UC Irvine UC Irvine Previously Published Works

Title

CONSTRAINTS ON THE GALACTIC POPULATION OF TeV PULSAR WIND NEBULAE USING FERMI LARGE AREA TELESCOPE OBSERVATIONS

Permalink https://escholarship.org/uc/item/7dn390t6

Journal The Astrophysical Journal, 773(1)

ISSN 0004-637X

Authors

Acero, F Ackermann, M Ajello, M <u>et al.</u>

Publication Date

2013-08-10

DOI

10.1088/0004-637x/773/1/77

Peer reviewed

CONSTRAINTS ON THE GALACTIC POPULATION OF TEV PULSAR WIND NEBULAE USING *Fermi* LARGE AREA TELESCOPE OBSERVATIONS

F. Acero¹, M. Ackermann², M. Ajello³, A. Allafort⁴, L. Baldini⁵, J. Ballet⁶, 4 G. Barbiellini^{7,8}, D. Bastieri^{9,10}, K. Bechtol⁴, R. Bellazzini¹¹, R. D. Blandford⁴. 5 E. D. Bloom⁴, E. Bonamente^{12,13}, E. Bottacini⁴, T. J. Brandt¹, J. Bregeon¹¹, 6 M. Brigida^{14,15}, P. Bruel¹⁶, R. Buehler⁴, S. Buson^{9,10}, G. A. Caliandro¹⁷, R. A. Cameron⁴, 7 P. A. Caraveo¹⁸, C. Cecchi^{12,13}, E. Charles⁴, R.C.G. Chaves⁶, A. Chekhtman¹⁹, J. Chiang⁴, 8 G. Chiaro¹⁰, S. Ciprini^{20,21}, R. Claus⁴, J. Cohen-Tanugi²², J. Conrad^{23,24,25,26}, S. Cutini^{20,21}, 9 M. Dalton^{27,43}, F. D'Ammando²⁸, F. de Palma^{14,15}, C. D. Dermer²⁹, L. Di Venere⁴, 10 E. do Couto e Silva⁴, P. S. Drell⁴, A. Drlica-Wagner⁴, L. Falletti²², C. Favuzzi^{14,15}, 11 S. J. Fegan¹⁶, E. C. Ferrara¹, W. B. Focke⁴, A. Franckowiak⁴, Y. Fukazawa³⁰, S. Funk^{4,31}, 12 P. Fusco^{14,15}, F. Gargano¹⁵, D. Gasparrini^{20,21}, N. Giglietto^{14,15}, F. Giordano^{14,15}, 13 M. Giroletti²⁸, T. Glanzman⁴, G. Godfrey⁴, T. Grégoire^{32,33}, I. A. Grenier⁶, 14 M.-H. Grondin^{32,33}, J. E. Grove²⁹, S. Guiriec¹, D. Hadasch¹⁷, Y. Hanabata³⁰, 15 A. K. Harding¹, M. Hayashida^{4,34}, K. Hayashi³⁰, E. Hays¹, J. Hewitt¹, A. B. Hill^{4,35,36}. 16 D. Horan¹⁶, X. Hou²⁷, R. E. Hughes³⁷, Y. Inoue⁴, M. S. Jackson^{38,24}, T. Jogler⁴, 17 G. Jóhannesson³⁹, A. S. Johnson⁴, T. Kamae⁴, T. Kawano³⁰, M. Kerr⁴, J. Knödlseder^{32,33} 18 M. Kuss¹¹, J. Lande^{4,40}, S. Larsson^{23,24,41}, L. Latronico⁴², M. Lemoine-Goumard^{27,43,44}, 19 F. Longo^{7,8}, F. Loparco^{14,15}, M. N. Lovellette²⁹, P. Lubrano^{12,13}, M. Marelli¹⁸, F. Massaro⁴, 20 M. Mayer², M. N. Mazziotta¹⁵, J. E. McEnery^{1,45}, J. Mehault^{27,43}, P. F. Michelson⁴, 21 W. Mitthumsiri⁴, T. Mizuno⁴⁶, C. Monte^{14,15}, M. E. Monzani⁴, A. Morselli⁴⁷, 22 I. V. Moskalenko⁴, S. Murgia⁴, T. Nakamori⁴⁸, R. Nemmen¹, E. Nuss²², T. Ohsugi⁴⁶, 23 A. Okumura^{4,49}, M. Orienti²⁸, E. Orlando⁴, J. F. Ormes⁵⁰, D. Paneque^{51,4}, J. H. Panetta⁴, 24 J. S. Perkins^{1,52,53,54}, M. Pesce-Rollins¹¹, F. Piron²², G. Pivato¹⁰, T. A. Porter^{4,4}, 25 S. Rainò^{14,15}, R. Rando^{9,10}, M. Razzano^{11,55}, A. Reimer^{56,4}, O. Reimer^{56,4}, T. Reposeur²⁷, 26 S. Ritz⁵⁵, M. Roth⁵⁷, R. Rousseau^{27,43,58}, P. M. Saz Parkinson⁵⁵, A. Schulz², C. Sgrò¹¹, 27 E. J. Siskind⁵⁹, D. A. Smith²⁷, G. Spandre¹¹, P. Spinelli^{14,15}, D. J. Suson⁶⁰, H. Takahashi³⁰, 28 Y. Takeuchi⁴⁸, J. G. Thayer⁴, J. B. Thayer⁴, D. J. Thompson¹, L. Tibaldo⁴, O. Tibolla⁶¹, 29 M. Tinivella¹¹, D. F. Torres^{17,62}, G. Tosti^{12,13}, E. Troja^{1,63}, Y. Uchiyama⁴, 30 J. Vandenbroucke⁴, V. Vasileiou²², G. Vianello^{4,64}, V. Vitale^{47,65}, M. Werner⁵⁶, 31 B. L. Winer³⁷, K. S. Wood²⁹, Z. Yang^{23,24} 32

¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

²Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany

 $^3\mathrm{Space}$ Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450, USA, , USA

⁴W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA

⁵Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa, Italy

 6 Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d'Astrophysique, CEA Saclay, 91191 Gif sur Yvette, France

⁷Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy

⁸Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

⁹Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

¹⁰Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, I-35131 Padova, Italy

¹¹Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy

¹²Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy

¹³Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy

¹⁴Dipartimento di Fisica "M. Merlin" dell'Università e del Politecnico di Bari, I-70126 Bari, Italy

¹⁵Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy

¹⁶Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau, France

¹⁷Institut de Ciències de l'Espai (IEEE-CSIC), Campus UAB, 08193 Barcelona, Spain

¹⁸INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano, Italy

¹⁹Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030, resident at Naval Research Laboratory, Washington, DC 20375, USA

²⁰Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma), Italy

²¹Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Roma), Italy

²²Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, Montpellier, France

²³Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

²⁴The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm, Sweden

²⁵Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg

Foundation

²⁶The Royal Swedish Academy of Sciences, Box 50005, SE-104 05 Stockholm, Sweden

 27 Université Bordeaux 1, CNRS/IN2p3, Centre d'Études Nucléaires de Bordeaux Gradignan, 33175 Gradignan, France

²⁸INAF Istituto di Radioastronomia, 40129 Bologna, Italy

²⁹Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352, USA

³⁰Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

³¹email: funk@slac.stanford.edu

 $^{32}\mathrm{CNRS},$ IRAP, F-31028 Toulouse cedex 4, France

³³GAHEC, Université de Toulouse, UPS-OMP, IRAP, Toulouse, France

³⁴Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

³⁵School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

 $^{36}\mathrm{Funded}$ by a Marie Curie IOF, FP7/2007-2013 - Grant agreement no. 275861

³⁷Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

³⁸Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm, Sweden

³⁹Science Institute, University of Iceland, IS-107 Reykjavik, Iceland

⁴⁰email: joshualande@gmail.com

⁴¹Department of Astronomy, Stockholm University, SE-106 91 Stockholm, Sweden

⁴²Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy

⁴³Funded by contract ERC-StG-259391 from the European Community

⁴⁴email: lemoine@cenbg.in2p3.fr

⁴⁵Department of Physics and Department of Astronomy, University of Maryland, College Park, MD 20742, USA

 46 Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

⁴⁷Istituto Nazionale di Fisica Nucleare, Sezione di Roma "Tor Vergata", I-00133 Roma, Italy

⁴⁸Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan

⁴⁹Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan

⁵⁰Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA

ABSTRACT

– 4 –

Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV γ -ray emitters. Since launch, the *Fermi* Large Area Telescope (LAT) identified five high-energy (100 MeV <E< 100 GeV) γ -ray sources as PWNe, and detected a large number of PWNe candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by *Fermi*-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV γ -ray unidentified sources (UNIDs) are the best candidates for finding new PWNe. Using 45 months of *Fermi*-LAT data for energies above 10 GeV, an analysis was performed near the position of 58 TeV PWNe and UNIDs within 5° of the Galactic Plane to establish new constraints on PWNe properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their γ -ray fluxes for energies above 10 GeV. The spectral energy distributions (SED) and

⁵⁴Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

⁵⁵Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA

 56 Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria

⁵⁸email: rousseau@cenbg.in2p3.fr

34

⁵¹Max-Planck-Institut für Physik, D-80805 München, Germany

⁵²Department of Physics and Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA

⁵³Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁵⁷Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

⁵⁹NYCB Real-Time Computing Inc., Lattingtown, NY 11560-1025, USA

⁶⁰Department of Chemistry and Physics, Purdue University Calumet, Hammond, IN 46323-2094, USA

⁶¹Institut für Theoretische Physik and Astrophysik, Universität Würzburg, D-97074 Würzburg, Germany

⁶²Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

⁶³NASA Postdoctoral Program Fellow, USA

⁶⁴Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy

⁶⁵Dipartimento di Fisica, Università di Roma "Tor Vergata", I-00133 Roma, Italy

upper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e. between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWNe candidates are described in detail and compared with existing models. A population study of GeV PWNe candidates as a function of the pulsar/PWN system characteristics is presented.

³⁵ Subject headings: catalogs; gamma rays: general; methods: data analysis

36

1. INTRODUCTION

Since 2003, the extensive observations of the Galactic Plane by Cherenkov telescopes have detected more than 80 Galactic TeV sources (Hinton & Hofmann 2009). Pulsar wind nebulae (PWNe) are the dominant class with more than 30 firm identifications. A similar number of Galactic sources cannot be associated with a counterpart at any other wavelength; they form the unidentified (UNID) source class. The third largest class of Galactic sources are the supernova remnants (SNRs).

⁴³ The Large Area Telescope (LAT) on board the *Fermi Gamma-ray Space Telescope* pro-⁴⁴ vides all-sky coverage of the γ -ray sky at energies from 20 MeV to more than 300 GeV. With ⁴⁵ 2 years of observations, the *Fermi*-LAT Second Source Catalog (2FGL, Nolan et al. 2012) re-⁴⁶ ports the detection of 1873 sources, 1298 being identified and 575 without clear identification. ⁴⁷ 400 of them lie within 5° of the Galactic Plane.

Most of the LAT UNID sources are expected to be pulsars, SNRs, binary systems or 48 PWNe. The γ -ray emission from these sources is expected to be either hadronic or lep-49 tonic. In the leptonic scenario, γ -ray photons are created by inverse Compton (IC) scat-50 tering of highly relativistic leptons from the source on the ambient photon fields such as 51 Cosmic Microwave Background (CMB), stellar radiation or infrared emission from dust (e.g. 52 de Jager et al. 2009; de Jager & Djannati-Ataï 2009). This leptonic approach could well ex-53 plain several UNIDs (e.g. Tibolla 2011; Tibolla et al. 2012) and, moreover, one of its biggest 54 advantages is that it provides a natural explanation for the UNIDs that lack a lower en-55 ergy (radio and X-ray) counterpart (e.g. de Jager et al. 2009; H.E.S.S. Collaboration et al. 56 2012b), i.e. the so-called "dark sources". In the hadronic scenario, hadrons accelerated by a 57 source collide with the nuclei in the ambient medium (e.g. molecular cloud) and secondary 58 neutral pions decay to γ -rays (e.g. Gabici et al. 2009). 59

The leptonic PWN scenario requires an energetic and young pulsar to be present. Pulsars are the largest class of Galactic sources detected above 100 MeV with the LAT. These

pulsars could make up part of the LAT UNID population. In the LAT energy range, pulsars 62 are point-like sources and exhibit power-law spectra with exponential cutoffs between 0.5 63 and 6 GeV (Abdo et al. 2010e), while PWNe have hard power-law spectra without cutoffs 64 in the GeV energy range and might be spatially resolved by the LAT. Middle-aged SNRs, 65 interacting with molecular clouds, detected by the LAT are generally bright and exhibit a 66 break at $\sim 2 \text{ GeV}$ (Uchiyama 2011). Radio, X-ray and γ -ray photons probe the non-thermal 67 particle populations and therefore provide information to discriminate between scenarios in 68 which the γ -ray emission is dominated by leptonic or hadronic processes. 69

Here we report on the analysis of 58 PWNe and Galactic UNIDs detected at TeV energies, using 45 months of *Fermi*-LAT data above 10 GeV. A complementary search for PWNe in the off-peak phase ranges of pulsars for which the LAT sees γ -ray pulsations (henceforth "LAT-detected pulsars"), updating the analysis of Ackermann et al. (2011), is presented in the second *Fermi*-LAT catalog of γ -ray pulsars (Abdo et al. 2013), henceforth "2PC".

The objective of this work is to constrain some general characteristics of PWNe such as 76 their γ -ray efficiency. This study of TeV sources might also increase the number of PWNe 77 candidates detected at GeV energies by the LAT. Slane et al. (2010), Grondin et al. (2011) 78 and Rousseau et al. (2012) have demonstrated the potential of LAT observations to study 79 PWNe candidates. With the exception of Vela-X (Abdo et al. 2010c), the five PWNe firmly 80 identified by *Fermi* are associated with TeV counterparts. Furthermore, their spectra are 81 consistent with predictions from a leptonic PWN scenario where the IC spectra peak above 82 $100 \,\mathrm{GeV}$ (Abdo et al. 2010b; Grondin et al. 2011). 83

In Section 2, we establish a list of TeV sources potentially associated with PWNe. In Section 3, we describe the methods and tools we used to analyze LAT data. In Section 4, we describe the spectral and spatial analysis of the LAT data, and in Section 5, we perform a population study based on these new γ -ray results.

88

2. TEV γ -RAY SOURCE SAMPLE

⁸⁹ We selected our PWNe candidates from the online catalog of TeV γ -ray sources, TeV-⁹⁰ Cat¹. As of 2013 January 1, the catalog contained 143 sources observed with the Very High ⁹¹ Energy (VHE) experiments: H.E.S.S. (Aharonian et al. 2006c), VERITAS (Weekes et al.

¹TeVCat is developed by the University of Chicago and can be obtained from: http://tevcat.uchicago.edu

⁹² 2002), MAGIC (Aleksić et al. 2012), Milagro (Atkins et al. 2003) and others.

Except for N157 B (Komin et al. 2012), all PWNe detected by VHE experiments lie 93 inside our Galaxy. A survey of the Galactic Plane was performed by H.E.S.S. and the 94 current version (Gast et al. 2012) covers $\pm 4^{\circ}$ in latitude and longitudes between $l = 65^{\circ}$ 95 and $l = 250^{\circ}$. Another survey, specific to the Cygnus region, was performed by VERITAS 96 (Weinstein 2009). Milagro surveyed the Northern hemisphere, covering the Galactic Plane 97 from $l = 30^{\circ}$ to $l = 220^{\circ}$ (Abdo et al. 2007). To be conservative compared to the H.E.S.S. 98 survey, we selected the 84 sources that lie within 5° of the Galactic Plane. The Galactic gg center is a complex region to investigate with *Fermi*-LAT, due to the confusion by the large 100 density of sources and by the diffuse emission, so we removed the three VHE sources within 101 2° of the Galactic center from our list. These sources, HESS J1745-303 (Aharonian et al. 102 2008b), HESS J1741-302 (Tibolla et al. 2008) and SNR G0.9+0.1 (Aharonian et al. 2005d), 103 will be presented separately. 104

¹⁰⁵ We also excluded from our list the 21 TeV γ -ray sources associated with radio-detected ¹⁰⁶ SNRs. LAT observations of these objects will be presented in the *Fermi*-LAT catalog of ¹⁰⁷ SNRs, henceforth "SNR catalog". Finally, we excluded the Crab Nebula and Vela–X, both ¹⁰⁸ already studied in detail (Abdo et al. 2010b; Buehler et al. 2012; Grondin et al. submitted). ¹⁰⁹ The final list of 58 TeV γ -ray sources that we selected is presented in Table 1 along with ¹¹⁰ their best-fit morphologies measured by VHE experiments.

Name	Class	l	b	TeV morphology	σ_1	σ_2	Reference
		(deg)	(deg)		(deg)	(deg)	
VER J0006+727	PWN	119.58	10.20	PS			McArthur (2011)
MGRO J0631+105	PWN	201.30	0.51	PS			Abdo et al. $(2009e)$
MGRO J0632+17	PWN	195.34	3.78	G	1.30		Abdo et al. $(2009e)$
HESS J1018-589	UNID	284.23	-1.72	PS			H.E.S.S. Collaboration et al. (2012a)
HESS J1023-575	MSC	284.22	-0.40	G	0.18		H.E.S.S. Collaboration et al. (2011e)
HESS J1026-582	PWN	284.80	-0.52	G	0.14		H.E.S.S. Collaboration et al. (2011e)
HESS J1119-614	PWN	292.10	-0.49	G	0.05		Presentation ^a
HESS J1303-631	PWN	304.24	-0.36	G	0.16		Aharonian et al. (2005c)
HESS J1356-645	PWN	309.81	-2.49	Ğ	0.20		H.E.S.S. Collaboration et al. (2011d)
HESS J1418-609	PWN	313.25	0.15	EG	0.08	0.06	Aharonian et al. (2006a)
HESS J1420-607	PWN	313.56	0.27	G	0.06		Aharonian et al. (2006a)
HESS J1427-608	UNID	314.41	-0.14	EG	0.04	0.08	Aharonian et al. $(2008c)$
HESS J1458-608	PWN	317.75	-1.70	G	0.17		de los Beves et al. (2012)
HESS J1503-582	UNID	319.62	0.29	Ğ	0.26		Benaud et al. (2008)
HESS J1507-622	UNID	317 95	-3.49	Ğ	0.15		$H \to S S$ Collaboration et al. (2011c)
HESS J1514-591	PWN	320.33	-1.19	EG	0.10	0.04	Abaronian et al. $(2005b)$
HESS J1554-550	PWN	327.16	-1.07	PS			Acero et al. (2012)
HESS J1614-518	MSC	331.52	-0.58	EG	0.23	0.15	Abaronian et al. $(2006d)$
HESS J1616-508	PWN	332.39	-0.14	G	0.14		Aharonian et al. (2006d)
HESS J1626-490	UNID	33477	0.05	EG	0.07	0.10	Abaronian et al. $(2008c)$
HESS $11632 - 478$	PWN	336 38	0.00	EG	0.01	0.10	Abaronian et al. $(2006d)$
HESS $J1634 - 472$	UNID	337.11	0.13	G	0.21		Aharonian et al. (2006d)
HESS $11640 - 465$	PWN	338 32	-0.02	G	0.04		Abaronian et al. $(2006d)$
HESS $11646 - 458$ A	MSC	339.57	-0.02	G	0.04		Abramowski et al. (2012)
HESS 11646-458B	MSC	330.01	-0.79	G	0.00		Abramowski et al. (2012)
HESS $J1040 - 430D$ HESS $J1702 - 420$	UNID	344 30	-0.13 -0.18	EG	0.20	0.15	Abaronian et al. $(2006d)$
HESS J1702 420 HESS J1708-443	PWN	343.06	-2.38	G	0.00		H E S S Collaboration et al. (2011b)
HESS 11718_385	PWN	3/8 83	_0.49	FC	0.25	0.07	Abaronian et al. (2007)
HESS J1710-305 HESS J1720-345	UNID	353 44	-0.43	G	0.13	0.07	H E S S Collaboration et al. (2011a)
HESS $1129-345$ HESS $11804-216$	UNID	8 40	-0.13	FC	0.14	0.27	Abaronian et al. (2006d)
HESS $11809 - 210$ HESS $11809 - 103$	PWN	11 18	-0.05	EG	0.10	0.27	Abaronian et al. (20001)
HESS J1803-135 HESS J1813-178	PWN	12.10	-0.03	G	0.03	0.20	Abaronian et al. (2007)
HESS J1813-178 HESS J1818 154	DWN	15.41	-0.03	G	0.04		Hofverborg et al. (2000)
HESS $J1810 - 104$ HESS $J1825 - 127$	DWN	17.41	0.17	G FC	0.14	0.19	Abaronian at al. (2011)
HESS J1823-137 HESS J1831 008	DWN	21.71	-0.70	C	0.15	0.12	Shoidaoi (2011)
HESS J1831-038	DWN	21.00	-0.11	DS	0.15		Dieppeti Atei et al. (2008)
HESS J1033-103 HESS J1034 007		21.01	-0.88	P5 C	0.00	•••	Abaranian et al. (2006d)
$11E_{00} = 11004 - 007$	UNID	25.24	-0.51	G	0.09	0.05	Aharonian et al. (2006d)
HESS J1837 - 009 HESS J1841 055	UNID	20.10	-0.12	EG	0.12	0.05	Anaronian et al. (20000)
$11E_{000} = 11041 - 000$	UNID	20.80	-0.20	EG	0.41	0.20	Harma (2008)
HE55 J1843-033 MCDO 11844 025	UNID	29.30	0.01	P5 DS		•••	Hoppe (2008)
MGRU J1044-030	DWN	20.91	-0.02	ro De		• • •	Abdo et al. $(2009e)$
пера J1840-029		29.70	-0.24	r5 C	0.20	•••	Djannati-Atal et al. (2008)
перр 11848-018	UNID	31.00	-0.16	G	0.32		Chaves et al. (2008)
HESS J1849-000	PWN	32.64	0.53	PS EC			Terrier et al. (2008)
HESS J1857+026	UNID	35.96	-0.06	EG	0.11	0.08	Anaronian et al. (2008c)

Table 1. List of analyzed VHE sources

Table 1—Continued

Name	Class	l (deg)	b (deg)	TeV morphology	σ_1 (deg)	σ_2 (deg)	Reference
HESS J1858+020	UNID	35.58	-0.58	EG	0.08	0.02	Aharonian et al. (2008c)
MGRO J1900+039	UNID	37.42	-0.11	$_{\rm PS}$	• • •	• • •	Abdo et al. $(2009e)$
MGRO J1908+06	UNID	40.39	-0.79	G	0.34		Aharonian et al. (2009)
HESS J1912+101	PWN	44.39	-0.07	G	0.26		Aharonian et al. (2008a)
VER J1930+188	PWN	54.10	0.26	$_{\rm PS}$			Acciari et al. (2010)
MGRO J1958+2848	PWN	65.85	-0.23	$_{\rm PS}$			Abdo et al. $(2009e)$
VER J1959+208	PSR	59.20	-4.70	$_{\rm PS}$			Hall et al. (2003)
VER J2016+372	UNID	74.94	1.15	$_{\rm PS}$			Aliu (2011)
MGRO J2019+37	PWN	75.00	0.39	G	0.55		Abdo et al. (2007)
MGRO J2031+41A	UNID	79.53	0.64	G	1.50		Abdo et al. (2007)
MGRO J2031+41B	UNID	80.25	1.07	G	0.10		Bartoli et al. (2012)
MGRO J2228+61	PWN	106.57	2.91	$_{\rm PS}$			Abdo et al. $(2009e)$
W49A	\mathbf{SFR}	43.27	-0.00	$_{\rm PS}$			Brun et al. (2011)

a- This work was presented at the "Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era", 2009. See http://cxc.harvard.edu/cdo/snr09/pres/DjannatiAtai_Arache_v2.pdf.

