To date, there has been no comprehensive attempt to perform and/or describe catalytic reactions in the gas phase that utilize metal-organic frameworks (MOFs) as catalysts. In addition, there has been no attempt to reaction engineer these MOF catalysts in order to determine their regimes of optimal catalytic activity and possible limitations to their use. A zinc-based MOF that has been post-synthetically modified with a homogeneous palladium catalyst, Pd(CH3CN)2Cl2, is used to catalyze the hydrogenation of propylene. The catalyst is assembled in a packed-bed reactor under a continuous flow of reactants. The reaction is optimized with respect to isoreticular metalation, reactant flow rate, and reactor temperature. Maximum catalytic conversion is found at intermediate metalations of 40% and 60%, high hydrogen flow of 50 ccm, and intermediate reactor temperatures of 100 °C and 150 °C.
The MOF-60 catalyst is exposed to a traditional catalyst poison, carbon monoxide (CO). It is found that the MOF is reversibly poisoned upon introduction of CO. Upon poisoning, catalytic conversions rates of 90%-100% are dramatically reduced to less than 10%-30%, depending on the CO flow rate and the reactor temperature. The CO poisoning is shown to be reversible, a similar effect as found with palladium on carbon (Pd/C). The time scale of poisoning and recovery is very fast for both the MOF catalyst and Pd/C (approximately 10-30 seconds).
Other effects of temperature on the MOF-40 are also investigated. At fixed reactant flow, the temperature grid is partitioned into finer steps of 10 °C to determine the temperature that yields the highest catalytic conversion. It is found that conversion is nearly uniform in the range between the highest conversions, i.e., conversion plateaus between the optimum temperatures. The catalyst also exhibits a weak thermal hysteresis. There is no significant improvement in conversion with thermal cycling after alternating the reactor temperature between 100 °C and 200 °C for 8 hours.