Tips and Tricks for Automating Viscous Liquid Handling

Scientist-To-Scientist Webinar Series – September 09, 2021

Speakers

Presenter: Anurag Kanase

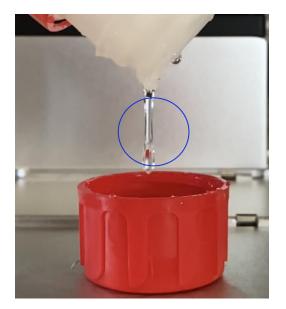
Process Development Scientist, Opentrons

Anurag joined Opentrons after working as a Test Engineer at DropGenie. Prior to that, he cofounded a rapid diagnostic company in India. Anurag earned a Bioengineering degree from Northeastern University, USA in 2020 and a Physics master's degree from the University of Stuttgart, Germany in 2016.

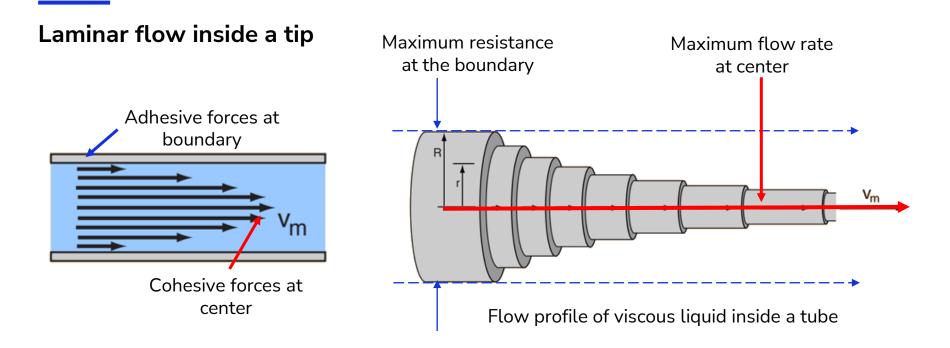
Moderator: Dr. Janeen Vanhooke

Automation Consulting Engineer, Opentrons

Janeen received her Ph.D. in Biochemistry in 1993 from the University of Wisconsin-Madison. She has a diverse background in biochemical and biophysical studies of protein structure, function and mechanism. Dr. Vanhooke joined Opentrons in 2021 as a Field Applications Scientist and provides consultation to assist researchers with automated workflow development.


Webinar Overview

- Understand the properties of different viscous liquids and optimize liquid handling parameters
- Accurately handle viscous liquids on the OT-2
- Reduce reagent waste and avoid cross contamination
- Improve the reliability of protocols running viscous liquids

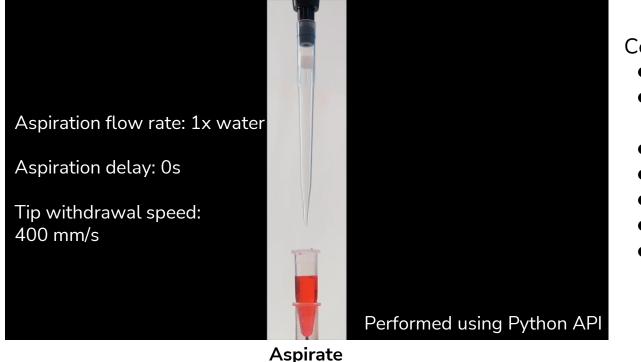


Issues pipetting viscous liquids

Adhesion Forces between labware and liquid

Cohesion Forces between liquid

Based on the relative ratio of the adhesive and cohesive forces, which dominate inside a tip for a given liquid, we characterize viscous liquid classes



Viscous liquid characterization

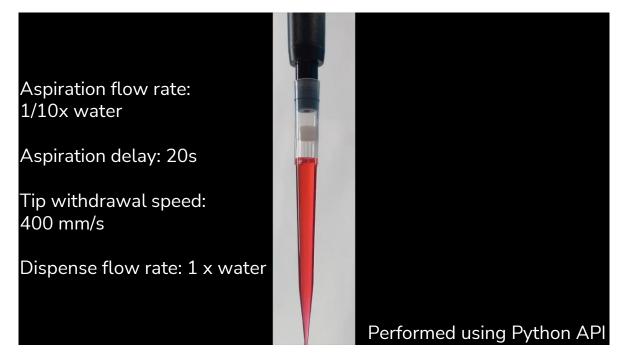
Glycated Liquids	Volatile Viscous Liquids	Surfactant Viscous Liquids	Oils	
Honey, Glycerol, PEGs etc.	Beads, hydrophobic coatings, hand sanitizer etc.	Liquid soaps, Tween® 20, Triton® X – 100 etc.	Mineral oil, engine oil etc.	
▲ High adhesion	X Very High adhesion	X Very high adhesion	À High adhesion	
High cohesion	- Neutral cohesion	Very low cohesion	High cohesion	

