Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)

Vadim Schechtman[1]

  • [1] Institut des Mathématiques de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse, France

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 2, page 353-375
  • ISSN: 0240-2963

Abstract

top
We give an exposition of unpublished fragments of Gauss where he discovered (using a work of Jacobi) a remarkable connection between Napier pentagons on the sphere and Poncelet pentagons on the plane. As a corollary we find a parametrization in elliptic functions of the classical dilogarithm five-term relation.

How to cite

top

Schechtman, Vadim. "Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)." Annales de la faculté des sciences de Toulouse Mathématiques 22.2 (2013): 353-375. <https://eudml.org/doc/275393>.

@article{Schechtman2013,
abstract = {We give an exposition of unpublished fragments of Gauss where he discovered (using a work of Jacobi) a remarkable connection between Napier pentagons on the sphere and Poncelet pentagons on the plane. As a corollary we find a parametrization in elliptic functions of the classical dilogarithm five-term relation.},
affiliation = {Institut des Mathématiques de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse, France},
author = {Schechtman, Vadim},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {6},
number = {2},
pages = {353-375},
publisher = {Université Paul Sabatier, Toulouse},
title = {Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)},
url = {https://eudml.org/doc/275393},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Schechtman, Vadim
TI - Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 2
SP - 353
EP - 375
AB - We give an exposition of unpublished fragments of Gauss where he discovered (using a work of Jacobi) a remarkable connection between Napier pentagons on the sphere and Poncelet pentagons on the plane. As a corollary we find a parametrization in elliptic functions of the classical dilogarithm five-term relation.
LA - eng
UR - https://eudml.org/doc/275393
ER -

References

top
  1. Baxter (R.J.).— Exactly solved models in statistical mechanics, Academic Press (1982). Zbl0723.60120MR690578
  2. Bos (H.J.M.), Kers (C.), Oort (F.), Raven (D.W.).— Poncelet’s closure theorem, Expos. Math. 5, p. 289-364 (1987). Zbl0633.51014MR917349
  3. Bowditch (B.H.).— A proof of McShane’s identity via Markoff triples, Bull. London Math. Soc. 28, p. 73-78 (1996). Zbl0854.57009MR1356829
  4. Coxeter (H.S.M.).— Frieze patterns, Acta Arithm. XVIII, p. 297-304 (1971). Zbl0217.18101MR286771
  5. Gauss (C.F.).— Pentagramma Mirificum, Werke, Bd. III, p. 481-490; Bd VIII, p. 106-111. 
  6. Flatto (L.).— Poncelet’s theorem, AMS, Providence (RI) (2009). Zbl1157.51001MR2465164
  7. Fricke (R.).— Bemerkungen zu [5], ibid. Bd. VIII, p. 112-117. 
  8. Gliozzi (F.), Tateo (R.).— ADE functional dilogarithm identities and integrable models, hep-th/9411203. 
  9. Greenhill (A.G.).— Applications of elliptic functions, 1892 (Dover, 1959). Zbl0087.08501MR111864
  10. Griffiths (P.), Harris (J.).— On Cayleys explicit solution to Poncelet’s porism, Enseign. Math. (2) 24, p. 31-40 (1978). Zbl0384.14009MR497281
  11. Hardy (G.H.).— Ramanujan, Cambridge, 1940 (AMS Chelsea, 1991). Zbl0025.10505
  12. Jacobi (C.G.J.).— Fundamenta nova theoriae functionum ellipticarum. 
  13. Jacobi (C.G.J.).— Über die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem der Elementargeometrie, Crelles J. 3 (1828). 
  14. Kirillov (A.).— Dilogarithm identities, hept-th/9408113. 
  15. Litttlewood (J.E.).— A mathematical miscellany, Review of Collected Papers of S. Ramanujan, Mathematical Gazette, April 1929, v. XIV, no. 200. 
  16. Napier (J.).— Mirifici Logarithmorum canonis descriptio, Lugdini (1619). 
  17. Onsager (L.).— Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65, p. 117-149 (1944). Zbl0060.46001MR10315
  18. Snape (J.).— Applications of elliptic functions in classical and algebraic geometry, Dissertation, Durham. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.