing
x += arr[i];

}

Indeed, if you can convince LLVM to not completely inline and
constant-fold this code away, it will even successfully vectorize the
loop!

However compiler optimizations are brittle things that can break
under even seemingly trivial transformations. For instance, changing
this code to simply iterate over the array backwards completely broke
LLVM’s analysis and produced naive code that adds the integers one
at a time with bounds checking. This is perhaps the most serious cost
of bounds checks: inhibiting other optimizations.

If we really care about avoiding this cost, we can’t just rely on the
optimizer to magically figure out what we’re doing, we need to ac-
tually not do bounds checking. We can use the unsafe unchecked
indexing, but we’d rather not resort to unsafe code unless totally nec-
essary. What we really want here is Rust’s final solution to indexing:
the paranoid one.

This code is hard to optimize safely because we’ve pushed too
much of the problem at hand to the user of the array. They need
to figure out how to generate the access pattern, and we in turn can’t
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trust it. If the array handles generating the access pattern and acquir-
ing the elements, then all the bounds checks can be eliminated at the
source level in a way that’s safe to the end-user. This is handled by a
tried and true approach: iterators.

let mut sum = 0;
for x in arr.iter() {

sum += *x;
}

This produces the same optimized code as the original indexing-
based solution, but more importantly, it’s more robust to transforma-
tions. Iterating backwards now also produces vectorized unchecked
code, because the optimizer has less to prove about the program’s be-
haviour. As an added bonus, client code ends up simplified as well,
as all the error-prone iteration boilerplate has been eliminated.

Of course, this doesn’t come for free. Iterators are effectively special-
casing certain access patterns at the burden of the interface’s imple-
mentor. In the case of iterators, this burden is completely justified.
Linear iteration is incredibly common, and therefore well worth the
specialization. But if the user wants to binary search an array without
bounds checks, iterators do them no good.

This is why Rust also provides the raw unchecked indexing API. If
users have a special case and really need to optimize it to death, they
can drop down to the raw API and regain full control. In the case
of arrays, the raw API is trivial to provide and obvious, so there’s
little worry of the maintenance burden or unnecessarily exposing im-
plementation details. Unfortunately, this isn’t true for all interfaces
(what’s the raw API for searching an ordered map?).

6.2 external and internal interfaces

It is relatively common to use maps as accumulators. The most trivial
example of this is using a map to count the number of occurrences
of each key. Accumulators are interesting because special logic must
usually be performed when a key is seen for the first time. In the case
of counting keys, the first time we see a key we want to insert the
value 1, but each subsequent time we see that key we want to instead
increment the count.

Naively, one may write this as follows:

if map.contains(&key) {
map[key] += 1;

} else {
map.insert(key, 1);

}
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Those concerned with performance may see an obvious problem
with this implementation: we’re unnecessarily looking up each key
twice. Instead we would like to search in the map only once, and
execute different logic depending on if the key was found or not
without performing the search again.

Before Rust 1.0 was released, there existed a family of functions for
doing exactly that. For the simple case of a counter, we only need to
provide a default value, which works well enough:

*map.find_or_insert(key, 0) += 1;

However the default value might be expensive to create for some
kinds of accumulators. As such, we’d like to avoid constructing it
unless we know it’s required. And so, find_or_insert_with was pro-
vided, which took a function that computed the default value:

*map.find_or_insert_with(key, expensive_default_func) += 1;

However this interface had the problem that it could be difficult
to tell which case was found (a default value may be non-trivial to
identify). This is where things started to fall apart. In order to sup-
port this, a function that took two functions was created; one for each
case. However this design was problematic because each function
may want to capture the same affine data by-value. We know this
is sound because only one of the two functions will be called, but the
compiler doesn’t understand that. So an extra argument was added
which would be passed to the function that was called.

map.update_with_or_insert_with(key, capture,
compute_default_func,
update_existing_func);

While the first APIs seemed quite reasonable, this later APIs were
becoming unwieldy to use [5]. In particular, the need to manually pro-
duce a type and value for the closure of the two functions is unheard
of. Worse, it didn’t even accommodate all the use cases people came
up with. Some wanted to remove the key from the map under some
conditions, which would necessitate a whole new family of update
functions. The problem is that this design is what the Rust commu-
nity calls an internal interface. Internal interfaces require the client
to execute inside the interface’s own code by passing functions that
should be called at the appropriate time. In some cases, internal in-
terfaces can be convenient or even more efficient, but they generally
suffer from how little control they give the client.

We solved this inflexibility by instead providing an external inter-
face. Internal interfaces execute the entire algorithm at once, invok-
ing the client to handle important cases. An external interface instead
requires the client to drive the execution of the algorithm manually.
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At each step, the algorithm returns some value that summarizes the
current state, and exposes relevant operations.

