
How do debuggers (really) work?

Paweł Moll
<pawel.moll@arm.com>

1 CONFIDENTIAL

The plan

Life of Brian Breakpoint

And Now For Something Completely Different
Hardware

The Holy Grail JTAG

The Meaning of Life Debugging Symbols

2 CONFIDENTIAL

Debugger

A debugger or debugging tool is a computer program that is used to test and debug other
programs (the “target” program).

³ https://en.wikipedia.org/wiki/Debugger

3 CONFIDENTIAL

Debugger

A debugger or debugging tool is a computer program that is used to test and debug other
programs (the “target” program).

³ https://en.wikipedia.org/wiki/Debugger

3 CONFIDENTIAL

Debugger

I don’t like debuggers. Never have, probably never will.

³ Linus Torvalds �torvalds#transmeta.com! (2000)

4 CONFIDENTIAL

Debugger

I don’t like debuggers. Never have, probably never will.
³ Linus Torvalds �torvalds#transmeta.com! (2000)

4 CONFIDENTIAL

ptrace

long ptrace(enum __ptrace_request request, pid_t pid,
void *addr, void *data);

The ptrace() system call provides a means by which one process (the ”tracer”) may
observe and control the execution of another process (the ”tracee”), and examine and
change the tracee’s memory and registers. It is primarily used to implement breakpoint
debugging and system call tracing.

³ man 2 ptrace

Used by gdb, strace, DynInst...

5 CONFIDENTIAL

Attaching to a process

(gdb) start PTRACE_TRACEME – makes parent a tracer (called by a tracee)

(gdb) attach PID PTRACE_ATTACH – attach to a running process

Watch out for Yama security module:
Could not attach to process. If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user. For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.

prctl(PR_SET_PTRACER, pid, ...)

6 CONFIDENTIAL

Basic control

(gdb) stop kill(child_pid, SIGSTOP) (or PTRACE_INTERRUPT)

(gdb) continue PTRACE_CONT

(gdb) info registers PTRACE_GET(FP)REGS(ET) and PTRACE_SET(FP)REGS(ET)

(gdb) x PTRACE_PEEKTEXT and PTRACE_POKETEXT

7 CONFIDENTIAL

Setting a breakpoint

(gdb) br *ADDRESS

Instruction at the given address is read, saved and replaced with a breakpoint:
either a special instruction,
or an undefined encoding.

8 CONFIDENTIAL

Hitting a breakpoint

Executing breakpoint instruction causes:
SIGTRAP when using special instruction,
SIGILL for undefined instructions.

Any signal destined for the tracee stops its execution.

Tracer is notified about it via waitpid(PID) result.

Breakpoint-related signals are suppressed (otherwise would be delivered to the tracee after
continuing).

To continue, the original instruction is temporarily restored and single stepped.

9 CONFIDENTIAL

Remote (Serial) Protocol

Provides cross-development environment, with tracee being traced by a “gdb stub”, with
debugger UI running on a separate system.

(gdb) target remote TARGET Support for serial port, TCP, UDP and custom (pipe) connections.

ASCII based protocol (now some commands take 8-bit binary data)

(gdb) x/1h 0x4015bc will send the following command packet: $m4015bc,2#5a.

gdbserver could generate the following response: + $2f86#06.

Well documented and understood, used by libre (kgdb, OpenOCD) and commercial stubs and
debuggers.

10 CONFIDENTIAL

Conditional breakpoints

Breakpoint can have a script (set of conditions) attached to it.

Each breakpoint is always taken, but gdb can automatically continue if conditions not met.

Can introduce significant overhead, particularly over serial connection.
gdb provides alternative in a form of tracepoints.

Can collect data and store in a buffer.
Can be entirely evaluated in the remote gdb stub...
or even in the tracee address space, using an interpreter loaded as a shared object.

Also consider DBI tools like DynInst
Condition evaluation or data collection performed by JITed code.

11 CONFIDENTIAL

Software breakpoints

This kind of breakpoints is known as software breakpoints (sometimes as memory breakpoints,
not to be confused with watchpoints).

There is no limitation on its number being simultaneously active (expect for the memory
available for the tracer).
Requires modification of the program code

Can be dangerous if done wrong (leftovers)
Requires write access to the program memory

12 CONFIDENTIAL

Debug hardware

Additional logic (execution mode) in processor.

Can provide halting mode debugging.

Can allow simple single stepping.

Usually provides support for hardware breakpoints and watchpoints.

“‘Expensive” in terms of silicon area and pins.

Often provides tracing capabilities (not covered here).

