
© 2006 IBM Corporation

IBM Linux Technology Center

Transparent Memory Compression in Linux

Seth Jennings
sjenning@linux.vnet.ibm.com
LinuxCon 2013
IBM, LTC

IBM Linux Technology Center

© 2013 IBM Corporation

Overview

What is Transparent Memory Compression

Swap is a four letter word

What is zswap and how does it work

Use cases and gotchas

Other/Future work

IBM Linux Technology Center

© 2013 IBM Corporation

Transparent Memory Compression

Kernel dynamically compresses process memory
without process knowledge

Achieved through the use of process virtual address
space and demand paging

The kernel can unmap pages from the process page
table and compress them

When a compressed page is accessed, the page fault
handler uses the information in the Page Table Entry
(PTE) to find the page in the compressed pool,
decompress it, and link it back into the page table

IBM Linux Technology Center

© 2013 IBM Corporation

Swap is a Four Letter Word

RAM sizing for a machine or virtual machine is usually
done on a peak load basis

Any workload that overcommits memory accessing a
working set whose size exceed the RAM size becomes
a I/O bound load via swapping

We'll just talk about the anonymous memory
overcommit situation for now

Swap is a four letter word for most sysadmins

IBM Linux Technology Center

© 2013 IBM Corporation

Swap is a Four Letter Word

Swapping pages out doesn't necessarily hurt
performance

The scanning and unmapping is typically done by
kswapd, not the workload thread

Cost is in the CPU overhead of scanning and
unmapping and I/O to the swap device (aysnc)

Swapping pages in is the problem

The thread is halted on the page fault until the page
can be read from the swap device (~10ms)

IBM Linux Technology Center

© 2013 IBM Corporation

Swap is a Four Letter Word

When a CPU bound workload suddenly becomes I/O
bound, saturating the swap device and crashing
workload throughput and responsiveness

IBM Linux Technology Center

© 2013 IBM Corporation

9 10 11 12 13 14 15 16 17
0%

20%

40%

60%

80%

100%

120%

SPECjbb Performance

10GB RAM, 2core SMT4, Power7+

JVM Heap Size (GB)

%
 n

o
m

in
a

l b
o

p
s

Memory thrashing

IBM Linux Technology Center

© 2013 IBM Corporation

9 10 11 12 13 14 15 16 17
0

10000

20000

30000

40000

50000

60000

70000

80000

Swap I/O

10GB RAM, 2core SMT4, Power7+

JVM Heap Size (GB)

S
w

a
p

 I/
O

 (
kB

/s
)

System throttles and
reaches equilibrium at
max disk throughput

IBM Linux Technology Center

© 2013 IBM Corporation

Swap is Four Letter Word

 In the memory thrashing case, some would prefer to
run their systems swap-less and have their workload
fall victim to the Out Of Memory (OOM) killer rather
than take the non-deterministic latency and
performance degradation that I/O introduces

We need a way to smooth out this I/O storm and
performance cliff as memory demand meets memory
capacity

Zswap!

© 2006 IBM Corporation

IBM Linux Technology Center

Crash Course in Memory Reclaim

IBM Linux Technology Center

© 2013 IBM Corporation

Page Frame Management

All memory is managed in units called “page frames”.
This is the basic unit of memory on which architecture
memory hardware operates

Each page frame is managed in the kernel with a page
structure (struct page)

Allocated page frames are maintained on two lists: an
“active” list and an “inactive” list

IBM Linux Technology Center

© 2013 IBM Corporation

Page Frame Reclaim

When the system is low on free page frames, the
memory manager begins to search the inactive list for
page frames it can reclaim

Typical page types:

 Clean page cache, no I/O required (cheap reclaim)
 Dirty page cache, filesystem I/O needed to clean
 Anonymous user pages, swap I/O needed to store

IBM Linux Technology Center

© 2013 IBM Corporation

Anonymous Page Reclaim

The memory manager can reclaim (most) user space
anonymous memory through a process called
“memory unmapping”

This process consists of finding all the PTEs that
reference the page and replacing those entries with a
“swap entry”

