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Abstract—We introduce a novel technique for C decompilation
that provides the correctness guarantees and readability proper-
ties essential for accurate and efficient binary analysis. Given a
binary executable, an evolutionary search seeks a combination
of source code excerpts from a “big code” database that can be
recompiled to an executable that is byte-equivalent to the original
binary. Byte-equivalence ensures that a successful decompilation
fully reproduces the behavior, both intended and unintended, of
the original binary. Moreover, the decompiled source is typically
more readable than source obtained with existing decompilers,
since it is generated from human-written source code excerpts.
We present experimental results demonstrating the promise of
this novel, general, and powerful approach to decompilation.

I. INTRODUCTION

Recent widespread incidents have highlighted the significant
threat malware poses to a secure internet. In a recent example,
the WannaCry malware infected more than 230,000 computers
in over 150 countries [34]. Reverse-engineering of WannaCry
binaries was key to stopping the malware’s spread [22]. In
general, reverse-engineering and analysis of malware binaries is
a critical first step in incident mitigation and recovery. Accurate
decompilation allows the use of source-based program analysis
tools, and enables security analysts to do their work more
efficiently by reasoning at the source code level.

Traditional decompilation is fundamentally limited by a
reliance on deterministic techniques that are often compiler-
specific, optimization-specific, and Instruction Set Architecture
(ISA)-specific; as a result decompilers are typically time-
intensive to write and to evaluate for correctness. Compilers
often generate obscure, idiosyncratic code that leverages deep
semantic properties of the source language and the target
ISA. The reasoned reversal of such compiler idioms is more
difficult than their initial implementation (and potentially
undecidable), a problem exacerbated by the relatively small
amount of development effort dedicated to decompilation
technology compared to compiler development. To reverse
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this imbalance, we use evolutionary search that leverages the
compilers themselves, enabling decompilation across compiler,
ISA, and source language.

Security analysis of binary applications requires trusted,
accurate, and readable decompilation. Existing decompilers
frequently produce decompilations that fail to achieve full func-
tional equivalence with the original program, and cannot identify
which portions of the decompiled source are accurate. Although
recent academic work has begun to target correctness [31], [38],
authors report that their decompilations often fail the weak
semantic-equivalence tests provided by the program’s test suite.

We propose byte-equivalence of recompilation as a deter-
ministically checkable guarantee of full semantic reproduction
of the original binary, including both desired behavior as
well as faults and vulnerabilities. Our technique performs an
evolutionary search, using a fitness function that measures
byte-similarity with the original binary executable. This search
leverages the compiler as a black box: existing compiler
transformations do not need to be analyzed or reversed because
they are applied directly when candidate decompilations are
recompiled. This process iteratively improves a large population
of candidate decompilations by applying source-to-source
transformations that draw from a large database of human-
written source code excerpts. The candidate population may be
initialized using randomly generated code, excerpts from this
large external code database, or even using the output of other
decompilers. Our technique then improves and re-combines the
initial candidates, driving them closer to byte-equivalence while
incorporating new human-written code excerpts to improve
fidelity and readability.

The resulting Byte-Equivalent Decompilation (BED) tool
combines insights from a diverse set of recent advances in
software engineering. Internet-scale “big code” databases are
increasingly used to drive program analysis and synthesis [5],
[26], [20]. Search based techniques are now an accepted tool
for common software engineering and analysis tasks including
program repair [18], [36], [19], program optimization [16], [29],
and high performance fuzz testing [39], [40]. Compilers have
been used for partial decompilation, to automatically generate
assembly to compiler-IR translators [12]. Finally, essential to
BED’s success, a study of Gabel and Su [11] covering 430
million lines of source code revealed:

a general lack of uniqueness in software at levels of
granularity equivalent to approximately one to seven
lines of source code [. . . ] crossing both project and
programming language boundaries.
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#include <stdio.h>
#define MAX 1000000
int main(void)
{
int pprev = 0,

prev = 1;
int num = 0;
int tot = 0;

while (tot < MAX) {
num = prev + pprev;
prev = pprev;
pprev = num;
if (num % 2 == 0) {

tot = tot + num;
}

}
printf("%d\n", tot);

return 0;
}

(a) Original source code.

int main(void)
{

int x = 0, y = 1;
long int sum1 = 0, sum2 = 0;
while (sum2 < 1000000) {

sum1 = y + x;
y = x;
x = sum1;
if (sum1 % 2 == 0) {
sum2 = sum2 + sum1;

}
}
printf("%d\n", sum2);
return 0;

}

(b) Byte-equivalent BED output.

Fig. 1. Problem 2 from the Project Euler [2] set, shown in original source (Fig-
ure 1a), and BED evolved byte-equivalent decompilation (Figure 1b). The C
compiler automatically adds #include <stdio.h> when required.

We evaluate BED against a benchmark of small C programs
exercising specific language constructs. We demonstrate the
viability of the technique by achieving byte-equivalent decom-
pilation of most benchmark programs. The BED technique can
be parallelized across functions, suggesting that our results can
extend to larger programs.

We compare BED to the industry leading HEX-RAYS
Decompiler [9] using a number of correctness and readability
metrics. We find BED often outperforms HEX-RAYS on
such criteria, even when full byte-equivalence is not attained.
Even when only partial byte-equivalence is attained, BED is
able to identify lines of the decompiled source and regions
of the original binary that do achieve full byte-equivalent
recompilation (Figure 3). This ensures the utility of BED’s
output for security analysis by providing the guarantees of full
byte-equivalence for large—and clearly delineated—regions of
the decompiled source.

