Recently it has been reported that caspase-3 activation occurs in stimulated T-lymphocytes without associated apoptosis (Miossec, C., Dutilleul, V., Fassy, F., and Diu-Hercend, A. (1997) J. Biol. Chem. 272, 13459-13462). To explore this phenomenon, human peripheral blood lymphocytes (PBLs) were stimulated with mitogenic lectins or anti-CD3 antibody, and the proteolytic processing of different caspases and caspase substrates was analyzed by immunoblotting. Proteolytic processing of caspases-3 and -7 and the caspase substrates poly(ADP-ribose) polymerase, GDP dissociation inhibitor, and PKCdelta was observed when PBLs were activated in vitro, and lysates were prepared using RIPA buffer which contains 1% Nonidet P-40, 0.5% deoxycholate, and 0.1% SDS. In contrast, when a lysis buffer containing 2% SDS was used, the caspases remained in their zymogen pro-forms, and no proteolytic processing of caspase substrates was detected. Moreover, in experiments using intact cells and a cell-permeable fluorigenic caspase substrate, no caspase activity was observed in activated T-cells, whereas it was clearly detected when PBLs were treated with the apoptosis-inducing anticancer drug etoposide. Since the granzyme B is a direct activator of caspase-3 and its expression is induced following T-cell activation, we tested the effects of anti-GraB, an engineered serpin that specifically inhibits GraB. When the activated T-lymphocytes were lysed in RIPA buffer containing anti-GraB, no proteolytic processing or activation of caspase-3 was observed, strongly suggesting that release of GraB or similar proteases from their storage sites in cytotoxic granules during the lysis procedure is responsible for caspase activation. These findings demonstrate that T-cells do not process caspases upon activation and caution about the method of cell lysis used when studying granzyme-expressing cells.