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Abstract

A computational method for obtaining Three-

Dimensional reconstructions of positron emitting radio-
- nucleil distributions using a Planar Positron camera is
described. The method involves the use of a Filtered
Fourier Deconvolution Method. Construction of Gener-
alized Tomograms capable of emphasizing the large angle
events 1is iatroduced. The finite size of the Positron
Camera detector and its effect on the reconstruction
are discussed.

I. Introduction

In nuclear medicine, positron cameras are used for
imaging medical disorders such as brain tumors by locat-
ing the two coincident back-to-back gamma rays emitted
from the radioisotope injected into the patient's body.
These two gamma photons, which are generated when the
positrons. produced in the B decay processes are annihi~
lated at rest by the electrons in the immediate vicinity,
are detected by the positron camera in coincidence, and
their positions of interaction with the detectors
recorded (Figure 1). Each pair of annihilation gammas
defines a straight line in space, with the position of
the radioactive nuclide which has just undergone the
decay lying somewhere along the line. In order to
deduce the radioisotope dist;ibution from these data,
one simple approach is to construct the tomograms which
are the distribution of the intersection points of the
annihilation gammas with different planes. This method,
however, suffers from severe blurring due to super-
imposition of off-plane activities. 1In this paper we
shall describe a reconstruction technique for recovering
3-dimensional image from the data.

——— == 1. Fourier Deconvolution

If the number of straight lines defined by the
annihilation gamma pairs becomes large they will form
a pattern, or scalar field, which we shall denote as
¢(r), in space. This scalar field ¢(x) is a super-
imposition of the scalar fields ¢,(r) generated by
each point emitter in the radioisotope distribution
(Figure 2). 1If ¢,(r) is space invariant, i.e. it is’
a function only of the position relative to the point
emitter and independent of the position of the point
emitter itself, the following equation holds

o) = fole"e, (x-r)e’r’

where p(r) is the fadioisotdpgvdensity distribution.
Using the convolution theorem we get '

2(p) = R4, (p)
where

3

3p) = fometRIad
: - . 2mip.r 3
ERAGE :f%(;_)e B-Igdp

R(p) = o™ T,

rnia, San Francisco

and p denoteé the’momentum or épatial frequency space.
Thus the density p(r) can be found by the inverse
transform

p(x) = fR(g)e2"12'5d32 )
with
IR
R(_g) 5 @) (2)

III.. Possible Point Response Functions

The space invariant point response function ¢_(r)
can be constructed in a number of ways from a know-
ledge of the. location. of .the annihilation gamma pairs
emitted from a point ‘source and the angle & it makes
with the z-axis. Figure 3 shows one way to construct
gsuch a point response function. A volume element is
used to measure the total length of the line segments
that are contained within its volume. The average
total length of these line segments defines the point
response function at that position. Another ¢,(x)
which 1s easier for both computation and construction
is shown in Figure 4. Instead of a volume element,

a small area element with its normal along the z-axis
is used as the measuring scale. The number of lines
passing through the area element is taken as a defini-
tion of the point response function. These are just
the conventional tomograms obtained by back projecting
the data.

We can generalize the last definition of ¢,(r) to
an entire family of point response functions by making

“use of the angle information inherent in the positron
camera data. Each line passing through the area element
is weighted by a factor depending on the angle § the line
makes with the z-axis, e.g. cos™, sin"0, etc. This
results in generalized tomograms in which large angle
and small angle events are given different emphasis,
and thus gives rise to the possibility of improving
the quality of the reconstruction by weighting the
large angle events more.

To complete the discussion of the point response
function, weé notice that the detection apparatus does
not usually subtend the full 41 steradian solid angle.
As a consequence each point in the density distribution
has a local cone of detection; which means any gamma
pair emitted from that point cannot be recorded by
the positron camera if it falls outside the local cone.
The size of the local cone of detection varies with
the position of the point emitter. This makes the
point response function space variant.

One way to remove ‘this dependence is to use only
those gamma pairs which make an angle with the z-axis
smaller than a certain limit set by the minimum local
cone of detection in the density distribution. This |
principle is illustrated in Figure 5. The local cone
of detection at ry 1s smaller than that at r2; but if
we use only-thosé events falling within the shaded
cones which have the same size as the smaller of the
two local cones at ry and Iy, the point response
functions generated at theSe two positions would
again be the same.



IV. Removal of Noise Instabilities

The reconstruction method described by equations
(1) and (2) only works if there is no noise. If the
data contains noise, the solution of the equations is
_unstable, and, as shown by Phillips (1), large
oscillations would appear in the solution when the
cell size used in the computation is made small enough.
A way to deal with the noise instabilities has
been described in a previous paper (2) in which the

treatment of noise by Phillips (1) was recast. By
imposing the smoothness condition
J 7% @)%’ = nininum )

on the solution p(r), equation (2) is modified to

4)

in the presence of noise. Here y(> 0) is an adjustable
parameter which depends on the noise level. In the
case of no noise, Y = 0, and equation (4) reduces back
to equation (2).