Experimental Results. In an evaluation against a benchmark
suite of small C source programs, the BED technique achieved
full byte-equivalent decompilations for 10 of the 19 programs.
For those optimized benchmark programs on which BED fails
to achieve byte-equivalence, BED typically matches >80% of
all machine-code instructions in the binary, increasing to 97%
when seeded with output from the HEX-RAYS Decompiler.

We selected a suite of decompilation quality metrics
(§IV-A4) with a focus on readability and correctness: properties
essential to the use of decompilation to support program security
analysis. We use byte-equivalence of the resulting binary as a
computable, strong proxy for correctness. BED outperforms
the HEX-RAYS Decompiler on 10 of the 13 metrics (§ IV-B2),
notably producing significantly shorter decompiled C source.

Contributions. We describe BED’s novel evolutionary de-
compilation technique, which leverages “big code” databases,
the original compiler, and byte-equivalent recompilation as
an objective function to achieve high-quality decompilation.
This approach generalizes across source languages, ISAs,
compilers, and optimizations.
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Fig. 2. BED system architecture. Individual components are described in §II.

Evolutionary search is accelerated with techniques that mine
useful excerpts from a large source code database. This
excerpt search is guided by similarity between the unmatched
bytes from the original binary and the bytes associated with
each source excerpt in the database. Methods of source
recontextualization are used to incorporate foreign code into
candidate decompilations.

We also apply targeted improvement methods to decom-
pilation candidates, such as injecting literals mined from the
target binary, and a technique for automatically responding to
compiler errors with additional edits to the candidate.

Software. BED is an application of GrammaTech’s open-
source Software Evolution Library for program synthesis
and repair [3]. Individual program edits are performed by
the clang-mutate tool [1]. The source code database and
similarity search were provided by the Pliny Database [42].

II. EXAMPLE

We walk through the BED technique for the small example
shown in Figure 1a, using the BED system architecture diagram
Figure 2 for reference.

The first step is to seed the candidate decompilation
population. Candidates may be constructed from whole function
excerpts from the source database that compile to bytes similar
to those in the target binary Figure 2 (1.a). We call such
candidates “frankensteins”. Optionally, the initial population
may be seeded with the outputs of one or more existing
decompilers (1.b). In the run producing this decompilation,
the best candidate in the initial population consisted of a single
function pulled from our database, which had approximately
55% byte-similarity with the target binary.

After a population of many such frankenstein candidate
decompilations has been generated, BED evolves the population
by iteratively applying both random and targeted source-to-
source transformations that leverage the code database (2),
recompiling the resulting candidates to produce new binaries
(3), and then evaluating the fitness of the resulting binary using
a byte-similarity fitness function (4). The evaluated candidates
are returned to the population (5), and the technique proceeds
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#include <stdio.h>
int main(int argc, char *argv[])
{

int i = 0;
// go through each string in argv
// why am I skipping argv[0]?
for(i = 1; i < argc; i++) {
printf("arg %d: %s\n", i, argv[i]);

}
// let’s make our own array of strings
char *states[] = {
"California", "Oregon",
"Washington", "Texas"

};
int num_states = 4;
for(i = 0; i < num_states; i++) {
printf("state %d: %s\n", i, states[i]);

}
return 0;

}

(a) Original source code.

int main(int argc, char** argv) {
for (int d = 1; argc * 1 > d; d++) {
printf("arg %d: %s\n", d, *argv);

};
int d;
d = 0;
printf("state %d: %s\n", d, "California");
d = 2;
printf("state %d: %s\n", 1, "Oregon");
printf("state %d: %s\n", d, "Washington");
printf("state %d: %s\n", 3, "Texas");

}

(b) Nearly byte-equivalent BED output.

Fig. 3. The tenth problem from the Learn C The Hard Way [32] programming
tutorial (Figure 3a), with BED-evolved decompilation (Figure 3b). Byte-
equivalence is achieved for > 98% of the program, only failing at the
highlighted line.

using an evolutionary algorithm to guide the search towards
increasing byte-similarity with the target in a process mimicking
natural selection. When full byte-equivalence against the target
is achieved the search terminates (6) returning the resulting
byte-equivalent decompilation.

We present a number of techniques to improve the efficiency
and accuracy of this search process. The application of source-
to-source transformations is weighted to target those regions
of candidate decompilations that currently fail to match the
original. After each mutation—if the resulting individual fails
to compile—BED may make targeted changes to achieve
compilation. This is particularly useful when attempting to
incorporate output from existing decompilers, which often fail
to recompile. Once the individual has been compiled and the
output compared against the target binary, BED may also make
targeted edits to inject literals mined from the target binary.
For example, the string literal on line 13 of Figure 1b and the
% 2 operation on line 9 of Figure 1b were both pulled directly
from the target binary after binary-to-binary comparison.

At each generation a subset of individuals are selected for
reproduction using lexicase selection (§ III-E); this maintains
diversity by ensuring candidates recompiling to match regions
of the original binary not matched by other candidates are not
lost from the population.

The results of this technique are shown in Figure 1 along
with the original source. The HEX-RAYS decompilation of
the same function demonstrates artifacts such as inclusion
of C runtime functions and comments referencing stack
offsets. By contrast the BED decompilation in Figure 1b has
similar size and form to the original, in Figure 1a, and could
plausibly have been written by a human. Although the HEX-
RAYS decompilation of this function fails to compile without
modification, the BED decompilation not only compiles, but
matches the original program byte for byte.

