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Coupled oscillators always exhibit all kinds of emergent collective modes and 

intriguing synchronization phenomena, ranging from collective oscillations in bacteria to 

beating of cilia, from rhythms in biological neurons to phase synchronization in brain, from 

nanomechanical and nanoelectromechanical oscillators to spin Hall and spin torque nano-

oscillators. This dissertation explores the unique dynamical behaviors of coupled spiking 
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oscillators based on Mott materials. Spiking oscillator, a special type of oscillator that 

produces short-duration spikes (around 30 ns), contrasts with smoothly evolving harmonic 

oscillators. Spiking oscillators can emulate the electrical activity of brain, can develop large 

scale spiking neural networks, and can potentially be the building block for the energy-

efficient oscillator-based computing. To design a complex network capable of performing 

advanced computational tasks, it is necessary to understand the basic phenomenology of the 

interactions between two spiking oscillators. First, I report the unusual emergence of a 

stochastic pattern in capacitively coupled spiking oscillators. While a moderate capacitive 

coupling results in a deterministic alternating spiking, increasing the coupling strength leads 

counterintuitively to stochastic disruptions of the alternating spiking sequence. Then I switch 

my focus to the thermally coupled spiking oscillators. Transition between two integer modes 

occurs through an unusual stochastic synchronization regime instead of the loss of spiking 

coherence. In the stochastic synchronization regime, random length spiking sequences 

belonging to the 1:1 and 2:1 mode are intermixed.  By carefully tuning the load resistance and 

the input voltages of the coupled spiking oscillators, termed neuristors, I demonstrate a wide 

variety of reconfigurable electrical dynamics mirroring biological neurons, including all-or-

nothing law, rate coding, stochastic leaky integrate-and-fire, excitatory and inhibitory 

functionalities. Moreover, random number generator will be demonstrated by taking 

advantage of the stochasticity hiding behind the synchronization. This dissertation 

investigates the basic phenomenology of the interactions between two spiking oscillators, 

discovers several usual findings, and establishes the foundation for scalable and energy-

efficient brain-inspired computing. 
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Chapter 1 Introduction 

1.1 Overview  

A vast majority of data is being produced at an exponential pace, which demands 

substantial energy and financial resources to be manipulated effectively for everyday 

applications1,2. This poses considerable challenges to both the von Neumann architecture and 

Moore's law3. Moore's law, a guiding principle indicating that the number of transistors on a 

microchip roughly doubles every two years, plays a crucial role in directing the advancement of 

the semiconductor industry4–6. With the continuous advancement of photolithography techniques 

in technology, transistors continue to diminish in size, edging closer to their atomic limitations. 

However, within the next two decades, Moore's law is poised to become obsolete due to 

emerging obstacles such as atomic restrictions and issues related to heat dissipation7. 

Additionally, the von Neumann bottleneck8, shuttling data between the central processing unit 

and memory unit, imposes a constraint on computational speed. The back-and-forth data transfer 

incurs twice the energy expenditure. As a result, researchers are actively exploring innovative 

computing paradigms and novel functional materials to further amplify computational 

capabilities2,9–17. 

Oscillator-based computing, an approach of using networks of interacting oscillators for 

information processing, can provide an efficient alternative to conventional computational 

algorithms implemented on von Neumann architecture10. Demonstrations of oscillator-based 

computing include networks capable of solving NP-hard combinatorial tasks, such as graph 

coloring18,19, maximum cut20,21 and maximum independent set22 problems. Furthermore, 

oscillator circuits are essential components of hardware-level implementation of spiking neural 

networks23,24. In many practical demonstrations the individual oscillators are implemented using 
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standard CMOS technology18,21,22,25. Recently, there has been a great interest in replacing CMOS 

oscillator circuits with devices based on quantum materials in order to reduce energy 

consumption and circuit footprint. Several approaches have been proposed including the use of 

magnetic spin-torque oscillators26,27 micro- and nanoelectromechanical systems28–30, and spiking 

devices based on electrical triggering of an insulator-metal transition (IMT)31,32 .  

We focus on the spiking devices, termed as spiking oscillators, producing short-duration 

spikes. It contrasts with smoothly evolving harmonic oscillators, emulates the electrical activity 

of brain 31,33, and can find applications in the development of hardware-level energy-efficient 

implementations of neural networks 23,34,35 

The key element that enables oscillator-based computing is the ability to achieve tunable 

coupling between the individual spiking oscillators. The implementation of coupling between 

non-CMOS devices is often complex and could result in a highly non-intuitive dynamical 

behavior36–40. In order to design a complex network capable of performing advanced 

computational tasks, it is necessary to understand the basic phenomenology of the interactions 

between two spiking devices. 

