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Abstract

We develop probabilistic tools for upper and lower bounding the expected time until two in-
dependent random walks on Z intersect each other. This leads to the first sharp analysis of
a non-trivial Birthday attack, proving that Pollard’s Kangaroo method solves the discrete log-
arithm problem gx = h on a cyclic group in expected time (2 + o(1))

√
b− a for an average

x ∈ [a, b]. Our methods also resolve a conjecture of Pollard’s, by showing that the same bound
holds when step sizes are generalized from powers of 2 to powers of any fixed n.

1 Introduction

Probabilistic “paradoxes” can have unexpected applications in computational problems, but math-
ematical tools often do not exist to prove the reliability of the resulting computations, so instead
practitioners have to rely on heuristics, intuition and experience. A case in point is the Kruskal
Count, a probabilistic concept discovered by Martin Kruskal and popularized in a card trick by
Martin Gardner, which exploits the property that for many Markov chains on Z independent walks
will intersect fairly quickly when started at nearby states. In a 1978 paper John Pollard applied the
same trick to a mathematical problem related to code breaking, the Discrete Logarithm Problem:
solve for the exponent x, given the generator g of a cyclic group G and an element h ∈ G such that
gx = h.

Pollard’s Kangaroo method is based on running two independent random walks on a cyclic
group G, one starting at a known state (the “tame kangaroo”) and the other starting at the
unknown but nearby value of the discrete logarithm x (the “wild kangaroo”), and terminates after
the first intersection of the walks. As such, in order to analyze the algorithm it suffices to develop
probabilistic tools for examining the expected time until independent random walks on a cyclic
group intersect, in terms of some measure of the initial distance between the walks.

Past work on problems related to the Kruskal Count seem to be of little help here. Pollard’s
argument of [5] gives rigorous results for specific values of (b− a), but the recurrence relations he
uses can only be solved on a case-by-case basis by numerical computation. Lagarias et.al. [2] used
probabilistic methods to study the distance traveled before two walks intersect, but only for walks
in which the number of steps until an intersection was simple to bound. Although our approach
here borrows a few concepts from the study of the Rho algorithm in [1], such as examining the
expected number of intersections and some measure of its variance, a significant complication in
studying this algorithm is that when b − a � |G| the kangaroos will have proceeded only a small
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way around the cyclic group before the algorithm terminates. As such, mixing time is no longer a
useful notion, and instead a notion of convergence is required which occurs long before the mixing
time. The tools developed here to avoid this problem may prove of independent interest when
examining other pre-mixing properties of Markov chains.

The key probabilistic results required are upper and lower bounds on expected time until in-
tersection of independent walks on Z started from nearby states. In the specific case of the walk
involved in the Kangaroo method these bounds are equal, and so the lead constants are sharp,
which is quite rare among the analysis of algorithms based on Markov chains. More specifically we
have:

Theorem 1.1. Suppose g, h ∈ G are such that h = gx for some x ∈ [a, b]. If x is a uniform random
integer in [a, b] then the expected number of group operations required by the Distinguished Points
implementation of Pollard’s Kangaroo method is

(2 + o(1))
√
b− a .

The expected number of group operations is maximized when x = a or x = b, at

(3 + o(1))
√
b− a

Pollard [5] previously gave a convincing but not completely rigorous argument for the first
bound, while the second was known only by a rough heuristic. Given the practical significance of
Pollard’s Kangaroo method for solving the discrete logarithm problem, we find it surprising that
there has been no fully rigorous analysis of this algorithm, particularly since it has been 30 years
since it was first proposed in [4].

The paper proceeds as follows. A general framework for analyzing intersection of independent
walks on the integers is constructed in Section 2. This is followed in Section 3.1 by a detailed
description of the Kangaroo method, with analysis in Section 3.2. The paper finishes in Section 4
with an extension of the results to more general step sizes, resolving a conjecture of Pollard’s.

2 Uniform Intersection Time and a Collision Bound

Given two independent instances Xi and Yj of a Markov Chain on Z, started at nearby states X0

and Y0 (as made precise below), we consider the expected number of steps required by the walks
until they first intersect. Observe that if the walk is increasing, i.e. P(u, v) > 0 only if v > u, then
to examine the number of steps required by the Xi walk it suffices to let Yj proceed an infinite
number of steps and then evolve Xi until Xi = Yj for some i, j. Thus, rather than considering a
specific probability Pr (Xi = Yj) it is better to look at Pr (∃j : Xi = Yj). By symmetry, the same
approach will also bound the expected number of steps required by Yj before it reaches a state
visited by the Xi walk.