III. OVERVIEW

The BED algorithm is shown in Figure 4. The computa-
tionally expensive tasks of evaluation, line 7, and reproduction,
line 28, may both be parallelized across multiple threads.

The population may optionally be seeded, line 1, with the
output of existing decompilers (§ IV-A5) via the InitialPop.
Additional candidate decompilations may be synthesized from
the code database, line 3, using the Frankenstein() method
(§ III-A1). The algorithm’s main loop, lines 5–41, iteratively
evaluates, selects, and regenerates the population driving the
candidate decompilations towards increasing byte-similarity
with the target binary, TBin . During evaluation candidate
decompilations are first compiled, line 8, and failed compila-
tions are fixed when possible, line 10, (§ III-B2). Candidate
compilations are then compared against TBin , line 17 using
a disassembly-based fitness function (§ III-D) that returns the
diff between TBin and CBin . This diff is later used to drive
selection and to target mutation.

Selection is performed using lexicase selection, line 35,
(§ III-E); crossover is applied with chance, probability
CrossRate, line 30. Mutation is then applied yielding a new
candidate decompilation.

The generation counter is then incremented, line 40, and the
algorithm repeats with Pop now holding the newly generated
candidate decompilations. The algorithm runs until either byte-
equivalence is achieved, line 21, or the runtime budget of
MaxEvals is exhausted, line 41. In either case the resulting
candidate decompilation is minimized to remove any elements
of the evolved source that do not contribute to the final output
of the compiler (§ III-F).

The remainder of this section discuses each of these stages
in greater detail.

A. Creating an Initial Population

The initial population of candidate decompilations for BED
can be formed in many ways. We chose to focus on two
population-generating strategies:

1) Frankensteins: Frankensteins are composed of whole
functions drawn from the code database. Function signatures
and boundaries are extracted from the original binary using
CodeSurfer® for Binaries, GrammaTech’s static analysis plat-
form for analyzing stripped binaries, producing a template C file
consisting of function prototypes with empty bodies. The bytes
for each identified function are then used to perform a similarity
search in the code database as described in § III-C5. Multiple
frankenstein candidate decompilations are then generated by
replacing each empty body in the template C code with random
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Input: Target Binary, TBin : Executable
Input: Snippet Database, DB : Database
Parameters: PopSize , CrossRate , MaxEvals
Parameters: InitialPop, NumFranks , FixLitChance
Output: Decompilation of TBin

1: let Pop ← InitialPop, EvalCounter ← 0
2: do NumFranks times
3: let Pop ← Pop ∪ Frankenstein(DB,TBin)
4: end do
5: loop
6: let TmpPop ← ∅
7: for Candidate ∈ Pop do . Evaluation
8: let CBin← Compile(Candidate)
9: if CBin = Failed then

10: Candidate ← FixCompilation(Candidate)
11: CBin← Compile(Candidate)
12: end if
13: let Diff ← null
14: if CBin = Failed then
15: Diff ← Disassembly(TBin)
16: else
17: Diff ← Evaluate(TBin,CBin)
18: end if
19: EvalCounter ← EvalCounter + 1
20: if Fit = 0 then
21: return Minimize(Candidate)
22: else if EvalCounter ≥ MaxEvals then
23: return Minimize(Best(Pop))
24: end if
25: TmpPop ← 〈Candidate,Diff 〉
26: end for
27: Pop ← ∅
28: while |Pop| < PopSize do . Reproduction
29: let p← 〈null, null, null〉, p′ ← null
30: if Random() < CrossRate then
31: let p1 ← Select(TmpPop)
32: let p2 ← Select(TmpPop)
33: p← Crossover(p1, p2)
34: else
35: p← Select(TmpPop)
36: end if
37: let p′ ← Mutate(DB, p)
38: Pop ← Pop ∪ {p′}
39: end while
40: GenCounter ← GenCounter + 1
41: end loop

Fig. 4. BED algorithm.

selections from the search results, using a geometric distribution
to bias selections towards the top search results.

2) Other Decompilers: Any available decompiler may also
be used to seed the initial population of candidate decompi-
lations, jump-starting BED’s evolutionary search. Candidates
from multiple decompilers may be used in combination with
frankensteins to seed a single population. We evaluate the
impact of seeding the population with decompilation generated
via the HEX-RAYS Decompiler.

B. Local Search Techniques

To improve the speed with which the BED technique
converges on byte-equivalent decompilations we introduce two
forms of local search, literal mining § III-B1 and compilation
repair § III-B2. Each of these techniques may be used to

directly improve the fitness of randomly evolved candidate
decompilations. Evolutionary search techniques augmented with
local search are called memetic algorithms and have been proven
effective in many cases [21], [10].

1) Fixing Source Literals: Because no code database can
contain all possible literals to be utilized in a program, we
have developed a mutation to identify literals in the target
binary and insert them directly into the relevant portion of
the candidate source. Many of the literal values immediately
available in program binaries, such as addresses, are not suitable
candidates for source-level transformation. Also, the compiler
may optimize operations such as multiplication and division in
such a way that a literal value cannot be gleaned directly from
the disassembly.

To address the first challenge, we identify instructions that
contain references to program values. When an operand refer-
ences the read-only data section of the executable, we attempt to
find the literal value at the referenced location. For instance, in
“lea eax,0x80484e0”, suppose “0x80484e0” is the starting
address of the string literal “Hello, world!.” We would
offer this string as a candidate replacement for mutations in the
corresponding region of the decompilation. Similarly when we
encounter an instruction such as movsd xmm0,0x8048638, we
offer the floating point literal at 0x8048638 as a replacement.