Note. — VHE sources analyzed with LAT observations. The first two columns list the VHE source names and classifications as defined in the TeV catalog (see Section 2): PWN for Pulsar Wind Nebulae, PSR for Pulsars, UNID for Unidentified sources, MSC for Massive Star Clusters and SFR for Star Forming Regions. The third and fourth column give the Galactic longitude and latitude for each source. The fifth column presents the best-fit morphology of the source when observed by VHE experiments: PS, G and EG respectively stand for point-source, Gaussian and elliptical Gaussian. The sixth and seventh columns present the Gaussian and elliptical Gaussian extension. A reference is cited in the eighth column.

– 10 –

111

3. CONVENTIONS AND METHODS

The LAT is a γ -ray telescope that detects photons by conversion into electron-positron pairs. It operates in the energy range between 20 MeV and more than 300 GeV. Details of the instrument and data processing are given in Atwood et al. (2009). The on-orbit calibration is described in Abdo et al. (2009d) and Ackermann et al. (2012). This Section will present the data set and the method used to analyze LAT data.

117

3.1. Dataset

This paper uses 45 months of data collected from 2008 August 4 to 2012 April 18 (Mission Elapsed Time: 239557440-356439741 s) for regions centered on the positions of each VHE source. We excluded γ -rays coming from a zenith angle larger than 100°. We used the Pass 7 Clean event class that has substantially less instrumental background above 10 GeV with only a marginal loss in effective area, compared to the Pass 7 Source event class (Ackermann et al. 2012).

We analyzed LAT data only between 10 and 316 GeV to avoid systematics associated with the modeling of adjacent sources with soft spectra. It also reduces systematics associated with imperfect modeling of the Galactic diffuse emission. The maximum energy of 316 GeV increases the overlap between the energy range covered by the VHE experiments and the LAT. The 100 to 316 GeV energy range was also shown to be crucial in previous analyses like Rousseau et al. (2012).

Figure 1 shows a background-subtracted count map of the Galactic Plane observed by the LAT above 10 GeV. The bright Vela $(l, b = 263^{\circ}.55, -2^{\circ}.79)$ and Geminga $(l, b=195^{\circ}.13, 4^{\circ}.27)$ pulsars, and the SNR IC 443 $(l, b = 189^{\circ}.06, 3^{\circ}.23)$ clearly stand out. In addition to these well-known objects, a large number of other sources are apparent. Several are coincident with sources detected by VHE experiments, such as HESS J1614-518 and HESS J1616-508 (Lande et al. 2012), and will be discussed in Section 4. The large number of other sources visible in the map highlights the LAT sensitivity at high energies.

137

3.2. Modeling the Regions of Interest

Two different software packages for maximum-likelihood fitting were used to analyze LAT data: gtlike and pointlike. These tools fit LAT data with a parametrized model of the sky, including models for the instrumental, extragalactic and Galactic components of

150

Fig. 1.— Count map of the Galactic plane in the energy range between 10 GeV and 316 GeV with the contribution of the Galactic diffuse, isotropic diffuse, and identified blazars subtracted. All sources associated to blazars are subtracted using the spectral parameters listed in 1FHL. Most of the large positive residuals in the map are Galactic sources, while a few could be unassociated blazars. The count map is smoothed with a Gaussian of 0°27. The black circle shows the positions of HESS J1614–518 and HESS J1616–508.

141 the background.

3

The first one, gtlike, is a maximum-likelihood method distributed in the *Fermi* Science Tools by the FSSC². We used version 09-28-00 of the package in binned mode. pointlike is

²Fermi Science Support Center: http://fermi.gsfc.nasa.gov/ssc/

an alternate software package that we used to fit the positions of point-like sources and fit the
spatial parameters of spatially-extended sources. Kerr (2011) describes the implementation
of pointlike, and Lande et al. (2012) validates pointlike's extension-fitting functionality.
In pointlike, the data are binned spatially, using a HEALPix pixellization³ (Górski et al.
2005), and spectrally, and the likelihood is maximized over all bins in a region.

We used pointlike to evaluate a position and extension estimate in the LAT data for each source of our sample. Using those morphologies, we used gtlike to obtain the bestfit spectral parameters and statistical significances. gtlike makes fewer approximations in calculating the likelihood for spectra than pointlike. Both methods agree with each other within 10% for all derived quantities, but all spectral parameters quoted in the following were obtained using gtlike.

Since pointlike and gtlike use two different shapes for the regions of the sky modeled for each source, we included photons within a radius of 5° centered on our source of interest when using pointlike and within a 7° \times 7° square region aligned with Galactic coordinates when using gtlike. We tried to keep the two methods as close as possible by using the same conventions, i.e. same energy binning of 8 energy bins per decade between 10 GeV and 316 GeV, and the same optimizer: MINUIT (James & Roos 1975).

The Galactic diffuse emission was modeled by the standard LAT interstellar emission model ring_2yearp7v6_v0.fits. The residual cosmic-ray background and extragalactic radiation are described by a single isotropic component with a spectral shape described by the file isotrop_2year_P76_clean_v0.txt. The models have been released and described by the *Fermi*-LAT Collaboration through the FSSC⁴. In the following, we fit the Galactic diffuse normalization. Since the isotropic diffuse component is not well constrained over the small regions of interest used in this work, we fixed its normalization to 1.

We included in our sky model all cataloged LAT sources within a radius of 10° of each source of interest and listed in the hard source list (Paneque et al. 2013), henceforth "1FHL". The 1FHL catalog is a forthcoming catalog of sources using three years of LAT data above 10 GeV. The data selection used clean events as done in this work. The spectral parameters of sources closer than 2° to the source of interest were fit, while the spectra of all other 1FHL sources were fixed.

 γ -ray pulsars are found near many of the VHE sources. Table 2 summarizes the sources analyzed in this paper that are near a LAT-detected pulsar. In the LAT energy range,

³The HEALPix libraries can be obtained from: http://healpix.jpl.nasa.gov/

⁴Background models are available at: http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

Name	Pulsar Name	distance (deg)	2FGL name	In the model	Justification
VER J0006+727	PSR J0007+7303	0.26	2FGL J0007.0+7303	Ν	a
MGRO J0631+105	PSR J0631+1036	0.10	2FGL J0631.5+ 1035	Ν	a
MGRO J0632+17	PSR J0633+1746	0.00	2FGL J0633.9+1746	Ν	a
HESS J1018-589	PSR J1016-5857	0.22	2FGL J1016.5 -5858	Ν	a
HESS J1023-575	PSR J1023 - 5746	0.05	2FGL J $1022.7-5741$	Ν	b
HESS $J1026-582$	PSR J1028-5819	0.27	2FGL J1028.5 - 5819	Υ	
HESS J1119-614	PSR J1119-6127	0.07	2FGL J1118.8 - 6128	Ν	a
HESS $J1356-645$	PSR J1357-6429	0.12	2FGL J1356.0-6436	Ν	a
HESS J1418-609	PSR J1418 - 6058	0.05	2FGL J1418.7 - 6058	Ν	b
HESS J1420-607	PSR J1420 - 6048	0.05	2FGL J1420.1 - 6047	Ν	b
HESS $J1458 - 608$	PSR J1459 - 6053	0.17	2FGL J1459.4 - 6054	Ν	a
HESS $J1514-591$	PSR J1513-5908	0.03		Ν	b
HESS J1646 $-458B$	PSR J1648-4611	0.42	2FGL J1646-4611	Ν	с
HESS J1702-420	PSR J1702 - 4128	0.53		Ν	с
HESS J1708-443	PSR J1709 - 4429	0.25	2FGL J1709.7 - 4429	Ν	b
HESS J1718-385	PSR J1718 - 3825	0.13	2FGL J1718.3 - 3827	Ν	a
HESS J1804-216	PSR J1803-2149	0.27	2FGL J1803.3 - 2148	Ν	b
HESS J1833-105	PSR J1833-1034	0.01	2FGL J1833.6 -1032	Ν	a
HESS J1841 -055	PSR J1838 - 0537	0.48	2FGL J1839.0-0539	Υ	
MGRO J1908+06	PSR J1907 + 0602	0.23	2FGL J1907.9 + 0602	Ν	a
MGRO J1958+2848	PSR J1958+2846	0.12	2FGL J1958.6+2845	Ν	a
VER J1959+208	PSR J1959 + 2048	0.02	2FGL J1959.5+2047	Ν	a
MGRO J2019+37	PSR J2021+3651	0.36	2FGL J2021.0+3651	Ν	b
MGRO J2031+41B	PSR J2032 + 4127	0.05	2FGL J2032.2+4126	Ν	b
MGRO J2228+61	PSR J2229+6114	0.09	2FGL J2229+6114	Ν	а

Table 2. VHE sources with a LAT detected pulsar within 0°.5

a- The distance between the pulsar and the source is closer than $0^{\circ}.27$.

b- The pulsar is located inside the edge of the shape observed by VHE experiments.

c- Not a and not b, but no significant excess above 10 GeV at the position of the pulsar.

Note. — Sources with a LAT-detected γ -ray pulsar within 0°5. The first two columns list the names of the VHE sources and their associated pulsars. The third column is the angular distance between the center of the VHE source and the LAT pulsar. The pulsar position comes from 2PC. The fourth column gives the pulsar 2FGL name. The fifth column says if the emission from the pulsar was included in the model of the background emission. "Y" means the emission was included and "N" means that it was not. The sixth column gives the justification when the pulsar is not included in the model.

pulsars tend to be brighter than their associated PWNe (Ackermann et al. 2011). During 176 the fit, the observed photon sample is shared by all modeled sources. The high energy range 177 used in this work prevents a reasonable fit of a pulsar component modeled by a power law 178 with an exponential cut-off spectrum. If a pulsar's model overestimates its emission above 179 10 GeV, a putative PWN emission would be underestimated. This effect could obscure 180 the detection of a faint PWN. On the contrary, not including an existing source, such as 181 a pulsar, would artificially increase the flux attributed to a putative PWN at low energy. 182 Therefore, we decided to keep as separate sources in the model all pulsars located outside 183 the VHE experiment template and more than 0.27 away from the source of interest. The 184 0.27 radius corresponds to the 68% containment radius of the Point Spread Function (PSF) 185 averaged over energies above 10 GeV (Ackermann et al. 2012). For VHE sources less than 186 0.27 from a LAT-detected pulsar, we analyzed the sources twice. Removing the pulsar from 187 the background model amounts to neglecting it, while leaving it in the background model 188 amounts to subtracting the underlying pulsar contribution from each putative PWN. In all 189 cases the parameters of the pulsar models have been fixed to those obtained in the 2FGL 190 catalog (Nolan et al. 2012). If contamination from the pulsar is a concern, it is possible to 191 phase-fold photons and analyze the data in the off-peak phase intervals of the pulsar. This 192 will be performed in 2PC. Here we analyze data at all phases to have the largest possible 193 statistics and therefore better sensitivity to faint PWNe. 194

¹⁹⁵ Due to the 45-months integration time of our analysis compared to the 36 months of ¹⁹⁶ the forthcoming 1FHL catalog, we expected to find new statistically-significant background ¹⁹⁷ sources. To prevent bias from these sources, we included in our model any nearby background ¹⁹⁸ sources with a significance above 4σ (TS > 25 with four degrees of freedom, d.o.f.). We fit ¹⁹⁹ their spectra with power laws. The locations and spectra of the six such sources found in ²⁰⁰ our analysis are described in Table 3.

201

3.3. Analysis Procedure

We developed a uniform procedure for analyzing any potential emission in the 58 regions listed in Table 1. The small statistics above 10 GeV and the narrow energy range (1.5 decade) prevent any spectral curvature to be significant as will be discussed in the 1FHL catalog. Therefore, in the following we derived the spectra assuming a power-law spectral model:

$$\frac{dF}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-1} \tag{1}$$

where N_0 is the normalization, Γ is the spectral index, and E_0 is the scale parameter. To minimize the covariance between N_0 and Γ , we ran the analysis twice. In the first iteration, we fitted the source assuming a power-law model depending on the integral flux F and Γ ,

$$\frac{dF}{dE} = \frac{F(-\Gamma+1)E^{-\Gamma}}{E_{\max}^{-\Gamma+1} - E_{\min}^{-\Gamma+1}}.$$
(2)

Using the covariance matrix of the fit parameters, we derived the pivot energy E_p , computed as the energy at which the relative uncertainty on the normalization N_0 was minimal (Nolan et al. 2012). In a second iteration, we refitted the spectrum of the source assuming a power-law spectral model (Eq. 1) with the scale parameter E_0 fixed to E_p . For sources not significantly detected, we computed a 99% confidence level (c.l.) Bayesian upper limit on the flux of the source assuming the published VHE morphology and a power-law photon spectral index of 2.

We performed the spatial analysis in two steps. As a first step, we assumed that the 212 LAT emission originates from the same population of emitting particles cooling by the same 213 radiation process as the VHE emission. These assumptions mean that there should be a 214 correlation between the spatial morphology of a source at LAT and VHE energies. While it is 215 possible for the γ -ray emission from PWNe to have both the synchrotron and IC components 216 visible in the LAT energy range (as in the case of the Crab nebula, Abdo et al. 2010b), this 217 scenario is unlikely for observations above 10 GeV since electrons of energy around 1 PeV 218 should radiate in a magnetic field $\sim 0.3\,\mathrm{G}$ to emit photons above 10 GeV. This value is 219 unrealistic for a PWN. A second exception would appear if the LAT and VHE emissions 220 originate from two different populations of electrons (as in the case of Vela-X, Abdo et al. 221 2010c). However, most PWNe observed by the LAT show only IC emission from the same 222 population responsible for the VHE emission (e.g., Abdo et al. 2010a; Grondin et al. 2011; 223 Rousseau et al. 2012) supporting our assumption in this first step. 224

We assumed that any LAT emission would have the same morphology as the best-fit 225 VHE morphology. Therefore, we modeled the spatial distribution of the emission as Gaussian 226 with a position and extension fixed at the value of the spatial best-fit performed in the VHE 227 energy range. To homogenize the analysis, if the source was modeled with an elliptical 228 Gaussian at VHE, the Gaussian was fixed to the averaged extension. We tested for the 220 significance of the source at LAT energies using a likelihood-ratio test: $TS = 2 \times \log(\mathcal{L}_1/\mathcal{L}_0)$ 230 where \mathcal{L} is the Poisson likelihood of obtaining the observed data given the assumed model, 231 \mathcal{L}_1 corresponds to the likelihood obtained by fitting a model of the source of interest and the 232 background model, and \mathcal{L}_0 corresponds to the likelihood obtained by fitting the background 233 model only. In the following, we refer to the TS assuming the VHE shape as TS_{TeV} . By 234 assuming a fixed spatial model, our test has fewer d.o.f. which makes our test more sensitive 235 to the LAT emission, assuming that the VHE spatial model reproduces the LAT observation. 236

The formal statistical significance of this test can be obtained from Wilks theorem (Wilks 1938). In the null hypothesis, TS follows a χ^2 distribution with *n* d.o.f. where *n* is the number of additional parameters in the model. We consider a source to be significantly detected when $TS_{TeV} \ge 16$. Our test has only two d.o.f. (the flux and the spectral index) so our threshold corresponds to a formal significance of 3.6 σ . For significantly detected sources,

 $_{\rm 242}$ $\rm TS_{TeV}$ is presented in Table 4.

Name	l (deg)	b (deg)	TS	$ \begin{array}{c} {\rm Prefactor} \\ \left({\rm cm}^{-2}{\rm s}^{-1}{\rm MeV}^{-1} \right) \end{array} $	Spectral index
2FGL J1405.5-6121 Background Source 1 Background Source 2 2FGL J1823.1-1338c 2FGL J1836.8-0623c PSR J1838-0536	311.81 333.59 336.96 17.51 25.41 26.28	$\begin{array}{c} 0.30 \\ -0.31 \\ -0.07 \\ -0.12 \\ 0.42 \\ 0.62 \end{array}$	31 29 25 30 25 16	$\begin{array}{l} (1.2\pm0.4)\times10^{-15}\\ (6.5\pm2.5)\times10^{-17}\\ (1.2\pm0.4)\times10^{-15}\\ (4.9\pm1.9)\times10^{-15}\\ (\ 9.4\pm3.9\)\times10^{-16}\\ (5.0\pm1.8)\times10^{-17} \end{array}$	$\begin{array}{c} 1.8 \pm 0.3 \\ 4.3 \pm 0.9 \\ 1.9 \pm 0.4 \\ 2.9 \pm 0.7 \\ 2.0 \pm 0.4 \\ 4.1 \pm 1.0 \end{array}$

Table 3. Additional background sources

Note. — New background sources found in our analysis for energies above 10 GeV that are not included in 1FHL. The first three columns are their name, Galactic longitude, and Galactic latitude. The TS values for the sources are provided in the fourth column. The spectral results are presented in columns 5 and 6 assuming a power-law spectral model (Equation 1) with a scale parameter $E_0 = 56.2$ GeV (corresponding to the mid-value of the energy range in logarithmic scale). PSR J1838–0536 improves the morphology fit of the diffuse source HESS J1841–055. The spectral fit is consistent with the pulsar component (spectral index of ~4). Additional sources appearing to be spatially consistent with a 2FGL source are labeled with the name of the associated 2FGL source.