In chapter 3, we report the emergence of an unusual stochastic pattern in coupled spiking 

Mott nanodevices. While a moderate capacitive coupling results in a deterministic alternating 

spiking, increasing the coupling strength leads counterintuitively to stochastic disruptions of the 

alternating spiking sequence. The disruptions of the deterministic spiking sequence are a direct 

consequence of the small intrinsic stochasticity in electrical triggering of the insulator-metal 

transition. While the stochasticity is subtle in the individual nanodevices, it becomes 

dramatically enhanced just in a single pair of coupled oscillators and thus dominates the 

synchronization. The stochastic spiking pattern in Mott nanodevices results in a discrete inter-
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spike interval distribution resembling those in biological neurons. Our results advance the 

understanding of the emergent synchronization properties in spiking oscillators and provide a 

platform for hardware-level implementation of oscillator-based computing. 

The stark differences between the spiking oscillators and harmonic oscillators motivate 

extensive studies of synchronization phenomena in spiking devices driven by different types of 

interactions. 

Chapter 4 presents an investigation of the synchronization evolution in coupled spiking 

nano-oscillators based on a Mott material where strong thermal interactions promote in-phase 

synchronization. We observed the occurrence of unique spiking patterns controlled by a DC 

voltage applied independently to each oscillator. For small or large applied voltages, the 

oscillators develop robust 2:1 or 1:1 integer synchronization spiking mode. However, in a 

relatively wide range of intermediate applied voltages, the oscillators enter a stochastic 

synchronization regime where the spiking pattern unpredictably alternates between the two 

discrete integer synchronization modes. These findings highlight unique dynamic 

synchronization properties of spiking oscillators as compared to conventional harmonic 

oscillators. The ability to electrically control the synchronization modes and drive the coupled 

spiking devices into a stochastic synchronization regime is important for practical 

implementations of neuromorphic and stochastic computing circuits. 

Chapter 5 is also based on the two thermally coupled spiking oscillators. These spiking 

oscillators, referred to as neuristors, exhibit a range of neural functionalities. Notably, we 

demonstrate the implementation of an inhibitory neuristor using simple Mott oxides, such as 

VO2, by trapping the metallic state, eliminating the need for complex circuits. Additionally, both 

excitatory and inhibitory neuristors can be realized using the same device by employing different 
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inputs, thereby enhancing the device's versatility and applicability. The neuristor also displays a 

rich array of reconfigurable electrical behaviors such as rate coding and stochastic leaky 

integrate-and-fire. Crucially, we demonstrate the feasibility of cascading neural layers through 

thermal interactions, which effectively eliminate the necessity for complex input/output circuits 

between layers. Our straightforward and innovative approach paves the way for advancements in 

reconfigurable cascading neural layers, which hold promise for applications in artificial 

intelligence. 

1.2 Mott materials 

Mott materials, referred to as strongly correlated electron systems, constitute a class of 

substances that undergo transitions between insulating and metallic states41–44. This intriguing 

switch from insulator to metal can be readily initiated by a range of external influences42,45, 

including temperature fluctuations46, electrical fields42,43, light illumination47–49, mechanical 

strain50–53, chemical doping43,54,55, and pressure variations56,57. The comprehensive exploration of 

Mott materials has consistently captivated researchers due to their exceptional electronic 

characteristics, sensitivity to external perturbations, emergence of novel phenomena, and diverse 

potential applications across various domains, such as Resistive Random Access Memory 

(ReRAM)42, artificial spiking neurons58,59, electronics, and energy-related technologies. Gaining 

insight into and effectively manipulating the metal-insulator transition holds paramount 

importance in leveraging these materials within condensed matter physics and materials science 

to drive technological progress. 

The focal investigating material of my dissertation centers on vanadium dioxide (VO2), 

an iconic archetype of Mott materials. VO2 exemplifies a phase transition characterized by a 

discontinuity in the first derivative of the free energy with respect to temperature, specifically a 
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first-order phase transition60,61. Within this transition, VO2 undergoes a sudden change in 

electrical conductivity from metallic behavior to insulating behavior, featuring a distinctive 

hysteresis loop. Alongside this electronic transition, VO2 also experiences a structural phase 

transition43,45. At lower temperatures, it resides in a monoclinic (M1) phase with low-symmetry 

(space group P21/c), and as temperature increases, it undergoes the crystal structure phase 

transition, transitioning to the high-temperature tetragonal rutile (R) phase with high-symmetry 

(space group P42/mnm). 