Pipetting viscous liquid with water parameters on OT-2

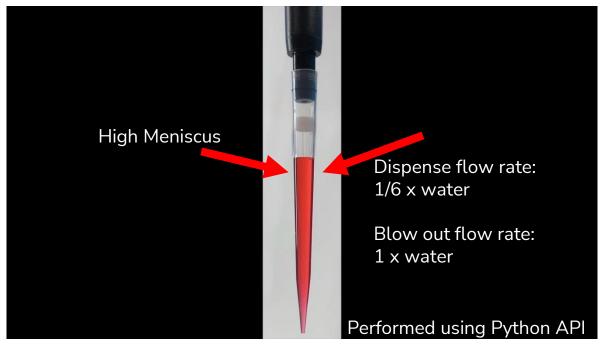
Common Problems

- Incomplete aspiration
- Droplets formed around the tip
- Spilling of reagent
- Incomplete Dispense
- Reagent waste
- Overflow of reagent
- Non-reproducible volumes

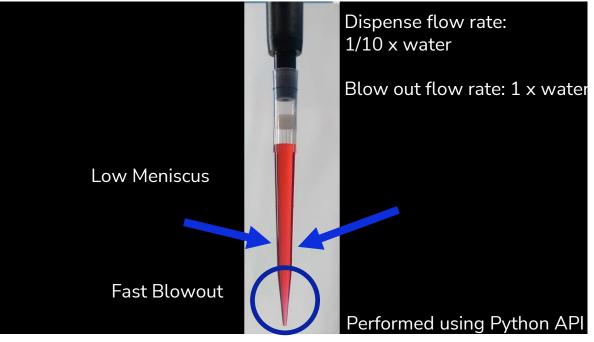
PRLNYC **O**pentrons Test liquid: Glycerol 99% with 10 uL food coloring (video speed: 2x)

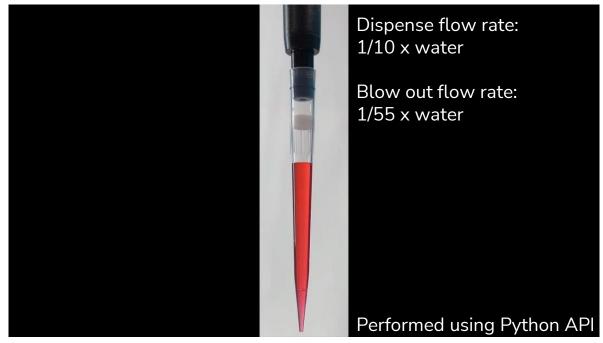

Pipetting viscous liquid with water parameters on OT-2

Common Problems

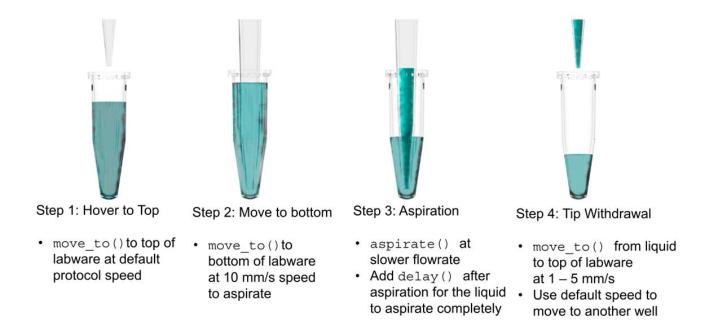

- Incomplete aspiration
- Droplets formed around the tip
- Spilling of reagent
- Incomplete Dispense
- Reagent waste
- Overflow of reagent
- Non-reproducible volumes

PRLNYC **O**pentrons Test Liquid: Glycerol 99% with 10 uL food coloring (video speed: 2x)

