
2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

NVMe Over Fabrics Support in
Linux

Christoph Hellwig

Introduction to NVMe

 NVM Express (NVMe) originally was a
vendor-independent interface for PCIe
storage devices (usually Flash)

 NVMe uses a command set that gets sent
to multiple queues (one per CPU in the
best case)

 NVMe creates these queues in host
memory and uses PCIe MMIO transactions
to communicate them with the device

NVMe over Fabrics

 Is a way to send NVMe commands over
networking protocols (“Fabrics”). E.g.
– RDMA (Infiniband, iWarp, RoCE, ..)
– Fibre Channel

 At this point still worded as an add-on to
the NVMe spec and not fully integrated
with the PCIe version.

NVMe Transports

Capsules

Each Capsule sends the NVMe
submission queue entry (aka
command) plus an optional
payload

 Shared memory queues are replaced by capsules
 The queue concept is moved to the transport
 The submission queue entry itself also needs

changes as PRPs or simple SGLs don’t work for
the Fabrics transports

NVMe over Fabrics layering

Fabrics Commands

 NVMe traditionally uses MMIO registers for
initialization

 NVMe over Fabrics instead adds new
“Fabrics” commands to create queues and
get or set properties:
– Connect
– Property Set
– Property Get

Discovery

 NVMe traditionally uses the PCIe bus for
enumeration, on Fabrics we need a way to
find available NVMe controllers:
– New concept of a discovery controller

NVMe over RDMA

 Uses RDMA technologies using IB Verbs to
transport NVMe packets

 Uses RDMA/CM to establish connections
 Normal I/O path is to register the memory

on the host (client) and perform RDMA
READ/WRITE operations from/to it on the
target.

 Also allows inline data in the command
submission

NVMe over Fabrics in Linux

 Initially there were at least two
implementations: Intel (+ a few others)
and HGST.

 Initial HGST prototype:
– simply tunnel NVMe commands over

the existing SRP protocol
– Then tried to accommodate the existing

draft spec where possible
– Where not possible, change the spec.

NVMe Linux Fabrics Driver WG

 In 2015 a new working group of the NVM
Express organization was created to merge
the different Linux development streams.

 Multiple dozen members, with more than a
handful actively contributing and even
more testing the code base

 Tried to follow Linux-style development as
much as possible:
– Private git repository
– Mailing list

NVMe Linux Driver

 Even before the release of the spec we
started splitting the existing Linux NVMe
driver into a common and a PCIe specific
part:
– Use struct request passthrough for

NVMe command (similar to SCSI)
– Separate data structures into common

and PCIe
– Add struct nvme_ctrl_ops
– And move the code of course

NVMe over Fabrics Host Driver

 The new Fabric drivers uses the
existing common code

 Additional it is split into a small
common fabrics library and the
actual transport driver

 The transport driver is in control of
the actual I/O path (no additional
indirections for the fast path)

 Existing user space APIs of the PCIe
driver are all also supported when
using Fabrics

 Uses new sub-command of the
existing nvme-cli tool to connect to
remote controllers

NVMe Linux Host Driver now

Common

PCIe

Fabrics Common

RDMA

 Most code is shared for the
different transports

 Transport drivers are fairly small
(~2000 lines of code)

NVMe Target

 Supports implementing NVMe controllers
in the Linux kernel
– Initially just NVMe over Fabrics
– Adding real PCIe support (e.g. using

vhost) could be done later
 Split into a generic target and transport

drivers:
– RDMA
– Loop (for local testing)

NVMe Target

 The NVMe target can use any Linux block
device (NVMe, SCSI, SATA, ramdisk, virtio)
– Uses the block layer to communicate

with the device
– Early experiments with NVMe command

passthrough not continued

NVMe Target

 Initially implemented the bare minimum of
required NVMe commands:
– READ, WRITE, FLUSH + admin

command
– We now also support DSM (aka discard)
– More functionality (e.g. Persistent

Reservations is planned)

NVMe Target

Core

Fabrics

RDMA

loop

 Again most code is in the core

 The whole core (~ 3000 lines of
code) is smaller than many SCSI
target transport drivers

 We agressively tried offloading
code to common libraries (e.g.
RDMA R/W API, configfs
improvements) and will continue
to do so for new features (e.g.
Persistent Reservations)

NVMe Target – configuration

 Uses a configfs interface to let user space
tools configure the tool.
– Simpler and more integrated than the

SCSI target
 The prime user space tool is called

nvmetcli and is written in python
– Allows interactive configuration using a

console interface
– Allows saving configurations into json

format and restoring them

Nvmetcli

Initial Performance Measurements

 13us latency for QD=1 random reads
– Sub-10us network contribution

Performance Measurements (2)

 Polling allows for sub-
7us added latency

Status

 All code mentioned is in the block
maintainer tree and should be merged in
Linux 4.8

 Fibre Channel support for both the host
and target will be submitted soon

 The updated nvme-cli with Fabrics support
and nvmetcli need to get into Distributions

Links

 Block layer git tree with NVMe over Fabrics
support:

– http://git.kernel.dk/cgit/linux-block/log/?h=for-next

 Nvme-cli repository:
– http://github.com/linux-nvme/nvme-cli/

 Nvmetcli repository:
– http://git.infradead.org/users/hch/nvmetcli.git

http://git.kernel.dk/cgit/linux-block/log/?h=for-next

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