Name	ID	$\mathrm{TS}_{\mathrm{TeV}}$	$\mathrm{TS}_{\mathrm{GeV}}$	TS _{ext}	l (deg)	b (deg)	$\frac{\mathrm{Unc}_{\mathrm{GeV}}}{\mathrm{(deg)}}$	σ
VER J0006+727	PSR	655	1206	0	119.68	10.47	0.01, 0.01	< 0.07
a		2	•••					
MGRO J0632+17	PSR	699	2056	1	195.13	4.28	0.01, 0.01	< 0.08
a		5	•••				•••	•••
HESS J1018-589	0	29	29	0	284.33	-1.66	0.04, 0.02	< 0.87
a		25	25	2	284.34	-1.65	0.04, 0.02	< 0.87
HESS J1023-575	PWNc	52	58	8	284.13	-0.45	0.03, 0.02	< 0.77
a		52	58	8	284.13	-0.45	0.03, 0.02	< 0.77
HESS J1119-614	PWNc	27	27	9	292.16	-0.56	0.05, 0.02	< 0.31
a		16	16	9	292.18	-0.57	0.05, 0.02	< 0.32
HESS J1303-631	\mathbf{PWNc}	37	58	29	304.56	-0.11	0.04, 0.03	$0.45 \pm 0.09 \pm 0.10$
HESS J1356-645	PWN	24	26	3	309.71	-2.33	0.05, 0.01	< 0.39
a		24	26	3	309.71	-2.32	0.05, 0.01	< 0.39
HESS J1418-609	PSR	31	32	0	313.28	0.13	0.03, 0.01	< 0.32
a		15	•••					
HESS J1420-607	PWNc	42	42	0	313.55	0.27	0.04, 0.02	< 0.38
a		36	36	0	313.55	0.28	0.04, 0.02	< 0.39
HESS J1507-622	Ο	21	23	7	317.77	-3.60	0.05, 0.03	< 1.04
a		21	23	7	317.76	-3.61	0.05, 0.03	< 1.04
HESS J1514-591	PWN	156	147	10	320.35	-1.25	0.03, 0.01	< 0.16
a		156	147	10	320.35	-1.25	0.03, 0.01	< 0.16
HESS J1614-518	0	110	133	47	331.62	-0.74	0.04, 0.03	$0.28 \pm 0.03 \pm 0.05$
HESS J1616-508	PWNc	75	94	31	332.39	-0.27	0.04, 0.02	$0.25 \pm 0.03 \pm 0.05$
HESS J1632-478	PWNc	137	161	56	336.50	0.10	0.03, 0.02	$0.30 \pm 0.06 \pm 0.06$
HESS J1634-472	0	33	34	1	337.23	0.35	0.03, 0.01	< 1.21
HESS J1640-465	PWNc	47	42	9	338.33	0.05	0.05, 0.01	< 1.17
HESS J1708-443	PSR	722	1153	0	343.11	-2.70	0.01, 0.01	< 0.05
a		33	64	0	343.12	-2.70	0.01, 0.01	< 0.09
HESS J1804-216	0	138	141	37	8.40	-0.09	0.04.0.01	$0.25 \pm 0.03 \pm 0.04$
a	-	124	128	30	8.42	-0.10	0.04.0.01	$0.24 \pm 0.03 \pm 0.04$
HESS J1825-137	PWN	56	82	30	17.55	-0.47	0.05, 0.03	$0.44 \pm 0.08 \pm 0.09$
HESS J1834-087	0	27	36	4	23.20	-0.26	0.05, 0.01	< 0.22
HESS J1837-069	PWNc	73	119	46	25.17	0.00	0.05, 0.03	$0.36 \pm 0.06 \pm 0.04$
HESS J1841-055	PWNc	64	70	32	27.01	-0.15	0.05, 0.03	$0.38 \pm 0.06 \pm 0.06$
HESS J1848-018	PWNc	19	19	0	30.90	-0.20	0.04.0.01	< 1.50
HESS J1857+026	PWNc	53	55	8	36.08	0.020	0.04 0.01	< 0.28
MGRO J1908+06	PSR	16	37	2	40.11	-0.84	0.03, 0.01	< 0.19
a	1 010	9		-				
MGRO J1958+9848	PSB	21	24	0	65.88	-0.34	0.04.0.01	< 0.56
a	1 010	8	<u> </u>					
VER 12016+272	0	31	33	1	74.86	1.99	0.05.0.02	< 1.16
MCRO 12010+372	PSB	31	100	1	75.92	0.19	0.02, 0.02	< 0.07
a	1 010	5	100	1	10.40	0.13	0.02, 0.01	< 0.01
MCDA 19091 - 41D	DCD	5 50	 66	 Б	×0.00	1.09	0.05.0.01	< 9.47
NIGRO J2031+41B a	rsn	00 19	00	9	60.20	1.03	0.05, 0.01	< 2.41
-		12	• • •	• • •		• • •	• • •	•••

Table 4. Spatial results for detected sources

Name	ID	$\mathrm{TS}_{\mathrm{TeV}}$	$\mathrm{TS}_{\mathrm{GeV}}$	$\mathrm{TS}_{\mathrm{ext}}$	l (deg)	b (deg)	$\frac{\mathrm{Unc}_{\mathrm{GeV}}}{\mathrm{(deg)}}$	σ
MGRO J2228+61 a	PSR	94 15	113 	0 	$\begin{array}{c} 106.65 \\ \dots \end{array}$	2.94 	0.02, 0.01	< 0.10

Table 4—Continued

Note. — Results of the maximum likelihood spatial fits for LAT-detected VHE sources. "a" in the first column corresponds to the results with contribution of the pulsar associated in Table 2 subtracted from the emission of the source just above. Column 2 lists the classification for the LAT emission: either "PWN" for clearly identified PWNe, "PWNc" for PWNe candidates, "PSR" for pulsar emission, and "O" for anything else. Column 3 is the TS when the source is modeled with the spatial model obtained from VHE data. Column 4 is the TS when the source is modeled assuming it is point-like, and column 5 is the TS of the source assuming it is spatially-extended with a Gaussian spatial model. Columns 6 and 7 give the position of the source fit in our LAT analysis. Column 8 gives the statistical (68% confidence radius) and systematic uncertainties on the position. The methods for determining systematic uncertainties on the spatial parameters are described in Section 3.4. Column 9 gives the extension fit in the LAT energy range if $TS_{ext} > 16$ or a 99 % c.l. upper limit on the extension otherwise.

As a second step, for significantly-detected sources, we then independently character-243 ized the best-fit morphology obtained from the LAT emission. Following the method of 244 Nolan et al. (2012), we assumed the source to be point-like and fit its position. Following the 245 method adopted in Lande et al. (2012), we then assumed the source to be spatially-extended 246 with a Gaussian spatial model and fit its position and extension. From this, we obtained 247 TS_{point} and $TS_{Gaussian}$. We then defined the extension significance $TS_{ext} = TS_{Gaussian} - TS_{point}$ 248 following the method of Lande et al. (2012) and set the threshold for claiming the source to be 249 spatially extended as $TS_{ext} > 16$, corresponding to a significance of 4σ . $TS_{GeV} = TS_{Gaussian}$ 250 when $TS_{ext} > 16$ and $TS_{GeV} = TS_{point}$ otherwise. Table 4 lists eight significantly extended 251 sources and 22 point sources. If the source was not significantly extended, we derived a 99%252 c.l. Bayesian upper limit on the extension. 253

Name	TS	$\mathrm{F}_{10\mathrm{GeV}}^{316\mathrm{GeV}}$	Γ	$\mathrm{TS}^{31\mathrm{GeV}}_{10\mathrm{GeV}}$	$\mathrm{F}^{31\mathrm{GeV}}_{10\mathrm{GeV}}$	$\mathrm{TS}^{100\mathrm{GeV}}_{31\mathrm{GeV}}$	$\mathrm{F}^{100\mathrm{GeV}}_{31\mathrm{GeV}}$	$\mathrm{TS}^{316\mathrm{GeV}}_{100\mathrm{GeV}}$	$\mathrm{F}^{316\mathrm{GeV}}_{100\mathrm{GeV}}$
		$(10^{-10} \mathrm{cm}^{-2} \mathrm{s}^{-1})$			$(10^{-10} \mathrm{cm}^{-2} \mathrm{s}^{-1})$		$(10^{-10} \mathrm{cm}^{-2} \mathrm{s}^{-1})$		$(10^{-10} \mathrm{cm}^{-2} \mathrm{s}^{-1})$
VER J0006+727	655	$11.3 \pm 0.9 \pm 1.2$	$3.96 \pm 0.25 \pm 0.36$	647	$11.2 \pm 0.9 \pm 2.0$	11	$0.4 \pm 0.2 \pm 0.2$	0	< 0.3
a	2	< 1.2		3	< 1.2	0	< 0.4	0 0	< 0.3
MGRO J0632+17	699	$34.9 \pm 2.1 \pm 10.2$	$4.53 \pm 0.25 \pm 0.51$	695	$36.8 \pm 2.0 \pm 10.1$	6	< 1.6	1	< 0.7
a	5	< 5.1		9	< 5.5	1	< 1.1	0	< 0.6
HESS J1018-589	29	$1.7 \pm 0.5 \pm 0.7$	$2.41 \pm 0.49 \pm 0.49$	25	$1.4 \pm 0.5 \pm 0.6$	0	< 0.6	6	< 0.6
а	25	$1.5 \pm 0.5 \pm 0.7$	$2.31 \pm 0.50 \pm 0.49$	20	$1.3 \pm 0.4 \pm 0.6$	0	< 0.6	6	< 0.6
HESS J1023-575	52	$4.6 \pm 0.9 \pm 1.2$	$1.99 \pm 0.24 \pm 0.32$	40	$3.8 \pm 0.8 \pm 1.8$	2	< 0.9	9	< 1.2
а	52	$4.6 \pm 0.9 \pm 1.2$	$1.99 \pm 0.24 \pm 0.32$	40	$3.8 \pm 0.8 \pm 1.8$	2	< 0.9	9	< 1.2
HESS J1119-614	27	$2.1 \pm 0.6 \pm 0.8$	$2.15 \pm 0.37 \pm 0.36$	17	$1.5\pm0.5\pm0.5$	1	< 0.7	11	$0.2 \pm 0.1 \pm 0.1$
а	16	$2.0\pm0.6\pm0.8$	$1.83 \pm 0.41 \pm 0.36$	5	< 2.1	1	< 0.8	11	$0.2\pm0.1\pm0.1$
HESS J1303-631	37	$3.6 \pm 0.9 \pm 2.1$	$1.53 \pm 0.23 \pm 0.37$	10	$1.6\pm0.7\pm1.5$	25	$1.6\pm0.5\pm0.7$	3	< 0.7
HESS J1356-645	24	$1.1\pm0.4\pm0.5$	$0.95 \pm 0.40 \pm 0.40$	0	< 0.9	14	$0.6\pm0.3\pm0.3$	10	$0.3\pm0.2\pm0.2$
a	24	$1.1\pm0.4\pm0.5$	$0.94 \pm 0.40 \pm 0.40$	0	< 0.9	14	$0.6\pm0.3\pm0.3$	10	$0.3\pm0.2\pm0.2$
HESS J1418-609	31	$4.0 \pm 1.0 \pm 1.3$	$3.52 \pm 0.81 \pm 0.61$	29	$3.6\pm0.9\pm1.2$	2	< 1.0	0	< 0.6
a	15	< 4.3		13	$2.6\pm0.9\pm1.2$	2	< 1.0	0	< 0.6
HESS J1420-607	42	$3.7\pm0.9\pm1.1$	$1.89 \pm 0.28 \pm 0.31$	19	$2.4\pm0.7\pm0.7$	13	$0.8\pm0.3\pm0.3$	12	$0.5\pm0.2\pm0.2$
a	36	$3.4\pm0.9\pm1.1$	$1.81 \pm 0.29 \pm 0.31$	15	$2.2\pm0.7\pm0.7$	13	$0.8\pm0.3\pm0.3$	12	$0.5\pm0.2\pm0.2$
HESS J1507-622	21	$1.5\pm0.5\pm0.5$	$2.33 \pm 0.48 \pm 0.48$	18	$1.2\pm0.4\pm0.4$	3	< 0.7	0	< 0.4
HESS J1514-591	156	$6.2\pm0.9\pm1.3$	$1.72 \pm 0.16 \pm 0.17$	69	$3.9\pm0.7\pm1.1$	54	$1.7\pm0.4\pm0.4$	36	$0.7\pm0.3\pm0.4$
HESS J1614-518	110	$9.9 \pm 1.4 \pm 3.1$	$1.75 \pm 0.15 \pm 0.18$	47	$6.1\pm1.1\pm2.7$	37	$2.6\pm0.6\pm0.8$	31	$1.1\pm0.4\pm0.3$
HESS $J1616 - 508$	75	$9.3\pm1.4\pm2.3$	$2.18 \pm 0.19 \pm 0.20$	46	$6.5\pm1.2\pm2.1$	29	$2.3\pm0.6\pm0.6$	3	< 1.0
HESS J1632-478	137	$11.8\pm1.5\pm5.3$	$1.82 \pm 0.14 \pm 0.19$	69	$7.8\pm1.2\pm4.2$	37	$2.6\pm0.6\pm0.9$	39	$1.5\pm0.4\pm0.5$
HESS $J1634 - 472$	33	$5.6\pm1.3\pm2.5$	$1.96 \pm 0.25 \pm 0.29$	20	$3.6\pm1.0\pm2.1$	12	$1.3\pm0.5\pm0.5$	2	< 0.8
${ m HESS}~{ m J1640-465}$	47	$5.0\pm1.0\pm1.7$	$1.95 \pm 0.23 \pm 0.20$	24	$3.4\pm0.9\pm1.3$	28	$1.7\pm0.5\pm0.5$	0	< 0.5
HESS J1708-443	722	$24.5\pm1.7\pm3.5$	$3.80 \pm 0.24 \pm 0.33$	714	$23.9\pm1.6\pm3.0$	14	$1.1\pm0.4\pm0.5$	6	< 1.0
а	33	$5.5\pm1.3\pm3.5$	$2.13 \pm 0.31 \pm 0.33$	17	$4.0\pm1.2\pm3.0$	11	$1.0\pm0.4\pm0.5$	6	< 1.0
HESS $J1804 - 216$	138	$14.2\pm1.6\pm3.1$	$2.10 \pm 0.16 \pm 0.24$	91	$10.1\pm1.4\pm2.3$	38	$2.9\pm0.7\pm0.6$	21	$1.2\pm0.4\pm0.4$
а	124	$13.4\pm1.6\pm3.1$	$2.04 \pm 0.16 \pm 0.24$	77	$9.3\pm1.4\pm2.3$	36	$2.8\pm0.7\pm0.6$	21	$1.2\pm0.4\pm0.4$
HESS J1825-137	56	$5.6 \pm 1.2 \pm 9.0$	$1.32 \pm 0.20 \pm 0.39$	10	$1.7\pm0.9\pm1.5$	30	$2.9\pm0.7\pm1.6$	17	$0.8\pm0.3\pm0.8$
HESS J1834-087	27	$5.5\pm1.2\pm2.5$	$2.24 \pm 0.34 \pm 0.42$	19	$4.2\pm1.1\pm1.9$	7	< 1.9	3	< 1.0
HESS J1837-069	73	$7.5\pm1.3\pm4.2$	$1.47 \pm 0.18 \pm 0.30$	28	$4.3\pm1.1\pm3.5$	21	$1.9\pm0.6\pm0.9$	27	$1.4\pm0.5\pm0.5$
HESS J1841 -055	64	$10.9\pm0.8\pm4.1$	$1.60 \pm 0.27 \pm 0.33$	20	$7.4\pm1.6\pm2.9$	13	$2.1\pm0.7\pm1.0$	31	$1.8\pm0.5\pm0.7$
HESS J1848 -018	19	$7.4\pm1.9\pm2.7$	$2.46 \pm 0.50 \pm 0.51$	16	$5.8\pm1.6\pm2.9$	4	< 2.6	0	< 1.0
HESS J1857+026	53	$4.2 \pm 0.3 \pm 1.3$	$1.01 \pm 0.24 \pm 0.25$	6	< 2.9	19	$1.2 \pm 0.4 \pm 0.4$	31	$1.5 \pm 0.4 \pm 0.4$

 Table 5.
 Spectral results for detected sources

Name	TS	$\substack{F_{10GeV}^{316GeV}\\ \left(10^{-10}cm^{-2}s^{-1}\right)}$	Γ	TS^{31GeV}_{10GeV}	$\stackrel{\rm F_{10GeV}^{31GeV}}{\left(10^{-10}{\rm cm}^{-2}{\rm s}^{-1}\right)}$	TS^{100GeV}_{31GeV}	$\stackrel{F_{31GeV}^{100GeV}}{\left(10^{-10}\mathrm{cm}^{-2}\mathrm{s}^{-1}\right)}$	TS_{100GeV}^{316GeV}	$ \begin{smallmatrix} F^{316GeV}_{100GeV} \\ \left(10^{-10}\mathrm{cm}^{-2}\mathrm{s}^{-1}\right) \end{smallmatrix}$
MGRO J1908+06	16	$4.6\pm1.3\pm1.5$	$3.50 \pm 1.11 \pm 1.60$	11	$3.4\pm1.2\pm1.2$	2	< 1.6	7	< 1.5
a	9	< 5.6	•••	3	< 3.9	2	< 1.6	7	< 1.5
MGRO J1958+2848	21	$1.3\pm0.4\pm0.7$	$4.36 \pm 1.09 \pm 1.21$	19	$1.3\pm0.5\pm0.5$	0	< 0.3	0	< 0.3
а	8	< 1.8		15	$1.2\pm0.5\pm0.5$	0	< 0.3	0	< 0.3
VER J2016+372	31	$1.8\pm0.5\pm0.8$	$2.45 \pm 0.44 \pm 0.49$	26	$1.6\pm0.5\pm0.5$	3	< 0.6	3	< 0.5
MGRO J2019+37	31	$4.4\pm1.7\pm1.1$	$6.37 \pm 3.04 \pm 1.21$	26	$5.4 \pm 1.2 \pm 1.8$	0	< 0.7	1	< 0.8
а	5	< 4.7		9	< 5.3	0	< 0.8	1	< 0.8 5
MGRO J2031+41B	58	$6.4\pm1.0\pm1.1$	$3.07 \pm 0.33 \pm 0.37$	58	$6.2\pm1.0\pm1.3$	3	< 1.0	0	< 0.4 N
a	12	< 4.4		11	$3.0\pm0.9\pm1.0$	1	< 0.9	0	< 0.4
MGRO J2228+61	94	$2.8\pm0.5\pm0.5$	$3.06 \pm 0.41 \pm 0.42$	87	$2.5\pm0.5\pm0.5$	7	< 0.8	0	< 0.2
a	15	< 2.0		9	< 1.8	7	< 0.8	0	< 0.2

Table 5—Continued

Note. — Results of the maximum likelihood spectral fits for LAT-detected VHE sources. These results are obtained assuming the sources have the same morphology as was measured by VHE experiments. "a" in the first column corresponds to the results with the contribution of pulsars associated in Table 2 subtracted from the SED for the source just above. Columns 2 to 4 respectively give the TS, the integrated flux and the spectral index of the source fit in the energy range from 10 GeV to 316 GeV. Columns 5 to 10 give the TS and the integrated flux fit in three logarithmically-spaced energy ranges: 10-31 GeV, 31-100 GeV, 100-316 GeV. When the TS in the energy bin is < 10 a 99% c.l. upper limit on the flux is given instead. The two uncertainties respectively correspond to the statistical and systematic uncertainties.