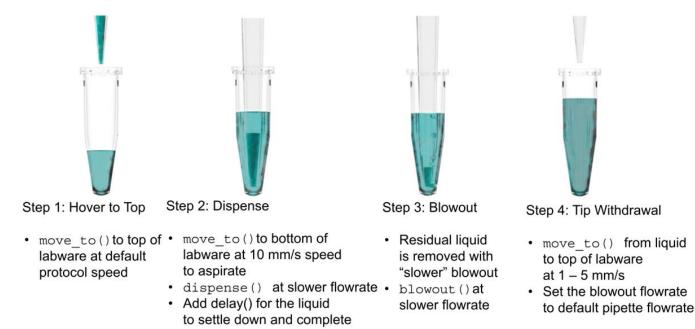

Step 1: Aspirate with slowest flow rate and start dispense with water flow rate


Step 2: Lower the flow rate to prevent breaking of meniscus at the top of tip

Step 3: Lower the blow out flow rate to remove any liquid retention


PRLNYC () opentrons

Step 4: Clean and complete dispense of glycerol



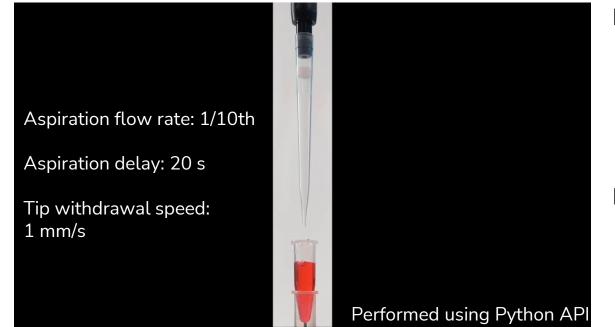
Optimized strategy for viscous liquid handling: aspirate

Optimized strategy for viscous liquid handling: dispense

Glycated viscous liquids

Properties

- Liquids with sugar or glycerol content
 - Examples: Glycerol, PEG etc.
- High adhesion to the pipette tip
- Highly cohesive


How do they move through the tip:

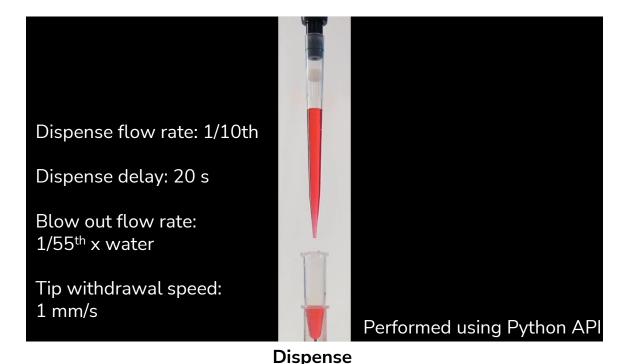
- Aspiration and dispense speeds are generally synchronized
- The liquid slowly slips off the tip's surface and accumulates to its bottom
- Small droplets may remain adhered to the tip

Optimized glycated liquid handling

Aspirate

Benefits

- Highly accurate
- Clean Pipetting
- No spilling
- No droplets formed


Limitations

Longer Protocol runtime

PRLNYC **O**pentrons Test Liquid: Glycerol 99% with 10 uL food coloring (video speed: 8x)

Optimized glycated liquid handling

Benefits

- Highly accurate
- Clean Pipetting
- No spilling
- No droplets formed

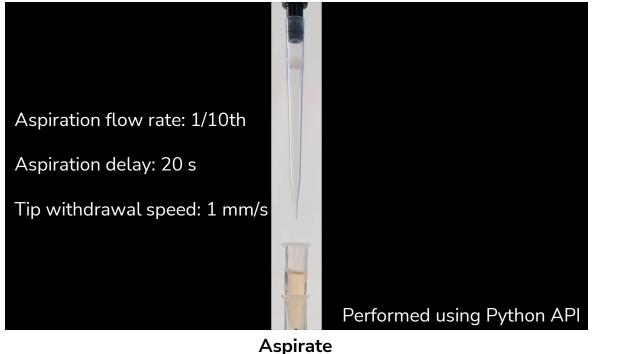
Limitations

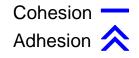
Longer Protocol runtime

PRLNYC Opentrons Test Liquid: Glycerol 99% with 10 uL food coloring (video speed: 8x)