For the accumulator problem, we created the entry API. The ba-
sic idea of the entry API is simple: execute the insertion algorithm
up until we determine whether the key already existed. Once this is
known, take a snapshot of the algorithm state, and store it in a tagged
union with two states: Vacant or Occupied. The consumer of the in-
terface must then match on the union to determine which state the
algorithm is in. The Vacant state exposes only one operation, insert,
as this is the only valid operation to perform on an empty entry. The
Occupied state, on the other hand, exposes the ability to overwrite,
remove, or take a pointer to the old value.

In its most general form, usage looks as follows:

// Search for this key, and capture whether it’s in
// the map or not
match map.entry(key) {

Vacant(e) => {
// The key is not in the map, compute the new value
let value = expensive_default(capture);
e.insert(value);

}
Occupied(e) => {

// The key is in the map, update the value
expensive_update(e.get_mut(), capture);

// Conditionally remove the key from the map
if *e.get() == 0 {

e.remove();
}

}
}

Control flow is now driven by the client of the API, and not the API
itself. No additional interfaces need to be added to accommodate all
the different actions that are desired, and no additional lookups are
performed.

Of course, this is a significant ergonomic regression for simple
cases like counting, for which convenience methods were added to
the Entry result:

*map.entry(key).or_insert(0) += 1;

One may question if we have then gained much if we’re still adding
some of the old interfaces this design was intended to replace, but
there is an important difference. Before, we were required to add
new interfaces to accommodate increasingly complex use cases. Now,
we are adding new interfaces to accommodate increasingly common
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use cases. We believe this to be the more correct way for an interface
to grow; adding conveniences for idioms, rather than adding more
complex interfaces for special cases.

One important question about this interface is whether it’s sound.
After all, we’re taking a snapshot of the internal state of a collection,
and then yielding control to the client explicitly to mutate the collec-
tion. Indeed, in many languages this interface would be dangerous
without runtime checks for exactly the same reason that iterators are
dangerous. And for exactly the same reason that iterators can safely
be used without any runtime checks, so can entries: ownership!

An Entry mutably borrows the map it points into, which means
that while it exists, we know that it has exclusive access to the map.
It can trust that the algorithmic state it recorded will never become
inconsistent. Further, any operation that the entry exposes that would
invalidate itself (such as inserting into a vacant entry or removing
from an occupied entry) consumes it by-value, preventing further use.

The comparison to iterators is particularly apt here because itera-
tors are yet another external interface. They require the consumer to
repeatedly request the next element, returning an Option that is None
if the iteration is complete. Like entries, iterators in Rust were once
provided as an internal interface. Iteration required a function to be
passed to the iterator, which it would then execute on every element.

The most fundamental weakness of this design is that it was impos-
sible to concurrently iterate over two sources at once. Each iterator
could only be executed to completion at once. With external iterators,
concurrent iteration is simply alternating which iterator to ask for the
next element.

6.3 hacking generativity onto rust

Given the array iteration example, one might wonder if it’s sufficient
for the array to simply provide the indices, and not immediately con-
vert them into elements. This would be a more composable API with
a reduced implementation burden.

Perhaps this API could be used something like this:

let mut sum = 0;
for i in arr.indices() {

sum += arr[i];
}

Unfortunately, this doesn’t immediately get us anywhere. This is no
different than the original example which produced its own iteration
sequence. As soon as the array loses control of the yielded indices,
they are tainted and all trust is lost. After all, they’re just integers, and
integers can come from anywhere. One may consider wrapping the
integers in a new type that doesn’t expose the values to anyone but
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the array, preventing them from being tampered with, but this is still
insufficient unless the origin of these values can be verified. Given
two arrays, it mustn’t be possible to index one using the indices of
the other:

let mut sum = 0;
for i in arr1.indices() {

// index arr2 using arr1’s trusted indices
sum += arr2[i];

}

This is a problem many static type systems generally struggle to
model, because they don’t provide tools to talk about the origin or
destination of a particular instance of a type. In addition, even if we
could prevent this, we would have to deal with the problem of tem-
poral validity. The indices into an array are only valid as long as the
array’s length doesn’t change:

// get a trusted index into the array
let i = arr.indices().next().unwrap();
// shrink the array
arr.pop();
// index the array with an outdated index
let x = arr[i];

By pure accident, Rust provides enough tools to solve this problem.
It turns out that lifetimes in conjunction with some other features are
sufficient to introduce generativity into the type system. Generativity
is a limited system that can solve some of the problems usually re-
served for dependent typing. It should be noted that this trick is very
delicate, and I don’t expect it to see much use, though early drafts
of this work have inspired the creation of at least one library [1]. Re-
gardless, it demonstrates the power of the ownership system.

In order to encode sound unchecked indexing, we need a way for
types to talk about particular instances of other types. In this case, we
specifically need a way to talk about the relationship between a par-
ticular array, and the indices it has produced. Rust’s lifetime system,
it turns out, gives us exactly that. Every instance of a value that con-
tains a lifetime (e.g. a pointer) is referring to some particular region
of code. Further, code can require that two lifetimes satisfy a particu-
lar relationship. Typically all that is required is that one outlives the
other, but it is possible to require strict equality.