1.3 Resistive switching  

Applying an external voltage or current to transition metal oxide can lead to a resistance 

change once a certain threshold is reached. This phenomenon, characterized by a significant 

alteration in resistance, is referred to as resistive switching62–68. The interest in resistive 

switching has surged due to its potential for enabling rapid switching speeds, memory devices 

with high storage density and energy efficiency, as well as applications in neuromorphic 

computing. 

Resistive switching behavior can be categorized into two types: volatile and non-volatile. 

Volatile reversible resistive switching behavior usually emerges from insulator-to-metal 

transitions activated by thermal processes42,43,55. In contrast, non-volatile irreversible changes in 

resistance are primarily attributed to ion migration69 or the creation of new materials69,70. 

Resistive switching devices often adopt a two-terminal configuration, featuring a metal-

dielectric-metal setup. Applying a voltage exceeding the threshold to this two-terminal device 

initiates an insulator-to-metal transition, such as VO2. Once the electrical bias is removed, VO2 

reverts to its initial insulating state. This form of resistive switching is volatile and reversible. It 

is an ideal candidate for constructing a spiking oscillator59,71,72, capitalizing on this reversible 
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volatile behavior. By incorporating an appropriate load resistor, the insulating and metallic states 

can be manipulated back and forth, resulting in a stable auto-oscillation. This engineered spiking 

neuron holds promise for applications in spiking neural networks and neuromorphic computing. 

Regarding non-volatile resistive switching, subjecting the device to a substantial 

electrical field can induce electronic breakdown, resulting in a permanent change in resistance 

that persists even after the external electrical bias is withdrawn in VO2’s case67,68,70,73. But in 

some other resistive switching materials, the resistance state can be adjusted and restored by 

applying a voltage, rendering them suitable for data storage purposes68,73. In spiking neural 

networks, such materials can function as synapses linking spiking neurons across different neural 

layers for adjusting the weight. The weight of these connections can be tuned through spiking 

voltage stimuli generated by neurons in the preceding layer.  

By incorporating spiking oscillators and synapses, it becomes possible to build spiking 

neural networks and enable the development of neuromorphic computing. 

1.4 Neuromorphic computing 

Neuromorphic computing, which takes inspiration from the brain's information 

processing capabilities, offers an energy-efficient alternative to traditional von Neumann 

architectures 13,74–78. At the heart of neuromorphic computing are spiking neural networks 

(SNNs) 74,79, which simulate the event-driven nature and sparse communication patterns of 

biological neurons by using precisely timed spikes across layers of artificial neurons and 

synapses. Input data is represented and transmitted through time-varying spikes that are 

processed by interconnected neurons. Much of the current research has been centered on 

software simulations 11,80 or implementations using complementary metal-oxide-semiconductors 

(CMOS) 81–84. Notable CMOS-based SNNs include IBM's TrueNorth chip 82 and Intel's Loihi 84 
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which are built using cutting-edge, costly technologies and complex circuit designs. A CMOS 

neuron typically encompasses components like temporal integration, spike/event generation, 

refractory period, spike frequency adaptation, and spiking threshold adaptation blocks 83. 

However, the significant circuit footprint, limitations in scaling, and energy consumption may 

impede the progress of CMOS-based SNNs. 

Beyond CMOS-based models, there has been a recent emergence of spiking neuron 

devices 85,86 constructed using quantum materials, which are now at the forefront of 

neuromorphic computing, including but not limited to Mott neurons 87–90, magnetic neurons 

14,15,27 and phase change neurons 91–93. These devices have the potential to significantly reduce 

both the circuit complexity and the physical size of artificial neurons. However, the development 

of these quantum material-based artificial spiking neuron devices is still in its infancy, and 

various challenges and issues have been observed in initial demonstrations. 

One of the primary challenges facing artificial spiking neuron devices, which is often 

overlooked, is the difficulty in directly transmitting information between layers without intricate 

circuit configurations. The issue stems from the fact that the presence of a subsequent neural 

layer alters the output of the preceding layer due to the loading effect. Solutions typically involve 

the integration of complex buffer circuits 94,95, which substantially increase the overall size, often 

overshadowing the spiking neurons themselves in terms of space. Some studies sidestep this 

issue altogether 16,96,97, focusing solely on network-level simulations based on the properties of 

individual neuron devices, without considering the challenges of transmitting information 

between layers at hardware level. As a result, the efficient integration of cascading neural layers 

remains elusive. 
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Furthermore, current spiking neuron configurations lack versatility. For instance, 

inhibitory neurons play a critical role in neural activities, but replicating this functionality in 

artificial spiking neurons is no easy feat. Some attempted solutions involve elaborate circuits 98–