The swap entry contains information about where to
find the swapped out page and is used by the page
fault handler to repopulate the page if the user process
ever accesses it again

IBM Linux Technology Center

© 2013 IBM Corporation

mm_struct

pgd pmd pte

RAM

page frame

mem_map struct page

Page tables

On the inactive list and
selected for reclaim

task_struct

IBM Linux Technology Center

© 2013 IBM Corporation

mm_struct

pgd pmd pte

RAM

page frame

mem_map struct page

Unmapping breaks this link, requiring
a page fault to restore it

Page tables

task_struct

IBM Linux Technology Center

© 2013 IBM Corporation

type

Swap Entry

offset 0

PG_present bit is cleared

Specifies the swap device

Specifies the offset, in
pages, within the swap
device where the swapped
out page is stored

Note that the (type, offset) value is a unique identifier
for a swapped out page within the system

© 2006 IBM Corporation

IBM Linux Technology Center

Zswap

Transparent Memory Compression for Swap Pages

IBM Linux Technology Center

© 2013 IBM Corporation

Zswap

Zswap is feature that hooks into the read and write
sides of the swap code and acts as a compressed
cache for pages go to and from the swap device

As a page is being written to the swap device, zswap
hooks into the write side (swap_writepage()) via the
frontswap API [1] and tries to compress and store the
page in a dynamically sized compressed memory pool

 If zswap is successful, the page is clean and ready to
be freed without writing the page to the swap device

[1] http://lwn.net/Articles/386090/

IBM Linux Technology Center

© 2013 IBM Corporation

Zswap

When a page fault occurs on a swap entry, zswap
hooks into the read side (swap_readpage()) and
attempts to find the swap page, uniquely identified by
the swap entry, in the compressed cache

 If the entry is found, the page is decompressed from
the cache and linked into the process page tables

Code at mm/zswap.c

IBM Linux Technology Center

© 2013 IBM Corporation

Zbud

Zbud is the name of the allocator (more like a bin
packer) for the compressed memory pool

Compressed page data is paired, hence the “bud”, and
store in a page frame together

Only two compressed pages per page frame

 Caps effective compression at 50% BUT
 Enables a more deterministic reclaim time

Hoping to enabled zsmalloc soon

Code at mm/zbud.c

IBM Linux Technology Center

© 2013 IBM Corporation

Zbud

first_buddy last_buddyunused

Page Frame in the pool

First compressed page data
Is page aligned at beginning

Last compressed page data
Is page aligned at the end

IBM Linux Technology Center

© 2013 IBM Corporation

Enabling Zswap

Zswap must be enabled at boot time with a
kernel parameter

zswap.enabled=1

An optional kernel parameter can set the
compressor to any compressor enabled in the
kernel cryptoraphic API (lzo is the default)

zswap.compressor=deflate

IBM Linux Technology Center

© 2013 IBM Corporation

Enabling Zswap

There is only one tunable, max_pool_percent,
that specifies the maximum percentage of RAM
that can be used for compressed pool

/sys/modules/zswap/parameters

Statistics on zswap activity are available in
debugfs

/sys/kernel/debug/zswap
Frontswap stats can also be relevant

© 2006 IBM Corporation

IBM Linux Technology Center

Enough talk, let's do this!

IBM Linux Technology Center

© 2013 IBM Corporation

9 10 11 12 13 14 15 16 17
0%

20%

40%

60%

80%

100%

120%

SPECjbb Performance

10GB RAM, 2core SMT4, Power7+, max_pool_percent=40

Base %nom
LZO %nom
842 (HW) %nom

JVM Heap Size (GB)

%
 n

o
m

ia
l b

o
p

s

70% of nominal performance
at 140% memory load!