The basic idea is then as follows: associate an array and its indices
with a particular region of code. Unchecked indexing then simply re-
quires that the input array and index are associated with the same
region. However care must be taken, as Rust was not designed to
support this. In particular, the borrow checker is a constraint solver
that will attempt do everything in its power to make code type-check.
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As such, if it sees a constraint that two lifetimes must be equal, it may
expand their scopes in order to satisfy this constraint. Since we’re try-
ing to explicitly use equality constraints to prevent certain programs
from compiling, this puts us at odds with the compiler.

In order to accomplish our goal, we need to construct a black box
that the borrow checker can’t penetrate. This involves two steps: dis-
abling lifetime variance, and creating an inaccessible scope. Disabling
variance is relatively straight forward. Several generic types disable
variance in order to keep Rust sound. Getting into the details of this
is fairly involved, so we will just say we can wrap a pointer in the
standard library’s Cell type as follows:

struct Index<’id> {
data: usize,
_id: Cell<&’id u8>,

}

The ′id syntax is new here. Although most Rust programs can
avoid declaring lifetimes, more advanced usage necessitates declar-
ing them as generic arguments. In this case, we’re externally declar-
ing that the Index type contains something with a lifetime called id.
Internally we’re declaring this to be the lifetime of some pointer to a
byte.

Of course we don’t actually want to store a pointer at runtime, be-
cause we’re only interested in creating a lifetime for the compiler
to work with. Needing to signal that we contain a lifetime or type
that we don’t directly store is a sufficiently common requirement in
Unsafe Rust that the language provides a primitive for exactly this:
PhantomData. PhantomData tells the type system "pretend I contain
this", while not actually taking up any space at runtime.

// Synonym to avoid writing this out a lot
type Id<’id> = PhantomData<Cell<&’id u8>>;

struct Index<’id> {
data: usize,
_id: Id<’id>,

}

Now Rust believes it’s unsound to freely resize the id lifetime.
However, as written, there’s nothing that specifies where this id should
come from. If we’re not careful, Rust could still unify lifetimes incor-
rectly if it notices there’s no actual constraints on them. Consider the
following kind of program we’re trying to prevent:

let arr1: Array<’a> = ...;
let arr2: Array<’b> = ...;
let index: Index<’a> = arr1.get_index();
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// This should fail to compile;
// trying to index Array<’b> with Index<’a>
let x = arr2[index];

If we don’t constrain the lifetimes a and b, then the constraint
solver will see only the following system:

• a and b are invariant lifetimes

• indexing requires a = b

Which has the obvious solution of a = b = anything. We need
to apply some constraint to a and b to prevent Rust from unify-
ing them. Within a single function the compiler has perfect informa-
tion and can’t be tricked. However Rust explicitly does not perform
inter-procedural analysis, so we can apply constraints with functions.
In particular, Rust has to assume that the input to a function is a
fresh lifetime, and can only unify them if that function provides con-
straints:

fn foo<’a, ’b>(x: &’a u8, y: &’b u8) {
// cannot assume x has any relationship to y, since they
// have their own lifetimes. Therefore a != b.

}

fn bar<’a>(x: &’a u8, y: &’a u8) {
// x has the same lifetime as y, since they share ’a

}

Therefore, for every fresh lifetime we wish to construct, we require
a new function call. We can do this as ergonomically as possible (con-
sidering this is a hack) by using closures:

fn main() {
let arr1 = &[1, 2, 3, 4, 5];
let arr2 = &[10, 20, 30];

// Yuck! So much nesting!
make_id(arr1, move |arr1| {
make_id(arr2, move |arr2| {

// Within this closure, Rust is forced to assume
// that the lifetimes associated with arr1 and
// arr2 originate in their respective make_id
// calls. As such, it is unable to unify them.

// Iterate over arr1
for i in arr1.indices() {
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// Will compile, no bounds checks
println!("{}", arr1.get(i));

// Won’t compile
println!("{}", arr2.get(i));

}
});
});

}

// An Invariant Lifetime
type Id<’id> = PhantomData<Cell<&’id u8>>;

// A wrapper around an array that has a unique lifetime
struct Array<’arr, ’id> {

array: &’arr [i32],
_id: Id<’id>,

}

// A trusted in-bounds index to an Array
// with the same lifetime
struct Index<’id> {

idx: usize,
_id: Id<’id>,

}

// A trusted iterator of in-bounds indices into an Array
// with the same lifetime
struct Indices<’id> {

min: usize,
max: usize,
_id: Id<’id>,

}

// Given a normal array, wrap it to have a unique lifetime
// and pass it to the given function
pub fn make_id<’arr, F>(array: &’arr [i32], func: F)

where F: for<’id> FnOnce(Array<’arr, ’id>),
{

let arr = Array { array: array, _id: PhantomData };
func(arr);

}

impl<’arr, ’id> Array<’arr, ’id> {
// Access the following index without bounds checking
pub fn get(&self, idx: Index<’id>) -> &’arr i32 {