100, synaptic weight alternations 94, or optical inhibition 95. However, none of these can directly 

implement an inhibitory neuron in a single simple device, which poses significant constraints on 

the application of learning algorithms. 
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Chapter 2 Techniques 

2.1 Thin films growth technique 

The VO2 films were deposited on the (012)-oriented Al2O3 substrate by reactive RF 

magnetron sputtering. To begin, the high-vacuum chamber, initially at a base pressure of 

approximately 1x10-7 Torr, housed the (012)-oriented Al2O3 substrate. The substrate was then 

heated to 680°C. Next, a combination of pure argon at a flow rate of 2.2 s.c.c.m and mixed gases 

(20% oxygen and 80% argon) at a flow rate of 2.1 s.c.c.m was introduced into the chamber. The 

sputtering plasma was initiated at a pressure of 4.2 mTorr by applying a forward power of 100 W 

to the target, which corresponded to an applied voltage of around 240 V. The deposition process 

for the VO2 films took 30 minutes, resulting in a film thickness of 100 nm. Once the deposition 

was complete, the sample holder's temperature was gradually reduced to room temperature at a 

rate of 12°C per minute. 

2.2 X-ray analysis 

To enhance understanding of X-ray analysis, I will provide a brief overview of various 

types of scanning measurements. 

Bragg’s law: 

2 ∗ 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛 ∗ 𝜆𝜆 
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Figure 2.1 Schematic configuration. 

The sample is positioned on the X-Y plane and situated at the central point of a sphere as 

shown in Figure 2.1. The incident beam K0 hits the sample's surface and subsequently reflects as 

K1. The incident angle, labeled as Omega (ω), is defined as the angle between the incident beam 

and the sample's surface. The diffracted angle, labeled as 2-Theta (2θ), is defined as the angle 

between the incident beam and the reflected beam. The rotation of the X-axis corresponds to the 

Chi scan, while the Y-axis rotation represents the Omega scan. Furthermore, the Z-axis rotation 

corresponds to the Phi scan. 

Measurement Procedures: 

1. Perform optical alignment. 

2. Execute sample alignment, a process comprising multiple automated steps that 

ensure alignment with the sample's surface. Multiple automated steps include 

direct beam half cut alignment with Z scan and Omega scan. Surface normal 
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alignment with Z scan, Omega scan, and Chi (Rx) Scan. Repeat these alignments 

three times. 

3. Conduct X-ray Reflectivity (XRR) measurements. 

4. Undertake manual control alignment, usually initiated from the Omega scan and 

progressing to the 2-Theta/Omega scan and Rx scan. This step should be repeated 

until peak intensity values reach saturation. This manual alignment step is crucial 

for achieving alignment with the atomic surface of the sample. 

5. Carry out specular diffraction. 

Important Considerations: 

1. Whenever there is a change in hardware components, ensure that the hardware 

configurations are updated in software accordingly. 

2. During manual alignment, ensure that the incident slit, receiving slit #1, and 

receiving slit #2 are open to the maximum. Using a small slit restricts the amount 

of beam passing through, which can make it challenging to locate the peak. 

2θ/ω Scan:  

During the 2θ/ω scan, both arms of the X-ray source and the X-ray detector undergo 

simultaneous movement. In essence, the wave vectors 𝑲𝑲𝑲𝑲������⃗  and 𝑲𝑲𝑲𝑲������⃗  alter their orientations, 

resulting in a change in the amplitude of the scattering vector while maintaining its direction, as 

depicted in Figure 2.2. 
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Figure 2.2 2-Theta/Omega scan schematic 

ω Scan: 

Within the ω scan, the two arms of the X-ray source and the X-ray detector also move 

concurrently, but the diffraction angle 2θ remains constant. This implies that the wave vectors 

𝑲𝑲𝑲𝑲������⃗  and 𝑲𝑲𝑲𝑲������⃗  change their directions while preserving the angle between them. Consequently, this 

leads to a change in the direction of the scattering vector while its amplitude remains unchanged, 

as illustrated in Figure 2.3. 
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Figure 2.3 Omega scan schematic 

 
2θ Scan: 

In contrast, during the 2θ scan, only the arm of the X-ray source remains fixed, while the 

arm of the X-ray detector remains in continuous motion. Specifically, the wave vector 𝑲𝑲𝑲𝑲������⃗  

remains unchanged while 𝑲𝑲𝑲𝑲������⃗  changes its direction. This results in a simultaneous alteration of 

both the amplitude and direction of the scattering vector, as shown in Figure 2.4. 
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Figure 2.4 2-Theta scan schematic 
 