First, however, because the walk is not ergodic then alternate notions resembling mixing time
and a stationary distribution will be required. Heuristic suggests that after some warm-up period
the Xi walk will be sufficiently randomized that at each subsequent step the probability of colliding
with the Yj walk is roughly the inverse of the average step size. Our replacement for mixing time
will measure the number of steps required for this to become a rigorous statement:

Definition 2.1. A stopping time for a random walk {Xi}∞i=0 is a random variable T ∈ N such that
the event {T = t} depends only on X0, X1, . . . , Xt. The average time until stopping is T = ET .
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Definition 2.2. Consider a Markov chain P on an infinite group G. A nearly uniform intersection
time T (ε) is a stopping time such that for some U > 0 and ε ≥ 0 the relation

(1− ε)U ≤ Pr
(
∃j : XT (ε)+∆ = Yj

)
≤ (1 + ε)U

holds for every ∆ ≥ 0 and every (X0, Y0) in a designated set of initial states Ω ⊂ G×G.

In general the probability that two walks will ever intersect may go to zero in the limit. However,
if a walk is transitive on Z (i.e. P(u, v) = P(0, v−u)), increasing (i.e. P(u, v) > 0 only when v > u),
and aperiodic (i.e. gcd{k : P(0, k) > 0} = 1), then one out of every S̄ =

∑∞
k=1 kP(0, k) states is

visited and a stopping time will exist satisfying

1− ε
S̄
≤ Pr

(
∃j : XT (ε)+∆ = Yj

)
≤ 1 + ε

S̄
.

An obvious choice of starting states are all Y0 ≤ X0, but for reasons that will be apparent later it
better serves our purposes to expand to the case of Y0 < X0 +Smax, where Smax = maxs∈S s is the
largest step size. By transitivity and since no intersection can occur until the first time Yj ≥ X0

then it actually suffices to verify for the case X0 = 0 ≤ Y0 < Smax.
A natural approach to studying collisions is to consider an appropriate random variable counting

the number of intersections of the two walks. Towards this, let SN denote the number of times the
Xi walk intersects the Yj walk in the first N steps, i.e.

SN =

N∑
i=0

1{∃j:Xi=Yj} .

If one intersection is unlikely to be followed soon by others then Pr (SN > 0) ≈ E(SN ). To
measure the gap between the two quantities, let Bε be the worst-case expected number of collisions
between two independent walks before the nearly uniform intersection time T (ε). To be precise:

Bε = max
Y0<X0+Smax

E

T (ε)∑
i=1

1{∃j:Xi=Yj}

The main result of this section bounds the expected number of steps until a collision.

Theorem 2.3. Given an increasing transitive Markov chain on Z, if two independent walks have
starting states with Y0 < X0 + Smax then

Emin{i > 0 : ∃j, Xi = Yj} ≤ 1 +

√S̄(1 +Bε) +

√
T (ε)

1− ε

2

Emin{i > 0 : ∃j, Xi = Yj} ≥ 1 + S̄

(
max{0, 1−

√
Bε}

)2
1 + ε

In particular, when ε and Bε are close to zero and S̄ � T (ε) then

Emin{i > 0 : ∃j, Xi = Yj} ∼ S̄ ,

which makes rigorous the heuristic that the expected number of steps needed until a collision is the
average step size.
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The steps before a nearly uniform intersection time act as a sort of burn-in period, so it will be
easier if we discard them in the analysis. As such, let

R∆ =

T (ε)+∆∑
i=T (ε)+1

1{∃j:Xi=Yj} .

The first step in the proof is to examine the number of collisions after the burn-in:

Lemma 2.4. Under the conditions of Theorem 2.3, if ∆ ≥ 0 then

(1− ε) ∆

S̄
≤ E[R∆] ≤ (1 + ε)

∆

S̄
E[R∆ | R∆ > 0] ≤ 1 +Bε + E[R∆ | X0 = Y0 = 0]

Proof. The expectation E[R∆] satisfies

E[R∆] = E

∆∑
i=1

1{∃j:XT (ε)+i=Yj}

=
∆∑
i=1

Pr
(
∃j : XT (ε)+i = Yj

)
≥ ∆

1− ε
S̄

The upper bound on E[R∆] follows by taking (1 + ε) in place of (1− ε).
Now for E[R∆ | R∆ > 0]. Observe that if Xi = Yj and k > i then Xk = Y` can occur only for

` > j, because the X and Y walks are increasing. Hence, if τ = min{i > 0 : ∃j, XT (ε)+i = Yj} is the
time of the first intersection, the number of intersections after time τ can be found by considering
the case X0 = Y0 and then computing the expected number of intersections until XT (ε)+∆−i. The
total number of intersections is then

E[R∆ | R∆ > 0]

=

∆∑
i=1

Pr (τ = T (ε) + i)