IBM Linux Technology Center

© 2013 IBM Corporation

9 10 11 12 13 14 15 16 17
0

10000

20000

30000

40000

50000

60000

70000

80000

Swap I/O

10GB RAM, 2core SMT4, Power7+, max_pool_percent=40

Base swap I/O
LZO swap I/O
842 (HW) swap I/O

JVM Heap Size (GB)

S
w

a
p

 I/
O

 (
kB

/s
)

No/little swap I/O until the
compressed pool is full at
140% memory load

IBM Linux Technology Center

© 2013 IBM Corporation

9 10 11 12 13 14 15 16 17
0%

20%

40%

60%

80%

100%

120%

SPECjbb Performance

10GB RAM, 2core SMT4, Power7+, max_pool_percent=40

Base %nom
LZO %nom
842 (HW) %nom

JVM Heap Size (GB)

%
 n

o
m

ia
l b

o
p

s

1

2

3

IBM Linux Technology Center

© 2013 IBM Corporation

Case 1

Memory is not overcommitted

No/little swap I/O is occurring

Zswap is idle

freeused

RAM

Swap

free

IBM Linux Technology Center

© 2013 IBM Corporation

Case 2

Memory is overcommitted

Below nominal performance due to memory scanning,
unmapping, compression, and decompression

No/little swap I/O is occurring

compressedused

RAM

Swap

free

IBM Linux Technology Center

© 2013 IBM Corporation

Case 3

Memory is overcommitted and compressed pool is full

Zswap begins decompressing the oldest pages and
writing them to the swap device

Converges on non-zswap performance and swap I/O

compressedused

RAM

Swap

free

max_pool_percent

used

IBM Linux Technology Center

© 2013 IBM Corporation

Policy Design

Pool allocation

 Static, pre-allocated
 Dynamic, grows under pressure

Pool sizing

 Managed by some heuristic in the MM
 Controlled by the user via a tunable

Pool overflow action

 Write oldest compressed pages to the swap device
 Reject cache store; falls to swap device (inverse LRU)

IBM Linux Technology Center

© 2013 IBM Corporation

Uses cases

 IaaS user

 Pay for less RAM

 IaaS provider

 Higher guest density

Fixed memory systems

IBM Linux Technology Center

© 2013 IBM Corporation

Gotchas

Zswap is a cache layer on top of the swap device, not
the swap device itself

The cache can not hold more pages than can fit in the
swap device

© 2006 IBM Corporation

IBM Linux Technology Center

Other/Future Work in Compressed Memory

IBM Linux Technology Center

© 2013 IBM Corporation

zram

Zram is a driver currently in the drivers staging tree
that acts as a compressed ram disk that can be used
directly as a swap device

Differs from zswap in that zram is the swap device
rather than a caching layer on top of the swap device

Zram is preferred by embedded application that do not
have an actual swap device

Minchan Kim is heading up the mainlining effort

IBM Linux Technology Center

© 2013 IBM Corporation

zcache

Zcache has been many things over the years in the
driver staging tree

Has now been dropped from staging

Bob Lui has stripped it down to only the page cache
compression elements and is trying to get it accepted
directly

 Would be the first non-Xen user of cleancache API

IBM Linux Technology Center

© 2013 IBM Corporation

zcache

Page cache compression has a unique challenge over
swap compression

A swap cache store always avoids a write where as a
file cache store may avoid a (re)read

Better heuristics and feedback mechanisms are
needed to determine whether or not compressing a
particular page cache page is worth it

We don't want to be compressing page cache page
just to end up throwing them away

IBM Linux Technology Center

© 2013 IBM Corporation

Future

This is a new field for memory management with lots
of use cases, mechanisms, and best policies yet to be
determined

Zswap is just a first step

Move to “page addressable memory” concept model

 Swap
 High memory

Managed and reclaimed with other memory types

IBM Linux Technology Center

© 2013 IBM Corporation

Summary

Zswap is in mainline for v3.11

 Off by default
 Experimental until properly vetted on a variety of systems

and workloads

Allows for RAM sizings closer to the average working
set than the peak or increased workload size

Compressed memory acts like a safety net that won't
complete trash your workload and swamp your SAN if
you overcommit a little

 Higher guest density in IaaS setups

© 2006 IBM Corporation

IBM Linux Technology Center

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