13 CONFIDENTIAL

Hardware breakpoints

Comparator watching program counter value with pre-programmed value.

Limited number of such resources.

Usually generates instruction fetch exception, resulting in SIGSEGV or SIGTRAP.

As with software breakpoints, can be recognized based on PC value and list of active
breakpoints.

Can be implemented as a kernel perf event and interfaced with PTRACE_SET(GET)HBPREGS.

14 CONFIDENTIAL

Watchpoints

Sometimes known as data or memory breakpoints (not to be confused with software
breakpoints).

Comparator observing data address bus.

Can trigger on loads (memory read), stores (memory write) or both.

Usually generates data abort exception, resulting in SIGSEGV or SIGTRAP.

15 CONFIDENTIAL

JTAG Debugger

Also known as JTAG box, debug probe, debug adapter, debug hardware unit, protocol
converter, ICE (although it’s not accurate)...

Usually expensive...

... but can be an FTDI dongle driven by OpenOCD!

JTAG stands for Joint Test Action Group.

Created IEEE 1149.1-1990 “Standard Test Access Port and Boundary-Scan Architecture”.

“Low cost” port and infrastructure for silicon testing.

16 CONFIDENTIAL

JTAG Interface

Bi-directional serial interface with data input
and output, single control bit and a clock
input.

Defines two registers (DR and IR) of
different lengths.

Meaning (and length) of DR depends on
current IR content.

Modern chips contain many separate scan
chains, often not connected to the “JTAG
port”.

17 CONFIDENTIAL

Debug Access Port

Gateway between re-purposed JTAG bit protocol and debug logic
Debug hardware often visible in a special memory address space
E.g. (gdb) stop requires writing 0x1 (Halt Request) to address 0x090 (Debugger Run Control
Register) of the CPU debug unit.

Shift 4 bits into IR
Shift 34 bits into DR
Shift 4 bits into IR
Shift 34 bits into DR
Shift 34 bits into DR

I really wish this guy was an UART expert!

There are (slightly) better alternatives like SingleSerial Wire Debug port (two wires plus
ground)

18 CONFIDENTIAL

Debug Access Port

Gateway between re-purposed JTAG bit protocol and debug logic
Debug hardware often visible in a special memory address space
E.g. (gdb) stop requires writing 0x1 (Halt Request) to address 0x090 (Debugger Run Control
Register) of the CPU debug unit.

Shift 4 bits into IR
Shift 34 bits into DR
Shift 4 bits into IR
Shift 34 bits into DR
Shift 34 bits into DR

I really wish this guy was an UART expert!

There are (slightly) better alternatives like SingleSerial Wire Debug port (two wires plus
ground)

18 CONFIDENTIAL

Debug Access Port

Gateway between re-purposed JTAG bit protocol and debug logic
Debug hardware often visible in a special memory address space
E.g. (gdb) stop requires writing 0x1 (Halt Request) to address 0x090 (Debugger Run Control
Register) of the CPU debug unit.

Shift 4 bits into IR
Shift 34 bits into DR
Shift 4 bits into IR
Shift 34 bits into DR
Shift 34 bits into DR

I really wish this guy was an UART expert!

There are (slightly) better alternatives like SingleSerial Wire Debug port (two wires plus
ground)

18 CONFIDENTIAL

Halting mode debugging

Stops normal program execution.
Processor clocks halted
But external peripherals will still run (RTC, DMA etc.)

Provides Debug Communications Channel
Debugger can inject an instruction into the pipeline...
... execute it...
... and access a couple of special system registers.

Target memory is accessed by executing load and store instructions (LDR X0, [X1]).
Transfers will go through MMU and caches, so accessing variables in cache will return correct value.
Value then transferred into Debug Data Transfer Register (MSR DBGDTRRX_EL0, X0).
Debugger must carefully manage pipe line, register bank, caches...

Chip can also provide direct access to memory bus.
Usually non coherent with the processors.
Accessing addresses of cached variables will return wrong value.

19 CONFIDENTIAL

Debug information

Optional sections in an ELF file, generated by a compiler.
Defined in the DWARF standard (it’s a world of fantasy).
Debuggers live and die on its quality.

Trade-off between debugging accuracy and code optimisation.