6.3 hacking generativity onto rust 53

unsafe { return self.array.get_unchecked(idx.idx); }
}

// Get an iterator over the indices of the array
pub fn indices(&self) -> Indices<’id> {

return Indices {
min: 0,
max: self.array.len(),
_id: PhantomData

};
}

}

impl<’id> Iterator for Indices<’id> {
type Item = Index<’id>;
pub fn next(&mut self) -> Option<Self::Item> {

if self.min == self.max {
return None;

} else {
self.min += 1;
return Some(Index {

idx: self.min - 1,
_id: PhantomData

});
}

}
}

That’s a lot of work to safely avoid bounds checks, and although
there’s only a single line marked as ‘unsafe‘, its soundness relies on
a pretty deep understanding of Rust. Any errors in the interface de-
sign could easily make the whole thing unsound. So we really don’t
recommend doing this. Also, whenever this interface catches an er-
ror, it produces nonsensical lifetime errors because Rust has no idea
what we’re doing. That said, it does demonstrate our ability to model
particularly complex constraints.

Those familiar with generativity and type systems may see that
we are ultimately just applying an age-old trick: universal types and
functions can be combined to construct existential types. In this case
where F: for<’id> FnOnce(Array<’arr, ’id>) is declaring that the
function F is universal over all lifetimes that can be chosen for id. The
body of any function that satisfies this signature must work with any
id it receives opaquely. In effect, it knows that there exists a lifetime,
and nothing else.
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7
L I M I TAT I O N S O F O W N E R S H I P

We’ve seen that ownership allows us to cleanly model all of the ma-
jor classes of error that we were interested in solving. This is because
ownership’s primary role is to prevent data from being accessed at in-
appropriate times, and this is what all of those problems boiled down
to. However ownership is unable to properly model some problems
and can severely limit some designs.

7.1 cyclic references

Ownership is severely biased towards unique ownership. This im-
plies that data is laid out in a tree-like manner, without any cycles. If
one’s problem can be modeled without referential cycles, then owner-
ship is pleasant and easy to use. Otherwise, ownership becomes quite
burdensome.

Any naive attempt to create a graph, tree with parent pointers,
doubly-linked list, or a value that contains pointers to itself will quickly
lead to the compiler shutting everything down. This is necessitated
by the fact that Rust allows memory to be manually managed, but
demands that pointers can never dangle. Anyone who has tried to
build a pointer-based data structure knows all too well how easy it is
to forget to update some of the pointers after a node is removed.

Therefore Rust refusing to compile this sort of code is correct. Pointer-
based data structures are wildly unsafe without garbage collection,
and are error-prone even with garbage collection. Still, they’re useful,
and people want to write them. Questions about this problem are so
frequent that we wrote an entire book on the topic [15].

The most straight-forward solution to this problem is to embrace
garbage collection. Although Rust doesn’t provide any serious au-
tomatic tracing collector, it does provide manual reference counted
pointers (Rc). Rc is Rust’s primary mechanism for shared ownership.
No Rc is the true owner of the pointed-to data. Instead, all Rcs have
equal ownership. Because the data pointed to by an Rc is always po-
tentially shared, only immutable shared access is provided. On its
own, this significantly limits the usefulness of Rc – it’s not possible to
construct a cycle with strict evaluation and immutability!

The solution to this problem is interior mutability. With interior
mutability and reference counting, one can safely build and manage
cyclic data structures at the cost of reference counting and runtime
ownership checking. This also comes at a significant ergonomic cost.

55
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Compare these equivalent Rust and Java programs, which just make
a cycle of two nodes:

// A reference counted pointer
use std::rc::Rc;
// Provides thread-unsafe interior mutability
use std::cell::RefCell;

// Magical annotation to get a Node::default constructor
#[derive(Default)]
struct Node {

data: u32,
// A nullable reference-counted pointer
// to an interior-mutable node
next: Option<Rc<RefCell<Node>>>,

}

fn main() {
// Create a ref-counted pointer to a node
let a = Rc::new(RefCell::new(Node::default()));

// Create a new node that points the previous one
let b = Rc::new(RefCell::new(Node {

data: 1,
next: Some(a.clone()),

}));

// And complete the loop
a.borrow_mut().next = Some(b.clone());

}

class Main {
public static void main (String[] args) {

class Node {
int data;
Node next;

}

// Create a new garbage collected node
Node a = new Node();

// Create a new node that points to the previous one
Node b = new Node();
b.data = 1;
b.next = a;

// And complete the loop
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a.next = b;
}

}

The Rust program is completely bogged down in boiler-plate to
properly create the pointers, copy them, and update the contents. This
is to some extent desirable as Rust likes to make costs explicit, and
node-based data structures are quite heavyweight for low-level pro-
gramming. Defaulting to pervasive garbage collection and nullable
everything ends up being quite nice for this use case.