To address the challenge of compiler optimization of
common arithmetic expressions, we mine constants from logical
representations of binary fragments. As an example, consider
the source fragment n = 12 * k; this may be represented at
the machine level as the a sequence of instructions equiva-
lent to n = k; n = (n + n + k) « 2;. After identifying
instruction sequences in the target binary that match the general
pattern of optimized multiplication or division, we generate a
formula describing the sequence’s net effect on the machine
state. The resulting formula can be mined for constant values;
in the example above, we would find that k was scaled by 12.

Our targeted fixing of source literals works by annotating
the target decompilation with mined source literals. During
fitness evaluation we identify the regions where the compiled
candidate differs from the target binary, and use debugging
information from the compilation to map those back to the
candidate source. The fixer can use this map to inject any
literals mined from a binary region back into the corresponding
source region.

2) Fixing non-compiling source code: Although we make
an effort to perform mutations that generate syntactically valid
individuals, it is possible that a newly-generated individual
will fail to compile. In this case, we apply a sequence of
compilation-fixing transformations by matching the compiler’s
error messages to known strategies for fixing compilation. For
example, a program that references a library function without
including an appropriate header file can cause an error of the
form “implicitly declaring library function F ”; on seeing such
an error, we automatically check if a man page exists for F
and, if so, extract any #include directives from that page.

Another common compilation fixer is applied when an error
of the form “use of undeclared identifier X” appears. In this
case, we insert a random declaration for the given identifier
on a line just before the error occurred, supplying a randomly-
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int fib(int n) {
int x = 0;
int y = 1;
while (n > 0) {

int t = x;
x = x + y;
y = t;

}
return x;

}

int collatz(int m) {
while (m != 1) {
if (m % 2 == 0)

m /= 2;
else

m = 3*m + 1;
++k;

}
printf("%d\n", k);
return k;

}

Fig. 5. Crossover example. If we perform crossover by trading lines 6–10 of
fib with lines 3–11 of collatz, we must ensure that k is not re-bound to
t; otherwise, the printf statement would reference an out-of-scope variable.

chosen type for the new declaration. This change is similar to
the Add Init repair type in SPR [19].

Our suite of compilation-fixing strategies includes tech-
niques designed to counter known problems in contributing de-
compilers. This significantly increases the utility of decompiler-
generated candidates to the BED evolutionary search.

If none of our compilation-fixing strategies are successful,
we simply delete the line on which the error occurred. The
compilation-fixing strategies are iterated until either an error-
free program is obtained, or until a maximum number of
attempts has been made.

The compilation-fixing strategies used by BED are available
as part of the Software Evolution Library [3].

C. Evolutionary Search

1) Recontextualization: We perform mutations directly on
the source text of our individuals, necessitating some cleanup
when regions of source code are injected into new contexts.
For example, imagine that we were to implement an “insert”
mutation, using the code excerpt x = x + 1. At the chosen
insertion point, it is very unlikely that a variable named x is
already in scope; a naïve insertion would result in an individual
that would not compile. To increase the changes that mutation
will result in compilable source, we recontextualize the code
by identifying all free identifiers and rebinding them to names
that are in scope at the insertion point.

When the mutation text involves a group of statements that
span more than one scope, extra caution is required to find
a valid rebinding of identifiers which respects all scopes, as
illustrated by the crossover example in Figure 5.

2) Mutations: When modifying a candidate decompilation,
we randomly apply either a basic mutation or a targeted
mutation from Table I. The basic mutations are standard “cut”
(remove an expression), “insert” (insert text), “swap”, and
“replace.” The targeted mutations are specialized mutations
designed specifically for decompilation. Tuning the set of
targeted mutations lets us inject domain-specific knowledge
into the evolutionary search. Each basic kind of mutation can
be modified by the kind of program region where it should be
applied, or the source of program text to use. The available
modifiers are:

Mutation Description

fix-literals Identify literals in the target binary and replace
incorrect source literals.

promote-guarded Promote statements from within compound state-
ments, (i.e. {...}).

explode-for-loop Decompose a for loop into a while loop.
coalesce-while-loop Coalesce a while loop and preceding assignment

into a for loop.
arith-assign-expansion Expand arithmetic assignments (e.g. +=) into tra-

ditional assignments.
insert-excerpt-decl Search the database specifically for a declaration

to be inserted into the program.
rename-variable Select a variable and replace with another in-scope

variable.

TABLE I. TARGETED MUTATIONS. BED uses these domain-specific
mutations to accelerate evolution and address problems identified empirically

during evolutionary decompilation runs.

• restrict the mutation to full statements only, 1

• restrict to source and target pairs with matching AST
classes,

• use source text drawn from the code database, and
• use source text drawn from elsewhere in the decompiled

program.

In all cases, the source text is recontextualized (see § III-C1).

3) Crossover: All crossover operations are homologous: the
parents are aligned before crossover points are selected. We
align parents by compiling each and matching their compiled
machine code. A crossover point in one parent is mapped
through the aligned machine code to a corresponding point
in the other parent’s source. Homologous crossover has been
previously shown to encourage meaningful and productive
crossover operations [23]. We perform two-point crossover,
selecting two aligned points. The region between these points
may open or close n scopes. In the second parent, we find a
homologous region with the same value of n and swap these
two regions, as shown in Figure 5.

4) Diff-targeted mutation: We focus mutations towards the
“broken” parts of the candidate decompilation. Specifically,
we identify bad statements in a program as those source
statements which compile to bytes belonging to some diff-
region, as described in § III-D. We limit mutation targets to
these bad statements with probability TargetChance (Table III),
and otherwise choose targets uniformly at random.