Symbols description (functions, variables, compilation units) in .debug_info.
<0><51>: Abbrev Number: 1 (DW_TAG_compile_unit)

<52> DW_AT_producer : (indirect string, offset: 0x0): GNU C 4.6.3
<56> DW_AT_language : 1 (ANSI C)
<57> DW_AT_name : a.c
<5b> DW_AT_comp_dir : (indirect string, offset: 0x13): /home/pawmol01
<5f> DW_AT_low_pc : 0x836c
<63> DW_AT_high_pc : 0x837e
<67> DW_AT_stmt_list : 0x36

<1><6b>: Abbrev Number: 2 (DW_TAG_subprogram)
<6c> DW_AT_external : 1
<6d> DW_AT_name : a
<6f> DW_AT_decl_file : 1
<70> DW_AT_decl_line : 3
<71> DW_AT_prototyped : 1
<72> DW_AT_type : <0x82>
<76> DW_AT_low_pc : 0x836c
<7a> DW_AT_high_pc : 0x837e
<7e> DW_AT_frame_base : 0x2c (location list)

20 CONFIDENTIAL

Source line information

.debug_line section.

Mapping machine instruction address to
source code line.
CU: a.c:
File name Line number Starting address
a.c 4 0x836c
a.c 5 0x8370
a.c 6 0x837a

Optimized code very hard to describe
Optimised out symbols (missing functions and
variables).
Code reordering and folding (no instruction
per source line).
C++ templates (more than one source line per
instruction).
Inlining (code flow disturbances).

File name Line number Starting address
./dhry_1.c:[++]
dhry_1.c 196 0x8806
/usr/include/bits/string3.h:
string3.h 105 0x8808
./dhry_1.c:[++]
dhry_1.c 196 0x880c
dhry_1.c 210 0x881a
dhry_1.c 211 0x8822
dhry_1.c 210 0x8824
dhry_1.c 382 0x882a
dhry_1.c 211 0x882e
dhry_1.c 382 0x8832
dhry_1.c 211 0x8838
dhry_1.c 382 0x883c
dhry_1.c 172 0x8840
dhry_1.c 233 0x884e
/usr/include/bits/stdio2.h:
stdio2.h 105 0x885c
./dhry_1.c:[++]
dhry_1.c 257 0x88dc
/usr/include/bits/stdio2.h:
stdio2.h 105 0x88e4
./dhry_1.c:[++]
dhry_1.c 253 0x890c

21 CONFIDENTIAL

Debug illusion

22 CONFIDENTIAL

Debug illusion

23 CONFIDENTIAL

Stack unwinding

Frame Pointer based stack walking fast, but not always possible.

Unwinding information (almost) accurate.

Defined as Call Frame Information in DWARF specification.

State machine taking Frame Description Entry instructions and processing them in a loop.
Processing starts from a entry associated with a given instruction.

Unwinding tables can be generated for all instructions in the program,
or only for certain ones which can cause exceptions.

The result is a pointer to the top of a stack frame, enabling return address recovery.

Unwinding information can be big and is expensive to process.

24 CONFIDENTIAL

Call stack

Also known as backtrace.

Created basing on function return addresses on the
program stack.

Function a() calls function b() which calls c().

(gdb) bt can show the following:

#0 c () at c.c:5
#1 0x00008388 in b () at b.c:5
#2 0x00008374 in a () at a.c:5

c.c:3: int c(void)
 4: {
 5: return 1;
 6: }

b.c:3: int b(void)
 4: {
 5: return c();
 6: }

a.c:3: int a(void)
 4: {
 5: return b() + 1;
 6: }

25 CONFIDENTIAL

Call Return stack

But b()’s return value is equal to the value returned
by c(), therefore c() can return directly to a().

The blue branch does not save return address on stack.
Tail call optimisation.

In result b() was called, but (gdb) bt will not show it:

#0 c () at c.c:6
#1 0x00008366 in a () at a.c:5

c.c:3: int c(void)
 4: {
 5: return 1;
 6: }

b.c:3: int b(void)
 4: {
 5: return c();
 6: }

a.c:3: int a(void)
 4: {
 5: return b() + 1;
 6: }

26 CONFIDENTIAL

Summary

Debugging needs support from operating system and/or hardware.

Debug hardware is expensive therefore limited.

Debugger can only show what it knows about.

Describing code generated by a modern compiler is hard.

Backtraces must be treated with limited confidence.

27 CONFIDENTIAL

Closing remark

The most effective debugging tool is still careful thought,

coupled with judiciously placed
print statements.

³ Brian W. Kernighan, Unix for Beginners (1979)

28 CONFIDENTIAL

Closing remark

The most effective debugging tool is still careful thought, coupled with judiciously placed
print statements.

³ Brian W. Kernighan, Unix for Beginners (1979)

28 CONFIDENTIAL

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

29 CONFIDENTIAL