The primary workaround for this problem is to use arrays and
indices instead of pointers. For many workloads, this is completely
sufficient, and even more efficient than a naive graph. As a rough
example:

#[derive(Default)]
struct Node {

data: u32,
next: Option<usize>,

}

fn main() {
let mut graph = Vec::new();
graph.push(Node::default());
graph.push(Node {

data: 1,
next: Some(0),

});

graph[0].next = Some(1);
}

This is, in essence, completely abandoning the borrow checker. It
only reasons about pointers, and we’re using indices into the array.
This allows us to completely invalidate nodes by removing the things
they “point” to, and even perform what is logically equivalent to a
use-after free by removing a node and then reinserting a node. How-
ever we’re unable to violate memory safety in this manner, because
the indices will be bounds checked. We’ll just get nonsensical results,
which is of course quite easy to do with any node-based structure.

The petgraph library [7] provides a more complete interface for
building and working with graphs in Rust. Internally, it just boils
down to this basic design. Graphs are an array of nodes and an array
of edges, and nodes and edges just store indices into those arrays.
This structure is used by the Rust compiler itself (which is written
entirely in Rust).

Of course, this is only necessary if one wants to implement cyclic
structures safely. It’s entirely possible to implement them exactly as
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they would be in C in all their unsafe glory. This is how Rust’s
LinkedList and BTreeMap collections are implemented. As usual, the
unsafety is easily hidden behind a reasonable and efficient public in-
terface.

7.2 leaks

Leaks aren’t well-modeled by Rust’s ownership system because it’s
based on affine types, which allow us to forget about values at any
time. In order to encode that a value must be properly consumed,
we need to be able to express that a value must be used exactly once.
Types with this property are said to be linear.

A poor-man’s linear-typing can be acquired with destructors. A value’s
destructor is some code to execute when it goes out of scope. This ef-
fectively mandates that values with destructors be used exactly once:
the owner who decides to drop the value on the ground is forced
to invoke the value’s destructor. One can also enforce a suspcious
version of linear typing by making the destructor simply crash the
program.

The most obvious limitation to this approach is that since destruc-
tors are implicitly invoked, they cannot take any additional context.
For instance, it may be desirable to have a type that is allocated us-
ing a custom allocator, but does not store a pointer to that allocator.
The type therefore has insufficient information to clean itself up, re-
quiring the allocator be passed to it. A more robust linearity system
would allow us to encode this by requiring the destructor be explic-
itly invoked with the allocator as an argument. Destructors also can’t
return anything to indicate success or failure, which is problematic
for the automatic closing of files.

That said, destructors do a great job for many types. Collections
and connections have a natural final operation that requires no addi-
tional context. Collections free their allocations and connections close
themselves. Destructors also have the distinct advantage over more
general linearity in that they compose well with generic code. If some
generic code wants to drop a value on the ground, it can always do
this knowing any linear requirements will be satisfied by the destruc-
tor.

Unfortunately, ensuring that destructors execute is a nasty problem.
At the limit, hardware can fail and programs can abort. We just need
to live with that fact. For most resources this is actually fine; either
the resources are rendered irrelevant by the program ending, or the
operating system will automatically clean them all up itself.

Even accepting those circumstances, strict linearity can be burden-
some. In particular, it is desirable to be able to create reference-counted
cycles of types that have destructors. If all references to such a cycle
are lost it will keep itself alive, leaking the destructors it owns. Fur-
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ther, it is sometimes desirable to manually prevent a destructor from
running, particularly when decomposing a value into its constituent
parts. For instance, one may wish to downgrade a pointer that would
normally free its allocation to a raw pointer, perhaps to pass to a C
API.

There are various solutions to this problem, but most languages
that include destructors (C++ C#, Java, D, ...) generally accept that
sometimes they won’t run. They’re convenient and generally reliable,
but if one really needs something to happen, they can’t always be
relied on. Rust also takes this stance. In particular, one can’t pass
a value with a destructor to an arbitrary third-party and rely on the
destructor to be called, even if the compiler believes any borrows they
held have expired.

It should however be noted that this is completely a library decision,
and not a language one. Rust’s standard library decided that leaking
destructors was a safe operation, and safe interfaces need to assume it
can happen. However there exists an alternative standard library that
adopted a different stance, making this an unsafe operation [8]. We
won’t dwell on the details, but the basic idea is to encode leak-safety
as an unsafe trait like the standard library does for thread-safety.

As a concrete example of dealing with the ability to have a destruc-
tor leaked, we can consider Rust’s drain interface. Drain is a utility
for efficiently performing bulk removal from the middle of a grow-
able array. Arrays require their elements to be stored contiguously,
so removing from the middle of one generally requires the elements
after it to be shifted back to fill the hole. Doing this repeatedly is in-
credibly expensive, so it’s desirable to be able to defer the shift until
we are done removing elements. Doing this means the array is in an
unsound state while the removals are happening, and we don’t want
this to be observable by the client.