Volatile viscous liquids

Properties

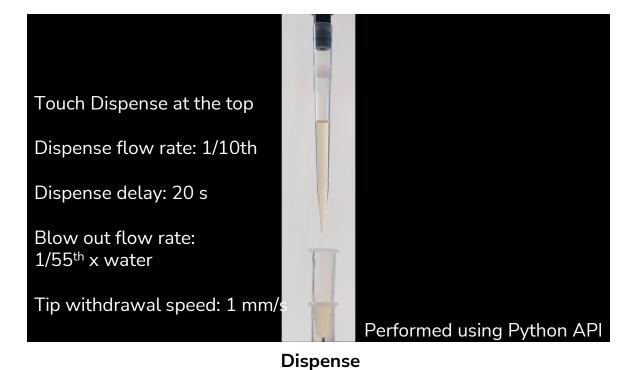

- Contains volatile solvent + viscous liquid such as beads or glycerol
 - Examples: Hydrophobic coating solvents, beads, hand sanitizer etc.
- High adhesion to the tip and very low cohesion to itself
- Variable volatility

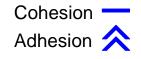

How do they move through the tip:

- Sticks to the tip surface more than itself
- Forms an air jet if dispensed quickly
- May need air gap after aspiration to prevent spilling out from the tip

Optimized volatile viscous liquid handling

Benefits


- Clean Pipetting
- No spilling
- No droplets formed


Limitations

- Longer Protocol runtime
- Residual volume

PRLNYC **O** opentrons Test Liquid: Hand Sanitizer with 75% ethanol (video speed: 8x)

Optimized volatile viscous liquid handling

Benefits

- Clean Pipetting
- No spilling
- No droplets formed

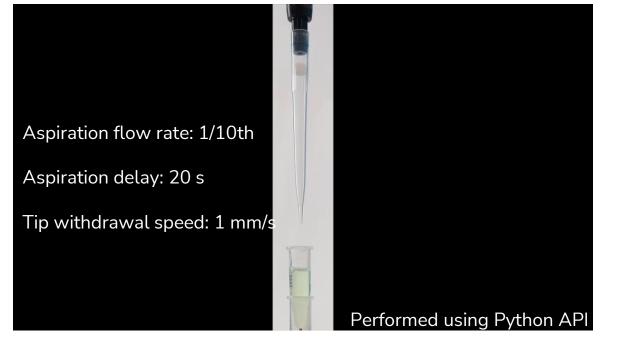
Limitations

- Longer Protocol
 runtime
- Residual volume

PRLNYC **O**pentrons Test Liquid: Hand Sanitizer with 75% ethanol (video speed: 8x)

Surfactant viscous liquids

Properties


- Detergents with high viscosity
 - Examples: Tween 20, Triton X-100, liquid hand soap etc.
- Very high adhesion to the pipette tip
- Very low cohesion

How do they move through the tip:

- With air trapped they form bubbles
- Dispensing may require multi-dispensing steps with longer delays for the liquid to completely dispense from the pipette tip
- Due to excess liquid retention on the surface of the tip, dead volume consideration is essential

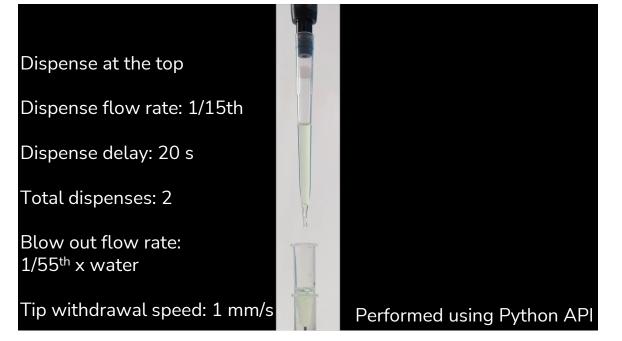
PRLNYC () opentrons

Optimized surfactant liquid handling

Aspirate

Cohesion 🔀 Adhesion ᄎ

Benefits


- Clean Pipetting
- No bubbles formed
- No spilling
- No droplets formed

Limitations

- Longer Protocol runtime
- Longer Delays
- High dispense volume variability due to residual volume

PRLNYC **O** opentrons Test Liquid: Triton-X 100 with 1 uL green food color (video speed: 8x)