The modification made in equation (4) can be
viewed as the action of a low spatial frequency pass
filter. In general, the signal component in ¢(p)
decreases in magnitude with frequency, whereas the
power spectrum of the noise component is essentially
flat. Thus the noise component dominates in the
high frequency range. This high frequency noise
is further amplified in dividing by 00(2), which is
usually also a small quantity at high frequency (3).

The additional term in equation (4)

(2n)4 4
R

is negligible at low frequency compared to OO(B),
but increases rapidly in magnitude with frequency as
both.p4 increases and|¢°(gﬂ decreases. Thus the
information at low frequency is undistorted whereas
the noise at high frequency is suppressed.

The above treatment can be generalized to give
a family of frequency filters of the form

mm
fbo(g) +12D P

(5)
¢, (@)

where m is a positive integer which controls the
sharpness of the filter. m corresponds to different
powers of Vzp(g) in the smoothness condition (3).

By adjusting m an optimum filter can be constructed
to suit the noise characteristics of each imaging
system. '

V. Implementation

As the actual computation is done by digital
computers, the digital version of the algorithm should
be used. The region of space in the vicinity of the
density distribution is divided into a 3~dimensional
lattice, N%-NY'NZ, with spacings between the lattice
sites &, gy (% Such digitization introduces errors
into the results of the Fourier transforms: the finite
lattice spacing gives rise to 'aliasing', and the
truncation causes 'leakage' (4). The former is mini-
mized by making the lattice spacing 8y, Sy, §, small
enough, while th¢ latter can be reduced by premultiplying
the scalar fields ¢(r) and ¢,(r) by window functions
(5) before taking the transforms. In our work
gaussian window functions appear to give the best

results, but the type of window does not seem to be
critical. Windowing is not required when taking the
inverse transform of R(g), as R(p) 1is a periodic
function with period equal to the truncation interval
in which case there is no leakage.

The system transfer function ¢,(p) for an
imaging system needs to be computed only once. Most
of the computer time in the reconstruction is spent
in the construction of the scalar field ¢(r) and
taking two Fourier transforms. For a CDC 7600 computer
with a cycle time of 27.5 ns, Fast Fourier transform
of an 32 X 32 X 32 X array take only 0.2 sec,™ and
only 10.6 sec for an 64 X 64 X 60 array.** If the
computing has to be done on a small machine with
limited high speed storage, data could be stored in
slower memory devices such as tape or drum. Separate
transforms are computed and then combined (6,7,8).

VI. Results

The algorithm has been applied to a computer
generated phantom and also on real data taken from the
multi-wire proportional chamber (MWPC) planar positron
camera at the University of California, San Francisco.
The results are shown in Figures 6-12. In each
figure we have shown a series of planes parallel to
the detectors, starting from the central plane and
working outward in one direction. The distance
between the planes is equal to the lattice spacing S_.

The simulated phantom (Figures 6-8) consists of
a 'skull reglon' corresponding to the blood supply for
the brain, a 'brain' and a hypothetical 'tumor'. The
'skull region' was a spherical shell 3 cm thick, with
an inner radius of 18 cm and an outer radius of 21 cm,
and with an activity concentration of 5:1. The 'tumor'’
was a sphere located off-centre in the 'brain', with
a radius of 3.6 cm and a concentration of 10:1. The
detection system is made up of two square detectors
of area 85 X 85 cm2 separated by 50 em. In the
reconstruction we have chosen a lattice of dimensions
32 X 32 X 32, and the lattice distances were
2.5 X 2.5 X 5.0 cm3,

Figure 6 shows the actual density distributiom.
Figure 7 shows the results obtained by a simple back
projection of the data. Only those events lying
inside the minimum cone of detection are used, to remove
any bias as one moves out toward the edges. The tumor
can still be seen, but the image is blurred by the
off-plane activities. Furthermore, the tumor has cast
a recognizable shadow on at least two other planes,
where it does not exist.

Figure 8 shows the results obtained using our
reconstruction algorithm. Here we hag§ used the
generalized tomograms weighted by cos ~ g as the
scalar fields. The point response function was
calculated analytically. m = 4 was used in the
frequency filter and the otpimum value of Y was found
to be 8.02 x 10~4, The image of the tumor appears
quite clearly, and shadowing onto other planes has
disappeared.