Name	TS	$\begin{smallmatrix} F^{316GeV}_{10GeV} \\ \left(10^{-10}\mathrm{cm}^{-2}\mathrm{s}^{-1}\right) \end{smallmatrix}$	TS^{31GeV}_{10GeV}	$\stackrel{F_{10GeV}^{31GeV}}{\left(10^{-10}\mathrm{cm}^{-2}\mathrm{s}^{-1}\right)}$	TS^{100GeV}_{31GeV}	$\begin{smallmatrix} F_{\rm 31GeV}^{\rm 100GeV} \\ \left(10^{-10}{\rm cm}^{-2}{\rm s}^{-1}\right) \end{smallmatrix}$	TS^{316GeV}_{100GeV}	$\substack{F_{100GeV}^{316GeV}\\ \left(10^{-10}\mathrm{cm}^{-2}\mathrm{s}^{-1}\right)}$
MGRO J0631+105	6	< 1.4	4	< 1.2	3	< 0.6	0	< 0.4
a	2	< 1.0	0	< 0.8	3	< 0.6	0	< 0.4
HESS J1026-582	1	< 1.6	0	< 1.6	0	< 0.4	6	< 0.7
a	1	< 1.6	0	< 1.6	0	< 0.4	6	< 0.7
HESS J1427-608	5	< 1.9	0	< 1.2	2	< 0.8	4	< 0.6
HESS J1458-608	13	< 2.6	13	$1.7\pm0.5\pm0.7$	0	< 0.5	0	< 0.3
a	13	< 2.6	13	$1.7\pm0.5\pm0.7$	0	< 0.5	0	< 0.3
HESS J1503-582	10	< 3.9	1	< 2.2	4	< 1.5	9	< 1.0
HESS J1554-550	0	< 0.5	0	< 0.6	0	< 0.3	0	< 0.3
HESS J1626-490	1	< 2.3	1	< 2.0	1	< 1.0	0	< 0.6
HESS J1646-458A	0	< 2.8	0	< 1.7	1	< 1.9	1	< 1.0
a	0	< 2.7	0	< 1.7	1	< 1.9	1	< 1.0
${ m HESS}~{ m J1646-458B}$	6	< 4.7	0	< 2.6	4	< 1.9	5	< 1.2
a	4	< 4.3	0	< 2.2	4	< 1.9	5	< 1.3
HESS J1702-420	6	< 4.7	0	< 2.6	8	< 2.4	1	< 0.8
a	6	< 4.5	0	< 2.5	8	< 2.4	1	< 0.8
HESS J1718-385	3	< 2.1	0	< 1.5	0	< 0.8	6	< 0.9
a	3	< 2.1	0	< 1.5	0	< 0.8	6	< 0.9
HESS J1729-345	0	< 1.4	0	< 1.4	0	< 0.8	0	< 0.5
HESS J1809-193	15	< 8.5	11	$4.7\pm1.5\pm2.1$	3	< 2.3	1	< 1.0
HESS J1813-178	3	< 2.5	0	< 1.4	5	< 1.6	1	< 0.7
HESS J1818-154	0	< 1.6	0	< 1.6	0	< 0.8	0	< 0.4
HESS J1831-098	0	< 1.9	0	< 1.5	0	< 1.0	0	< 0.6
HESS J1833-105	4	< 2.1	3	< 1.9	1	< 0.7	0	< 0.7
a	4	< 2.1	3	< 1.9	1	< 0.7	0	< 0.7
HESS J1843-033	0	< 0.9	0	< 1.0	0	< 0.5	0	< 0.5
MGRO J1844-035	0	< 1.4	0	< 1.2	0	< 0.9	0	< 0.5
HESS J1846-029	2	< 2.0	5	< 2.4	0	< 0.5	0	< 0.4
HESS J1849-000	0	< 1.3	1	< 1.5	0	< 0.5	0	< 0.5
HESS J1858+020	0	< 1.1	0	< 1.2	0	< 0.5	0	< 0.4
MGRO J1900+039	0	< 1.2	0	< 1.3	0	< 0.6	0	< 0.4
HESS J1912+101	10	< 4.6	2	< 2.7	8	< 2.0	4	< 1.1
VER J1930+188	0	< 1.0	1	< 1.1	0	< 0.4	0	< 0.3
VER J1959+208	0	< 0.3	0	< 0.3	0	< 0.3	0	< 0.4

 Table 6.
 Spectral results for undetected sources

Name	TS	$\substack{F_{10GeV}^{316GeV}\\ \left(10^{-10}\mathrm{cm}^{-2}\mathrm{s}^{-1}\right)}$	TS^{31GeV}_{10GeV}	$ \stackrel{\rm F_{10GeV}^{31GeV}}{(10^{-10}\rm cm^{-2}s^{-1})} $	$\mathrm{TS}^{100\mathrm{GeV}}_{31\mathrm{GeV}}$	$ \begin{smallmatrix} F_{31\rm GeV}^{100\rm GeV} \\ \left(10^{-10}\rm cm^{-2}\rm s^{-1}\right) \end{smallmatrix} $	$\mathrm{TS}^{316\mathrm{GeV}}_{100\mathrm{GeV}}$	$\substack{F_{100GeV}^{316GeV}\\ \left(10^{-10}\mathrm{cm}^{-2}\mathrm{s}^{-1}\right)}$
MGRO J2031+41A W49A	$\frac{14}{3}$	< 29.6 < 2.4	9 0	< 22.6 < 1.6	3 3	< 8.4 < 1.0	4 3	< 2.3 < 0.8

Table 6—Continued

Note. — Results of the maximum likelihood spectral fits for sources not detected in our LAT analysis. These results are obtained assuming the sources have the same morphology as was measured by VHE. "a" in the first column corresponds to the results with the contribution of pulsars associated in Table 2 subtracted from the SED for the source just above. Columns 2 and 3 respectively give the TS and a 99% c.l. upper limit on the integrated flux in the 10 to 316 GeV energy range. Columns 4 to 9 give the TS and the integrated flux in three logarithmically-spaced energy ranges: 10-31 GeV, 31-100 GeV and 100-316 GeV. When the TS in the energy bin is < 10 a 99% c.l. upper limit on the flux is given. The two uncertainties respectively correspond to the statistical and systematic uncertainties.

24

The LAT spectra of the sources have been derived assuming the published VHE mor-254 phology. In addition to performing a spectral fit over the entire energy range, we computed 255 a SED by fitting the flux of the source independently in 3 energy bins spaced uniformly in 256 log from 10 GeV to 316 GeV. During this fit, we fixed the spectral index of the source at 2 as 257 well as the model of background sources to the best-fit obtained in the whole energy range. 258 We define a detection in the energy bin when $TS \ge 10$ and otherwise compute a flux upper 259 limit using the same method as for the fit in the full energy range. All spectral results are 260 presented in Tables 5 and 6. 261

3.4. Systematics

Two main systematic uncertainties can affect the extension fit: uncertainties in our model of the Galactic diffuse emission and uncertainties in our knowledge of the LAT PSF. We used the procedure described in Lande et al. (2012) and obtained the total systematic error on the source extension by adding the two errors in quadrature.

Three main systematic uncertainties can affect the LAT flux estimate for an extended source: uncertainties on the Galactic diffuse background, on the effective area and on the shape of the source. We combined these errors in quadrature to obtain an estimate of the total systematic uncertainty on spectral parameters.

The dominant uncertainty comes from the Galactic diffuse emission and was estimated by using the alternative model for Galactic diffuse emission described in Lande et al. (2012). The systematic due to the effective area was determined by using modified instrument response functions as explained in Ackermann et al. (2012).

The imperfect knowledge of the true γ -ray morphology introduces a last source of error. We derived an estimate of the uncertainty on the spectral parameters due to the uncertainty on the γ -ray morphology by computing the difference between the values obtained assuming the published VHE spatial model and those obtained assuming the best-fit GeV extension obtained in this analysis.

As discussed in Section 3.2, for the sources near LAT-detected pulsars, a fourth source of systematic uncertainties can affect the LAT flux estimate : the pulsar model. For these sources, we studied any potential contamination of the putative LAT γ -ray sources by pulsars by performing a second fit of the regions including the pulsars in our background models. The results are also included in Tables 4, 5 and 6 and are flagged with an "a". The effects of pulsar contamination are discussed for individual sources in Section 4.

262

We caution that some LAT-detected pulsars may have spectra at LAT energies that 286 deviate from the simple exponential cutoff power law model assumed in the 2FGL catalog, 287 for energies above 10 GeV. Aliu et al. (2011) show this to be the case for the Crab pulsar. 288 In such cases, our fit could still be contaminated by the pulsar, especially in the lowest 289 energy bin between 10 GeV and 31.6 GeV. For instance, in the case of Geminga for which 290 this analysis detected no significant PWN like emission, the comparison of the energy flux 291 above 10GeV between the 2FGL and the 1FHL catalogs shows a factor ~ 2 smaller flux for 292 2FGL. 293

Table 5 shows that HESS J1825-137 and MGRO J0632+17 have large systematic uncertainties. The uncertainty on HESS J1825-137 mainly comes from the term corresponding to the source morphology. As can be seen in Tables 1 and 4, the LAT best-fit Gaussian has $\sigma = 0.44$ while the VHE symmetric Gaussian has $\sigma = 0.125$. This difference of morphology yields a difference in maximum likelihood flux of +155%.

The large systematic uncertainty on MGRO J0632+17 is not surprising since the VHE source has an extension of more than 1°, while the LAT morphology is best-fit as a point source located at the pulsar's position.

302

4. ANALYSIS RESULTS

We detected 30 statistically-significant LAT γ -ray sources among the 58 VHE sources. The results of the spatial and spectral analyses are shown in Tables 4 and 5. In addition to describing the LAT data analysis, we attempt to classify the origin of the GeV emission using the spatial and spectral information from LAT data as well as multi-wavelength information. We labeled each source as "PWN" when there is a clear PWN identification, "PWNc" when the source is a PWN candidate, "PSR" when the emission is likely coming from the pulsar only and "O" for other emission.

Name	PSR	\dot{E} (erg s ⁻¹)	$ au_C$ (kyr)	Distance (kpc)	Refs	$\gamma\text{-ray}$ pulsar
VEB 10006+727	PSB 10007+7303	4 5e+35	13.0	1 4+0 3	(1)	V
Crab	PSR 10534 ± 2200	4.6e + 38	10.0	2.0 ± 0.5	(1) (2)	V
MGBO J0631+105	PSR J0631+1036	1.7e+35	43.6	1.0 ± 0.2	(3)	Y
MGRO J0632+17	PSR J0633+1746	3.2e+34	342	$0.2^{+0.2}$	(4)	Y
Vela-X	PSR J0835-4510	6.9e + 36	11.3	0.29 ± 0.02	(5)	Ŷ
HESS J1018-589	PSR J1016-5857	2.6e + 36	21	$2.9^{+0.6}a$	(6.7)	Ŷ
HESS J1023-575	PSR J1023-5746	1.1e+37	4.6	2.8 ^b	(8)	Ŷ
HESS J1026-582	PSR J1028-5819	8.4e + 35	90	2.3 ± 0.3	(9)	Ŷ
HESS J1119-614	PSR J1119-6127	2.3e+36	1.6	8.4 ± 0.4	(10)	Ŷ
HESS J1303-631	PSR J1301-6305	1.7e+36	11	$6.7^{+1.1}$	(11, 12)	N
HESS J1356-645	PSR J1357-6429	3.1e+36	7.3	$2.5^{+0.5}$	(13)	Y
HESS J1418-609	PSR J1418-6058	4.9e + 36	1.0	1.0 - 0.4 1.6 + 0.7	(14)	Y
HESS $11420-607$	PSR 11420-6048	1.00+30 1.0e+37	13	5.6 ± 0.9	(11.15)	v
HESS $11458 - 608$	PSR 11459-6053	$9.1e \pm 35$	64 7	4d	(11,10)	V
HESS $11514 - 591$	PSR 11513-5908	1.7e + 37	1 56	4 2+0 6	(10) (12)	V
HESS J1554-550			1.00 18 ^c	7.8 ± 1.3^{e}	(12) $(17 18 19)$	N
HESS J1616-508	PSB J1617-5055	$1.6e \pm 37$	8 13	6.8 ± 0.7^{f}	(11, 10, 10) (12)	N
HESS J1632-478		$3.0e+36^{g}$	20	3 0 ^d	(12) (20)	N
HESS $11640 - 465$		$4.0e \pm 36^{\text{g}}$		5.0	(20)	N
HESS J1646-458B	PSB J1648-4611	2.1e+35	110	5.0 ± 0.7	(22, 20) (21)	Y
HESS $J1702 - 420$	PSR J1702-4128	3.4e+35	55	48 ± 0.6	(24)	Y
HESS J1708-443	PSR J1709-4429	3.4e+36	17.5	23 ± 03	(21) (25)	Y
HESS J1718-385	PSR J1718-3825	1.3e+36	89.5	3.6 ± 0.4	(26, 12)	Ŷ
HESS J1804-216	PSR J1803-2137	2.2e+36	16	$38^{+0.4}$	(12)	N
HESS J1809-193	PSR J1809-1917	1.8e + 36	51.3	3.5 ± 0.4^{f}	(12)	N
HESS J1813-178	PSR J1813-1749	$6.8e \pm 37$	54	4 7 ^h	(12, 27)	N
HESS J1818-154	PSR J1818-1541	2.3e+33	g i	$78^{+1.6}$ f	(12, 21)	N
HESS 11825-137	PSR 11826-1334	2.8e + 36 2.8e + 36	21	3.0 ± 0.4	(12, 29)	N
HESS J1831-098	PSR J1831-0952	1.1e+36	128	4.0 ± 0.4^{f}	(12, 20) (12, 30)	N
HESS J1833-105	PSR J1833-1034	3.4e+37	4.85	4.7 ± 0.4	(31)	Y
HESS J1837-069	PSR J1838-0655	5.5e+36	2.23	6.6 ± 0.9	(32)	N
HESS J1841-055	PSR J1838-0537	5.9e + 36	4.97	1.3 ^b	(33)	Y
HESS J1846-029	PSR J1846-0258	8.1e + 36	0.73	5.1 ^b	(12)	N
HESS J1848-018				6 ^d	(34)	N
HESS J1849-000	PSR J1849-0001	$9.8e \pm 36$	42.9	$7^{\rm d}$	(35)	N
HESS J1857+026	$PSR_{J1856+0245}$	4.6e + 36	20.6	9.0 ± 1.2^{f}	(12)	N
MGBO J1908+06	PSR J1907+0602	2.8e + 36	19.5	3.2 ± 0.3	(36)	Y
HESS J1912+101	PSR J1913+1011	2.9e + 36	169	$4.8^{+0.5f}$	(12)	N
VER J1930+188	PSR J1930+1852	1.2e+37	2.89	$9^{+7}1^{f}$	(37)	N
MGBO J1958+2848	PSB J1958+2846	34e+35	21.7	°-2-	(12)	Y
VER J1959+208	PSR J1959+2048	1.6e + 35		2.5 ± 0.1	(38, 39)	Ŷ
MGRO J2019+37	PSR J2021+3651	3.4e + 36	17.2	10^{+2}	(40, 41)	Ŷ
MGRO J2228+61	PSR J2229+6114	2.2e+37	10.5	0.8 ± 0.2	(42, 43)	Ŷ
	1 510 02220 0114	2:20101	10.0	0.010.2	(12, 10)	1

Table 7. Pulsar and PWN characteristics.

a- SNR distance.

b- Pseudo distance based on the observed correlation between the $0.1 - 100 \text{ GeV} \gamma$ -ray luminosity and \dot{E} (Saz Parkinson et al. 2010). This relation suffers various caveats which translates to large uncertainties in the derived distance value and is therefore replaced by a conservative upper limit in 2PC.

c- Sedov model, see (31).

d- No available uncertainty given in the reference.

e-Relation between the hydrogen column density (N_H) and E(B-V) and between E(B-V) and the distance.

f- Distance estimated using the pulsar dispersion measure and the NE2001 model (Cordes & Lazio 2002) which is available as off-line code as done in 2PC. To estimate the distance errors we apply a 20% Dispersion Measure uncertainty as is used in the online DM-distance estimator tool.

g- X-ray vs spin-down luminosity correlation, see (41).

h- Distance derived from HI absorption.

i- Sedov age, see (16).

has been detected but the parameters of an assumed pulsar can be estimated. Columns 3, 4, and 5 show the pulsar's spin down power, characteristic age and distance respectively. Footnotes indicate cases when the distance is not estimated from the pulsar dispersion measure or cases when the age estimate is not the pulsar's characteristic age. Column 7 says if the pulsar has been detected in γ -rays: "Y" means that it has and "N" means that it has not according to 2PC.

References: (1) Pineault et al. (1993), (2) Trimble (1973), (3) Weltevrede et al. (2010), (4) Verbiest et al. (2012), (5) Dodson et al. (2003), (6) Camilo et al. (2001), (7) Ruiz & May (1986), (8) Saz Parkinson et al. (2010), (9) Keith et al. (2008), (10) Caswell et al. (2004), (11) H.E.S.S. Collaboration et al. (2012b), (12) Manchester et al. (2005a), (13) Lorimer et al. (2006), (14) Yadigaroglu & Romani (1997), (15) Kishishita et al. (2012), (16) de los Reyes et al. (2012), (17) Seward et al. (1996), (18) Sun et al. (1999), (19) Temim et al. (2009), (20) Balbo et al. (2010), (21) Manchester et al. (2005b), (22) Funk et al. (2007a), (23) Lemiere et al. (2009), (24) Kramer et al. (2003), (25) Johnston et al. (1995), (26) Manchester et al. (2001), (27) Funk et al. (2007b), (28) Hofverberg (2011), (29) Grondin et al. (2011), (30) Sheidaei (2011), (31) Camilo et al. (2006), (32) Gotthelf & Halpern (2008), (33) Pletsch et al. (2012), (34) Chaves et al. (2008), (35) Gotthelf et al. (2011), (36) Abdo et al. (2010d), (37) Leahy et al. (2008), (38) Guillemot et al. (2012), (39) Huang et al. (2012), (40) Yadigaroglu & Romani (1997), (41) Hessels et al. (2004), (42) Abdo et al. (2009c), (43) Kothes et al. (2001).

Table 7 summarizes the PSR/PWN systems' characteristics such as the age or the 310 distance. The characteristic age of the pulsar is given by $\tau_C = P/2\dot{P}$ where P is the pulsar's 311 rotational period. This formula is obtained assuming that the pulsar is a dipole and that the 312 initial period of the pulsar is negligible compared to its current value. The putative pulsars 313 powering HESS J1554–550, HESS J1632–478, HESS J1640–465, HESS J1818–154 and 314 HESS J1848–018 are not yet detected. However, Table 7 gives the system age or distance 315 estimated using another method than the pulsar dispersion measure, e.g. distance measure 316 derived by H_{I} absorption or using a statistical relation between the hydrogen column density 317 (N_H) and E(B-V) (Ryter et al. 1975) and a relation between E(B-V) and the distance 318 (Lucke 1978). 319

320

4.1. Spatial Results

Assigning an association between a LAT source and an VHE source depends on two 321 considerations: the spatial and spectral consistency with the counterpart. Spatial consistency 322 has two aspects: centroid coincidence and extension compatibility. For assessing the degree 323 of spatial coincidence, we considered a LAT emission to be spatially coincident with the 324 VHE source if the distance between the LAT and VHE experiments best-fit postions was 325 inside a circle whose radius is the quadratic sum of: 1) the 68% c.l. uncertainty on the 326 LAT best-fit position, 2) the 68% c.l. position uncertainty of the VHE source, and 3) the 327 99% containment radius of the source based on the VHE fitted angular extent. These data 328 are summarized in Table 8. Only one source is not spatially coincident using this criterion: 329 HESS J1018–589. We removed from this table the sources likely to be associated to pulsar 330 emission. These sources will be discussed in Section 4.2. 331

Although VER J2016+372 is spatially extended as announced in Aliu (2011), neither the extension nor the uncertainties of the spatial parameters are yet available. There is little doubt that these parameters will show that the VERITAS and LAT emission are spatially coincident. This case will be discussed in Section 4.4.

A finite measured extension of a γ -ray source is a direct way to discriminate between a pulsar and a PWN. Therefore, we searched for significant angular extensions of the LAT sources. Of the 21 sources not labeled as PSR in Section 4.2, eight are significantly extended: HESS J1303-631, HESS J1614-518, HESS J1616-508, HESS J1632-478, HESS J1804-216, HESS J1825-137, HESS J1837-069 and HESS J1841-055. Six of them were already detected by Lande et al. (2012). Only HESS J1632-478 has an extension inconsistent with that work. For this source, Lande et al. (2012) measured an extension of

Name	${{ m Unc_{GeV}} \over { m (deg)}}$	${ m Unc_{TeV}}\ { m (deg)}$	$r_{99\%}$ TeV (deg)	Distance (deg)
HESS J1018-589	0.04	0.02	0.00	0.12
HESS J1023-575	0.04	0.09	0.55	0.10
HESS J1119-614	0.05		0.15	0.09
HESS J1303-631	0.05	0.01	0.49	0.41
HESS J1356-645	0.05	0.03	0.61	0.19
HESS $J1420-607$	0.04	0.02	0.18	0.01
HESS $J1507 - 622$	0.06	0.04	0.46	0.21
HESS $J1514-591$	0.03	0.07	0.23	0.06
HESS J1614 -518	0.05	0.03	0.58	0.19
HESS $J1616 - 508$	0.04	0.01	0.42	0.16
HESS $J1632 - 478$	0.04	0.04	0.41	0.15
HESS $J1634-472$	0.03	0.05	0.33	0.18
HESS $J1640 - 465$	0.05	0.01	0.12	0.07
HESS $J1804-216$	0.04	0.02	0.65	0.06
HESS $J1825 - 137$	0.06	0.03	0.38	0.28
HESS $J1834-087$	0.05	0.02	0.27	0.06
HESS J1837-069	0.06	0.02	0.26	0.12
HESS $J1841 - 055$	0.06	0.05	1.00	0.22
HESS $J1848 - 018$	0.04		0.97	0.11
HESS J1857 $+026$	0.04	0.05	0.29	0.14
VER J2016+372	0.05	•••		0.11

Table 8. Comparison between the LAT and VHE positions.