(
1 + EX0=Y0

∆−i∑
k=1

1{∃`:Xk=Y`}

)

≤ 1 + EX0=Y0

T (ε)∑
k=1

1{∃`:Xk=Y`} + EX0=Y0

T (ε)+∆∑
k=T (ε)+1

1{∃`:Xk=Y`}

≤ 1 +Bε + E[R∆ | X0 = Y0 = 0]

This shows that if Bε is small then one intersection is rarely followed by others, or more rigor-
ously:

Lemma 2.5. Under the conditions of Theorem 2.3, if ∆ ≥ 0 then

Pr
(
ST (ε)+∆ > 0

)
≤ ∆

S̄
(1 + ε) +Bε

Pr
(
ST (ε)+∆ > 0

)
≥ ∆

S̄

(1− ε)2

1 +Bε + ∆
S̄

.
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Proof. Observe that a random variable Z ≥ 0 satisfies

Pr (Z > 0) =
E[Z]

E[Z | Z > 0]
(1)

because E[Z] = Pr (Z = 0) E[Z | Z = 0] + Pr (Z > 0) E[Z | Z > 0].
For the lower bound let Z = R∆ in (1), so that

Pr
(
ST (ε)+∆ > 0

)
≥ Pr (R∆ > 0) ≥ E[R∆]

1 +Bε + maxE[R∆]

≥ (1− ε)∆/S̄
1 +Bε + (1 + ε)∆/S̄

≥ 1− ε
1 + ε

∆/S̄
1+Bε
1+ε + ∆/S̄

.

For the upper bound take Z = ST (ε)+∆ in (1), so that

Pr
(
ST (ε)+∆ > 0

)
=

E[ST (ε)+∆]

E[ST (ε)+∆ | ST (ε)+∆ > 0]
≤ E[ST (ε)+∆] .

Since Y0 > X0 then the expectation E[ST (ε)+∆] satisfies

E[ST (ε)+∆] = E

T (ε)+∆∑
i=0

1{∃j:Xi=Yj}

= E

T (ε)∑
i=1

1{∃j:Xi=Yj} +

T (ε)+∆∑
i=T (ε)+1

1{∃j:Xi=Yj}

≤ Bε + ∆
1 + ε

S̄
.

Proof of Theorem 2.3. The walk will be broken into blocks of length T (ε) + ∆ for some ∆ to be
optimized later, overlapping only at the endpoints, and each block analyzed separately.

More formally, inductively define N0 = 0, let Tk(ε) be the nearly uniform intersection time
started at state XNk−1

, and set Nk = Nk−1 + Tk(ε) + ∆. The number of intersections from time
Nk to Nk+1 is

S
Nk+1

Nk
=

Nk+1∑
i=Nk

1{∃j:Xi=Yj} .

By taking X0 ← XNk and Y0 ← min{Yj : Yj ≥ XNk} then Lemma 2.5 implies

∆

S̄
(1 + ε) +Bε ≥ Pr

(
S
Nk+1

Nk
> 0 | SNk = 0

)
≥ ∆

S̄

(1− ε)2

1 +Bε + ∆
S̄

.

Since

Pr (SN` = 0) =
`−1∏
k=0

Pr
(
S
Nk+1

Nk
= 0 | SNk=0

)
then (

1− ∆

S̄

(1− ε)2

1 +Bε + ∆
S̄

)`
≥ Pr (SN` = 0) ≥

(
1−Bε −

∆

S̄
(1 + ε)

)`
.
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The blocks will now be combined to prove the theorem.
First, the upper bound.

Emin{i : Si > 0} − 1 = E
∞∑
i=0

1{Si=0} − 1 =
∞∑
k=0

E

Nk+1∑
i=Nk+1

1{Si=0}

=
∞∑
k=0

Pr (SNk = 0) E

 Nk+1∑
i=Nk+1

1{Si=0}

∣∣∣SNk = 0


≤

∞∑
k=0

(
1− ∆

S̄

(1− ε)2

1 +Bε + ∆
S̄

)k (
T (ε) + ∆

)
=

S̄

∆

1 +Bε + ∆
S̄

(1− ε)2

(
T (ε) + ∆

)
This is minimized when ∆ =

√
S̄(1 +Bε)T (ε).

The lower bound is similar.

Emin{i : Si > 0} − 1 =
∞∑
k=0

E

Nk+1∑
i=Nk+1

1{Si=0}

≥
∞∑
k=0

Pr
(
SNk+1

= 0
)
E

 Nk+1∑
i=Nk+1

1{Si=0}

∣∣∣SNk+1
= 0


≥

∞∑
k=0

(
1−Bε −

∆

S̄
(1 + ε)

)k+1

∆

=

(
1

Bε + ∆
S̄

(1 + ε)
− 1

)
∆

This is maximized when ∆ = max
{

0,
√
B(1−

√
B)S̄

1+ε

}
.