X-ray Reflectivity (XRR) serves as a method for extracting information about the 

thickness, density, and surface roughness of thin films. The critical angle in this process is 

contingent upon the material's electronic density. The thickness of the thin film can be 

determined using the formula 2*π/Δq. The conversion of real space data (2θ) to reciprocal space 

data (q) is facilitated through the utilization of Rigaku software PDXL. Notably, thicker films 

exhibit shorter oscillation periods in this context. One XRR example is displayed below in 

Figure 2.5. 
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Figure 2.5 X-ray reflectivity (XRR) of one of VO2 samples 

 
X-ray Diffraction (XRD) determines the structural information of crystals. Bragg's 

equation is used to analyze and interpret the peak information obtained from materials in X-ray 

diffraction (XRD) studies. This equation relates the wavelength of the incident X-rays (λ), the 

diffraction angle (θ), and the distance between atomic planes in the crystal lattice (d). By 

applying Bragg's equation, we can determine the crystallographic structure of materials, 

including crystal orientation and the identification of different phases within the sample. An 

illustration of an XRD data example is provided in Figure 2.6. 
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Figure 2.6 X-ray diffraction (XRD) of one of VO2 samples 
 
2.3 Device fabrication 

After confirming the high quality of the thin films with X-ray analysis, I patterned thin 

films into devices for further characterization, particularly the transport measurements. Basically, 

I fabricate two types of devices, one is nanodevice using E beam lithography and the other is 

microdevice optical lithography. 

2.3.1 E beam lithography 

The E beam lithography process is as follows: 

a) Place the uncoated films into a beaker containing Acetone and immerse the 

beaker in an ultrasonic bath sonicator to eliminate any chemical residues on the 

substrate. 
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b) Cleanse the substrate with IPA to eliminate any traces of Acetone. Repeat the first 

and second steps multiple times. 

c) Employ a high-purity nitrogen gun to thoroughly dry the sample, followed by 

placing the substrate on a hotplate set to 80°C for 1 minute to completely remove 

any moisture. 

d) Spincoat a positive E beam resist PMMA-A4 onto the sample using spinner for 60 

seconds at a speed of 5000 rpm. This step defines the electrode pattern. Ensure 

complete coverage of the substrate surface with a substantial amount of electron 

beam resist before starting spinning, while being careful not to let the pipette 

contact the substrate. (For the second lithography step, spincoat a negative 

electron beam resist ma-N 2405 onto the sample for 40 seconds at the same speed. 

This step serves to safeguard the electrode pattern and devices.) 

e) Perform a soft baking process at 115°C for 20 minutes for the substrate coated 

with PMMA-A4 in the first lithography step. (In the second lithography step, 

carry out a brief soft baking at 91°C for 1 minute for the ma-N 2405-coated 

substrate.) 

f) Utilize the Vistec EBPG5200 Electron Beam Lithography system to expose our 

sample. The exposure dose for PMMA A4 is 1000UC/cm2, while the dose for 

ma-N 2405 is 280UC/cm2. 

g) Develop the exposed PMMA A4 by immersing it in a solution of 1:3 MIBK to 

IPA. Employ developer ma-D 532 for the negative resist ma-N 2405. 

h) Thoroughly rinse the sample with deionized water for 5-10 minutes and then 

proceed to dry the thin films. 
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2.3.2 Optical lithography 

The E beam lithography process is as follows: 

a) Place the uncoated films into a beaker containing Acetone and immerse the 

beaker in an ultrasonic bath sonicator to eliminate any chemical residues on the 

substrate. 

b) Cleanse the substrate with IPA to eliminate any traces of Acetone. Repeat the first 

and second steps multiple times. 

c) Employ a high-purity nitrogen gun to thoroughly dry the sample, followed by 

placing the substrate on a hotplate set to 80°C for 1 minute to completely remove 

any moisture. 

d) Spincoat a photoresist AZ 1512 onto the sample using spinner for 60 seconds at a 

speed of 4000 rpm. This step defines the electrode pattern. Ensure complete 

coverage of the substrate surface with a substantial amount of electron beam resist 

before starting spinning, while being careful not to let the pipette contact the 

substrate. 

e) Perform soft baking at 95 °C for 1 minute. 

f) Expose the sample using Heidelberg MLA150. The employed light source is a 

375 nm laser. The exposure dose is set at 150 UC/cm2. 

g) Immerse the sample in AZ 300 MIF for 40 seconds for development. 

h) Thoroughly rinse the sample with deionized water for 5-10 minutes and then 

proceed to dry the thin films. 
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2.3.3 Electrodes deposition 