Optimized surfactant liquid handling

Cohesion Adhesion ᄎ

Benefits

- Clean Pipetting
- No bubbles formed
- No spilling
- No droplets formed

Limitations

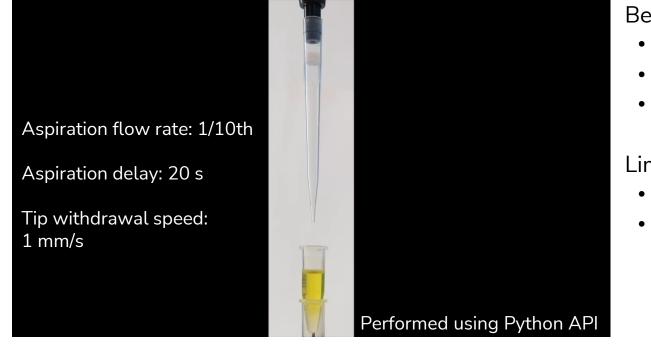
- Longer Protocol runtime
- Longer Delays
- High dispense volume variability due to residual volume

Dispense

PRLNYC **O**pentrons Test Liquid: Triton-X 100 with 1 uL green food color (video speed: 8x)

Oils

Properties


- Petroleum and plant oils
 - Examples: Mineral oil, engine oil etc.
- Very high adhesion to the pipette tip
- High cohesion

How do they move through the tip:

- Slower flow rates allow easy aspiration and dispensing of oils
- Dispensing requires increased delay for the liquid to completely dispense off the tip
- Rarely tip comes off clean

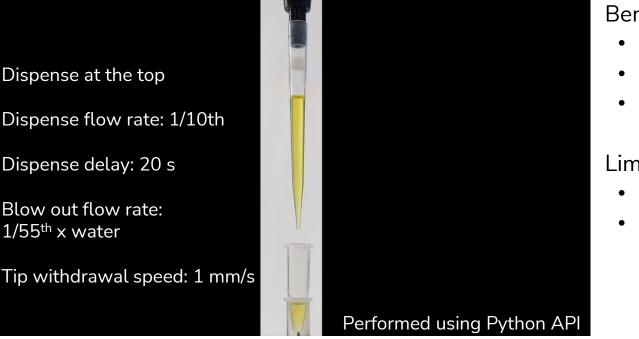
PRLNYC (opentrons

Optimized oil handling

Aspirate

PRLNYC **(a)** opentrons Test Liquid: Olive oil (video speed: 8x)

Cohesion 🔨 Adhesion ᄎ


Benefits

- Clean Pipetting
- No spilling
- No droplets formed

Limitations

- Longer protocol runtime
- Residual volume

Optimized oil handling

Dispense

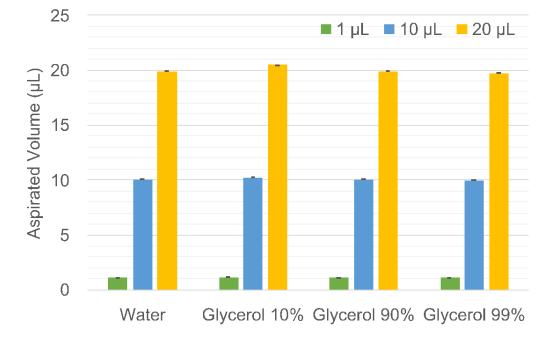
Benefits

- Clean Pipetting
- No spilling
- No droplets formed

Limitations

Longer protocol runtime

Cohesion \wedge

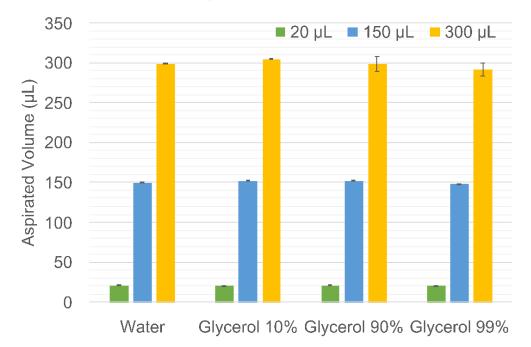

Adhesion <

Residual volume

PRLNYC **O**pentrons Test Liquid: Olive oil (video speed: 1x)