One solution to this problem is to require the caller to pass in a
target buffer for all the elements that will be removed. Then ‘drain‘
can just run to completion without ever yielding control to the client.
Unfortunately, this is quite inflexible. For instance, one may want to
simply destroy all the values in the array, which shouldn’t require
allocating a destination for them.

To get more control we once again created an external interface,
implementing ‘drain‘ as an iterator. Elements are removed one at a
time, allowing the user to decide what is done with them without any
need for allocating a buffer. At first blush, the safety of this interface
seems trivially solved by ownership. Drain is mutating the array, so
it contains a mutable reference to the array. That means the array is
inaccessible through any interface but the iterator while it exists. The
shifting can then be done in the iterator’s destructor, which is exactly
when the borrow it holds expires. Perfect!
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// A growable array with 5 numbers
let mut arr = vec![0, 1, 2, 3, 4];

// Drain out elements 1 to 3 (exclusive).
// The result of ‘drain‘ is an iterator
// that we pass to the for loop to drive.
for x in arr.drain(1..3) {

// arr is statically inaccessible here
println!("{}", x);

}
// backshifting is performed here
// arr is now accessible again

// 1 and 2 are now gone
assert_eq!(arr, vec![0, 3, 4]);

Unfortunately, the soundness of this design relies on the user of our
interface allowing the destructor to run. We’ve already seen that Rust
considers it safe to construct reference-counted cycles which leak de-
structors, so this interface isn’t sound. Granted, no reasonable code
would ever not run the destructor, but since one can violate mem-
ory safety by accessing these empty indices, we cannot tolerate the
possibility.

Thankfully, all is not lost. The solution to our problem is in fact
quite simple. Rather than relying on the destructor to put the array
in a sound state, we will start the drain by putting the array into an
incorrect but otherwise sound state, and rely on the destructor to put
the array into the correct state. If the user of our interface prevents
the destructor from running, they’ll get the incorrect array which will
probably cause their program to behave incorrectly, but be unable to
violate memory safety. Since no reasonable program will ever trigger
this, the possibility of incorrect state isn’t particularly worrying.

In the case of ‘drain‘, the incorrect state is setting the length of the
array to be zero. The destructor in turn just sets the length to the cor-
rect value (which it would have done anyway). So the overhead for
this scheme is zeroing out a single integer, which is completely neg-
ligible considering the operation we’re performing. The consequence
of this is that all the elements in the array will be lost if the destructor
is leaked. There’s a certain fairness to this: you leak me, I leak you! We
call this leak amplification.

Not all interfaces have such a convenient state though. If this is the
case, one may instead ensure some code executes by using an internal
interface. Rather than returning an object that can be forgotten, we
can require the user to pass a function that will be passed a pointer to
the object, preventing them from gaining true ownership of it. We can
then guarantee that the object’s destructor always runs by dropping
it in our own function. In fact, because we always control the value,
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we don’t even need to use a destructor to ensure the cleanup code
runs. We can just have that code at the end of the function.

7.3 scoped threads

Scoped threads allow data to be borrowed by another thread, and
even mutated, without any additional synchronization. As we dis-
cussed previously, this is quite dangerous, particularly because bor-
rows don’t understand concurrency. Understanding why this inter-
face is sound, and why similar interfaces would be *unsound* re-
quires an understanding of ownership and its limitations. Now that
we’ve seen exactly those things, we can do just that.

The initial scoped thread interface was designed to work as follows:

use std::thread;

fn main() {
// An array of integers, stored on the stack
let mut data = [1, 2, 3];

{
// An array of thread join guards. We will destroy this
// when we want to block on the threads completing.
let mut guards = Vec::new();

// Get pointers to each element in the array
for x in &mut array {

// Spawn a thread, and have it invoke the
// given closure (increment the element).
// This will mutate each element in a
// non-atomic, unsynchronized way!
let guard = thread::scoped(move || {

*x += 1;
});
guards.push(guard);

}

// guards go out of scope here, so we block
// on all the child threads joining.

}

// Array is now done being modified, and safe to read
println!("{:?}", array);

}

The most interesting piece of this API was the guard that’s returned
by the thread::scoped function. Each guard claimed to store the clo-
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sure the function was passed. This in effect made them borrow all of
the data that the closure could access. So as long as the guard existed,
nothing could access or invalidate the data that the spawned threads
were accessing. No magic here, just the borrow checker doing its job.

However the borrows expire when the guard goes away, so the
guard needs to make sure that the spawned thread is no longer run-
ning. The only way to do that is to wait for the thread to finish, and
that’s exactly what a guard’s destructor did. But we have a problem:
leaking the destructor. If the destructor is prevented from running,
the borrow checker will believe all borrows have expired, and allow
the array to be accessed while it’s still potentially being mutated on
another thread.