2.3.4 Etching 

The etching process is as follows: 

a) Immerse the sample in AZ 300 MIF for 40 Perform a cleaning procedure on the 

Oxford Plasmalab 80 Plus RIE chamber using oxygen plasma.  

b) Execute the etching recipe in the chamber without any sample present to ready the 

chamber for operation. 

c) Formally initiate the etching recipe with the sample positioned inside the 

chamber. The recipe involves utilizing a supply power of 200 W, and the pressure 

within the etching environment is maintained at 50 mTorr. Introduce a flow of 6 

sccm Ar and 30 sccm Cl2. Etch 100 nm VO2 for 90 seconds. 

d) Immerse the sample in Acetone to remove the residual resist. Thoroughly rinse 

the sample with deionized water for 5-10 minutes and then proceed to dry the thin 

films. 

The complete two steps of lithography are shown in Figure 2.7 and Figure 2.8, 

respectively. 
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Figure 2.7 First lithography step 
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Figure 2.8 Second lithography step 
 
 
2.3.5 Examination of the fabricated devices 

Following the completion of device fabrication, we typically employ two characterization 

techniques to assess the VO2 device's quality and gauge any potential damage incurred during 

the fabrication process. The first method involves utilizing scanning electron microscope (SEM) 

to scrutinize the device's morphology and geometry. Subsequently, we proceed with electrical 

transport measurements, specifically examining resistance versus temperature. This step allows 
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us to compare the electrical behavior of VO2 both pre- and post-fabrication to determine whether 

the VO2 is damaged or not. 

2.4 Electrical transport measurement 

2.4.1 Resistance temperature 

To characterize the crucial electrical property insulator-to-metal transition of the Mott 

insulator VO2, we conducted resistance versus temperature measurements. These measurements 

were carried out using a TTPX Lakeshore cryogenic probe station, which offers a temperature 

range spanning from 78 K to 400 K. This station includes a high vacuum chamber to prevent 

oxidation and degradation of the sample as it reaches elevated temperatures. In order to avoid 

heat generation by the sample itself, a fixed small current of 1µA was employed from a Keithley 

6221 current source to drive the VO2 devices. Monitoring of the resistance across the devices 

was accomplished using a Keithley 2812 nanovoltmeter. Therefore, we acquired the resistance-

temperature relationship while varying the temperature, as illustrated below. 

 

Figure 2.9 Resistance versus temperature of one of VO2 samples 
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2.4.2 Current source 

Upon confirming the insulator-to-metal transition through resistance-temperature 

measurements, I proceeded to conduct resistive switching measurements capable of alternating 

device resistance through applied electrical bias. These biases, including current source and 

voltage source, can induce distinct electrical behaviors. In the current source mode, a ramping 

current was directed through the device, while voltage source mode involved applying a ramping 

voltage, both leading to distinct electrical behaviors. 

Figure 2.10 illustrates the current-controlled I-V curves for varied base temperatures. As 

the input current increases, the monitoring voltage across the device also rises. During this stage, 

VO2 maintains its insulating state. However, as the input current increases, the joule heating 

produced by the insulating VO2 itself keeps pushing the resistance of the device to follow the 

resistance versus temperature curve. The insulator-to-metal transition occurs once the VO2 

device hits the threshold voltage, signifying sufficient joule heating to trigger the transition. 

Beyond this point, the monitoring voltage drops as VO2 becomes metallic. This metallic state 

persists as the input current rises. However, when reducing the input current, the joule heating 

can't sustain the metallic state, prompting a shift back to the insulating state. Consequently, the 

monitoring voltage exhibits an upward jump followed by a decrease. Different base temperatures 

yield varying threshold voltages, which decrease as the base temperature rises. 
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Figure 2.10 Current controlled I-V 

2.4.3 Voltage source 

Similarly, the voltage-controlled I-V curves, presented in Figure 2.11, demonstrate 

distinct behavior. With increasing input voltage, the monitoring current passing through the 

device increases. During this stage, VO2 retains its insulating state. Yet, the joule heating 

resulting from the insulating VO2 drives the device's resistance in accordance with the resistance-

temperature curve (Figure 2.9) as the input current rises. The insulator-to-metal transition 

happens upon the device reaching the threshold voltage, where joule heating triggers the 

transition. Following this juncture, the monitoring current experiences a sharp surge as VO2 

shifts to a metallic state. This metallic state persists as the input voltage increases. However, as 

the input voltage starts to decline, the joule heating becomes insufficient to maintain the metallic 

state of VO2, causing it to revert to its insulating state. As a result, the monitoring current 
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displays a downward jump followed by a decrease. Varied base temperatures lead to diverse 

threshold voltages, which decline with higher base temperatures. 

