

Multichip Module Packaging and Its Impact on Architecture

by Hubert Harrer

Presentation: CAS/CPMT/CS/SPS Society Chapters

Monday, October 20, 2008 Santa Clara, CA USA

IEEE CAS

- §This talk is part of IEEE CAS Distinguished Lecturing Series
- §Thanks to the IEEE Chapter for inviting and organizing this talk
- §Encouraging IEEE membership

Outline

- §Introduction
- §System z CEC Architecture Overview
- §MCM Technology
- §Card Technology
- §Bandwidth Requirements
- §Power Consumption
- §Design Methodologies

IBM Development Laboratory Boeblingen/Germany

§About 1900 employees

- ► 500 in hardware
- ►1400 in software

z-Series System CEC Development

Year	00	02	03	05	08
	z900	z900 +	z990	z9	z10
Uni Perf.	0.52	0.64	1.00	1.35	2.16
SMP Perf.	6.19	7.34	20*	40**	60
Processors	20	20	12-16***	12-16***	20****
per MCM	20	20	4 nodes	4 nodes	4 nodes
Chip Tech.	0.18um	0.18um	0.13um	0.09um	0.065um
Processor					
Frequency in	0.77	0.91	1.20	1.72	4.40
GHz					
Package Bitrate	0.39	0.46	0.60	1.72	2.93
in Gb/s	0.39	0.40	0.00	1.72	2.93

****) quad core processors

^{*) 8} CPUs per node for workload

^{**) 12} CPUs per node for workload

^{***)} dual core processors

System z9 Frame

Z900 System Structure

CEC Processor Board and MCM

- standard loss board material
- LIF (low insertion force) MCM connector 4224 pins (2489 signals)

Technical Achievements of Most Complex Multichip Module:

§Wireability

- ► 1000 m wiring length of 16 k nets
- ► 2 x 10 CPs fully connected to 2 x 4 SCDs within two clusters

§Cooling

- ► 1300 W on 35 chips
- ► low temperature cooling of 0 C

§Cycle Time and Noise Constraints

► 459MHz Operation of 80% of the nets (1:2 Gear Ratio) supported by package

§2 different technologies for implementation

- MCM-D technology (IBM)
- MCM-C technology (Hitachi)

Logic Structure Comparison between z9 and z10

z9 Chip Technology

Chip	Size [mm*mm]	used signal C4s/Pins
CPU (90nm)	15.78 x 11.84	603
SC (90nm)	16.32 x 16.32	1768
SD (90nm)	15.20 x 15.62	1600
MSC (90nm)	14.24 x 14.24	1344
CLK (120nm)	9.40 x 9.48	487
MCM	95 x 95	2923

C4 Structure:

Controlled Collapsed Chip Connect PbSn balls

z10 Chip Technology (65nm)

Chip	Size [mm*mm]	used signal C4s/Pins
CPU (65nm)	21.8 x 21.1	1180
SC (65nm)	21.6 x 21.0	2411
MCM	96 x 96	3490

C4 Structure

Chip Footprint

MA	
ĦM	
	iiii w w

CP	
GND	3394
VDD	3171
VCS	642
VIO	191
Signal	1180
TOT	8587

SC	
GND	2166
VDD	2483
VCS	654
VIO	346
Signal	2411
TOT	7976

z9-Multi Chip Module (MCM)

§Advanced 95mm x 95mm MCM

- ► 102 Glass Ceramic layers
- ►16 chip sites, 217 capacitors
- ► 0.545 km of internal wire

§CMOS 90nm chip Technology

- ► PU, SC, SD and MSC chips
- ► Copper interconnections, 10 copper layers
- ►8 PU chips/MCM
 - -15.78 mm x 11.84 mm
 - -121 million transistors/chip
 - -L1 cache/PU

¥256 KB I-cache

¥256 KB D-cache

- -0.58 ns Cycle Time
- ►4 System Data (SD) cache chips/MCM
 - -15.66 mm x 15.40mm
 - –L2 cache per Book

Ÿ660 million transistors/chip

Ÿ40 MB

- ►One Storage Control (SC) chip
 - -16.41mm x 16.41mm
 - -162 million transistors
 - L2 cache crosspoint switch
 - -L2 access rings to/from other MCMs
- ►Two Memory Storage Control (MSC) chips
 - -14.31 mm x 14.31 mm
 - -24 million transistors/chip
 - -Memory cards (L3) interface to L2
 - -L2 access to/from MBAs (off MCM)
- ►One Clock (CLK) chip CMOS 8S
 - -Clock and ETR Receiver