Unfortunately for the scoped interface, there’s no valid leak ampli-
fication strategy. We would have to somehow invalidate all the data
that was borrowed, but that’s not possible. So we must use an internal
interface, resulting in the example we saw in the introduction:

[dependencies]
crossbeam = 0.1.6

-----

extern crate crossbeam;

fn main() {
let mut array = [1, 2, 3];

// crossbeam::scope immediately executes the given
// closure. However it creates a Vec and passes in
// (basically) an ‘&mut Vec<Guard>‘ as the ‘scope‘
// argument.
crossbeam::scope(|scope| {

for x in &mut array {
// scope.spawn is essentially thread::spawn
// and guards.push(guard) combined.
scope.spawn(move || {

*x += 1;
});

}
// When the closure ends, the ‘Vec<Guard>‘ is
// reliably destroyed. Since the Guards were
// never given to the user, we know they will
// be reliably destroyed.

});

println!("{:?}", array);
}
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This design is a bit less flexible. In particular, one loses control of
how the guards are stored and when they are destroyed. A more
complicated design could in principle expose that functionality, but
we haven’t yet found the need to do so.

Regardless, the end result is impressive: in spite of the limitations
of ownership being a fairly simple and limited system, we can use
it to safely share data stored on the stack of one thread with several
other threads without unnecessary synchronization!



64



8
O W N E R S H I P I N R U S T C O M PA R E D T O O T H E R
S Y S T E M S

Since Rust’s model of ownership is built up of well-established parts,
it should surprise no one to learn that other languages have been built
with similar designs. Of particular interest are C++ and Cyclone, the
two languages closest to Rust.

8.1 cyclone

The Cyclone programming language is easily the closest relative to
Rust. Cyclone was a project with similar goals to Rust: make a lan-
guage that can do all the low-level stuff normally reserved for C and
C++, but make it safe. However, while Rust was designed as a com-
pletely new language, Cyclone was designed to be a minimal addition
on top of C. The ideal of Cyclone was that existing C code could be
migrated to it relatively painlessly. This ultimately limited Cyclone’s
semantics, resulting in a system that was more awkward to use than
Rust.

The Cyclone project was officially abandoned with its 1.0 release
in 2006. Its official website links only to Rust for those interested in
Cyclone’s ideas [4]. Rust’s official website in turn cites Cyclone as an
influence for region analysis [9].

Early versions of Cyclone did not include affinity at all, as all types
in C are always copyable. Cyclone also initially used region analysis
primarily to manage dynamic pools of heap allocations, in much the
same way that Tofte and Talpin’s MLKit work did. In order to be
sound, these early versions had to make C’s free function a no-op,
leaking the memory [23].

However the final release of Cyclone introduced several constructs
that made it quite close to Rust 1.0 [29]. In particular, Cyclone in-
troduced a unique pointer type which could be manually allocated
and freed. In order to avoid use-after-frees, these pointers had to be
affine. Internal references to a unique pointer could be taken, and
were tracked in much the same way internal references are tracked in
Rust. Unfortunately, no general mechanism was exposed for making
arbitrary values or types affine, making this only usable for manag-
ing allocations. Since the project was officially abandoned after the re-
lease of unique pointers, we do not believe that affinity was explored
in any further depth in Cyclone.
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8.2 c++

C++ is the 8000-pound gorilla of systems programming in more ways
than one. Not only is it one of the two major choices for projects
that want low-level control, it’s also incredibly complicated. Just like
Cyclone, an initial desire to be a drop-in replacement for C resulted
in significantly more complicated ownership semantics.

C++’s initial solution to the problem of pervasive copying in C was
to introduce the ability to overload the behaviour of assignment and
copying. In C if a value semantically owns an allocated buffer, copy-
ing that value will create two values with the the same buffer pointer,
which isn’t correct. In C++, that type would probably overload copy-
ing to create a new allocation for the copy. This does indeed solve the
problem, but introduces several new problems.

The ability for every assignment and copy to execute arbitrary code
makes it much more difficult to reason about correctness and perfor-
mance of a piece of code. For instance, the statement ‘x = y‘ could
involve allocating and copying a massive buffer. In addition, this cre-
ates a serious exception-safety problem, as now everything can throw
an exception.

For these reasons, Rust has specifically avoided overloading copy-
ing and assignment, defining both to just always be a bitwise copy.
This is possible in Rust because values that own resources are affine,
so the compiler will appropriately mark them as unusable, prevent-
ing the duplicated pointer problem.

To avoid the cost of expensive copies, C++11 introduced move se-
mantics. Moving a value to a new location allows the old location to
be cannibalized for the resources it owns, with the new location tak-
ing ownership of them. This is the same basic idea as affine typing
in Rust, but with two major differences: the old location must still
contain a valid instance, and arbitrary code can be executed to com-
plete the move. Once again, these constraints leave C++’s solution
significantly more difficult to reason about and use correctly.