 

 
Figure 2.11 Voltage controlled I-V 

2.4.4 Time-resolved dynamical measurements 

To capture the rapid electrical response of the spiking oscillator, we conducted time-

resolved measurements. We employed a Tektronix Dual Channel Arbitrary Function Generator, 

specifically the AFG 3252C, for applying either DC or pulse voltage bursts to the circuit. The 

AFG 3252C offers precise waveform generation with remarkably fast rise and fall times of 2.5 

nanoseconds. Its dual-channel capability allowed us to independently control the Device Under 

Test (DUT) while ensuring synchronized output signals to the circuit. 

For recording ultrafast electrical dynamic signals, we utilized the Tektronix Oscilloscope 

MSO54, boasting a maximum bandwidth of 1 gigahertz and sampling rates of 6.25 Gigasamples 



26 
 

per second (GS/s). In our measurement, we typically recorded a time span of 4 milliseconds at a 

sampling rate of 312.5 Megasamples per second (MS/s). This corresponds to a recording 

duration of 3.2 nanoseconds per data point. We configured the acquisition mode to high 

resolution mode, ensuring a minimum of 12 bits of vertical resolution. Specifically, the channel 

impedance for measuring voltage dynamics was set at 1 megaohm, while the channel impedance 

for monitoring spiking current dynamics was adjusted to 50 ohms. The input voltage and output 

voltage dynamics are displayed in Figure 2.12 while Figure 2.13 shows the output current spikes. 

 

 
Figure 2.12 Input and output voltage dynamics of one of VO2 samples 
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Figure 2.13 Current spikes of one of VO2 samples 
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Chapter 3 Stochastic disruption pattern in capacitively coupled spiking oscillators 

3.1 Introduction 

Oscillator-based computing, an approach of using networks of interacting oscillators for 

information processing, can provide an efficient alternative to conventional computational 

algorithms implemented on von Neumann architecture10. Demonstrations of oscillator-based 

computing include networks capable of solving NP-hard combinatorial tasks, such as graph 

coloring18,19, maximum cut20,21 and maximum independent set22 problems. Furthermore, 

oscillator circuits are essential components of hardware-level implementation of spiking neural 

networks23,24. In many practical demonstrations the individual oscillators are implemented using 

standard CMOS technology18,21,22,25. Recently, there has been a great interest in replacing CMOS 

oscillator circuits with devices based on quantum materials in order to reduce energy 

consumption and circuit footprint. Several approaches have been proposed including the use of 

magnetic spin-torque oscillators26,27 micro- and nanoelectromechanical systems28–30, and spiking 

devices based on electrical triggering of an insulator-metal transition (IMT)31,32 . The key 

element that enables oscillator-based computing is the ability to achieve tunable coupling 

between the individual oscillators. 

The implementation of coupling between non-CMOS devices is often complex and could 

result in a highly non-intuitive dynamical behavior36–40. Here we report that increasing the 

capacitive coupling strength between only two Mott oscillators amplifies the influence of small 

intrinsic stochasticity leading to an emergent stochastic pattern with spiking sequence 

disruptions. The observed discrete inter-spike interval (ISI) distributions in coupled Mott 

nanodevices qualitatively resemble those in biological neurons, which could prove useful for 

hardware-level implementation of bio-inspired computing systems. 
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3.2 Single stochastic spiking oscillator 

 

Figure 3.1 Intrinsic stochasticity in independent spiking nanodevices. 
(a) Electrical circuit used to measure spiking properties of individual VO2 nanodevices. The SEM 
image shows a 100×400 nm2 VO2 device defined by Ti/Au electrodes. The voltage on the VO2 
device and the current flow in the circuit were monitored by an oscilloscope. (b) Current time 
traces showing spiking oscillations in two independent VO2 nanodevices. (Red: oscillator A; 
Black: oscillator B.) (c-e) Distributions of the interspike intervals (c), spike-triggering voltages (d) 
and spiking currents (e) of the two VO2 oscillators shown in (b). Histograms correspond to 
experimental data and solid lines are Gaussian fits. Small stochasticity of these three parameters 
is evident. 
 

Volatile resistive switching due to the triggering of an IMT in VO2 enables building a 

simple circuit that emits current spikes in response to a dc applied voltage. In our setup (Figure 

3.1), dc voltage produced by a function generator is applied to a 100×400 nm2 VO2 nanodevice 

that is connected in series with a load resistor. A multichannel oscilloscope was used to monitor 

the voltage on VO2 nanodevices and the current flowing in the circuit. The operation principle of 

the spiking circuit is as follows. As voltage is applied to the circuit, the potential across the VO2 

increases controlled by the RC time constant arising from the parasitic capacitance of the setup 

(estimated as 0.2 nF in our case). When voltage across the VO2 reaches a threshold, an insulator-
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to-metal resistive collapse is induced, which produces a current surge (spike) in the circuit101,102. 