Note. — Comparison of the localization and localization uncertainty for the sources observed at LAT and VHE energies and classified as "PWN", "PWNc" or "O". Columns 2, 3, 4 and 5 respectively give the averaged uncertainty on the position obtained using *Fermi*-LAT data and assuming a point source if $TS_{ext} < 16$ or a Gaussian if $TS_{ext} > 16$, the quadratic sum of the statistical (68% confidence radius) and systematic uncertainties on the VHE position given in Table 1, the 99% containment radius of the VHE emission assuming the extension listed in Table 1 and the distance between the position of the source fit at LAT and VHE energies.

 $(0^{\circ}.35 \pm 0^{\circ}.06)$ assuming a disk, while we obtained $(0^{\circ}.30 \pm 0^{\circ}.04)$ for a Gaussian. Compari-343 son between 68% containment radius of a disk and a Gaussian yields $\sigma_{Disk} \sim 1.84 \sigma_{Gaussian}$ 344 (Lande et al. 2012), where σ_{Disk} and $\sigma_{Gaussian}$ respectively represent the disk radius and 345 the Gaussian standard deviation. Therefore, for HESS J1632-478, our analysis led to an 346 extension bigger than that obtained in Lande et al. (2012). This difference certainly comes 347 from the three additional 2FGL sources (2FGL J1631.7-4720c, 2FGL J1630.2-4752 and 348 2FGL J1632.4-4820c) included in the model used by Lande et al. (2012). These sources 349 are not included in the 1FHL catalog and are below the pre-defined TS >25 threshold for 350 additional sources. Since they are unidentified, we chose to not add them. 351

Fig. 2.— Comparison of the sizes of the sources observed at LAT and VHE energies. Contributions of pulsars listed in Table 2 were taken into account by modeling them as point sources with spectral parameters fixed at their values in the 2FGL catalog. For sources not significantly extended at LAT energies, a 99% c.l. upper limit on the extension is shown. The red circles represent the sources within 0°.5 of a γ -ray pulsar and the black squares represent the other sources. This plot shows a zoom on σ_{TeV} and $\sigma_{GeV} \in [0^{\circ}, 0°.6]$. The dashed line shows $\sigma_{TeV} = \sigma_{GeV}$. The solid line shows the $\sigma_{GeV} = 1.4 \times \sigma_{TeV}$ fit result (see Section 4.1).

Figure 2 compares the sizes measured by the LAT and VHE. The only source with 352 $\sigma_{\rm GeV} < \sigma_{\rm TeV}$ is HESS J1708–443 whose LAT emission is likely coming from the pulsar. As 353 we discussed above and in Section 4.5, we suspect that the extensions of HESS J1303-631354 and HESS J1632-478 are overestimated. We assumed a linear relation between the VHE 355 experiment and the LAT extension ($\sigma_{\rm GeV} = \alpha \times \sigma_{\rm TeV}$) and fit the data points, obtaining 356 $\alpha = 1.4 \pm 0.2$ with a $\chi^2/d.o.f. = 15/7$. In the case in which we fixed $\alpha = 1$ we obtained 357 a $\chi^2/d.o.f. = 24/8$. This implies that, with the current statistics, the LAT extension is 358 larger than the one measured by VHE experiments at the 2.8σ level. Additional expo-359

sure and a more precise analysis of crowded regions (e.g. the regions of HESS J1303-631, HESS J1632-478, HESS J1837-069 or HESS J1841-055) are needed to draw any conclusion. Indeed, in these regions the γ -ray emission could be due to more than one source, as discussed below in the case of HESS J1841-055 or as discussed in Gotthelf & Halpern (2008) for the case of HESS J1837-069.

365

4.2. Pulsars Detected Above 10 GeV

In the LAT energy range, 22 sources are found to be point-like, i.e. not significantly 366 extended. Table 5 demonstrates that among these 22 point-like sources, nine have a 367 soft spectral index ($\Gamma > 3$): HESS J1418-609, HESS J1708-443, MGRO J0632+17, 368 MGRO J1908+06, MGRO J1958+2848, MGRO J2019+37, MGRO J2228+61, 369 MGRO J2031+41B and VER J0006+727. Tables 2 and 9 demonstrate that all of 370 them are located close to a LAT-detected pulsar. Table 5 shows that their γ -ray emission 371 significantly decreases when the contribution of the associated LAT-detected pulsar is 372 included. Furthermore, the spectra obtained above 10 GeV for these sources agree with the 373 nearby pulsars' spectra given in the 2FGL catalog as shown in Figures 3, 4, 5 and 6. These 374 figures only show SEDs for sources with no X-ray and radio information available. The 375 spectra for the other sources will be discussed in Section 4.5. 376

Fig. 3.— Multi-wavelength SEDs of VER J0006+727 and MGRO J0632+17. The black diamonds represent the SED of the source obtained at LAT energies. For sources with an associated LAT-detected pulsar, the red squares represent the SED with any potential emission from the LAT-detected pulsar subtracted using the spectral parameters from the 2FGL catalog. To enhance readability, we offset the square markers in energy by a factor of 13%. Finally, the blue diamond markers represent the SED obtained by VHE experiments. Table 2 lists the references for the VHE SED of each source. For sources with an associated LAT-detected pulsar, the best-fit spectrum of the pulsar from 2FGL is included as a dashed line.

Fig. 4.— The LAT and VHE SEDs of HESS J1018–589, HESS J1119–614, HESS J1418–609, HESS J1458–608 and HESS J1507–622 following conventions of Figure 3. The solid line corresponds to the model proposed by Mayer (2010) for HESS J1119–614. In the case of HESS J1119–614, the spectral point has been computed using the integral flux given in (Kargaltsev & Pavlov 2010, see Section 4.5 for details). The horizontal error bars show the energy range of the used integral flux.

Fig. 5.— The LAT and VHE SEDs of HESS J1614–518, HESS J1626–490, HESS J1634–472, HESS J1708–443, HESS J1804–216 and HESS J1834–087 following the conventions of Figure 3. The solid line corresponds to the model proposed by Eger (2011) for HESS J1626–490.

Fig. 6.— The LAT and VHE SEDs of HESS J1841-055, MGRO J1908+06, MGRO J1958+2848, MGRO J2019+137, MGRO J2031+41B and MGRO J2228+61 following the conventions of Figure 3.

To study the contamination of the LAT data for the VHE sources by these pulsars, we 377 accounted for the pulsar contribution to photons in the region as explained in Section 3.2. 378 Tables 4 and 5 and Figures 3, 4, 5 and 6 show the results of this new fit using the 2FGL 379 models of the pulsars. For these nine sources, in Figures 3, 4, 5 and 6 the low-energy part 380 of the emission $(<30 \,\mathrm{GeV})$ tends to disappear, suggesting that we primarily detected pulsar 381 emission. For these reasons, we infer that the observed LAT emission coming from these 382 sources is likely due to the pulsars themselves. We labeled these nine sources as "PSR" in 383 Table 4. 384

385

4.3. PWNe and PWNe Candidates

The hardness of the γ -ray spectrum and the presence of a pulsar energetic enough to 386 power a potential PWN are important criteria for source classification as a PWN. In addition 387 to these criteria, to label a source as a "PWN" or a "PWNc" for PWN candidate, we 388 required that its LAT spectrum connects with the VHE spectrum, i.e. that the differential 389 fluxes at the highest LAT energies and in the VHE low energy range be approximately 390 equivalent, such that they can be interpreted as a continuous multi-wavelength spectrum. An 391 exception has been made for HESS J1848–018, which is classified as "PWNc" as explained 392 in Section 4.5.6. Based on multi-wavelength analyses, we labeled 3 sources as "PWN": 393 HESS J1356-645, HESS J1514-591 and HESS J1825-137. HESS J1356-645 is considered 394 as "PWN" based upon the morphology of the source observed in the radio and X-ray domain 395 (H.E.S.S. Collaboration et al. 2011d). HESS J1514–591 is considered as a "PWN" because 396 of the correlation observed between the H.E.S.S. and X-ray emissions and the observation 397 of pulsar jets in the X-ray domain (Aharonian et al. 2005b). And finally, HESS J1825–137 398 is considered to be a "PWN" since Aharonian et al. (2006b) have shown that it has an 399 energy-dependent morphology in the H.E.S.S. energy range. 400

Detections of 7 of the PWNe candidates have been previously published. For HESS J1023-575 (Ackermann et al. 2011), HESS J1640-465 (Slane et al. 2010), HESS J1857+026 (Rousseau et al. 2012), HESS J1616-508, HESS J1632-478 and HESS J1837-069 (Lande et al. 2012) and HESS J1848-018 (Tam et al. 2010), the LAT emission has been discussed in previous work and proposed to be of PWN origin.

We detected 4 new PWNe candidates (HESS J1119-614, HESS J1303-631, HESS J1420-607 and HESS J1841-055) and 1 new PWN (HESS J1356-645). These sources are spatially consistent with pulsars able to power them (respectively PSR J1119-6127, PSR J1301-6305, PSR J1420-6048, PSR J1838-0537 and PSR J1357-6429). Moreover, their LAT emissions are best modeled by hard spectra and are compatible with the VHE

Table 9. Comparison between the LAT emission and pulsar position	ons.
--	------

Name	Unc_{GeV} (arcmin)	Unc_{PSR} (arcmin)	distance (arcmin)
VER J0006+727	1.2	0.4	1.2
MGRO J0632+17	0.6	0.2	0.6
HESS J1418-609	1.8	0.8	2.0
HESS J1708-443	0.6	0.3	0.6
MGRO J1908+06	2.4	0.8	2.5
MGRO J1958+2848	2.4	1.1	1.2
MGRO J2019+37	1.8	0.5	1.2
MGRO J2031+41B	3.6	0.8	1.2
MGRO J2228+61	1.8	0.6	0.6

Note. — For the nine sources classified as "PSR", a comparison of the localization of the source in the 10 GeV to 316 GeV energy range with the localization in 2FGL from 100 MeV to 100 GeV. Columns 2, 3 and 4 respectively give the 68% uncertainty on the point source position obtained in this work, the averaged 68% uncertainty on the 2FGL position and the distance between the 2FGL position and the position obtained in this work. The average on the 2FGL position uncertainty is obtained as $\sqrt{a \times b}$ where *a* and *b* are the length of the semi-minor and semi-major axes of the 68% confidence ellipse defined in 2FGL. ⁴¹¹ SEDs. The new LAT sources and PWNe candidates are described in Section 4.5.

4.4. "O"-Type Sources

The 7 sources that cannot be associated to a PWN or a pulsar are labeled "O" for Other. These sources cannot be associated because either no sufficiently energetic pulsar is known at that location or the spectral connection from the LAT to the VHE measurements does not support a PWN interpretation.

3 sources have relatively hard spectra at LAT energies that connect spectrally to the 417 associated VHE source: HESS J1614-518, HESS J1634-472 and HESS J1804-216. These 418 sources are not classified as PWNe due to previous multi-wavelength analyses. The former 419 is spatially coincident with 5 detected pulsars, but none is luminous enough to power a 420 PWN that would explain the γ -ray emission (Rowell et al. 2008). Sakai et al. (2011) found 421 two X-ray counterparts to the H.E.S.S. source and proposed an SNR identification. As 422 discussed in Lande et al. (2012), the nature of the source remains unclear. HESS J1634-472 423 does not have any counterpart pulsars energetic enough to power it. Finally, Ajello et al. 424 (2012) studied the link between the H.E.S.S. and the LAT emission coming from the region of 425 HESS J1804–216 and concluded that the emission is more likely due to the energy-dependent 426 scattering of particles accelerated in a SNR than to a PWN. 427

The remaining 4 sources are HESS J1018-589, HESS J1507-622, HESS J1834-087 and 428 VER J2016+372. In the LAT energy range, they are point-like with relatively soft spectra 429 $(3 > \Gamma > 2)$. Therefore, the association of the LAT emission with their VHE counter-430 parts is uncertain. HESS J1018-589 is close to both the γ -ray binary 1FGL J1018.6-5856 431 (Coe et al. 2012) and the nearby SNR G284.3–1.8. The LAT source appears to be spatially 432 coincident with SNR G284.3–1.8. SNR G284.3–1.8 is not included in our list of candidates 433 and will be analyzed in the SNR catalog. Domainko & Ohm (2012) were not able to conclu-434 sively determine the origin of the γ -ray emission of HESS J1507-622 and confirm the result 435 of H.E.S.S. Collaboration et al. (2011c): a leptonic scenario seems favored, while a hadronic 436 one seems unlikely. HESS J1834–087 and VER J2016+372 lack a pulsar energetic enough 437 to power their emission. But Albert et al. (2006b) have suggested that the interaction of 438 SNR W41 with a nearby molecular cloud could explain HESS J1834–087. Another analysis 439 of LAT and H.E.S.S. observations of HESS J1834-087 will be presented elsewhere. 440

412

441

4.5. Descriptions of New LAT PWNe Candidates

In this section, we compare source spectra with previously published models (the references to those models are provided below for each case). We do not refit those models incorporating the LAT data. Therefore, disagreements between the published models and the LAT data do not necessarily imply that the models are ruled out as it may be possible to accommodate our results under these models with a different set of parameters.

447

4.5.1. HESS J1119-614

⁴⁴⁸ During the Parkes multibeam pulsar survey, Camilo et al. (2000) discovered ⁴⁴⁹ PSR J1119-6127, a young ($\tau_C = 1.6 \text{ kyr}$) pulsar with a high spin-down power $\dot{E} =$ ⁴⁵⁰ $2.3 \times 10^{36} \text{ erg s}^{-1}$ within the composite SNR G292.2-0.5. This pulsar was also detected by ⁴⁵¹ the LAT (Parent et al. 2011). Using *Chandra* observations, Gonzalez & Safi-Harb (2003) and ⁴⁵² Safi-Harb & Kumar (2008) reported the presence of a faint and compact PWN close to this ⁴⁵³ pulsar. More recently, a H.E.S.S. source coincident with PSR J1119-6127 and G292.2-0.5 ⁴⁵⁴ was announced⁵.

Using the method described above, a signal is detected at the position of 455 HESS J1119-614 with a TS of 27 (4.9 σ with two d.o.f.). Nevertheless, as can be seen 456 on Figure 4 and in Table 5, the spectrum is contaminated by a low-energy component asso-457 ciated with PSR J1119–6127. We assess the contamination from the pulsar by subtracting 458 the emission from 2FGL J1118.8–6128 associated with PSR J1119–6127. This decreases the 459 significance of the detection to TS=16 (3.6 σ with 2 d.o.f.), which is just above the thresh-460 old from Section 3.3. Subtracting the pulsar emission affects the spectrum of our source 461 by making it harder and changing the lowest energy point to become an upper limit (see 462 Figure 4). 463

Figure 4 shows the SED of HESS J1119–614. Because only an integral flux between 1 464 and 10 TeV is available for this source (Kargaltsev & Pavlov 2010), we computed a spectral 465 point at 3.16 TeV assuming a fiducial spectral index of 2.4 in the H.E.S.S. energy range. 466 We represented this point on the figure. The leptonic model proposed by Mayer (2010) is 467 a one-zone model in which accelerated electrons cool radiatively by IC scattering on CMB 468 photons, stellar photons from the vicinity and photons radiated by dust, and by synchrotron 469 losses. It implies an initial period of the pulsar $P_0 = 21.4 \text{ ms}$, an initial magnetic field inside 470 the PWN $B_0 \sim 400 \,\mu\text{G}$ (leading to a current magnetic field of $B \sim 32 \,\mu\text{G}$), a braking index of 471

⁵http://cxc.harvard.edu/cdo/snr09/pres/DjannatiAtai_Arache_v2.pdf

n = 2.91 (Camilo et al. 2000) and a conversion efficiency of rotational energy into relativistic particles of $\eta = 0.3$. The leptonic model matches the new LAT data points.

The energetics of PSR J1119-6127, the detection of a compact PWN in X-rays and the leptonic model proposed by Mayer (2010) support the hypothesis in which the LAT-H.E.S.S. emission originates in the PWN inside G292.2-0.5. Furthermore, the parameters derived in Mayer (2010) and the jet-like morphology in the X-ray data are reminiscent of the case of MSH 15-52 (Abdo et al. 2010a; Tamura et al. 1996).

479

4.5.2. HESS J1303-631

HESS J1303-631 was serendipitously discovered in 2004 (Aharonian et al. 2005c) dur-480 ing an observation campaign of the binary system PSR B1259-63. It is the first H.E.S.S. 481 source classified as a UNID due to the lack of detected counterparts in radio and X-rays with 482 Chandra (Mukherjee & Halpern 2005). H.E.S.S. Collaboration et al. (2012b) found only one 483 plausible counterpart in the vicinity of HESS J1303-631: PSR J1301-6305 with a spin down 484 power of $\dot{E} = 1.70 \times 10^{36} \,\mathrm{erg \, s^{-1}}$. The authors also presented the detection of a very weak 485 X-ray PWN using XMM-Newton observations. This, with the energy dependent morphology 486 observed by H.E.S.S. led to the conclusion that HESS J1303-631 is an old PWN offset from 487 the pulsar powering it. 488

Wu et al. (2011) found no significant emission from HESS J1303-631 using 30 months 489 of *Fermi*-LAT data between 1 and 20 GeV. With 15 months of additional data and a higher 490 energy threshold, our analysis now provides a first detection of LAT emission coincident 491 with the HESS source. Nevertheless, Figure 7 shows that the detected emission might be 492 contaminated by γ -ray emission from the nearby SNR Kes 17. Since we cannot separate 493 these two sources using our strategy with the current statistics, we decided to include the 494 effect of source confusion in our estimate of systematic uncertainties for HESS J1303-631. 495 Therefore, we ran the analysis again, adding a source at the position of Kes 17. We quantify 496 the systematic error as the differences in parameter values resulting from fitting with the 497 two background models. The maximal variation is in the lowest energy bin of the SED. 498

For our best LAT morphology of a Gaussian of dispersion 0°.45 (see Table 4), we obtained an index of $\Gamma = 1.71 \pm 0.26 \pm 0.37$ (we obtained $\Gamma = 1.53 \pm 0.23 \pm 0.37$ assuming the H.E.S.S. best fit Gaussian, Table 5). This hard index is in the range of values obtained for LAT detected PWNe and is inconsistent with the spectral index of ~ 2.4 derived by Wu et al. (2011) for Kes 17. This is an evidence that the γ -ray emission above 10 GeV is dominated by the PWNe candidate. As can be seen in Figure 8, even though the connection between

Fig. 7.— Count map of the region of HESS J1303-631 above 10 GeV (top) and above 31 GeV (bottom). We subtracted the Galactic and isotropic diffuse emission. The count map is smoothed by a Gaussian of 0°27 corresponding to the PSF above 10 GeV. The green star indicates the position of the SNR Kes 17 and the blue square represents the position of PSR J1301-6305. The small and big circles respectively show the extension of the H.E.S.S. Gaussian proposed by Aharonian et al. (2005c) and the extension of the Gaussian derived in this work. The lower right inset is the model predicted emission from a point-like source with the same spectrum as HESS J1303-631 smoothed by the same kernel.

I

the LAT and the H.E.S.S. energy range is not perfect, LAT and H.E.S.S. spectra are not inconsistent, suggesting a potential physical relationship.

Figure 8 shows the SED of HESS J1303-631 together with the one-zone leptonic model proposed by H.E.S.S. Collaboration et al. (2012b). In this model, VHE γ -rays are created

via IC scattering of electrons on the CMB photons. Infrared and optical target photons 500 are neglected. The model reproduces the radio, X-ray and H.E.S.S. data with an electron 510 spectral index of 1.8 ± 0.1 , a cut-off energy of 31^{+5}_{-4} TeV, and an average magnetic field of 511 $1.4 \pm 0.2 \,\mu$ G. However, the flux predicted in the LAT energy range is well below the flux 512 detected by the *Fermi*-LAT. This may be due to the absence of infrared and optical photon 513 fields in the model described above or to the contamination produced by Kes 17. A specific 514 analysis is needed to make conclusions about the constraints that the *Fermi*-LAT could yield 515 on the γ -ray emission of this source. 516

517

4.5.3. HESS J1356-645

HESS J1356-645 is an extended source detected by H.E.S.S. during the Galactic Plane 518 Survey (H.E.S.S. Collaboration et al. 2011d). It lies close to the pulsar PSR J1357-6429 519 discovered during the Parkes multibeam survey of the Galactic Plane (Camilo et al. 520 2004). Its high spin-down power of $\dot{E} = 3.1 \times 10^{36} \,\mathrm{erg \, s^{-1}}$ makes it a good candidate 521 to power a PWN. Analysis of archival radio and X-ray data from ROSAT/PSPC and 522 XMM/Newton have revealed a faint extended structure coincident with the VHE emis-523 sion (H.E.S.S. Collaboration et al. 2011d) providing another argument in favor of the PWN 524 scenario. In parallel, Lemoine-Goumard et al. (2011b) announced the detection of a pulsed 525 signal from PSR J1357-6429 in the γ -ray and X-ray energy ranges using *Fermi*-LAT and 526 XMM-Newton data. However, using 29 months of LAT data between 0.1 and 100 GeV, no 527 counterpart to the H.E.S.S. emission was found in the off-pulse window of the pulsar. 528

The 16 additional months of observations by *Fermi*-LAT and the higher maximum energy used (316 GeV instead of 100 GeV) in our dataset now enables the detection of a faint counterpart to the H.E.S.S. emission with a TS = 24 (4.7 σ assuming two d.o.f.).