The following lemma makes it possible to bound Bε given bounds on multi-step transition
probabilities.

Lemma 2.6. If T (ε) is a nearly uniform intersection time then

Bε ≤
M∑
i=1

(1 + 2i) max
u,v

Pi(u, v) +M

(
2(Smax/S̄)2

S̄
(1 + ε) + e−M

)
.

Remark 2.7. To apply the lemma in the unbounded case observe that if M is a constant then
T ′(ε′) = min{T (ε),M} is a bounded nearly uniform intersection time with ε′ = ε+ Pr(T (ε)>M)

1/S̄
.

Proof. If Y0 < X0 then no intersections can occur until the first time Yj ≥ X0 so the maximum in
the definition of Bε is achieved by some Y0 ≥ X0, i.e.

Bε = max
X0≤Y0<X0+Smax

E

T (ε)∑
i=1

1{∃j:Xi=Yj} .
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The {Yj} walk will be examined in three pieces: a burn-in, a mid-range, and an asymptotic
portion. In particular, since T (ε) ≤M then for any constant N ≥M

Bε ≤ max
X0≤Y0<X0+Smax

E
M∑
i=1

 M∑
j=0

1{Xi=Yj} +
N∑

j=M+1

1{Xi=Yj} + 1{∃j>N :Xi=Yj}


Consider the first summation.

E
M∑
i=1

M∑
j=0

1{Xi=Yj} = E
M∑
i=1

M∑
j=0

∑
w

1{Xi=Yj=w}

=

M∑
i=1

M∑
j=0

∑
w

Pi(X0, w)Pj(Y0, w)

≤
M∑
i=1

max
u,v

Pi(u, v)

i∑
j=0

(1 + 1{j<i}) max
z

∑
w

Pj(z, w)

=
M∑
i=1

(1 + 2i) max
u,v

Pi(u, v)

The inequality follows by letting i denote the larger of the two indices and j the smaller, while the
final equality is because

∑
w Pj(z, w) = 1.

Next, the case when M < j ≤ N .

E

M∑
i=1

N∑
j=M+1

1{Xi=Yj} = E

N∑
j=M+1

M∑
i=1

1{Xi=Yj}

=

N∑
j=M+1

Pr (∃i ∈ [1 . . .M ] : Xi = Yj)

≤ E

TY (ε)+N∑
j=TY (ε)+1

Pr (∃i : Xi = Yj)

≤ N
1 + ε

S̄

The second equality is because the Xi walk is increasing, so for fixed j there can be at most one i
with Xi = Yj . The first inequality is because Xi and Yj are instances of the same Markov Chain,
and so the stopping time T (ε) induces a nearly uniform intersection time TY (ε) ≤ M for the Yj
walk as well. This applies as long as X0 < Y0 + Smax as is the case here.

Finally the case that j > N . By Hoeffding’s Inequality

Pr

(
YN − Y0 ≤

1

2
NS̄

)
≤ exp

(
−N2S̄2

2N S2
max

)
= exp

(
−1

2
N
(
S̄/Smax

)2)
.

Set N = 2M(Smax/S̄)2. Then with probability 1− e−M

YN > Y0 +
1

2
NS̄ ≥ Y0 +M Smax ≥ X0 +M Smax ≥ XM .
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In particular, Pr (YN ≤ XM ) ≤ e−M and so

E
M∑
i=1

1{∃j>N :Xi=Yj} ≤M Pr (YN ≤ XM ) ≤M e−M .

3 Catching Kangaroos

The tools developed in the previous section will now be applied to a concrete problem, Pollard’s
Kangaroo Method for discrete logarithm.

3.1 Pollard’s Kangaroo Method

We describe here the Kangaroo method, originally known as the Lambda method for catching
Kangaroos. The Distinguished Points implementation of [3] is given because it is more efficient
than the original implementation of [4].

Problem: Given g, h ∈ G, solve for x ∈ [a, b] with h = gx.

Method: Pollard’s Kangaroo method (distinguished points version).

Preliminary Steps:

• Define a set D ⊂ G of “distinguished points”, with |D||G| = c√
b−a for some constant c.

• Define a set of jump sizes S = {s0, s1, . . . , sd}. We consider powers of two, S = {2k}dk=0,
with d ≈ log2

√
b− a + log2 log2

√
b− a − 2, chosen so that elements of S average to a jump

size of S̄ ≈
√
b−a
2 . This can be made an equality by taking p : S → [0, 1] to be a probability

distribution such that S̄ =
∑

s∈S s p(s) =
√
b−a
2 .