LGA Connector

- §5184 LGA (Land Grid Array Connector)
- §4 quadrants with 36 by 36 pads
- §30-50mg per contact
- §about 200kg per connector

z10-MCM

§Advanced 96mm x 96mm MCM

- ► 105 Glass Ceramic layers
- ►201.6um pitch
- ►7 chip sites
- ► 178 capacitors (138 600nF LICA, 40 1uF IDC)
- ►4 SEEPROMS
- ►6740 nets

- ► 0.7 km of internal wire
- ►7356 LGA 1mm pitch
- ►13 different voltage domains
 - –separate VDD and array voltage per CP chip
 - –shared VDD and array voltage for both SC chips
- ► 3 additional standby voltages

MCM Cross Section

3D Modeling

- §frequency dependent 3d model extraction
- §correction factor for actual manufacturing shapes with 2d tools
- §in future direct s-parameter extraction from 3d geometries

Processor Book Layout

Processor Node Card - 378mm x 470mm - 3740 nets, 645m

- cross section 10S21P2MP

Processor Book Layout or The Mother of a Blade

Processor Node Card

- 584mm x 460mm
- 5330 nets, 864m
- cross section 10S18P2MP
- low loss material, buried vias
- 2523 decaps
- 29906 PTH, 4614 buried vias
- 14 row Ventura connector for fabric with 1680 signals

Actual Node Picture

Communication Ring Structure

CEC Board backplane

- §The ring structure consists of two rings (one running clockwise, the other counterclockwise)
- §In a two or three Book configuration, Jumper Book(s) (installed in the CEC cage) complete the ring
 - Jumper Books are not needed for a single-Book configuration
- §Books may be able to be inserted into or removed from the ring nondisruptively
 - ► May allow Concurrent book add for model upgrade
 - ► Enhanced book availability to return a book after removal for upgrade or repair

Communication between Nodes

§lower latency with direct fabric structure instead of ring

z10

Cooling and Power

§Cooling

► Improved Small Gap Technology (3.5+-1mil)

►Tim1: 26/39 C/W/mm^2

►Tim2: 20 C/W/mm^2

§Power

► Frame Power: 17.2kW ► Node Power: 3.5kW

§Temperature

►45C chip junction

z9 MRU cooling with aircooled backup mode

Test Concept

- **§Wafer Test**
 - selftest, speed characterization
- §Temporary Chip Attachment on Single Chip Module
- §Burn In (high voltage, high temperature)
 - ►120C, 1.4 x voltage for 24 hours
- §MCM Assembly Test
- §System test in a 2 Node Configuration
 - ► slower /faster cycle time
 - ► lower/higher voltage
 - ► nominal /higher temperature
- §System test in a 4 Node Configuration
- §Final System Test in Customer Configuration

Packaging Key Challenges

§Bus Bandwidths

- Large increase of bandwidths driven by multicore processors
 - -increasing frequency
 - -increasing bit lines

VMa A3

§Power

- high end servers will use high power processor chips with increased chip sizes
- power consumption is limiting performance
 - –power saving concepts
 - -new cooling concepts

z9/z10 Timing and Bus Performance Comparison

Name	Data Size B	Bit Rate Gb/s	Bandwidth GB/s 4 nodes	1st level Wire	2nd Level Wire	Comment
Cache Bus	256/160 x4	1.72/2.93	1764/1877	13 cm	n.a.	DDR source synch
Memory	64/48 x4	0.86/2.17	220/417	4 cm	20 in	DDR source synch
I/O Hub (MBA)	64/64 x4	0.86/2.2	220/563	3 cm	20 in	DDR source synch
Ring/Fabric (SMP)	32/24 x4	0.86/1.47	110/140	cm	80cm	DDR source synch

- wiring rule for each net over all components
- system timing run for each net (~12k) with in house tool
- single ended source terminated driver and diode clamped receiver for all nets besides STI

Bandwith Comparison

Bandwith Comparison

Elastic Interface 3

§Source Synchronuous Interface

Clocks are transferred together with data

§Deskewing of wiring lengths during power on sequency

state machine initializes delay elements

§Elasticity due to buffering receiving data in multiple latch stages

►data can be stored on the wire

§Diagnostic capabilities for bringup and manufacturing test

automated measurement of eye sizes at receiver output

§Automatic repair capability by including redundant lines

► logical rerouting during power on

Maximum Data Rates

§Net Topology

	Power	Area	Netlength	Speed	Cost
Single Ended	low	low	short	low	low
Differential	high	large	long	high	low
Optical	high	large	very long	very high	high

§Driver/Receiver Circuits

- ► pre compensation (Driver)
- ► signal restoring (Receiver)

§Channel

- ► Attenuation (dc resistance, skin effect, dielectric loss)
- ► Reflection (characteristic impedance and distortions from vias, connectors)
- ► Crosstalk (line coupling, via coupling, connector coupling)