Figures 9-12 show the results for the real data
taken for a cylinder head-phantom with two simulated
tumors. One tumor has activity concentration of 5:1,
and the other 10:1. The head-phantom was immersed
in a container filled with Ga-68 (concentration 5:1)
simulating the peripheral activity around the ‘skull’'.
The "skull” is in the form of a cylindrical shell which

*Using the Fast Fourier Transform Algorithm by K.F.
Subhani and Frank Chu, private communication.

**Uging the Fast Fouriler Transform Algorithm by Singleton
(9), and a supplementary program for transforming real
data by the same author and modified by K.C. Tam,

private communication. .



1s 1.5 cm thick and 165 cihigh, wikh atf infer raiius’
of 7.5 ecm. The two tumors are also cylindrical in
shape, with 1 .cm radius and 4 cm height.

For this phantom we have used a lattice of
dimensions 64 X 64 X 60, and the lattice spacings were
5X .5 X 1.0 cm3. The detection system was made up
of four large area MWPCs equipped with Pb-converters,
two on each side of the phantom. Each chamber has an
area of 48 X 48 cm?. The distance between the inner
MWPC pair is 55.6 cm, and 63.6 cm for the outer pair.

Figure 9 shows the results obtained by simple
back projection with solid angle limitation. The
images of the tumors are almost completely buried
under the off-plane activities plane and can ha:idly
. be seen. Figure 10 18 obtained from Figure 9 by
subtracting from the content of each cell 55% of the
peak activity. This helps to bring out the contrast,
and the tumors faintly appear near the central planes.

Figure 11 shows the results obtained by our
reconstruction algotithms using generalized ‘tomograms
weighted by cos™ 49 as the scalar fields. The point
response function that we used was obtained by fitting
a smooth analytic function to the experimentally measured
values. The parameters used in the frequency is m = 10,
and the corresponding optimum y {s 71.7. The two
tumors and the skull region are clearly visible,
and well separated. The left-right asymetry in Figures
"9-10 is also removed.

As a comparison, the reconstruction using conven-
tional tomograms as scalar fields are shown in
Figure 12. The parameters used in the frequency filter
are alsom = 10 and Y= 71.7. The two tumors and the
skull also appear distinctly, but the two tumors are not
so well separated as in Figure 11. This agrees with the
remark in Section III that putting more weight on the
large angle events should improve the reconstruction.

VII. Conclusion -

The Fourier deconvolution scheme described above
provides a simple method for reconstructing the images-
from the positron camera data. The use of an optimum
weighting factor cosnNd in constructing the generalized
tomograms used as scalar fields results in better
resolution through emphasizing the large angle events.
‘Fhe possibility of adjusting the value of m in the
frequency filter offers additional flexibility in the

-reconstruction. It also suggests the possible use of
other frequency filters such as the minimum mean square
error filter (10) and the homomorphic filter (11).

Work has been started in this direction. Also started
is the scheme to make use of all the data in the

'§§eco§%trﬂ§tion by an one-step iteration in which the

maximum cone of detection rather than the minimum one
i8 used in constructing the scalar fields,
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Figure Captions

Schematic figure of planar positron camera.

Scalar field ¢(x) formed by the annihilation
gamma pairs.

Point response function defined by a volume
element.

Point response function defined by an area
element with its normal along the z-axis.

Making the point response space invariant by
solid angle limitation. Only those gamma pairs
falling within the minimum local cone of de- -

tection (the shaded cones) are used.

A computer generated phantom simulating a brain
tumor. The skull is 3cm thick and has an

inner radius of 18cm. The tumor has a radius
of 3.6cm. The concentration is 5:1 for the
skull and 10:1 for the tumor. Each picture
element is 2.5%2.5cm2. The planes are 5cm
apart.

Images of the computer generated phantom by
simple back projection.

Reconstruction of the computer generated
phantom by Fourier deconvolution. The scalar
fields used in the reconstructions are gen-
eralized tomograms weighted by cos~36. The
filtering parameters are: m = 4,Yy= 8.02x10 ",

Back projection images of a real phantom which
consists of a cylindrical shell to simulate a
skull, and 2 cylindrical tumors. The shell is
1.5cm thick, 16.5cm high, and has an ‘inner
radius of 7.5¢m. Each tumor is 4cm high and
has a radius of lem. The concentration ratio
is 5:1 for the skull and one tumer, and 10:1
for the other. Each picture elcment is
0.5%0.5cm2. The planes are lem apart.
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Fig. 11.

Back projection of the data from the real
phantom with 557% background subtraction.

Reconstruction of the real phantom by Fourier:
deconvolution. The scalar fields used are
generalized tomograms weighted by cos™40.

The filtering parameters are: m = 10,

Yy = 71.7.

Fig. 12.

Reconstruction of the real phantom by Fourier
deconvolution. Tomograms are used as scalar
fields in the reconstruction. The filtering
parameters are: m = 10, y= 71.7.
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