Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)
- [1] Institut des Mathématiques de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse, France
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 2, page 353-375
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSchechtman, Vadim. "Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)." Annales de la faculté des sciences de Toulouse Mathématiques 22.2 (2013): 353-375. <https://eudml.org/doc/275393>.
@article{Schechtman2013,
abstract = {We give an exposition of unpublished fragments of Gauss where he discovered (using a work of Jacobi) a remarkable connection between Napier pentagons on the sphere and Poncelet pentagons on the plane. As a corollary we find a parametrization in elliptic functions of the classical dilogarithm five-term relation.},
affiliation = {Institut des Mathématiques de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse, France},
author = {Schechtman, Vadim},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {6},
number = {2},
pages = {353-375},
publisher = {Université Paul Sabatier, Toulouse},
title = {Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)},
url = {https://eudml.org/doc/275393},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Schechtman, Vadim
TI - Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 2
SP - 353
EP - 375
AB - We give an exposition of unpublished fragments of Gauss where he discovered (using a work of Jacobi) a remarkable connection between Napier pentagons on the sphere and Poncelet pentagons on the plane. As a corollary we find a parametrization in elliptic functions of the classical dilogarithm five-term relation.
LA - eng
UR - https://eudml.org/doc/275393
ER -
References
top- Baxter (R.J.).— Exactly solved models in statistical mechanics, Academic Press (1982). Zbl0723.60120MR690578
- Bos (H.J.M.), Kers (C.), Oort (F.), Raven (D.W.).— Poncelet’s closure theorem, Expos. Math. 5, p. 289-364 (1987). Zbl0633.51014MR917349
- Bowditch (B.H.).— A proof of McShane’s identity via Markoff triples, Bull. London Math. Soc. 28, p. 73-78 (1996). Zbl0854.57009MR1356829
- Coxeter (H.S.M.).— Frieze patterns, Acta Arithm. XVIII, p. 297-304 (1971). Zbl0217.18101MR286771
- Gauss (C.F.).— Pentagramma Mirificum, Werke, Bd. III, p. 481-490; Bd VIII, p. 106-111.
- Flatto (L.).— Poncelet’s theorem, AMS, Providence (RI) (2009). Zbl1157.51001MR2465164
- Fricke (R.).— Bemerkungen zu [5], ibid. Bd. VIII, p. 112-117.
- Gliozzi (F.), Tateo (R.).— ADE functional dilogarithm identities and integrable models, hep-th/9411203.
- Greenhill (A.G.).— Applications of elliptic functions, 1892 (Dover, 1959). Zbl0087.08501MR111864
- Griffiths (P.), Harris (J.).— On Cayleys explicit solution to Poncelet’s porism, Enseign. Math. (2) 24, p. 31-40 (1978). Zbl0384.14009MR497281
- Hardy (G.H.).— Ramanujan, Cambridge, 1940 (AMS Chelsea, 1991). Zbl0025.10505
- Jacobi (C.G.J.).— Fundamenta nova theoriae functionum ellipticarum.
- Jacobi (C.G.J.).— Über die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem der Elementargeometrie, Crelles J. 3 (1828).
- Kirillov (A.).— Dilogarithm identities, hept-th/9408113.
- Litttlewood (J.E.).— A mathematical miscellany, Review of Collected Papers of S. Ramanujan, Mathematical Gazette, April 1929, v. XIV, no. 200.
- Napier (J.).— Mirifici Logarithmorum canonis descriptio, Lugdini (1619).
- Onsager (L.).— Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65, p. 117-149 (1944). Zbl0060.46001MR10315
- Snape (J.).— Applications of elliptic functions in classical and algebraic geometry, Dissertation, Durham.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.