⁵³² With its spectral cutoff at low energy, $\sim 800 \text{ MeV}$ (Lemoine-Goumard et al. 2011b), ⁵³³ PSR J1357-6429 is not significant in the 10 GeV to 316 GeV energy range. Therefore, we ⁵³⁴ do not expect to see any changes in the spectral parameters when adding PSR J1357-6429 ⁵³⁵ to the model of the region. This is verified in Table 5 as well as in Figure 8.

⁵³⁶ The combined LAT-H.E.S.S. data in Figure 8 provide new information concerning the ⁵³⁷ spectral shape of the γ -ray emission. The spatial and spectral consistency between the LAT ⁵³⁸ and H.E.S.S. emission suggests a physical relationship, leading to the assumption that the ⁵³⁹ LAT and the H.E.S.S. emission are due to the same object. Assuming that the γ -ray signal ⁵⁴⁰ comes from the PWN powered by PSR J1357-6429, H.E.S.S. Collaboration et al. (2011d) ⁵⁴¹ proposed a leptonic scenario (black curve) which provides an excellent fit of the new multiwavelength data. This one-zone model is based on the evolution of an electron population injected with an exponentially cutoff power-law spectrum of index 2.5 and cut-off energy of 350 TeV. These electrons cool radiatively through IC scattering on the CMB, Galactic infrared (T~35 K and 350 K) and optical (T~4600 K) photons and through synchrotron emission in a magnetic field ~ $3.5 \,\mu$ G.

The similarities between PSR J1357–6429 and the Vela pulsar and between their PWNe 547 led H.E.S.S. Collaboration et al. (2011d) to discuss two leptonic emission components. In 548 the case of Vela-X, the "halo" is seen in the LAT and radio energy ranges and the "cocoon" 549 in the H.E.S.S. and X-ray energy ranges, while in the case of HESS J1356-645, a single 550 lepton population explains the broad-band spectrum with reasonable parameters. Unlike 551 Vela-X, PSR J1357-6429 is very faint in radio and X-ray, and observations in these bands 552 do not provide morphological constraints. Future multi-wavelength data are greatly needed 553 to better describe this source. 554

555

4.5.4. HESS J1420-607

The complex of compact and extended radio/X-ray sources, called Kook-556 aburra (Roberts et al. 1999), spans over one square degree along the Galactic Plane. It has 557 been extensively studied to explain the EGRET source 3EG J1420-6038/GEV J1417-6100 558 (Hartman et al. 1999; Lamb & Macomb 1997). Within its North-East excess, designated 559 'K3', the young and energetic pulsar PSR J1420-6048 with period 68 ms, characteristic age 560 $\tau_C = 13$ kyr, and spin down power 10^{37} erg s⁻¹ was discovered (D'Amico et al. 2001). X-ray 561 observations by ASCA and later by Chandra and XMM-Newton revealed extended X-ray 562 emission surrounding this pulsar and identified as a potential PWN (Roberts et al. 2001; 563 Ng et al. 2005). On the South-West side of the Kookaburra complex lies a bright nebula ex-564 hibiting extended hard X-ray emission, G313.1+0.1 (aka the "Rabbit", Roberts et al. 1999). 565 This X-ray excess was also proposed as a PWN contributing to the γ -ray emission detected 566 by EGRET. 567

The H.E.S.S. Galactic Plane survey revealed two VHE sources in this region: 568 HESS J1420-607 and HESS J1418-609 (Aharonian et al. 2006a). HESS J1420-607 569 is centered north of PSR J1420-6048 (near K3), while HESS J1418-609 is coincident 570 with the Rabbit nebula. More recently, *Fermi*-LAT detected pulsed γ -ray emission from 571 PSR J1420-6048 and PSR J1418-6058, the latter being a new γ -ray pulsar found through 572 blind frequency searches (Abdo et al. 2010e, 2009a). PSR J1418–6058 is coincident with 573 an X-ray source in the Rabbit PWN and has a spin-down power high enough to power the 574 PWN candidate HESS J1418-609. 575

Figure 9 shows two smoothed count maps centered on the location of the K3 nebula. The Galactic and the isotropic diffuse emission were subtracted to show the excesses coming from HESS J1420-607 and HESS J1418-609. Above 10 GeV, HESS J1418-609 and HESS J1420-607 are confused, due to the size of the LAT PSF and to the limited statistics. However, on the count map above 31 GeV, the emission from HESS J1418-609 disappears, confirming the soft spectrum and the pulsar-like emission coming from HESS J1418-609 and the harder spectrum of HESS J1420-607.

Van Etten & Romani (2010) used a two-zone time dependent numerical model with 583 constant injection luminosity to investigate the physical properties of HESS J1420-607. The 584 authors injected relativistic particles following a power-law spectrum into the inner nebula 585 zone; they evolved this spectrum over time and injected the resultant spectrum into the 586 outer nebula zone. Figure 8 shows the results obtained for a hadronic + leptonic model on 587 the assumption of a low density environment $(n \sim 1 \text{ cm}^{-3})$ and magnetic fields of $12 \,\mu\text{G}$ and 588 $9\,\mu\text{G}$ respectively in the inner and outer nebula. The same figure presents a leptonic scenario 589 assuming magnetic fields of $12 \,\mu\text{G}$ and $8 \,\mu\text{G}$ respectively in the inner and outer nebula. The 590 strength of this magnetic field implies a lepton spectral break at ~ 100 TeV after evolution in 591 the inner nebula. More recently, Kishishita et al. (2012) proposed a one-zone leptonic model 592 assuming a power-law injection spectrum with an index of 2.3 with a cut-off at ~ 40 TeV and 593 a magnetic field of $\sim 3 \mu G$; the model SED is shown in the same figure. 594

As explained in Section 3, the model used for PSR J1420-6048 was fixed to the 2FGL spectrum. Therefore, if this model does not perfectly reproduce the data with 21 additional months, the LAT spectral points of HESS J1420-608 might still be contaminated by the pulsar's emission. With the current statistics, all models reproduce the LAT and H.E.S.S. data reasonably well. A future off-pulse analysis of LAT data for this pulsar performed with more statistics could help discriminate between the models.

4.5.5. HESS J1841-055

601

J1841–055 was discovered during the H.E.S.S. Galactic Plane Survey HESS 602 (Aharonian et al. 2008c) and remained unidentified. The emission is highly extended 603 and shows possibly three peaks, and more than one possible counterparts, suggesting 604 that the H.E.S.S. emission is composed of more than one source. Using INTEGRAL 605 data, Sguera et al. (2009) proposed the high-mass X-ray binary system AX J1841.0-0536 606 as a potential counterpart, at least for part of the emission. Nolan et al. (2012) and 607 Neronov & Semikoz (2012) detected three sources coincident with HESS J1841-055. Tibolla 608 (2011) proposed the association of HESS J1841-055 to an ancient PWN powered by 609

PSR J1841-0524, PSR J1838-0549 or both as each pulsar taken independently would need an efficiency greater than 100% to solely power a potential PWN associated with the H.E.S.S. source. More recently, the blind search detection of the new γ -ray pulsar PSR J1838-0537 with *Fermi*-LAT provided another potential counterpart of the H.E.S.S. source. Indeed, assuming a distance of 2 kpc, Pletsch et al. (2012) estimated that PSR J1838-0537 is sufficiently energetic to power the whole H.E.S.S. source with a conversion efficiency of 0.5%, similar to other suggested pulsar/PWN associations (Hessels et al. 2008).

In this work, HESS J1841-055 is detected as a significantly extended source (TS_{ext}=32) at a position consistent with the H.E.S.S. source. The LAT extension of $0^{\circ}.38 \pm 0^{\circ}.09$ comparable with the $0^{\circ}.33 \pm 0^{\circ}.04$ of the H.E.S.S. source.

As can be seen in Figure 6, the *Fermi*-LAT spectral points connect to the H.E.S.S. ones. 620 The spatial consistency and spectral connection between H.E.S.S. and LAT emissions suggest 621 a physical relationship. The hard *Fermi*-LAT spectrum detected implies that a curvature 622 must arise between the H.E.S.S. energy range and the LAT energy range. This is typical of 623 most PWNe detected by *Fermi*-LAT and H.E.S.S. that present IC emission peaking at a few 624 hundreds of GeV and would favor the PWN scenario. However, this source is very extended 625 at both wavelengths and could be composed of several γ -ray sources. Follow-up observations 626 with VHE experiments and continued observation with Fermi-LAT are needed to unveil the 627 real nature of HESS J1841-055. 628

629

4.5.6. HESS J1848-018

HESS J1848-018 was discovered during the extended H.E.S.S. Galactic Plane Survey (Chaves et al. 2008), in the direction of, but slightly offset from, the star-forming region W43 (aka G30.8-0.2). The H.E.S.S. emission is characterized by significant extension (0°.32 ± 0°.02), a power-law spectrum of index ~ 2.8 and an integrated flux above 1 TeV ~ 2 × 10^{-12} cm⁻² s⁻¹. The absence of an energetic pulsar or SNR within 0°.5 from HESS J1848-018 favors an association with the star-forming region W43. The only potential counterpart for this source found in radio and X-rays is the Wolf-Rayet star WR 121a.

Located 0°.2 from the centroid of HESS J1848–018, WR 121a is a WN7 subtype star, in a binary system (Luque-Escamilla et al. 2011), associated with W43 and characterized by extreme mass loss rates. Chaves et al. (2008) also proposed an association of the H.E.S.S. emission with the molecular clouds contained in W43. These molecular clouds could lead to the production of high-energy γ -rays from the neutral pion decays following *p*-*p* collisions in the ambient gas.

In the LAT energy range, Tam et al. (2010) proposed an association with a spatially co-643 incident source 0FGL J1848.6-0138. Lemoine-Goumard et al. (2011a) analyzed the Fermi-644 LAT data around HESS J1848–018 and detected a source with a 3.7σ evidence for an 645 extension ($\sigma \sim 0^{\circ}3$). This disfavors models in which the LAT emission would be produced 646 by a pulsar alone. However, statistics were not large enough to discriminate between one 647 extended source and several point sources. Moreover, the spectrum was well described by 648 a log normal representation (Eq. 3) and the SED was very similar to those obtained for 649 most pulsars detected by *Fermi*-LAT. Therefore, the emission could be a composite of a 650 radio-faint pulsar and an additional source. 651

In our analysis, HESS J1848–018 is detected as a faint point-like source but consistent 652 with the extension reported by Lemoine-Goumard et al. (2011a). Figure 8 includes the 653 H.E.S.S. spectral points from Chaves et al. (2008) and the radio points corresponding to the 654 W43 central cluster from Luque-Escamilla et al. (2011). We note that the point obtained in 655 our analysis is consistent with the dashed curve, which represents the spectrum derived by 656 Lemoine-Goumard et al. (2011a). It is not absolutely clear from this figure whether the LAT 657 and H.E.S.S. spectra have a common or a distinct origin, and future multi-wavelength data 658 would be needed to discriminate between the pulsar/PWN and the massive star formation 659 region hypotheses. 660

661

4.6. Constraints Obtained from Non-Detections

This section presents the sources for which no γ -ray emission is detected but the corresponding upper limits constrain the models.

664

4.6.1. HESS J1026-582

HESS J1026-582 was discovered by H.E.S.S. during an improved analysis of the region 665 of HESS J1023–575 (H.E.S.S. Collaboration et al. 2011e). While HESS J1023–575 is close 666 to the energetic pulsar PSR J1023-5746 ($\dot{E} = 10^{37} \,\mathrm{erg \, s^{-1}}$) discovered by the LAT using 667 blind search algorithms (Saz Parkinson et al. 2010), the authors proposed an association 668 between HESS J1026–582 and PSR J1028–5819 discovered by the Parkes 64-m telescope 669 (Keith et al. 2008) and also detected by the LAT (Abdo et al. 2009b). The proximity of 670 the pulsar suggested a PWN scenario to explain the VHE emission. This hypothesis is 671 supported by the spin-down power of PSR J1028-5819, $\dot{E} = 8.43 \times 10^{35} \,\mathrm{erg \, s^{-1}}$ (Abdo et al. 672 2009b), typical of observed PWNe. Mignani et al. (2012) observed marginal X-ray emission 673

⁶⁷⁴ but could not definitely classify the emission as being characteristic of a PWN. Follow-up ⁶⁷⁵ observations with *XMM-Newton* and *Chandra* are needed to confirm this detection.

⁶⁷⁶ No significant LAT emission coming from the location of the H.E.S.S. excess is detected ⁶⁷⁷ in our analysis. The very low TS value of 1.0 with an integrated flux less than $1.6 \times$ ⁶⁷⁸ $10^{-10} \text{ ph cm}^{-2} \text{ s}^{-1}$ (see Table 6) gives little hope for a future detection by the LAT. The ⁶⁷⁹ upper limits in Figure 4 show that a rising spectrum is needed in the LAT energy range. ⁶⁸⁰ This suggests an IC peak at energies higher than 100 GeV consistent with *Fermi*-LAT ⁶⁸¹ observations of other PWNe. However, the lack of multi-wavelength data (especially in ⁶⁸² radio and X-rays) prevents clear identification of this source.

4.6.2. HESS J1458-608

PSR J1459–6053, discovered in γ -rays, is an energetic and older pulsar with a spin-down 684 power of $\dot{E} = 9.2 \times 10^{35} \,\mathrm{erg \, s^{-1}}$, and a characteristic age of $\tau_C = 64 \,\mathrm{kyr}$ (Abdo et al. 2010e). 685 An X-ray counterpart to PSR J1459-6053 was discovered by Swift (Ray et al. 2011) and 686 Suzaku (Kanai 2007). HESS J1458-608 was discovered 9.6' away from PSR J1459-6053687 after a dedicated observation (de los Reyes et al. 2012). The proximity to the pulsar and the 688 extension of HESS J1458–608 suggested that both objects could be related in a PSR/PWN 689 scenario. In this case, the lack of or the faint X-ray emission could be explained by the 690 system's age. 691

In our work HESS J1458–608 was not significantly detected above 10 GeV. Table 6 692 shows that the observed marginal emission comes from the energy bin between 10 and 693 31 GeV. Figure 4 shows that subtracting the pulsar's contribution does not change the SED. 694 This comes from the fact that the spectrum of the pulsar in the 2FGL catalog above 10 GeV 695 is negligible compared to the SED. The upper limits computed in the energy bins between 696 31 and 316 GeV, where no pulsar emission is expected, show that a change in the slope of 697 the spectrum is needed between the H.E.S.S. and the LAT component. This is consistent 698 with an IC peak above 100 GeV in the range observed for the PWNe detected with the 699 Fermi-LAT. However, the H.E.S.S. spectrum of HESS J1458–608 differs from other PWNe, 700 since it seems to show a hardening at high energy. 701

702

683

4.6.3. HESS J1626-490

HESS J1626-490 is another unidentified source detected during the H.E.S.S. Galactic Plane Survey (Aharonian et al. 2008c). According to a leptonic model, Eger (2011) found ⁷⁰⁵ no X-ray source bright enough to be consistent with the H.E.S.S. emission using XMM-⁷⁰⁶ Newton observations. However, the authors suggested that a hadronic scenario based on the ⁷⁰⁷ interaction of SNR G335.2+00.1 with a molecular cloud could explain the H.E.S.S. emission. ⁷⁰⁸ This hypothesis is supported by a density depression in H_I that could be explained by a ⁷⁰⁹ recent event such as a supernova.

With a TS of 1.5, HESS J1626-490 is not detected in our analysis. The model presented in Eger (2011) and shown in Figure 5 reproduces the H.E.S.S. SED and predicts emission below the LAT upper limits. A radio or/and X-ray detection of synchrotron emission from a PWN or the detection of a pulsar could call this model into question.

4.6.4. HESS J1813-178

714

HESS J1813–178 was discovered during the H.E.S.S. survey of the Inner Galaxy 715 (Aharonian et al. 2005a) and also detected by MAGIC (Albert et al. 2006a). The source 716 was identified as being SNR G12.8-0.0 following its radio detection by Brogan et al. (2005). 717 Using XMM-Newton observations, Funk et al. (2007b) detected a complex morphology com-718 posed of a point-like source and an extended nebula. The morphological and spectral simi-719 larities of the central object with a PWN led Funk et al. (2007b) to propose a PWN/SNR 720 scenario to describe the X-ray sources. This hypothesis was strengthened by the discovery 721 of PSR J1813-1749 (Gotthelf & Halpern 2009). This pulsar is one of the most energetic 722 pulsars in our Galaxy with a spin-down power of $\dot{E} = 5.6 \times 10^{37} \,\mathrm{erg \, s^{-1}}$ but has not yet been 723 detected by the LAT. However, the nature of the H.E.S.S. emission remains unclear as either 724 the SNR or the PWN could produce emission at these energies. 725

Our analysis yielded a TS of 2.5 with an upper limit on the integrated flux of $2.4 \times 10^{-10} \text{ ph cm}^{-2} \text{ s}^{-1}$ assuming the H.E.S.S. morphology as spatial shape. Figure 8 shows the multi-wavelength SED of HESS J1813–178. The upper limits derived using the procedure described in Section 3 show that the spectrum of HESS J1813–178 cannot be flat between the H.E.S.S. and the LAT energy ranges and suggest a peak with an energy cutoff located between the two energy ranges.

Funk et al. (2007b) and Fang & Zhang (2010) investigated a leptonic model in which the X-ray core and VHE γ -ray emission are associated. Both take into account IC scattering on CMB, infrared and near infrared photon fields and synchrotron emission produced with a rather low magnetic field (B ~ 7 μ G). The main difference between these two models lies in the injected electron population, which follows a power-law spectrum with an index of 2.0 in Funk et al. (2007b) and a Maxwellian + power-law tail spectrum (Spitkovsky 2008) with an index of 2.4 in Fang & Zhang (2010).

Both also investigated the possibility for the H.E.S.S. signal to be created by the SNR shell. We overlaid on Figure 8 the models proposed by Funk et al. (2007b) and Fang & Zhang (2010). The main differences between these two models lies in the injected proton and electron populations which follow power-law spectra with an index of 2.1 in Funk et al. (2007b) and is computed in a semi-analytical nonlinear model in Fang & Zhang (2010).

The upper limits derived in our analysis rejected one of the two models proposed in each 744 hypothesis. Therefore, no conclusion can be reached on the nature of the H.E.S.S. emission 745 being a PWN or a SNR. However, in light of the different models discussed one can exclude a 746 model assuming a Maxwellian + power-law tail injection spectrum with an index of 2.4 with 747 the parameters derived in Fang & Zhang (2010) in the PWN scenario. These upper limits 748 also constrain the hadronic model by rejecting a power-law injection spectrum of 2.1 with 749 the parameters proposed by Funk et al. (2007b). Therefore, whatever the origin of the γ -ray 750 emission, the injected spectrum of the primary electrons and protons needs to be relatively 751 hard in order to stay below the *Fermi*-LAT upper limits ($\Gamma < 2.1$). 752

5. DISCUSSION

In this section, we investigate the correlations of pulsar age and spin-down power with 754 the flux of the associated PWN in the keV, GeV and TeV bands. Table 7 lists the ages, spin-755 down luminosities, and distances for the associated pulsars or other distance information, 756 and Table 10 lists the X-ray, GeV and TeV flux (or flux upper limit) for the associated 757 PWNe. As a first step, we studied the relation between the spectra in the VHE energy 758 range and the LAT energy range. We assumed that the emission measured in the TeV and 759 GeV bands comes from the falling and rising edges, respectively, of the IC peak in the SED 760 produced by the same population of electrons and we studied the spectral shape of this IC 761 peak. Mayer et al. (2012) have shown that a negative correlation between the energy of the 762 peak and the pulsar characteristic age would be expected from the evolution of the cooling 763 time with energy. We attempted to find this relation starting from the LAT and VHE data. 764

753

Fig. 8.— Multi-wavelength SEDs of HESS J1303–631, HESS J1356–645, HESS J1420–607, HESS J1813–178 and HESS J1848–018. The blue, green and magenta points represent the H.E.S.S., X-ray and radio spectra respectively. The conventions used for the LAT spectral points are the same as in Figure 5. The dashed line corresponds to the model of associated pulsars. Details on the models are given in the text. The solid, dotted and dashed-dotted lines represent multi-wavelength models from other publications. Models and references: HESS J1303–631: leptonic model proposed by H.E.S.S. Collaboration et al. (2012b). HESS J1356–645: leptonic model proposed by H.E.S.S. Collaboration et al. (2011d). HESS J1420–607: the solid and dashed lines show the hadronic+leptonic and leptonic models proposed by Van Etten & Romani (2010) and the dotted line represents the leptonic model proposed by Funk et al. (2007b) and Fang & Zhang (2010). HESS J1813–178 SNR: the solid and dashed lines respectively show the hadronic models proposed by Funk et al. (2007b) and Fang & Zhang (2010).