5) Similarity search: To improve the quality of excerpts
used in insertion and replacement mutations, we search our
excerpt database for the excerpts whose compiled form is most
byte-similar to the region of the target binary corresponding to
the point of mutation. This optimization leverages the diff-
region identified by the fitness function (see § III-D). We
search the database for the excerpts most similar to the target
binary’s disassembly in the diff-region using edit distance as our
similarity metric. We then perform a weighted random selection
from the sorted results, ensuring that those results from the
code database which most closely match the diff-region are
selected with a higher probability. In our experiments, the Pliny
Database [42] was used for code search.

1A “full statement” is defined as any immediate child of a block; these
roughly correspond to expressions in the C grammar that end with a semicolon
or are wrapped in braces.

5



D. Measuring Fitness

To evaluate a candidate decompilation of the target binary,
we use the edit distance between the target and candidate
decompilations’ disassembly listings as our fitness metric.2 We
assign a perfect fitness to each instruction in the target binary
within a common-region (i.e., non diff-region) and a bad fitness
value proportional to the size of the diff to each instruction in
the target binary within a diff-region.

To normalize the disassembly listings, we remove irrelevant
padding instructions used for alignment purposes. We also
resolve addresses as described in § III-B1. Finally, we identify
instructions that change the program counter, such as jmp
0x8014040 or call 0x8014080, and replace the address
operand with the section name and offset to ensure differences
in program alignment do not negatively impact fitness.

E. Updating the population with Lexicase Selection

Lexicase selection is a genetic programming technique
shown to dramatically increase population diversity and long
term evolutionary success in some cases [13]. With lexicase
selection, the fitness of an individual is represented as a
vector of independent test cases (instead of the traditional
representation as a scalar sum of passed test cases). Selection
is performed by iteratively filtering the population by best
performance on a random ordering of the tests in this vector
until a single candidate remains. By splitting the fitness
calculation across multiple test cases, individuals that pass
tests not widely passed by the remainder of the population tend
to be retained in the population, even when they fail many
other tests. With a traditional fitness function such individuals
are often lost from the population due to a low total number
of test cases passed.

Each machine-code instruction in the target binary is a
distinct fitness test case. With this approach, a candidate that
has discovered a correct decompilation for a unique portion
of the target binary has a high probability of being retained
in the population, even if they have lower overall correctness.
The novel code from this candidate responsible will then have
many opportunities to be incorporated into other candidate
decompilations via crossover.

F. Final cleanup

There are no protections against the evolutionary search
accumulating unnecessary source code artifacts. In fact, through
a phenomenon known as bloat [25], it is often beneficial to a
candidate’s long-term survival to accumulate unused, or dead,
genetic material. To compensate for bloat we minimize the
final source code using delta debugging [41], systematically
removing lines and expressions from the program until a
minimal set that compiles to the same binary is found.

Before minimization we pass the source code through the
clang-format utility [14] to enforce uniform indentation,
improve readability, and to break semantically distinct program
elements into separate lines to aid removal via delta debugging.

2Computed using a sequence comparison algorithm in Wu et al. [37].

Program LOC Description

LCTHW [32]

hw1 5 Hello world
hw3 9 Formatted printing
hw6 19 Types of variables
hw7 23 More variables, some math
hw8 32 Sizes and arrays
hw9 40 Arrays and strings

hw10 20 Arrays of strings, looping
hw11 22 While loop & boolean exprs.
hw12 17 If else if else
hw13 45 Switch statement
hw14 32 Writing and using functions
hw15 43 Pointers dreaded pointers
hw18 88 Pointers to functions

Euler [2]

Euler-1 12 Multiples of 3 and 5
Euler-2 19 Even Fibonacci numbers
Euler-3 48 Largest prime factor
Euler-4 40 Largest palindrome product
Euler-5 15 Smallest multiple
Euler-6 48 Sum square difference

TABLE II. BENCHMARK PROGRAMS. Learn C The Hard Way (LCTHW)
is a C example-based tutorial that provides simple programs illustrating

features of the C language [32]. The Project Euler problems are a selection of
answers to the Project Euler programming challenge [2].

IV. EXPERIMENTAL RESULTS

Our experiments address five primary research questions:

• Q1: Evolution of byte-equivalence from big code. We
demonstrate the feasibility of evolving byte-equivalent
code by evaluating the degree to which BED is able
to achieve byte-equivalence against a benchmark set.
(§ IV-B1).
• Q2: Utility of evolved decompilation. We evaluate the

utility of evolved decompilation to support the analysis
and rewriting of binary executables. This evaluation is
performed through analysis of a number of readability
and correctness metrics of both the decompiled source
and the recompiled binary (§ IV-A4).

• Q3: Performance on optimized binaries. We evaluate
BED across multiple levels of compiler optimization.

• Q4: Impact of targeted mutations. We evaluate the
utility of our targeted mutation operators for the evolution
of byte-equivalence (§ IV-B4).

• Q5: Impact of lexicase selection. We evaluate the impact
of lexicase selection versus standard tournament selection.

A. Methodology

Experimental evaluations were performed against the bench-
marks in § IV-A1 using the parameters described in § IV-A1,
and the Euler database described in § IV-A3.