Highly accurate viscous handling using Opentrons Gen2 pipettes

P20 Target Volume Aspiration

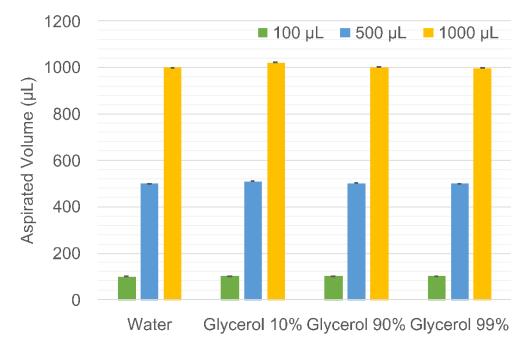

P20

PRLNYC () opentrons

Gravimetric testing of Opentrons Gen 2 P20 with Python API

Highly accurate viscous handling using Opentrons Gen2 pipettes

P300 Target Volume Aspiration



Gravimetric testing of Opentrons Gen 2 P300 with Python API

Highly accurate viscous handling using Opentrons Gen2 pipettes

P1000 Target Volume Aspiration

Gravimetric testing of Opentrons Gen 2 P1000 with Python API

P1000

Benefits of automating pipetting challenging viscous liquids

- Smooth and controlled flow rate
- Accurately aspirate and dispense to desired volume
- Increased reproducibility in results
- Reduced reagent waste
- Completely automated and zero human interference

Acknowledgements

Many thanks to our Testing team members

Carlos Fernandez

Ojas Patel

Thanks for Coming!

anurag.kanase@opentrons.com

Janeen.vanhooke@opentrons.com

Check out more Opentrons webinars at https://blog.opentrons.com/webinars/

Appendix: % Loss of Liquid after dispense

	Pipette	Volume	Water	Glycerol 10%	Glycerol 90%	Glycerol 99%
		1 µL	0.099867	0.081619	0.015068	0.007467
	P20	10 µL	0.12	0.09827	0.100163	0.000373
		20 µL	0.108667	0.128436	0.162276	0.001547
	P300	20 µL	0.212867	0.085341	0.001734	0.137013
		150 µL	0.198133	0.173294	0.088238	0.140693
		300 µL	0.282	0.309958	0.757832	0.093333
	P1000	100 µL	0.134467	0.304146	0.111545	0.05888
		500 µL	0.525067	0.793013	0.098266	0.122507
		1000 µL	0.490467	0.287692	0.066179	0.042667
PRLNYC (opentrons				Derfermeduci	na Dython A DI

Appendix: Example pipette parameters for different liquids and pipettes

Pipette	Liquid	Aspiration Rate (µL/s)	Aspiration Delay (s)	Aspiration Withdrawal Rate (mm/s)	Dispense Rate (µL/s)	Dispense Delay (s)	Blowout Rate (µL/s)	Touch tip
	Glycerol 99%	3.78	10	2	3.78	10	0.5	No
P20	Sanitizer 62% Alcohol	1	2	20	3.78	2	0.5	Yes
	Tween 20	5.292	7	2	3.024	7	0.5	Yes
	Engine oil	6.048	7	1	6.048	7	0.5	Yes

Appendix: Example pipette parameters for different liquids and pipettes

Pipette	Liquid	Aspiration Rate (µL/s)	Aspiration Delay (s)	Aspiration Withdrawal Rate (mm/s)	Dispense Rate (µL/s)	Dispense Delay (s)	Blowout Rate (µL/s)	Touch tip
	Glycerol 99%	55.5	10	1	55.5	10	4	No
P300	Sanitizer 62% Alcohol	92.5	2	20	92.5	2	4	Yes
	Tween 20	13.9	10	1	13.9	11	7	Yes
	Engine oil	74	3	2	46.25	7	10	Yes

Appendix: Example pipette parameters for different liquids and pipettes

Pipette	Liquid	Aspiration Rate (µL/s)	Aspiration Delay (s)	Aspiration Withdrawal Rate (mm/s)	Dispense Rate (µL/s)	Dispense Delay (s)	Blowout Rate (µL/s)	Touch tip
	Glycerol 99%	41.175	20	1	19.215	20	5	No
P1000	Sanitizer 62% Alcohol	41.175	20	1	19.215	20	5	No
	Tween 20	41.175	20	1	19.215	20	5	No
	Engine oil	41.175	20	1	19.215	20	5	No