Fig. 9.— Smoothed count map of the region of the Kookaburra complex observed by *Fermi* above 10 GeV (top) and 31 GeV (bottom). The Galactic and isotropic diffuse emissions are subtracted. The left and right circles show the best fit obtained by VHE experiments respectively for the K3 nebula and the Rabbit nebula. The lower right inset is the model predicted emission from a point-like source with the same spectrum as HESS J1420-607 smoothed by the same kernel. There is significant emission from both regions for energies above 10 GeV but there is only significant emission from HESS J1420-607 for energies above 30 GeV.

Name	$G_{10}^{316} GeV$	$G_{1}^{30} TeV$	$G_{01}^{10} \text{ keV}$	$L_{10}^{316} \text{GeV}$	Refs
	$(10^{-12} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$(10^{-12} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$(10^{-12} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$(10^{34} \mathrm{erg}\mathrm{s}^{-1})$	
	(3)	(0)	(0)	(0)	
VER J0006+727	< 6.9			< 0.2	•••
Crab	486 ± 188	80 ± 17	21000 ± 4200	23 ± 15	(1)
MGRO J0631+105	< 6.0			< 0.1	
MGRO J0632+17	< 29	•••		< 0.01	•••
Vela-X	134 ± 11	79 ± 22	54 ± 11	0.14 ± 0.02	(1)
HESS J1018-589	6.8 ± 6.3	0.9 ± 0.4		0.7 ± 1.0	(2)
HESS J1023-575	27 ± 12	4.8 ± 1.7		2.5 ± 1.1	(3)
HESS J1026-582	< 9.4	5.9 ± 4.4		< 0.6	(3)
HESS J1119-614	9.1 ± 5.2	$2.3 \pm 1.2^{\mathrm{a}}$		7.7 ± 4.4	(4)
HESS J1303-631	16 ± 11	27 ± 1	0.16 ± 0.03	8.3 ± 6.6	(5)
HESS $J1356-645$	16 ± 10	6.7 ± 3.7	0.06 ± 0.01	1.2 ± 0.9	(6)
HESS J1418-609	< 25	3.4 ± 1.8	3.1 ± 0.2	< 0.8	(7,4,8)
HESS J1420-607	23 ± 9	15 ± 3	1.3 ± 0.3	8.6 ± 4.5	(1,7,8)
HESS $J1458 - 608$	< 15	3.9 ± 2.4		< 2.8	(9)
HESS $J1514 - 591$	46 ± 13	20 ± 4	29 ± 6	10 ± 4	(1)
HESS $J1554-550$	< 3	1.6 ± 0.5	3 ± 1	< 2	(10, 11)
HESS J1616-508	46 ± 14	21 ± 5	4.2 ± 0.8	26 ± 9	(1)
HESS J1632-478	79 ± 19	15 ± 5	0.43 ± 0.08	8.5 ± 2.1	(12)
HESS J1640-465	30 ± 11	5.5 ± 1.2	0.5 ± 0.1	26 ± 10	(13)
HESS J1646-458B	< 24	5 ± 2		< 10	(14)
HESS J1702-420	< 26	9 ± 3	0.01 ± 0.00	< 7	(15)
HESS J1708-443	29 ± 13	23 ± 7		2 ± 1	(16)
HESS J1718-385	< 12	4 ± 2	0.14 ± 0.03	< 3	(1)
HESS J1804-216	74 ± 21	12 ± 2	0.07 ± 0.01	13 ± 5	(17)
HESS J1809-193	< 48	19 ± 6	0.23 ± 0.05	< 7	(1)
HESS J1813-178	< 14	5.0 ± 0.6		< 3.7	(18, 19)
HESS J1818-154	< 8.9	1.3 ± 0.9		< 6.5	(20)
HESS J1825-137	59 ± 77	61 ± 14	0.4 ± 0.1	12 ± 16	(1)
HESS J1831-098	< 11	5.1 ± 0.6		< 2.2	(21)
HESS J1833-105	< 12	2.4 ± 1.2	40 ± 0	< 3.2	(1)
HESS J1837-069	70 ± 23	22 + 9	0.6 ± 0.2	36 ± 12	(4)
HESS J1841-055	89 ± 20	22 ± 3 24 ± 3	0.0 ± 0.2	1.8 ± 0.4	(22)
HESS J1846-029	< 11	9+2	29 ± 1	< 0.2	(4)
HESS 11848-018	30 ± 17	4 ± 1	20 ± 1	13 ± 7	(23)
HESS $11849 - 000$	< 7	21 ± 0.4	0.9 ± 0.2		(24)
HESS 11857 ± 0.00	58 ± 10	18 ± 3	0.5 ± 0.2	57 ± 18	(24)
$MCBO 11908 \pm 06$	< 32	10 ± 0 12 ± 5		- A	(22)
HESS 11012 101	< 32	12 ± 0 7 ± 4		< 4	(26)
VED 11020 + 199	< 5.5	(± 4)	5.2 ± 0.1	< 5.4	(20)
VER 11050+200	< 0.0 < 1.0	2.0 ± 1.0	0.2 ± 0.1	< 0.4 < 0.1	(4, 21)
VER J1909+200 MCDO J9010+27	< 1.9 < 97			< 0.1	(1)
MGRO J2019+37	< 10	•••		< 21	(4)
MGRO J2228+61	< 12	•••	0.88 ± 0.02	< 1.4	(4)

Table 10. PWNe properties.

a- This flux has been computed from the luminosity given in (15). Since no H.E.S.S. spectral index is available, we assumed a fiducial index of 2.4.

Note. — The flux of the PWNe candidates measured by the LAT (10-316 GeV, column 2), by VHE experiments (1-30 TeV, column 3), and in the 2-10 keV X-ray energy range. Column 5 is the luminosity computed assuming the pulsar distances from

Table 7.

References : (1) Mattana et al. (2009) and references therein, (2) (McArthur 2011), (3) H.E.S.S. Collaboration et al. (2011e), (4) Kargaltsev & Pavlov (2010), (5) H.E.S.S. Collaboration et al. (2012b), (6) H.E.S.S. Collaboration et al. (2011d), (7) Kishishita et al. (2012), (8) Aharonian et al. (2006a), (9) de los Reyes et al. (2012), (10) Temim et al. (2009), (11) Acero et al. (2012), (12) Balbo et al. (2010), (13) Aharonian et al. (2006d), (14) (Abramowski et al. 2012), (15) (Aharonian et al. 2006d), (16) H.E.S.S. Collaboration et al. (2011b), (17) (Aharonian et al. 2006d), (18) Funk et al. (2007b), (19) Fang & Zhang (2010), (20) Hofverberg et al. (2011), (21) (Sheidaei 2011), (22) Aharonian et al. (2008c), (23) Chaves et al. (2008), (24) Terrier et al. (2008), (25) (Aharonian et al. 2009), (26) Aharonian et al. (2008a) and (27) Acciari et al. (2010). Among the 58 sources analyzed, 36 sources have an associated pulsar. We selected the 14 sources flagged as PWN or PWNc in Table 4 as they are likely due to IC emission.

We searched for a correlation between the peak energy and the characteristic age of a pulsar by estimating the peak energy of the assumed IC component. To characterize the IC peak we used the log-normal representation,

$$\frac{dN}{dE} = N_0 \times \left(\frac{E}{E_0}\right)^{-\left\lfloor\alpha + \beta \times \log_{10}\left(\frac{E}{E_0}\right)\right\rfloor}.$$
(3)

First, we checked if a log-normal spectral model was a possible representation of the 770 spectrum of the sources observed at LAT and VHE energies. If the data were well-reproduced 771 by a log-normal representation, then there should be a correlation between the energy-flux 772 ratio and the VHE experiment spectral index. We fixed E_0 at 300 GeV and β at 0.2 (since 773 β corresponds to the typical curvature seen in the spectra) and fit the prefactor N₀ and the 774 index α using our LAT and VHE spectral points. Figure 10 plots the LAT to VHE energy 775 flux ratios measured assuming a power-law spectrum in each energy range as a function 776 of their spectral indices measured by VHE experiments and the relation expected for a 777 log-normal model. To derive this relation, we randomly generated a thousand uniformly 778 distributed sets of α providing a thousand different log-normal representations. For each 779 log-normal model we derived the associated spectral points in dN/dE, assuming Poisson 780 statistics with zero background counts, and used them to obtain the corresponding power-781 law index Γ_{TeV} between 1 and 30 TeV. Then the log-normal model is used to compute the 782 energy flux ratio and derive a relation between Γ_{TeV} and this flux ratio. HESS J1303-631 and 783 HESS J1632-478 are known to be contaminated by neighboring sources and were therefore 784 removed from this figure. The energy flux ratio and the VHE index are correlated with 785 a correlation coefficient of $+0.72 \pm 0.11$. Therefore, the log-normal model seems to be 786 acceptable to reproduce the spectra between 10 GeV and 30 TeV. 787

Fig. 10.— Ratio of the LAT to the VHE energy flux as a function of the VHE spectral index for sources classified as "PWN" or "PWNc". The LAT flux is in the 10 GeV to 316 GeV energy range and the VHE flux is in the 1 TeV to 30 TeV energy range. The fluxes were obtained using power-law fits in each energy range. Sources classified in the TeVCat as "PWN" are represented by full markers and sources classified as "UNIDs" by hollow markers. The LAT fluxes were obtained subtracting any potential pulsar emission. The black line corresponds to a fit of a linear function to the points : $(1.10 \pm 0.48) \times \Gamma_{TeV} - (2.15 \pm 1.14)$ with $\chi^2/d.o.f = 11.2/9$. The dashed line corresponds to the correlation expected for a lognormal representation of $\beta = 0.2$ and $E_0 = 300$ GeV. HESS J1303-631 and HESS J1632-478 are not included in this figure, because their energy fluxes are known to be contaminated by neighboring sources in the LAT energy range (see Section 4). HESS J1119-614 is not plotted since its TeV spectral index is not known.

We removed HESS J1119-614 from the sample of sources since only the integrated flux above 1 TeV is available for this source and we required at least 3 spectral points to perform a fit. Then we defined the energy of the peak (E_{peak}) as the energy at which the modeled SED in νF_{ν} is maximal. This also corresponds to

$$\alpha + 2\beta \times \log_{10}\left(\frac{E_{\text{peak}}}{E_0}\right) = 2.$$
(4)

Since LAT spectral points typically suffer larger uncertainty and are less numerous than the VHE ones, this method is biased by the greater weight given to the VHE side of the log-normal representation. The fit results as well as the peak position are presented in 795 Table 11.

We plotted the resulting E_{peak} as a function of the age in Figure 11. These values 796 of E_{peak} and the age yielded a correlation coefficient of -0.06 ± 0.28 . Furthermore, a fit 797 of the value assuming a linear function yielded $\log_{10}(E_{\rm peak}/1\,{\rm GeV}) = (-0.13 \pm 0.09) \times$ 798 $\left(\log_{10}(\tau_C/1\,\text{kyr}) - \overline{\log_{10}(\tau_C/1\,\text{kyr})}\right) + (2.41 \pm 0.04)$ with $\chi^2/dof = 15.9/7$, while a simple 799 model assuming a constant yielded $\log_{10}(E_{\text{peak}}/1 \text{ GeV}) = 2.38 \pm 0.04$ with $\chi^2/dof = 16.9/8$. 800 This means that the linear function improves the fit at only the 1σ level. This coefficient and 801 this comparison show that, contrary to the expectation (Mayer et al. 2012), no downward 802 correlation is observed. However, this correlation might be obscured by the usage of the 803 characteristic age of the pulsar which may not be a good age estimator for the PWN. For 804 instance, MSH 15-52 is a known case for which two ages are proposed, either the charac-805 teristic age of the pulsar, 1.7 kyr or an age between 20 and 40 kyr as suggested by the size 806 and general appearance of the SNR (Gvaramadze 2001). 807

Fig. 11.— Energy of the maximum of the IC peak as a function of the characteristic age of the pulsar for sources labelled as PWN or PWNc in Table 4. Full markers represent sources with a clear PWN association at VHE while hollow markers correspond to sources for which the association is less clear. The fitted SED corresponds to spectra in which contributions of pulsars summarized in Table 2 are subtracted. HESS J1640–465 and HESS J1848–018 are not plotted since the age of their putative pulsar is not known. As in Figure 10, HESS J1303–631, HESS J1632–478 and HESS J1119–614 are not plotted.

Using the log-normal fit presented in Table 11 we derived the mean parameters $\bar{\alpha} = 2.06 \pm 0.02$ and $10^{\log_{10}(E_{\text{peak}})} = 215^{+25}_{-23}$ GeV. To find a putative correlation between luminosity ratio and the pulsar characteristics, we plot the GeV to TeV luminosity ratio as a function

Table 11. IC peak fit results

Name	Γ_{TeV}	α	E_{peak} (GeV)	$\chi^2/d.o.f$
$\begin{array}{c} \mathrm{HESS} \ \mathrm{J1023-575} \\ \mathrm{HESS} \ \mathrm{J1303-631^a} \\ \mathrm{HESS} \ \mathrm{J1356-645} \\ \mathrm{HESS} \ \mathrm{J1356-645} \\ \mathrm{HESS} \ \mathrm{J1420-607} \\ \mathrm{HESS} \ \mathrm{J1514-591} \\ \mathrm{HESS} \ \mathrm{J1616-508} \\ \mathrm{HESS} \ \mathrm{J1616-508} \\ \mathrm{HESS} \ \mathrm{J1632-478^a} \\ \mathrm{HESS} \ \mathrm{J1640-465} \\ \mathrm{HESS} \ \mathrm{J1845-137} \\ \mathrm{HESS} \ \mathrm{J1847-069} \\ \mathrm{HESS} \ \mathrm{J1841-055} \\ \mathrm{HESS} \ \mathrm{J1841-055} \\ \mathrm{HESS} \ \mathrm{J1841-015} \\ \mathrm{HESS} \ \mathrm{J1845-015} \\ \mathrm{HESS} \ \mathrm{J1845-015} \\ \mathrm{HESS} \ \mathrm{J1845-015} \\ \mathrm{HESS-010} \\ \mathrm{HES}-010 \\ \mathrm{HESS-010} \\ \mathrm{HES}-010 \\ \mathrm{HES}-010 $	$\begin{array}{c} 2.58 \pm 0.27 \\ 2.44 \pm 0.03 \\ 2.20 \pm 0.28 \\ 2.17 \pm 0.10 \\ 2.27 \pm 0.31 \\ 2.35 \pm 0.06 \\ 2.12 \pm 0.20 \\ 2.42 \pm 0.15 \\ 2.45 \pm 0.30 \\ 2.27 \pm 0.06 \\ 2.41 \pm 0.08 \\ 2.8 \pm 0.20 \end{array}$	$\begin{array}{c} 2.17 \pm 0.07 \\ 1.83 \pm 0.10 \\ 1.84 \pm 0.10 \\ 1.88 \pm 0.06 \\ 1.98 \pm 0.04 \\ 2.11 \pm 0.06 \\ 2.18 \pm 0.12 \\ 2.27 \pm 0.08 \\ 2.06 \pm 0.02 \\ 2.03 \pm 0.08 \\ 2.00 \pm 0.06 \\ 2.23 \pm 0.15 \end{array}$	$\begin{array}{c} 113 \pm 45 \\ 798 \pm 459 \\ 754 \pm 434 \\ 599 \pm 206 \\ 337 \pm 178 \\ 159 \pm 55 \\ 106 \pm 74 \\ 63 \pm 29 \\ 212 \pm 24 \\ 252 \pm 116 \\ 300 \pm 103 \\ 204 \pm 112 \end{array}$	$\begin{array}{c} 9.3/6\\ 8.2/9\\ 7.7/6\\ 8.2/10\\ 12.8/15\\ 4.4/7\\ 11.6/5\\ 4.9/6\\ 10.2/12\\ 11.5/13\\ 10.5/9\\ 6.0/8\end{array}$
HESS J1848-018 HESS J1857+026	2.8 ± 0.20 2.39 ± 0.05	2.23 ± 0.13 2.07 ± 0.06	204 ± 112 201 ± 69	9.4/12

a-Since these sources are known to be contaminated by neighboring sources the corresponding rows were not used in Section 5.

Note. — The fit parameters of the log-normal fit to the LAT and VHE data. Column 2 gives the spectral index of the power law fit by VHE experiments. Columns 3 and 4 give the index α at $E_0 = 300$ GeV and the peak position of the log-normal model as defined in Section 5. Column 6 gives the reduced χ^2 of the fit. The log-normal model was fit to the VHE and LAT SED with the pulsar's contribution subtracted.

of the pulsar's characteristic age and spin-down energy in Figure 12. To determine if the 811 correlation of the luminosity ratio with the characteristic age and the pulsar spin-down 812 power is due to one of the components, this figure also presents luminosities derived in the 813 GeV, TeV and keV domains. We overlaid the mean ratio, $\bar{R} = 10^{\overline{\log_{10}(R)}} = 2.7^{+2.7}_{-1.4}$, found 814 between the LAT and VHE energy ranges using the 14 sources flagged as PWNe and PWNc 815 in Table 4. We included in this figure and the figures that follow all sources analyzed in 816 this work including pulsar-like sources, providing an upper-limit on the PWN emission and 817 sources flagged as "O". This figure shows that no source is located at more than 2σ from 818 this mean ratio except HESS J1804-216, which is not a PWN candidate as explained in 819 section 4.3. 820

As a second step, we investigated the relation between the spectra in the X-ray energy 821 range and the LAT energy range. Mattana et al. (2009) have shown a correlation between 822 the X-ray flux of a PWN and the physical properties of the pulsar assuming the emission 823 of the PWN to be composed of synchrotron emission in the keV domain. As described 824 in Mattana et al. (2009), the γ -ray and the X-ray luminosities of PWNe are expected to 825 decrease with time and the cooling time of electrons emitting synchrotron X-rays is smaller 826 than the cooling time of the electrons emitting IC γ -rays. Therefore, the X-ray emission 827 traces the recent evolution of a PWN while the γ -ray photons trace a longer period. Since 828 the pulsar spin-down power driving the electron injection decreases with time, the ratio of 829 the IC emission to the synchrotron emission is expected to increase over time. 830

Figure 12 and Table 10 give the ratio of the γ -ray luminosity to the X-ray luminosity 831 as a function of the age and as a function of the pulsar spin-down power. As reported for 832 VHE experiments (Mattana et al. 2009), no clear correlation is found between the γ -ray flux 833 and spin-down power or between the γ -ray flux and the characteristic age. This can also be 834 seen on Figure 13. On the other hand, there is a correlation between the X-ray flux of the 835 observed PWNe and the pulsars spin-down power and characteristic age. This causes the 836 correlation between the ratio of the γ -ray flux to the X-ray flux and the pulsar properties. We 837 also represented the relations derived in Mattana et al. (2009) multiplied by \overline{R} for the whole 838 sample of sources and for the sources clearly identified with PWNe. The overall agreement 839 with these relations is relatively good. 840

In the plot showing the LAT to X-ray energy flux ratio as a function of the pulsar characteristic age, four upper limits are well below the correlation relations derived by Mattana et al. (2009). These outliers are, in increasing spin down power, HESS J1833-105, HESS J1554-550, HESS J1849-000 and HESS J1718-385. HESS J1833-105 and HESS J1718-385 are also included in Mattana et al. (2009), unlike HESS J1554-550 and HESS J1849-000. Table 10 shows that the GeV over TeV upper limit is in each case larger than \bar{R} . Therefore, their small LAT/X-ray luminosity ratios do not come from an especially small LAT flux but instead from an especially large X-ray flux relative to other sources with a similar characteristic age.

These figures show that the *Fermi*-LAT mainly detects young and middle-aged PWNe (1-30 kyr) around energetic pulsars with spin-down powers between 10^{36} and $10^{39} \text{ erg s}^{-1}$. One can see from these figures that the VHE sources older than 30 kyr are not detected by the LAT, while Mayer et al. (2012) predict a higher flux in the LAT energy range than in the VHE experiments energy range. However it should be noted that among these nine VHE sources, at least 7 suffer one or several biases:

- Source misidentification: for example, HESS J1912+101 has recently been proposed to be a shell-type SNR⁶, but some of the emission could originate in the pulsar wind. Similarly, HESS J1702-420 and HESS J1646-458B cannot be clearly associated as PWNe and deeper multi-wavelength observations are needed to classify the emission.
- Potential characteristic age overestimation. See, for example, HESS J1809-193
 (Sheidaei 2011).
- HESS J1026-582, HESS J1809-193, HESS J1831-098 and HESS J1849-000 are located in regions of strong diffuse emission where the LAT is less sensitive to any potential emission.