1) Benchmarks: The benchmark programs in Table II were
selected to demonstrate a wide range of features of the C
language. Specifically, the Learn C The Hard Way (LCTHW)
programs [32] are taken from an example-based C language
tutorial. Each selection demonstrates a specific facet of the
language. The Project Euler programs [2] are taken from a
popular set of programming challenges. As “big code” projects
such as DARPA’s MUSE (http://corpus.museprogram.org/)
continue to mature we anticipate the availability of increasingly
relevant sample code.

6

http://corpus.museprogram.org/


Parameter Value

compiler clang
flags -m32 -g -OX
CrossRate 1

4
MaxEvals 131072
PopSize 1024
TargetChance 3

4

TABLE III. BED EXPERIMENTAL PARAMETERS.

2) Parameters: The experimental parameters used during
our BED runs are listed in Table III. Runs were performed at
both -O0 and -O2 optimization levels.

3) Code Database: The Project Euler [2] database consists
of over 80k unique source ASTs extracted from 688 posted
solutions to Project Euler problems. 3

4) Metrics: To evaluate BED’s performance, we consider
two evaluation criteria: readability and byte similarity to the
target binary. To compute the byte similarity, we take the
number of matched instructions over the total number of
instructions within the original and evolved binary. In addition
to measuring byte similarity to the target binary, we apply
the readability metrics listed in Table IV to the decompiled
source code. The first eleven readability metrics all count source
features that inhibit readability, such as the number of goto
statements, and thus a smaller number is preferable. The last
readability metric measures direct matches against the original
source, and thus a larger number is preferable.

5) Decompilers: We perform an experimental comparison
against the HEX-RAYS Decompiler circa 2015. An attempted
comparison against recently published decompilers was not pos-
sible; we were unable to obtain executables or experimental data
sets for the published results in Dream [38] and Phoenix [31].

B. Experimental results

1) Evolution of Byte-equivalence: By combining solutions
found both with and without compiler optimizations enabled,
BED is able to achieve byte-equivalence for 4 of 19 example
programs when run without decompiler-generated seeds and
10 of 19 when the HEX-RAYS Decompiler is used to seed
candidate populations. Detailed results are shown in Table V.
In those cases where byte-equivalence is not achieved, the
resulting decompilation is close to the original program, often
achieving byte-equivalence at the function granularity.

In non-byte-equivalent runs, the BED technique is able to
highlight those portions of the source which are compiling to
non-byte-equivalent portions of the resulting binary. In practice
non-byte-equivalent portions are small, as we achieve 81% byte-
similarity with the target binary in our experiments. In terms of
correctly decompiled lines of code for non-optimized binaries,
BED fails to achieve byte-equivalent recompilation for 12% of
all lines, improving to 9% of all lines when decompiler seeds are
used. Thus, runs that fail to achieve full byte-equivalence still
provide useful source for reverse engineering and analysis for
the majority of the program. The high level of byte-similarity
observed in these experiments indicates the promise of the
BED technique.

3The Project Euler corpus was compiled by Seth Pollen and Ben Welton
under the supervision of Prof. Ben Liblit.

METRIC BED HEX-RAYS

Byte similarity 81.23 69.16
# gotos 0 10
# casts 18 118
# variables 219 262
# scopes 216 211
# live ranges 185 262
# dead assignments 34 0
# macros 8 3116
# typedefs 0 608
# characters 22,346 263,835
# lines 1040 8342
# ASTs 4723 5616
# matched literals 287 398

† AST count does not include macros and types

TABLE IV. BYTE-SIMILARITY AND READABILITY METRICS. For each
metric in the BED column, an average was computed over both optimized

and unoptimized test cases, without the use of decompiler seeding.

2) Utility of evolved decompilation: Our readability and
correctness metrics, described in § IV-A4, are shown in
Table IV. We use byte-equivalence of the resulting binaries as
a computable proxy for correctness that does not depend on
pre-existing high-coverage test suites, formal specifications, or
other externally-provided data.

In comparison to the HEX-RAYS Decompiler, the decompi-
lations generated by BED included fewer gotos, casts, variable
declarations, live ranges, macros, typedefs, and significantly
shorter total decompiled code—all key metrics for accessing
source code readability. Additionally, BED achieved a higher
degree of byte-similarity with the target binary, while also
producing re-compilable source.

3) Performance on optimized binaries: At higher levels
of optimization, the mapping between source ASTs and
machine code is less direct as source is elided or transformed
significantly. As a result, the targeting of mutations to diff-
inducing source ASTs becomes a significant challenge.

Despite this, BED performs well at higher levels of opti-
mization, and indeed performs better with optimizations enabled
for some benchmark programs. At higher levels of optimization,
the space of valid C source code that compiles to the same
bytes is significantly larger than without optimizations enabled.
For instance, consider the example HW10 decompilation given
in 3. In the resultant decompilation, the loop in the original
program has been elided and replaced with a sequence of
printf statements that compiles, with optimization, to the
same bytes as the original; this would not be the case with
optimizations disabled.

4) Impact of targeted mutations: The success rates for
various mutation types when acting on a population in an
evolutionary run appear in Figure 6.

For each mutation, we assess the fitness of an individual
before and after the mutation, recording whether the mutation
caused fitness to improve, remain the same, or become worse.
If the mutated individual could not compile, we applied the
compilation-fixing strategies (§ III-B2); if the fixed source still
did not compile, the individual was classified as “dead.”

All mutations showed a 1–10% probability of resulting in
a fitness improvement, but showed radically different chances
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Program BED BED Optimized BED W/Deco. BED Optimized W/Deco.