• Finally, a hash function F : G→ S which “randomly” assigns jump sizes such that Pr (F (g) = s) ≈
p(s) for every g ∈ G.

The Algorithm:

• Let Y0 = a+b
2 , X0 = x, and d0 = 0. Observe that gX0 = hgd0 .

• Recursively define Yj+1 = Yj + F (gYj ) and likewise di+1 = di + F (hgdi). This implicitly
defines Xi+1 = Xi + F (gXi) = x+ di+1.

• If gYj ∈ D then store the pair (gYj , Yj − Y0) with an identifier T (for tame). Likewise if
gXi = hgdi ∈ D then store (gXi , di) with an identifier W (for wild).

• Once some distinguished point has been stored with both identifiers T and W , say gXi = gYj

where (gXi , dj) and (gYj , Yj − Y0) were stored, then

Yj ≡ Xi ≡ x+ di mod |G|
=⇒ x ≡ Yj − di mod |G|
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The Yj walk is called the “tame kangaroo” because its position is known, whereas the position
Xi of the “wild kangaroo” is to be determined by the algorithm. This was originally known as the
Lambda method because the two walks are initially different, but once gYj = gXi then they proceed
along the same route, forming a λ shape.

Theorem 1.1 makes rigorous the following commonly used heuristic: Suppose X0 ∈ [a, b] is a
uniform random value and Y0 ≥ X0. Run the tame kangaroo infinitely far. The wild kangaroo
requires E(Y0−X0)/S̄ = (b−a)/(4S̄) steps to reach Y0. Subsequently, at each step the probability
that the wild kangaroo lands on a spot visited by the tame kangaroo is roughly ℘ = S̄−1, so
the expected number of additional steps by the wild kangaroo until a collision is then around

℘−1 = S̄. By symmetry the tame kangaroo also averaged ℘−1 steps until a collision. About
√
b−a
c

additional steps are required until a distinguished point is reached. Since Xi and Yj are incremented
simultaneously the total number of steps taken is then

2

(
b− a
4S̄

+ S̄ +

√
b− a
c

)
.

This is minimized when S̄ =
√
b−a
2 , with (2 + 2c−1)

√
b− a steps sufficing.

If, instead, the distribution of X0 is unknown then in the worst case |Y0−X0|/S̄ = (b−a)/(2S̄)

and the bound is (3 + 2c−1)
√
b− a when S̄ =

√
b−a
2 .

Our analysis assumes that the Kangaroo method involves a truly random hash function: if
g ∈ G then F (g) is equally likely to be any of the jump sizes, independent of all other F (g′). In
practice different hash functions will be used on different groups – whether over a subgroup of
integers mod p, elliptic curve groups, etc – but in general the hash is chosen to “look random.”
Since the Kangaroo method applies on all cyclic groups then a constructive proof would involve
the impossible task of explicitly constructing a hash on every cyclic group, and so the assumption
of a truly random hash is made in all attempts at analyzing it of which we are aware [6, 3, 5]. A

second assumption is that the distinguished points are well distributed with c
(b−a)→∞−−−−−−→ ∞; either

they are chosen uniformly at random, or if c = Ω(d2 log d) then roughly constant spacing between
points will suffice. The assumption on distinguished points can be dropped if one instead analyzes
Pollard’s (slower) original algorithm, to which our methods also apply.

3.2 Analysis of the Kangaroo Method

In order to understand our approach to bounding time until the kangaroos have visited a common
location, which we call a collision, it will be helpful to consider a simplified version of the Kan-
garoo method. First, observe that because hash values F (g) are independent then Xi and Yj are
independent random walks at least until they intersect, and so to bound time until this occurs it
suffices to assume they are independent random walks even after they have collided. Second, these
are random walks on Z/|G|Z, so if we drop the modular arithmetic and work on Z then the time
until a collision can only be made worse. Third, since the walks proceed strictly in the positive
direction on Z then in order to determine the number of hops the “wild kangaroo” (described by
Xi) takes until it is caught by the “tame kangaroo” (i.e. Xi = Yj on Z), it suffices to run the tame
kangaroo infinitely long and only after this have the wild kangaroo start hopping.

The intersection results of the previous section will now be applied to the Kangaroo method.

Recall that d is chosen so that the average step size in S = {2k}dk=0 is roughly S̄ ≈
√
b−a
2 , and that

this can be made an equality by choosing step sizes from a probability distribution p on S. In this

section we analyze the natural setting where γ
d+1 ≥ p(s) ≥ γ−1

d+1 for some constant γ ≥ 1; indeed

γ = 2 is sufficient for some p, d to exist with S̄ =
√
b−a
2 exactly.
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The first step in bounding collision time will be to construct a nearly uniform intersection
time. Our approach involves constructing a tentative stopping time Ttent where YTtent is uniformly
distributed over some interval of length L, and then accepting or rejecting this in such a way that
Yj will be equally likely to visit any state beyond the left endpoint of the interval in which it is
first accepted. It follows that once Xi ≥ YT then the probability that Xi = Yj for some j will be a
constant.