Comparison of Bipolar and CMOS Power

Comparison of Bipolar and CMOS Power

High Power Challenges

§Power Delivery

- ► maximum DC drop (MCM drop 100mV)
- ► maximum Connector Current (LGA 2.0A)
- ► maximum C4 current (200mA)
- ► Current Delivery on Card and Board

MCM Power

	VDD=1.05V	Logic Power 521W	VDD=1.1V	Logic Power 572W
	T=49C	T=90C	T=49C	T=90C
-5 sigma	1192 W	1926 W	1406 W	2313 W
-4 sigma	980 W	1448 W	1142 W	1722 W
-3 sigma	839 W	1128 W	967 W	1326 W
-2 sigma	759 W	947 W	869 W	1101 W
-1 sigma	721 W	860 W	822 W	993 W

- tradeoff between worst case power and process tolerances
- air cooled backup mode results in highest power due to leakage

- §Pin Optimization over multiple packaging components (IBM tools)
- §Placement and Routing Studies (Cadence)
- §Constraint Manager (Cadence) to implement rule requirements
- §PD in Allegro

§Timing and Noise Methodology

► Pre PD:

- -create 3d models for all components (lines, vias, connectors)
- –power spice simulation
 - Yuse length estimates from wiring analysis
 - Yuse coupling estimates from previous system experience
- -HSSCDR (eye timing tool calculating bit errors probability) (IBM tool)
 - Yuses s-parameters for channel working in frequency domain
 - Ylinear model of driver
 - Ydriver jitter assumptions included

► Post PD:

- -Fastline simulation for timing and noise (IBM Tool)
- -all nets in the system are being simulated

§Power Delivery

- ► First and second level packaging (Pre PD and Post PD)
 - -resistive grid analysis with IBM tool
 - Ÿbased on high level syntax language
 - Ÿbased on Allegro input
 - -system level power simulation
 - Yvoltage drops
 - Ynumber of power planes
 - Ythickness of power planes
 - Yplacement of power connections

§Midfrequency Noise

- Decoupling capacitor simulations with vendor tools
 - -input on power, switching activity and on chip power map
 - -PrePD and Post PD simulation
 - -model to hardware correlation
 - -multi core power impact
- ► Hierarchical concept on voltage stabilization
 - -on chip decaps for HF noise close to hot spots
 - -MF decaps on 1st level package to load on chip decaps
 - -LF decaps on 2nd level packaging to suppoprt regulation loop
 - loading time constant must be designed to guarantee the current loading of the next stage

Signal Integrity and Decoupling Strategy

	Noise Amplitude	Placement of Capacitors	Type of Capacitors	Number of Capacitors	Amount of Decoupling 1.35 V
Cross Talk	350 mV				
High-Frequency Chip		Chip	Thin-oxide		713 nF CPchip
(>100 Mhz) ∆I = 20 Amps ∆T = 0.4 ns	100 mV	MCM	1.6 mm AVX C4 Ceramic (265nF)	164	43 μF on MCM
Mid-Frequency MCM		MCM	1.6 mm AVX C4 Ceramic (265nF)	164	43 μF on MCM
(1 - 100 MHz) $\Delta I = 140 \text{ Amps}$ $\Delta T = 2.5 \text{ ns}$	65 mV	Pu-Card	1 μF Ceramic 10 μF Ceramic	1500 404	1500 μF on Brd 4040 μF on Brd
Low-Frequency Board (1 KHz - 1 MHz) ΔI = 235 Amps ΔT = 1 μs	35 mV	Pu-Card	4700 μF Electrolytics	145	682 mF

- noise budget consisting of lowfrequency, midfrequency and highfrequency noise
- midfrequency noise simulated by vendor tools

Post PD Timing and Noise Ananlysis

§system coupling noise run for each net (~12k) with in house tool §about 5000 x faster than spice

Highfrequency Analysis (Rapid)

- identification of hot spots on chip
- verify decoupling rules

Summary and Conclusions:

- §Multi chip module technology enables architectures with huge bandwidths between processor and cache chips
 - ► allows fully connected processor chips to all cache chips
 - not doable with today's board technology
 - not doable with today's organic technology
- §Bandwidth requirements will further increase when growing the number of processor cores in a system
 - combined frequency and buswidth increase
- §High end server systems will continue to use high power chips
 - system integration with larger number of cores on a chip
 - cooling techniques will enable > 200W chips
 - overall power saving on system level by integration

Trademark Attribution Statement and Copyright

- §IBM, the IBM logo, z9, z10, z Series, System z, System z9 and System z10 are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
- §Other company, product, or service names may be trademarks or service marks of others.
- §Copyright: Do not copy this lecture or any parts of it without the permission from the author.