LCTHW [32] Orig Final Evals Orig Final Evals Orig Final Evals Orig Final Evals

hw1 70.13 100.00 5120 76.92 100.00 3072 100.00 100.00 0 100.00 100.00 0
hw3 66.22 100.00 7168 77.11 100.00 10,229 78.21 100.00 4225 100.00 100.00 0
hw6 40.34 82.67 131,072 27.54 84.39 131,072 51.73 86.68 131,072 86.55 95.36 131,072
hw7 32.44 87.33 131,072 41.86 100.00 68,608 56.11 93.04 131,072 82.71 100.00 14,465
hw8 33.52 78.64 131,072 34.86 91.95 131,072 70.25 88.13 131,072 74.40 99.26 131,072
hw9 17.68 80.77 131,072 35.69 77.64 131,072 63.19 86.38 131,072 74.07 100.00 33,921

hw10 47.98 84.64 131,072 46.07 99.15 131,072 66.67 94.25 131,072 94.06 98.31 131,072
hw11 51.92 83.85 131,072 43.44 95.44 131,072 64.52 94.15 131,072 94.01 97.44 131,072
hw12 48.50 90.79 131,072 43.65 89.13 131,072 71.57 98.73 131,072 95.33 100.00 7297
hw13 37.87 71.71 131,072 29.52 48.10 131,072 47.37 69.18 131,072 67.87 99.18 131,072
hw14 55.24 79.26 131,072 46.29 50.21 131,072 72.92 86.23 131,072 59.90 97.33 131,072
hw15 31.99 60.40 131,072 27.61 61.56 131,072 N/A N/A
hw18 53.68 66.53 131,072 39.26 38.98 131,072 N/A N/A

Euler [2]

Euler-1 59.84 92.31 131,072 36.43 99.10 131,072 74.31 95.31 131,072 100.00 100.00 0
Euler-2 59.29 100.00 72,703 62.11 81.53 131,072 77.12 100.00 6273 81.25 100.00 0
Euler-3 46.42 82.94 131,072 36.11 46.80 131,072 52.61 89.03 131,072 49.68 64.68 131,072
Euler-4 41.24 69.01 131,072 36.21 49.44 131,072 75.56 84.55 131,072 100.00 100.00 0.00
Euler-5 52.00 98.10 131,072 30.64 95.67 131,072 68.25 98.10 131,072 100.00 100.00 0.00
Euler-6 58.63 97.89 131,072 36.90 70.79 131,072 77.71 100.00 101,505 100.00 100.00 0.00

total 84.57 77.89 91.99 97.15

TABLE V. EVOLUTION OF BYTE-EQUIVALENCE. The columns list the performance of BED in achieving byte-equivalence. The entries are formatted as Orig
Final, Evals where Orig is the byte similarity to the target binary of the best candidate in the original population, Final is the greatest byte similarity achieved
over the course of the run, and Evals is the total number of fitness evaluations performed during the run. For the first two results columns, the initial population
did not include decompiler seeds, while in the last two columns, the initial population included seeds from the HEX-RAYS Decompiler. In the first and third

columns, compiler optimizations were not enabled (-O0), while in the second and fourth columns, compilation was performed with optimizations enabled (-O2).
Where the HEX-RAYS decompiler did not generate compiling seeds for the evolutionary process, N/A is shown.
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Fig. 6. Mutation success rates by type

of producing neutral candidate decompilations. Generally,
mutations that preserve the AST class and only operate on
full statements performed the best, creating neutral candidate
decompilations—decompilations with the same fitness as before
mutation—35–55% of the time, compared to a 15–20% rate
of neutral candidate generation for the unrestricted versions of
those mutations. The generation of candidate decompilations
which are as fit as (but not identical to) their ancestors advances
evolutionary search by increasing both population diversity and
the explored fraction of the fitness landscape. Neutral offspring
are known to be beneficial to evolutionary search [35].

5) Impact of Lexicase Selection: To test the impact of
lexicase selection on overall fitness and population diversity, we
compared performance versus standard tournament selection.
In tournament selection, overall fitness is given as a single
scalar value, and the best individual from a population sample
is chosen to reproduce.

Our experiments with lexicase selection demonstrate a
significant improvement over tournament selection. As shown in
Figure 7, lexicase selection achieves higher levels of fitness in
the best individual in the population. Additionally, by measuring
diversity as the average edit distance between the best individual
and a randomly selected individual’s disassembly listings, we
see in Figure 8 that lexicase selection enables a greater diversity
of individuals to remain present.

V. THREATS TO VALIDITY

Unknown compiler and flags. We assume the compiler and
flags used to compile the original binary are known. This is
less restrictive than it may seem; recent work has demonstrated
the automatic detection of such information [27]. Alternately,
the compiler and flags could be added to each candidate
decompilation and co-evolved as part of the BED search.

Available code database. BED’s output quality is affected
by the available database of source code. We anticipate the
emergence of large, high quality, easily searched databases of
collected source code. Such databases will be critical for the
extension of this technique to real-world programs.

Runtime and large search spaces. The amount of time taken
by BED can vary dramatically. Heuristic search provides no
guaranteed limits of runtime. The efficiency of evolutionary
search techniques is typically a result of the size of the search
space and the quality of the fitness function used. The size of
the search space is daunting and the results presented required
many thousands of fitness evaluations. On the other hand, search
can be performed one function at a time, suggesting a simple
divide-and-conquer approach to scaling up BED.

8



0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000

B
es

t
Fi

tn
es

s

Number of Fitness Evals

Best Fitness vs. Number of Fitness Evals

Tournament
Standard Deviation

Lexicase
Standard Deviation

Fig. 7. Comparison of the best fitness in the population as a function
of number of fitness evaluations performed, using lexicase and tournament
selection. Numbers shown are averages of 15 decompilations of the Euler-2
benchmark program.