C++’s unique_ptr type is a pointer to an owned value on the heap.
When moved, the old location’s value is set to 0, indicating that there
is no allocation. Dereferencing such a pointer is Undefined Behaviour,
but because the value is “valid”, C++ will do nothing to prevent some-
one from doing this:

#include <iostream>
#include <memory>

int main() {
// x owns the allocation
auto x = std::make_unique<int>(0);
// now y owns the allocation
auto y = std::move(x);
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// dereference null x; oops!
std::cout << *x;
std::cout << *y;

}

Even when passed the most pedantic warning flags, the latest ver-
sion of clang happily compiles this program without any indication
that something bad could happen. The equivalent Rust program fails
to compile:

fn main() {
let x = Box::new(0);
let y = x;
println!("{}", x);
println!("{}", y);

}

<anon>:4:20: 4:21 error: use of moved value: ‘x‘ [E0382]
<anon>:4 println!("{}", x);

^

It can also do less work, because x does not need to be overwritten
in Rust. The fact that x has been moved out of can almost always be
statically tracked.

It should be noted that C++’s solution does have one explicit ad-
vantage: it can encode types which have significant locations. For in-
stance, one could construct a linked list with nodes stored on the
stack in C++, and have the move constructor for a node update the
pointers of its neighbors. In Rust this design would never be sound,
because a value isn’t ever informed when it’s moved. However it’s the
Rust developer’s opinion that this is a relatively minor loss compared
to the other benefits of Rust’s solution.

C++ has no solution to the problem of borrowed pointers. Any
interface that exposes an untracked pointer or reference is funda-
mentally unsafe, because they can be made to dangle. If C++ code
wishes to be safer, this necessarily implies copying or moving the
data, which is often less efficient than passing a reference (especially
because copies and moves invoke arbitrary code).

However Bjarne Stroustrup, the creator of C++, is currently work-
ing on a project to resolve this issue. The C++ Core Guidelines [2] are
an attempt to extend C++ with some new semantics, and then iden-
tify a safe subset which can be compiler verified. This project was
announced only a few months ago, so little analysis of the system
exists.

Our understanding is that rather than using the well-established
system of region analysis, it’s based on a custom system that main-
tains lists of what points to what. For simple cases it seems to behave
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in much the same way as Rust’s system, and requires similar anno-
tations. However we have been unable to get in touch with the de-
velopers of the system to discuss the details, which are unclear from
the publicly available details. Only time will tell what becomes of this
experiment.



9
C O N C L U S I O N

We have demonstrated how several classic safety and correctness is-
sues can be reduced to an issue of trust between code and the data it
shares. Of particular interest are the strategies we have identified for
managing this trust: naivety, paranoia, and suspicion. These strategies
respectively correspond to the major competing concerns of control,
safety, and ergonomics in interface design.

Rust’s model of ownership enables each of these strategies to be
used together. At the lowest level, Unsafe Rust provides naive unsafe
interfaces as simple building blocks. Privacy enables developers to
build on top of these unsafe interfaces, exposing paranoid or suspi-
cious interfaces as needed. Affine typing enables developers to rely
on the fact that data isn’t shared to safely mutate or invalidate it. Re-
gion analysis enables developers to share data safely knowing that it
won’t be mutated or stored longer than its lifetime. Of particular note
is the philosophy of mutability and sharing being exclusive, which
trivially generalizes to data race freedom.

We’ve seen how this comes together in several interface designs. It-
erators provide an interface for safely indexing into an array without
any bounds or consistency checks because ownership prevents their
invalidation. The entry API demonstrate how algorithmic state can
be captured and exposed externally to make more flexible interfaces.
Ownership can be pushed to extreme limits to with generativity, en-
abling interfaces to statically require that individual values have the
same origin.

Other interfaces demonstrate the limits of ownership. Structures
with cyclic references like graphs are hostile towards ownership, re-
quiring region analysis to be bypassed in some way. The drain API
demonstrates how ownership is poor at guaranteeing that good things
are done, rather than guaranteeing that bad things aren’t.

All of this comes together to produce an impressive feat: the ability
to have threads safely access data stored on the stack of other threads
without unnecessary synchronization.

Due to the youth of Rust, there is much open exploration to be
done. This thesis only observes ownership intuitively and informally.
Rigorously demonstrating the soundness of Rust and ownership still
needs to be done. Since Rust is under active development, this is a bit
of a moving target.

It’s unclear what extensions to ownership can be soundly added
in the future. Of particular interest is what extensions are unsound
to ever add given the interfaces that are implemented in Rust today.
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Proper linear types are a frequently requested extension whose in-
teractions haven’t been fully explored. It’s also unclear what the con-
sequences of more powerful region analysis would be. Since region
analysis is actually expected to be revamped withing the year, this is
an incredibly relevant question.

Part of the issue is that much of Rust’s semantics are actually emer-
gent from library decisions. The entire notion of thread-safety in Rust
is implemented as a library! As a result, deciding that some operation
is safe can mandate that other operations are unsafe if the there are
poor interactions. For instance, the ability to leak destructors forbids
the original design for the scoped thread API, and requires a few in-
terfaces to do additional work. Alternative standard libraries could
provide completely different safety semantics to be explored!
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