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Introduction to NVMe

 NVM Express (NVMe) originally was a 
vendor-independent interface for PCIe 
storage devices (usually Flash)

 NVMe uses a command set that gets sent 
to multiple queues (one per CPU in the 
best case)

 NVMe creates these queues in host 
memory and uses PCIe MMIO transactions 
to communicate them with the device



NVMe over Fabrics

 Is a way to send NVMe commands over 
networking protocols (“Fabrics”).  E.g.
– RDMA (Infiniband, iWarp, RoCE, ..)
– Fibre Channel

 At this point still worded as an add-on to 
the NVMe spec and not fully integrated 
with the PCIe version.



NVMe Transports



Capsules

Each Capsule sends the NVMe 
submission queue entry (aka 
command) plus an optional 
payload

 Shared memory queues are replaced by capsules
 The queue concept is moved to the transport
 The submission queue entry itself also needs 

changes as PRPs or simple SGLs don’t work for 
the Fabrics transports



NVMe over Fabrics layering



Fabrics Commands

 NVMe traditionally uses MMIO registers for 
initialization

 NVMe over Fabrics instead adds new 
“Fabrics” commands to create queues and 
get or set properties:
– Connect
– Property Set
– Property Get



Discovery

 NVMe traditionally uses the PCIe bus for 
enumeration, on Fabrics we need a way to 
find available NVMe controllers:
– New concept of a discovery controller



NVMe over RDMA

 Uses RDMA technologies using IB Verbs to 
transport NVMe packets

 Uses RDMA/CM to establish connections
 Normal I/O path is to register the memory 

on the host (client) and perform RDMA 
READ/WRITE operations from/to it on the 
target.

 Also allows inline data in the command 
submission



NVMe over Fabrics in Linux

 Initially there were at least two 
implementations: Intel (+ a few others) 
and HGST.

 Initial HGST prototype:
– simply tunnel NVMe commands over 

the existing SRP protocol
– Then tried to accommodate the existing 

draft spec where possible
– Where not possible, change the spec.



NVMe Linux Fabrics Driver WG

 In 2015 a new working group of the NVM 
Express organization was created to merge 
the different Linux development streams.

 Multiple dozen members, with more than a 
handful actively contributing and even 
more testing the code base

 Tried to follow Linux-style development as 
much as possible:
– Private git repository
– Mailing list



NVMe Linux Driver

 Even before the release of the spec we 
started splitting the existing Linux NVMe 
driver into a common and a PCIe specific 
part:
– Use struct request passthrough for 

NVMe command (similar to SCSI)
– Separate data structures into common 

and PCIe
– Add struct nvme_ctrl_ops
– And move the code of course



NVMe over Fabrics Host Driver

 The new Fabric drivers uses the 
existing common code

 Additional it is split into a small 
common fabrics library and the 
actual transport driver

 The transport driver is in control of 
the actual I/O path (no additional 
indirections for the fast path)

 Existing user space APIs of the PCIe 
driver are all also supported when 
using Fabrics

 Uses new sub-command of the 
existing nvme-cli tool to connect to 
remote controllers



NVMe Linux Host Driver now

Common

PCIe

Fabrics Common

RDMA

 Most code is shared for the 
different transports

 Transport drivers are fairly small 
(~2000 lines of code)



NVMe Target

 Supports implementing NVMe controllers 
in the Linux kernel
– Initially just NVMe over Fabrics
– Adding real PCIe support (e.g. using 

vhost) could be done later
 Split into a generic target and transport 

drivers:
– RDMA
– Loop (for local testing)



NVMe Target

 The NVMe target can use any Linux block 
device (NVMe, SCSI, SATA, ramdisk, virtio)
– Uses the block layer to communicate 

with the device
– Early experiments with NVMe command 

passthrough not continued



NVMe Target

 Initially implemented the bare minimum of 
required NVMe commands:
– READ, WRITE, FLUSH + admin 

command
– We now also support DSM (aka discard)
– More functionality (e.g. Persistent 

Reservations is planned)



NVMe Target

Core

Fabrics

RDMA

loop

 Again most code is in the core

 The whole core (~ 3000 lines of 
code) is smaller than many SCSI 
target transport drivers

 We agressively tried offloading 
code to common libraries (e.g. 
RDMA R/W API, configfs 
improvements) and will continue 
to do so for new features (e.g. 
Persistent Reservations)



NVMe Target – configuration

 Uses a configfs interface to let user space 
tools configure the tool.
– Simpler and more integrated than the 

SCSI target
 The prime user space tool is called 

nvmetcli and is written in python
– Allows interactive configuration using a 

console interface
– Allows saving configurations into json 

format and restoring them



Nvmetcli



Initial Performance Measurements

 13us latency for QD=1 random reads
– Sub-10us network contribution



Performance Measurements (2)

 Polling allows for sub-
7us added latency



Status

 All code mentioned is in the block 
maintainer tree and should be merged in 
Linux 4.8

 Fibre Channel support for both the host 
and target will be submitted soon

 The updated nvme-cli with Fabrics support 
and nvmetcli need to get into Distributions



Links

 Block layer git tree with NVMe over Fabrics 
support:

– http://git.kernel.dk/cgit/linux-block/log/?h=for-next

 Nvme-cli repository:
– http://github.com/linux-nvme/nvme-cli/

 Nvmetcli repository:
– http://git.infradead.org/users/hch/nvmetcli.git

http://git.kernel.dk/cgit/linux-block/log/?h=for-next


Questions?
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