0

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000 60000 70000

M
ea

n
D

is
as

se
m

bl
y

Si
m

ila
ri

ty
w

ith
B

es
t

Number of Fitness Evals

Mean Disassembly Similarity with Best vs. Number of Fitness Evals

Tournament
Lexicase

Fig. 8. Comparison of lexicase and tournament selection on diversity of
Euler-2 decompilations. 15 decompilations were performed for each style. A
value of zero implies no population diversity.

VI. RELATED WORK

Phoenix. Schwartz et al. [31] note that previous work rarely
evaluates correctness, meaning the preservation of behavior of
the original binary. They note that decompilation for security
requires both correctness and high-level abstractions.

Correctness of Phoenix’s output was assessed by comparing
the recompiled binary’s behavior to the original program on a
suite of tests. This approach to correctness depends on having
a test suite with high coverage, which may not be possible for
legacy or third-party binaries.

JSNice. Raychev et al. [26] introduce a novel approach for
predicting identifier names and type annotations in JavaScript
code. Using an extensive corpus of existing JavaScript, they
build a probabilistic graphical model of program properties
using conditional random fields.The resulting tool, JSNice, is
able to predict correct names for 63% of identifiers and correct
type annotations in 81% of cases on obfuscated code.

Mutational Robustness. Software functionality has been
found to be surprisingly robust to random perturbations [30].
This robustness and the resultant neutral spaces of multiple
diverse implementations of a single specification are thought
to be central to software’s amenability to genetic improve-
ment [28]. Our investigation of the effectiveness of mutations,
perhaps unsurprisingly, identifies similar robustness of byte-
similarity of compilation to source modification. Similarly, our
breakdown of binary impact by type of modification extends
and agrees with similar work analyzing the functional impact
of source-to-source transformations [4], [19].

VII. FUTURE WORK

C structure declarations. The benchmark programs, mutation
strategies, and decompilation results presented herein do not
include consideration of C structures. We believe generalizing
our technique to support mutations of structure declarations
is a matter of additional effort, but does not fundamentally
affect the implementation or the performance of the BED

technique. Aggregate type declarations could be co-evolved
with the population.

Lifting to LLVM-IR. The BED technique is not inherently
specific to C; for any language P with a black-box translator
T : P → Binary, BED methods give a lifting function
L : Binary→ P , such that T (L(x)) ≈ x for all binaries x.

The low level virtual machine (LLVM) intermediate rep-
resentation [17] has become a popular target for program
analysis and rewriting. The discussion above suggests that
BED could be applied to LLVM-IR instead of C to evolve
liftings from machine code to LLVM-IR. We conjecture that
BED may work particularly well for this task, due to the
relative simplicity of LLVM-IR as compared to the C language.
The application of BED to LLVM lifting has the potential to
significantly out-perform the current state of the art [33], [8],
which exhibit cumbersome recompilation artifacts including
explicit representations of activation records on the stack.

Multi-objective fitness functions. Multi-objective fitness
functions can explicitly target additional desirable properties
aside from byte similarity. These might include the following:
Readability Metrics. Readability metrics (e.g. from § IV-A4)
could explicitly be added to the BED fitness function.
Test Suites. It is possible that leveraging program test suites to
guide the search could improve the overall efficiency. Functional
correctness may serve as a useful proxy for byte-equivalence,
accelerating BED’s evolutionary search.

Machine learning for local decompilation. Recurrent neural
network (RNN) encoder-decoder models have had great success
in translating between natural languages [7]. The large code
corpora used by BED has been used to train RNN encoder-
decoder models to automatically learn a decompilation function
translating short phrases of compiled machine code bytes
to C source code decompilation [15]. Such models could
subsequently be used to improve the evolutionary decompilation
process by directly translating the diff inducing regions of the
target binary into C source which could replace the source
currently compiling to the bytes of the diff inducing region.
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Structured code search and completion. Existing systems
for structured source code search [24] and source code com-
pletion [6] could be applied to candidate decompilations. Such
tools are intended to aid developers in the authoring of code by
searching a large code database for excerpts which are similar
or likely to complement existing code. BED could leverage
such techniques by using candidate decompilations to drive
code retrieval and suggestion systems to generate new code or
modifications to be applied back to the candidate decompilation.
Such techniques could accelerate the decompilation process
and result in increasingly natural decompiled source code.

VIII. CONCLUSION

We present a novel and general Byte-Equivalent Decom-
pilation (BED) technique that works via the evolutionary
recombination and recompilation of source excerpts from a “big
code” database. We present experimental results demonstrating
BED’s ability to evolve readable C source code that compiles
to an exact byte-for-byte match against target binaries. Byte-
equivalent recompilation of source code is a deterministically
checkable guarantee of full semantic equivalence with the
original binary, including both desired behavior as well as
faults and vulnerabilities. The genesis of the decompiled code
in human-written excerpts leads to human-readable output.

We present a number of techniques that make byte-
equivalent decompilation possible, including the use of existing
decompilers to seed the search, an effective fitness function to
guide the search, the use of byte-similar retrieval from a code
database, the use of binary-difference-based mutation targeting,
processes for fixing failing compilations and for pulling
literal values from the original binary, and the application of
lexicase selection. BED is a novel approach to decompilation
that promises to achieve both readability and full semantic
equivalence in a manner which is “future proof” against new
source languages, ISAs, compilers, and compiler optimizations.
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