Therefore, the lack of a population of old γ -ray-loud PWNe cannot be proven given the current statistics and systematics associated with this analysis.

Finally, Figure 13 shows the γ -ray luminosity of the PWN as a function of the pul-868 sar spin-down power assuming the distances listed in Table 7. The γ -ray luminosity is, 869 for all sources, computed by subtracting any potential emission from nearby LAT-detected 870 pulsars. The distance uncertainties are calculated assuming a 20% uncertainty on the disper-871 sion measure (2PC). For most pulsars this yields a realistic uncertainty, for many however 872 it leads to a large factor, for instance a factor of 6 in Abdo et al. (2009f), between two 873 distance estimates. Among the detected sources, eight show a γ -ray efficiency below 1% 874 and five are consistent within uncertainties of having an efficiency between 1 and 10%. 875 Six upper limits on the LAT luminosity of VHE sources associated to a PWN powered 876

⁶This was proposed in a presentation at the AstroParticules et Cosmologie laboratory: http://www.apc.univ-paris7.fr/\$\sim\$semikoz/CosmicRays/CosmicRays/Dec14/djannati-atai.pdf

⁸⁷⁷ by an energetic pulsar $(\dot{E} \ge 10^{36} \,\mathrm{erg \, s^{-1}})$ are well below an efficiency of 1%. They are ⁸⁷⁸ HESS J1418-09, HESS 1813-178, HESS J1833-105, HESS J1849-000, MGRO J2228+61 ⁸⁷⁹ and VER J1930+188.

880

6. CONCLUSION

We looked for LAT counterparts to the VHE sources potentially associated to PWNe using 45 months of *Fermi*-LAT observations. We detected 30 of the 58 sources at LAT energies:

884	• 9 may be due to pulsar emission for energies above 10 GeV,
885	• 7 sources cannot be clearly associated to a PWN,
886	• 11 are PWNe candidates,
887	\bullet 3 are clearly identified as PWNe: HESS J1825–137 and HESS J1514–591 (aka
888	MSH $15-52$) already detected and HESS J1356-645 detected for the first time
889	in this analysis.

Among these 30 sources, 23 were also detected in 1FHL and 15 in Neronov & Semikoz (2012). We analyzed their morphology and found that 8 of them are significantly extended.

Adding the Crab Nebula and Vela-X to the 3 clearly identified PWNe, 5 PWNe 892 are now detected at LAT energies. 11 sources are promising PWNe candidates such as 893 HESS J1420-607 and HESS J1119-614. These 16 sources are associated with young (with 894 an age between 1 and 30 kyr) and powerful pulsars with a spin down power between 10^{36} 895 and $10^{39} \,\mathrm{erg \, s^{-1}}$ and typically have a conversion efficiency below 10%. No correlation has 896 been found between the LAT energy flux and the pulsar characteristic age. This work has 897 not shown any evidence for a shift of the PWN IC emission towards the LAT energy range 898 as a function of the characteristic age. However this can be due to large uncertainties on the 899 systems' age. The correlation of the LAT to X-ray luminosities ratio with the pulsar char-900 acteristic age and its spin-down power is consistent with the work of Mattana et al. (2009) 901 derived for the VHE to X-ray luminosities ratio. 902

The *Fermi* LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National
de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana
and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization
(KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in
Sweden.

Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Études Spatiales in France.

This research made use of pywcsgrid2, an open-source plotting package for Python⁷. The authors acknowledge the use of the TeV catalog website⁸ provided by the University of Chicago. The authors acknowledge the use of the Australia Telescope National Facility pulsar catalog⁹.

⁷pywcsgrid2 can be obtained from: http://leejjoon.github.com/pywcsgrid2/.

⁸The TeV catalog can be obtained from: http://tevcat.uchicago.edu/

⁹The ATNF catalog can be obtained from: http://www.atnf.csiro.au/people/pulsar/psrcat/

Fig. 12.— From top to bottom: LAT luminosity, VHE luminosity, ratio of LAT to VHE luminosity, X-ray luminosity, and the ratio of LAT to X-ray luminosity as a function of the pulsar characteristic age (left) and the pulsar spin-down power (right). The X-ray, LAT, and VHE fluxes are integrated in the 2 keV to 10 keV, 10 GeV to 316 GeV, 10 TeV to 30 TeV energy ranges respectively. Full markers correspond to sources with a clear PWN association at VHE energies while hollow markers correspond to sources for which the association is less clear. The black squares (\blacksquare) represent the sources detected at LAT energies, the magenta circles (\bigcirc) show the upper limits, the red pentagon () is HESS J1708–443 showing pulsar behavior in the LAT energy range and the blue stars (\bigstar) represent the Crab nebula and Vela-X not studied in this work. The LAT luminosity corresponds to Table 10 and was computed after removing any potential emission from LAT-detected pulsars. The dashed and solid lines are explained in Section 5.

Fig. 13.— LAT luminosity as a function of the pulsar's spin down power. The symbols are defined in Figure 12. The LAT luminosity was computed after removing any potential emission from LAT-detected pulsars. The upper limit on HESS J1818–154 is excluded from the plot because of its low value of \dot{E} .

REFERENCES

- ⁹²² Abdo, A. A., et al. 2013, ArXiv : 1305.4385
- ⁹²³ 2007, ApJ, 664, L91
- ⁹²⁴ —. 2009a, Science, 325, 840
- ⁹²⁵ 2009b, ApJ, 695, L72
- ⁹²⁶ 2009c, ApJ, 706, 1331
- 927 2009d, ApJ, 696, 1084
- ⁹²⁸ —. 2009e, ApJ, 700, L127
- ⁹²⁹ —. 2009f, ApJ, 700, 1059
- 930 2010a, ApJ, 714, 927
- 931 2010b, ApJ, 708, 1254
- ⁹³² 2010c, ApJ, 713, 146
- 933 2010d, ApJ, 711, 64
- ⁹³⁴ —. 2010e, ApJS, 187, 460
- ⁹³⁵ Abramowski, A., et al. 2012, A&A, 537, A114
- ⁹³⁶ Acciari, V. A., et al. 2010, ApJ, 719, L69
- 937 Acero, F., et al. 2012, ArXiv:1201.0481
- ⁹³⁸ Ackermann, M., et al. 2011, ApJ, 726, 35
- 939 2012, ApJS, 203, 4
- 940 Aharonian, F., et al. 2005a, Science, 307, 1938
- 941 2005b, A&A, 435, L17
- ⁹⁴² 2005c, A&A, 439, 1013
- 943 2005d, A&A, 432, L25
- 944 2006a, A&A, 456, 245

921

- 945 2006b, A&A, 460, 365
- 946 2006c, A&A, 457, 899
- 947 2006d, ApJ, 636, 777
- 948 —. 2007, A&A, 472, 489
- 949 2008a, A&A, 484, 435
- 950 2008b, A&A, 483, 509
- 951 2008c, A&A, 477, 353
- 952 2009, A&A, 499, 723
- ⁹⁵³ Ajello, M., et al. 2012, ApJ, 744, 80
- ⁹⁵⁴ Albert, J., et al. 2006a, ApJ, 637, L41
- 955 2006b, ApJ, 643, L53
- ⁹⁵⁶ Aleksić, J., et al. 2012, Astroparticle Physics, 35, 435
- Aliu, E. 2011, in International Cosmic Ray Conference, Vol. 7, International Cosmic Ray
 Conference, 227
- 959 Atkins, R., et al. 2003, ApJ, 595, 803
- ⁹⁶⁰ Atwood, W. B., et al. 2009, ApJ, 697, 1071
- ⁹⁶¹ Balbo, M., et al. 2010, A&A, 520, A111
- ⁹⁶² Bartoli, B., et al. 2012, ApJ, 745, L22
- ⁹⁶³ Brogan, C. L., et al. 2005, ApJ, 629, L105
- ⁹⁶⁴ Brun, F., et al. 2011, ArXiv:1104.5003
- ⁹⁶⁵ Buehler, R., et al. 2012, ApJ, 749, 26
- ⁹⁶⁶ Camilo, F., et al. 2000, ApJ, 541, 367
- 967 2006, ApJ, 637, 456
- 968 2001, ApJ, 557, L51

- 969 2004, ApJ, 611, L25
- 970 Caswell, J. L., McClure-Griffiths, N. M., & Cheung, M. C. M. 2004, MNRAS, 352, 1405
- ⁹⁷¹ Chaves, R. C. G., Renaud, M., Lemoine-Goumard, M., & Goret, P. 2008, in American Insti⁹⁷² tute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference
 ⁹⁷³ Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 372–375
- 974 Coe, M. J., et al. 2012, ArXiv:1202.3164
- 975 Cordes, J. M., & Lazio, T. J. W. 2002, ArXiv Astrophysics e-prints
- 976 D'Amico, N., et al. 2001, ApJ, 552, L45
- de Jager, O. C., & Djannati-Ataï, A. 2009, in Astrophysics and Space Science Library, Vol.
 357, Astrophysics and Space Science Library
- 979 de Jager, O. C., et al. 2009, ArXiv:0906.2644
- de los Reyes, R., Zajczyk, A., Chaves, R. C. G., & for the H.E.S.S. collaboration. 2012,
 ArXiv:1205.0719
- ⁹⁸² Djannati-Atai, A., de Jager, O. C., Terrier, R., & et al. 2008, in International Cosmic Ray
 ⁹⁸³ Conference, Vol. 2, International Cosmic Ray Conference, 823–826
- 984 Dodson, R., Legge, D., Reynolds, J. E., & McCulloch, P. M. 2003, ApJ, 596, 1137
- 985 Domainko, W., & Ohm, S. 2012, A&A, 545, A94
- Eger, P. 2011, in International Cosmic Ray Conference, Vol. 7, International Cosmic Ray
 Conference, 44
- 988 Fang, J., & Zhang, L. 2010, ApJ, 718, 467
- ⁹⁸⁹ Funk, S., et al. 2007a, ApJ, 662, 517
- 990 2007b, A&A, 470, 249
- 991 Gabici, S., Aharonian, F. A., & Casanova, S. 2009, MNRAS, 396, 1629
- ⁹⁹² Gast, H., et al. 2012, ArXiv:1204.5860
- 993 Gonzalez, M., & Safi-Harb, S. 2003, ApJ, 591, L143
- ⁹⁹⁴ Górski, K. M., et al. 2005, ApJ, 622, 759

- ⁹⁹⁵ Gotthelf, E. V., & Halpern, J. P. 2008, ApJ, 681, 515
- 996 2009, ApJ, 700, L158
- ⁹⁹⁷ Gotthelf, E. V., Halpern, J. P., Terrier, R., & Mattana, F. 2011, ApJ, 729, L16
- ⁹⁹⁸ Grondin, M.-H., Fermi-LAT collaboration, & Pulsar Timing Consortium. submitted, ApJ
- ⁹⁹⁹ Grondin, M.-H., et al. 2011, ApJ, 738, 42
- ¹⁰⁰⁰ Guillemot, L., et al. 2012, ApJ, 744, 33
- 1001 Gvaramadze, V. V. 2001, A&A, 374, 259
- 1002 Hall, T. A., et al. 2003, ApJ, 583, 853
- ¹⁰⁰³ Hartman, R. C., et al. 1999, ApJS, 123, 79
- 1004 H.E.S.S. Collaboration et al. 2011a, A&A, 531, A81
- 1005 2011b, A&A, 528, A143
- 1006 2011c, A&A, 525, A45
- 1007 2011d, A&A, 533, A103
- 1008 2011e, A&A, 525, A46
- 1009 2012a, A&A, 541, A5
- 1010 2012b, A&A, 548, A46
- ¹⁰¹¹ Hessels, J. W. T., et al. 2004, ApJ, 612, 389
- ¹⁰¹² 2008, ApJ, 682, L41
- ¹⁰¹³ Hinton, J. A., & Hofmann, W. 2009, ARA&A, 47, 523
- Hofverberg, P. 2011, in International Cosmic Ray Conference, Vol. 7, International Cosmic
 Ray Conference, 247
- Hofverberg, P., Chaves, R. C. G., Méhault, J., de Naurois, M., & for the H.E.S.S. Collaboration. 2011, ArXiv:1112.2901
- Hoppe, S. 2008, in International Cosmic Ray Conference, Vol. 2, International Cosmic Ray
 Conference, 579–582

- ¹⁰²⁰ Huang, R. H. H., et al. 2012, ApJ, 760, 92
- ¹⁰²¹ James, F., & Roos, M. 1975, Comput. Phys. Commun., 10, 343
- Johnston, S., Manchester, R. N., Lyne, A. G., Kaspi, V. M., & D'Amico, N. 1995, A&A,
 293, 795
- 1024 Kanai, Y. 2007, phd thesis
- ¹⁰²⁵ Kargaltsev, O., & Pavlov, G. G. 2010, ArXiv:1002.0885, 1248, 25
- ¹⁰²⁶ Keith, M. J., et al. 2008, MNRAS, 389, 1881
- ¹⁰²⁷ Kerr, M. 2011, ArXiv:1101.6072
- ¹⁰²⁸ Kishishita, T., Bamba, A., Uchiyama, Y., Tanaka, Y., & Takahashi, T. 2012, ApJ, 750, 162
- 1029 Komin, N., et al. 2012, ArXiv:1201.0639
- 1030 Kothes, R., Uyaniker, B., & Pineault, S. 2001, ApJ, 560, 236
- ¹⁰³¹ Kramer, M., et al. 2003, MNRAS, 342, 1299
- 1032 Lamb, R. C., & Macomb, D. J. 1997, ApJ, 488, 872
- ¹⁰³³ Lande, J., et al. 2012, ApJ, 756, 5
- ¹⁰³⁴ Leahy, D. A., Tian, W., & Wang, Q. D. 2008, AJ, 136, 1477
- ¹⁰³⁵ Lemiere, A., Slane, P., Gaensler, B. M., & Murray, S. 2009, ApJ, 706, 1269
- Lemoine-Goumard, M., Ferrara, E., Grondin, M.-H., Martin, P., & Renaud, M. 2011a,
 Mem. Soc. Astron. Italiana, 82, 739
- 1038 Lemoine-Goumard, M., et al. 2011b, A&A, 533, A102
- 1039 Lorimer, D. R., et al. 2006, MNRAS, 372, 777
- 1040 Lucke, P. B. 1978, A&A, 64, 367
- ¹⁰⁴¹ Luque-Escamilla, P. L., et al. 2011, A&A, 532, A92
- Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005a, VizieR Online Data Catalog,
 7245, 0
- 1044 2005b, AJ, 129, 1993

- ¹⁰⁴⁵ Manchester, R. N., et al. 2001, MNRAS, 328, 17
- ¹⁰⁴⁶ Mattana, F., et al. 2009, ApJ, 694, 12
- Mayer, M. 2010, Diplomarbeit : Erlangen Centre for Astroparticle Physics Physikalisches
 Institut 2 Lehrstuhl für Physik Friedrich-Alexander-Universität Erlangen-Nürnberg
- ¹⁰⁴⁹ Mayer, M., Brucker, J., Jung, I., Valerius, K., & Stegmann, C. 2012, ArXiv:1202.1455
- ¹⁰⁵⁰ McArthur, S. f. 2011, ArXiv:1111.2591, eConf C110509
- ¹⁰⁵¹ Mignani, R. P., et al. 2012, A&A, 543, A130
- ¹⁰⁵² Mukherjee, R., & Halpern, J. P. 2005, ApJ, 629, 1017
- ¹⁰⁵³ Neronov, A., & Semikoz, D. V. 2012, Phys. Rev. D, 85, 083008
- ¹⁰⁵⁴ Ng, C.-Y., Roberts, M. S. E., & Romani, R. W. 2005, ApJ, 627, 904
- ¹⁰⁵⁵ Nolan, P. L., et al. 2012, ApJS, 199, 31
- ¹⁰⁵⁶ Paneque, D., et al. 2013, ArXiv : 1304.4153
- ¹⁰⁵⁷ Parent, D., et al. 2011, ApJ, 743, 170
- ¹⁰⁵⁸ Pineault, S., Landecker, T. L., Madore, B., & Gaumont-Guay, S. 1993, AJ, 105, 1060
- ¹⁰⁵⁹ Pletsch, H. J., et al. 2012, ApJ, 755, L20
- ¹⁰⁶⁰ Ray, P. S., et al. 2011, ApJS, 194, 17
- Renaud, M., Goret, P., & Chaves, R. C. G. 2008, in American Institute of Physics Con ference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A.
 Aharonian, W. Hofmann, & F. Rieger, 281–284
- 1064 Roberts, M. S. E., Romani, R. W., & Johnston, S. 2001, ApJ, 561, L187
- ¹⁰⁶⁵ Roberts, M. S. E., Romani, R. W., Johnston, S., & Green, A. J. 1999, ApJ, 515, 712
- 1066 Rousseau, R., et al. 2012, A&A, 544, A3
- Rowell, G., Horns, D., Fukui, Y., & Moriguchi, Y. 2008, in American Institute of Physics
 Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed.
 F. A. Aharonian, W. Hofmann, & F. Rieger, 241–244
- 1070 Ruiz, M. T., & May, J. 1986, ApJ, 309, 667

- ¹⁰⁷¹ Ryter, C., Cesarsky, C. J., & Audouze, J. 1975, ApJ, 198, 103
- ¹⁰⁷² Safi-Harb, S., & Kumar, H. S. 2008, ApJ, 684, 532
- ¹⁰⁷³ Sakai, M., Yajima, Y., & Matsumoto, H. 2011, PASJ, 63, 879
- ¹⁰⁷⁴ Saz Parkinson, P. M., et al. 2010, ApJ, 725, 571
- ¹⁰⁷⁵ Seward, F. D., Kearns, K. E., & Rhode, K. L. 1996, ApJ, 471, 887
- ¹⁰⁷⁶ Sguera, V., et al. 2009, ApJ, 697, 1194
- Sheidaei, F. 2011, in International Cosmic Ray Conference, Vol. 7, International Cosmic Ray
 Conference, 243
- ¹⁰⁷⁹ Slane, P., et al. 2010, ApJ, 720, 266
- ¹⁰⁸⁰ Spitkovsky, A. 2008, ApJ, 682, L5
- ¹⁰⁸¹ Sun, M., Wang, Z.-R., & Chen, Y. 1999, ApJ, 511, 274
- 1082 Tam, P. H. T., Wagner, S. J., Tibolla, O., & Chaves, R. C. G. 2010, A&A, 518, A8
- 1083 Tamura, K., Kawai, N., Yoshida, A., & Brinkmann, W. 1996, PASJ, 48, L33
- Temim, T., Slane, P., Gaensler, B. M., Hughes, J. P., & Van Der Swaluw, E. 2009, ApJ, 691,
 895
- Terrier, R., et al. 2008, in American Institute of Physics Conference Series, Vol. 1085, Amer ican Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, &
 F. Rieger, 312–315
- Tibolla, O. 2011, in International Cosmic Ray Conference, Vol. 6, International Cosmic Ray
 Conference
- Tibolla, O., Komin, N., Kosack, K., & Naumann-Godo, M. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, 249–252
- Tibolla, O., et al. 2012, in American Institute of Physics Conference Series, Vol. 1505,
 American Institute of Physics Conference Series, ed. F. A. Aharonian, W. Hofmann,
 & F. M. Rieger, 349–353
- ¹⁰⁹⁷ Trimble, V. 1973, PASP, 85, 579
- ¹⁰⁹⁸ Uchiyama, Y. 2011, ArXiv:1104.1197
- ¹⁰⁹⁹ Van Etten, A., & Romani, R. W. 2010, ApJ, 711, 1168
- ¹¹⁰⁰ Verbiest, J. P. W., Weisberg, J. M., Chael, A. A., Lee, K. J., & Lorimer, D. R. 2012, ApJ,
 ¹¹⁰¹ 755, 39
- ¹¹⁰² Weekes, T. C., et al. 2002, Astroparticle Physics, 17, 221
- ¹¹⁰³ Weinstein, A. 2009, ArXiv:0912.4492
- ¹¹⁰⁴ Weltevrede, P., et al. 2010, ApJ, 708, 1426
- ¹¹⁰⁵ Wilks, S. 1938, Annals of Mathematical Statistics, 9, 60
- ¹¹⁰⁶ Wu, J. H. K., et al. 2011, ApJ, 740, L12
- 1107 Yadigaroglu, I.-A., & Romani, R. W. 1997, ApJ, 476, 347

This preprint was prepared with the AAS ${\rm IAT}_{\rm E}\!{\rm X}$ macros v5.2.