Lemma 3.1. Consider a Kangaroo walk with step sizes S = {2k}dk=0 and transition probabilities
γ
d+1 ≥ p(s) ≥ γ−1

d+1 for some constant γ ≥ 1. Then there is a bounded nearly uniform intersection

time with Ω = {(X0, Y0) : |X0 − Y0| < Smax = 2d} and

T

(
2

d+ 1

)
≤ 64γ5(d+ 1)5 .

Proof. Consider a lazy walk Ỹt with Ỹ0 = Y0 in which a step consists of choosing an item s ∈ S
according to p, and then half the time make the transition u→ u+ s and half the time do nothing.
The probability that this walk eventually visits a given state y ∈ Z is exactly the same as for the
Yj walk, so it suffices to replace Yj by Ỹt when showing a nearly uniform intersection time.

For each s ∈ S let δs denote the step size taken the first time s is chosen, so that Pr (δs = 0) =
Pr (δs = s) = 1/2. Define a tentative stopping time Ttent by stopping the first time every s ∈ S −
{2d} = {2k}d−1

k=0 has been chosen at least once. Observe that δ :=
∑

s∈S−{2d} δs ∈ {0, 1, . . . , 2d − 1}
uniformly at random. Accept the stopping time with probability

∑
s∈S: s>δ p(s) and set T = Ttent.

If it is rejected then re-initialize all δs values (and δ) and continue the Ỹt walk until a new stopping
time is determined, which can again be either accepted or rejected.

Observe that δ ∈ {0, 1, . . . , 2d − 1} has distribution Pr (δ = `) ∝
∑

s>` p(s). The normalization

factor is
∑2d−1

`=0

∑
s>` p(s) =

∑
s∈S p(s)s = S̄ and so the distribution is

Pr (δ = `) =

∑
s>` p(s)

S̄

This stopping rule was constructed so that if y ≥ ỸT −δ then, as will now be shown, Pr
(
∃t : Ỹt = y

)
=

S̄−1, making T = min{i : Xi ≥ ỸT − δ} a uniform intersection time for Xi.
Suppose y = IT . The quantity IT := ỸT − δ is independent of δ because it depends only on

those steps not included in a δs. It follows that Pr
(
∃t : Ỹt = y | IT

)
= Pr (δ = 0) = S̄−1.

If y > IT then inductively assume that Pr
(
∃t : Ỹt = v

)
= S̄−1 for all v ∈ [IT , y). Then

Pr
(
∃t : Ỹt = y | IT

)
= Pr (δ = y − IT | IT ) +

∑
IT ≤v<y

Pr
(
∃t : Ỹt = v | IT

)
p(y − v)

=

∑
v<IT p(y − v)

S̄
+

∑
IT ≤v<y p(y − v)

S̄
=

1

S̄

It remains only to compute T = min{i : Xi ≥ ỸT − δ}, which in turn requires a value for T .
To determine time until a tentative stopping time Ttent it suffices to find the probability that

in j steps some generator in {2k}dk=0 has not been chosen. The probability a specified generator is

10



chosen in step j is at least γ−1

d+1 , and so

Pr (Ttent > j) ≤
d∑

k=0

Pr
(
s = 2k has not been chosen in j steps

)
≤ (d+ 1)

(
1− γ−1

d+ 1

)j
≤ (d+ 1)e−j/γ(d+1)

As a result

Pr
(
Ttent ≥ γ(d+ 1) ln(2γ(d+ 1)2)

)
≤ 1

2γ(d+ 1)

Each tentative stopping time is accepted with probability

2d−1∑
δ=0

1

2d
×
∑
s>δ

p(s) =

∑
s p(s)s

2d
=
S̄

2d
≥ 1

2d
γ−1Smax
d+ 1

=
1

γ(d+ 1)

It follows that in 2γ(d+ 1) ln(1/ε) rounds of γ(d+ 1) ln(2γ(d+ 1)2) steps each the probability that
a stopping time has not yet been determined is then at most(

1

2γ(d+ 1)
+ 1− 1

γ(d+ 1)

)2γ(d+1) ln(1/ε)

≤ ε

and so if T (ε) = 2γ2(d+ 1)2 ln(2γ(d+ 1)2) ln(1/ε) then Pr (T > T (ε)) ≤ ε.
Finally, it remains to determine T (ε). If Xi ≥ ỸT (1/(d+1)S̄) then

∣∣Pr (∃t : Xi = Ỹt

)
− S̄−1

∣∣ ≤ 1

(d+ 1)S̄

By Lemma 3.2 below, if M = 4γ3(d+ 1)3 ln(2γ(d+ 1)2) ln((d+ 1)S̄) then

Pr
(
XM < ỸT (1/(d+1)S̄)

)
≤ 1/[(d+ 1)S̄]

and so overall
∣∣Pr (∃t : Xi = ỸT

)
− S̄−1

∣∣ ≤ 2/[(d+ 1)S̄]. It follows that

T

(
2

d+ 1

)
≤M = 4γ3(d+ 1)3 ln(2γ(d+ 1)2) ln((d+ 1)S̄)

This simplifies via the relations ln(x) ≤ x and

S̄ =

d∑
k=0

2k p(2k) ≤ γ

d+ 1

d∑
k=0

2k <
2γ

d+ 1
2d

The following simple application of Hoeffding’s Inequality was used above.
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Lemma 3.2. Suppose a non-negative random variable has average S̄ and maximum Smax. If N is
a constant and δ1, δ2, . . . , δM are some M independent samples then the sum X =

∑M
i=1 δi satisfies

Pr (X < (1 +N)Smax) ≤ ε

when

M = 2
Smax
S̄

max

{
Smax
S̄

ln(1/ε), 1 +N

}
Proof. Recall Hoeffding’s Inequality, that if Y is the sum of n independent random variables with
values in [a, b] then for any t ≥ 0

Pr (Y − EY ≥ t) ≤ exp

(
−2t2

n(b− a)2

)
.

Taking Y = −X as the sum of −δi ∈ [−Smax, 0] it follows that

Pr

(
X − EX ≤ −M

2
S̄

)
≤ exp

(
−M2S̄2

2M S2
max

)
Plugging in EX = MS̄ with M from the Lemma finishes the proof.

It remains only to upper bound Bε.

Lemma 3.3. The nearly uniform intersection time of Lemma 3.1 has

Bε = Θ

(
1

d+ 1

)
= od(1)

Proof. This will be shown by applying Lemmas 2.6 and 3.1.
First consider the walk P̂ where γ = 1, i.e. step sizes are chosen uniformly at random. Observe

that P̂i(u, v) = ci(u,v)
(d+1)i

where ci(u, v) is the number of ways to write v − u as the sum of i (non-

distinct, ordered) elements of {2k}dk=0. In the binary expansion of v − u a non-zero bit 2` can
only arise as the sum of at most i steps chosen from {2k}`k=`−i+1, and so any string of more than
i − 1 consecutive zeros can be contracted to i − 1 zeros without effecting the number of ways to
write v − u. This shows that ci = maxu,v ci(u, v) can be determined by considering only the bit
strings v − u of length i2, and in particular it is upper bounded by a constant independent of d,
i.e. P̂i(u, v) = O((d+ 1)−i).

In the non-uniform case Pi(u, v) ≤ γi P̂i(u, v) ≤ ciγ
i

(d+1)i
.

If i ≥ 12 then

max
u,v

Pi(u, v) = max
u,v

∑
w

Pi−12(u,w)P12(w, v)

≤ max
u,v

∑
w

Pi−12(u,w) max
w

P12(w, v)

= max
w,v

P12(w, v) ≤ c12γ
12

(d+ 1)12
.
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Hence, with M = 64γ5(d+ 1)5 then

M∑
i=1

(1 + 2i) max
u,v

Pi(u, v)

≤ 3 ∗ γ1

d+ 1
+

11∑
i=2

(1 + 2i) ∗ ciγi

(d+ 1)i
+

(1 + 2M)(M − 11)c12γ
12

(d+ 1)12

=
3γ +O(1/(d+ 1))

d+ 1
.

A bound of Bε = 3γ+od(1)
d+1 follows by applying Lemma 2.6 with Smax = 2d and

S̄ =
d∑

k=0

2k p(2k) ≥ γ−1

d+ 1

d∑
k=0

2k >
γ−1

d+ 1
2d .

For a corresponding lower bound let X0 = Y0 so that Bε ≥ Pr (X1 = Y1) =
∑

s∈S p(s)
2. By

Cauchy-Schwarz

1 =
∑
s∈S

p(s)× 1 ≤
√∑

s∈S
p(s)2

√∑
s∈S

12

and so
∑

s∈S p(s)
2 ≥ 1

|S| = 1
d+1 and Bε ≥ 1

d+1 .

All the tools are now in place to prove the main result of the paper.

Proof of Theorem 1.1. Note that the group elements g(2k) can be pre-computed, so that each step
of a kangaroo requires only a single group multiplication.

As discussed in the heuristic argument of Section 3.1, an average of |Y0−X0|
S̄

steps are needed

to put the smaller of the starting states (e.g. Y0 < X0) within Smax = 2d of the one that started
ahead. If the Distinguished Points are uniformly randomly distributed then the heuristic for these
points is again correct. If instead they are roughly constantly spaced and c = Ω(d2 log d) then
observe that, in the proof of Lemma 3.1 it was established that after some Ttent steps the kangaroos
will be uniformly random over some interval of length 2d ∼ 1

4

√
b− a log2

√
b− a. It is easily seen

that ETtent ≤ γ(d + 1)2, so if the Distinguished Points cover a c√
b−a fraction of vertices then

an average of
√
b−a
c such samples are needed, independent of Ttent. It follows that an average of

E(Ttent)
√
b−a
c = od(1) ∗

√
b− a extra steps suffice.

It remains to make rigorous the claim regarding ℘−1. In the remainder we may thus assume
that |Y0 − X0| < 2d = Smax. By Lemma 3.1 a bounded nearly uniform intersection time has

T
(

2
d+1

)
≤ 64γ5(d + 1)5, while Lemma 3.3 shows that Bε = od(1). The upper bound of Theorem

2.3 is then
(

1
2 + od(1)

)√
b− a while the lower bound is

(
1
2 − od(1)

)√
b− a.

4 Resolution of a Conjecture of Pollard

In the previous section the Kangaroo method was analyzed for the most common situation, when
the generating set is given by powers of 2. Pollard conjectured in [5] that the same result holds for

powers of any integer n ≥ 2, again under the assumption that S̄ ≈
√
b−a
2 . In this section we show

his conjecture to be correct.
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Theorem 4.1. When step sizes are chosen from S = {nk}dk=0 with transition probabilities γ
d+1 ≥

p(s) ≥ γ−1

d+1 such that S̄ =
√
b−a
2 , then Theorem 1.1 still holds.

Proof. We detail only the differences from the case when n = 2.
To construct a nearly uniform intersection time, once again consider the walk Ỹt which half the

time does nothing. Partition the steps into blocks of (n − 1) consecutive steps each. If the same
generator s ∈ {nk}d−1

k=0 is chosen at every step in a block then let m be the number of times a step of

size s was taken (recall it’s lazy), so Pr (m = `) =
(n−1
` )

2n−1 , and with probability
(
n−1
m

)−1
set δs = ms

if δs is undefined. In all other cases do not change any δs after the (n− 1) steps have been made.
Stop when every δs has been defined.

Observe that δs is uniformly chosen from the possible values {ms}n−1
m=0, so the sum δ =

∑
s δs is

a uniformly random d digit number in base n. Once again, accept this candidate stopping time with
probability

∑
s∈S: s>δ p(s), and otherwise reset the δs values and find another candidate stopping

time. The same proof as before verifies that if It := ỸT − δ then Pr
(
∃t : Ỹt = y | y ≥ IT

)
= 1/S̄.

Next, determine the number of steps required for the Ỹt walk to reach this stopping time. First
consider the time required until a tentative stopping time Ttent. For a specified block and generator

s = nk, the probability s was chosen at every step in the block is at least
(
γ−1

d+1

)n−1
, and when this

happens the probability the resulting value is accepted is

n−1∑
m=0

(
n−1
m

)
2n−1

× 1(
n−1
m

) =
n

2n−1
.

Combining these quantities, if δs was previously undefined then the probability it is assigned a
value in this block is

℘ ≥
(
γ−1

d+ 1

)n−1
n

2n−1
.

The probability of not stopping within N(n− 1) steps is then

Pr (Ttent > N(n− 1)) ≤ (d+ 1)(1− ℘)N

≤ (d+ 1) exp

(
− Nn

(2γ(d+ 1))n−1

)
and so when N = (2γ(d+ 1))n−1n−1 ln(2γ(d+ 1)2) then this shows

Pr
(
Ttent ≥ (2γ(d+ 1))n−1 ln(2γ(d+ 1)2)

)
≤ 1

2γ(d+ 1)

The remaining calculations are not specific to the base 2 case and so they carry through
smoothly, leading to a nearly uniform intersection time of

T

(
2

d+ 1

)
= 2(2γ(d+ 1))n+3 lnn

To extend Lemma 3.3 replace 2k by nk throughout, use M = O
(
(d+ 1)n+3

)
, and bound large

powers of P in terms of P2n+8 instead of P12. This results in Bε = Θ(1/(d+ 1)) again.
The proof of Theorem 1.1 carries through with only obvious adjustments.
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