Because the resistance of VO2 in the collapsed metallic state is low, most of the applied voltage 

drops over the load resistor. In this state, a small voltage applied across the VO2 can no longer 

maintain the metallic state, causing the device to revert back to the insulating state and the cycle 

repeats. The spiking frequency (inverse of inter spike interval) can be controlled by adjusting the 

applied voltage (Figure 3.6), load resistor (Figure 3.7), or temperature (Figure 3.8). In our setup, 

the process described above resulted in the generation of periodic current spikes with the typical 

frequencies in the range of 0.1 – 1 MHz as shown in Figure 1b. Although the peak spiking 

current can be relatively large, ~10 mA, the power consumption per spike event is small, ~1 nJ, 

because of the extremely short spike width, ~30 ns. (Figure 3.9). 

The spiking oscillations in VO2 display a subtle stochastic behavior. Figure 3.1c shows 

the inter-spike interval (ISI) statistics for two independent oscillators. The ISI distributions can 

be fitted by Gaussians, which gives a small, approximately 5-10%, standard deviations of the 

spike timing with respect to the mean values, 7.09 ± 0.40 µs for the oscillator A (red color in 

Figure 1 b-e) and 5.46 ± 0.53 µs for the oscillator B (black color in Figure 3.1. b-e). Our 

experimental setup had the time resolution of 312.5 MS/s, which is much faster than the 

observed deviations of the ISI. We note that the spiking devices A and B are nominally identical, 

and the differences between them are due to unavoidable device-to-device variability. While 

minimizing the device-to-device variability requires careful optimization of the fabrication 

process, the average properties of the spiking devices, such as threshold voltage and spiking 

frequency, can be tuned by changing the device geometry (gap size and width), film growth 

conditions or by post-processing ion irradiation65,103. The oscillator circuit operates under dc 

voltage without injecting noise to artificially produce spike timing stochasticity. Therefore, the 
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measured ISI distributions are related to intrinsic properties of VO2 nanodevices31,70,101,102 and 

are not caused by the measurement uncertainty or external perturbations. 

Spike timing stochasticity is often reported in single IMT-based oscillators31,102 and it has 

a qualitative resemblance to the jittering in biological neurons104–107. Small variations in the spike 

timing in VO2 could be related to stochastic relaxation of metallic domains back into the 

insulating state70,108,109 resulting in deviations of the IMT triggering voltages in each oscillation 

cycle. Figure 1d shows the spike-triggering voltage distributions for the two independent VO2 

nanodevices. The spike-triggering voltage is defined as the maximum voltage that builds up on a 

device before a spike is emitted. Similar to the ISI, the switching voltage distribution can be 

fitted by Gaussians giving 1.80 ± 0.050 V and 2.09 ± 0.077 V, i.e., 2-4% deviations, for the 

oscillators A and B, respectively. Because in each oscillation cycle, the spikes are triggered by 

slightly different voltages, the current amplitudes of the spikes also show a stochastic distribution 

(Figure 3.1e). Although the cycle-to-cycle deviations of the spiking parameters (ISI, spike-

triggering voltage, current amplitude) in the individual VO2 nanodevices are relatively small, the 

intrinsic spiking stochasticity can have a strong impact on the behavior of the coupled oscillators 

as we demonstrate in this work. 
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3.3 Capacitively coupled spiking oscillators 

 

Figure 3.2 Synchronization behavior of two coupled spiking oscillators. 
(a) Electrical circuit for spike synchronization of two oscillators. The synchronization was 
achieved by connecting two VO2 nanodevices using a coupling capacitor (highlighted by blue 
color). The load resistors R0 for both oscillators are 20 kΩ. (b) The overlaid current time traces of 
two spiking oscillators show the synchronization patterns obtained for different values of the 
coupling capacitance. Small coupling capacitance (top panel) leads to a perfect alternating spiking 
sequence. Increasing the coupling capacitance (middle and bottom panels) results in stochastic 
disruptions of the alternating sequence in which one oscillator emits multiple sequential spikes 
(highlighted by green stripes). (c) Disruption event density (the total number of disruption events 
per total number of spikes) as a function of coupling capacitance. 
 

Connecting two independent VO2 spiking oscillators using a coupling capacitor (Figure 

3.2a) allows synchronizing the oscillators’ frequency and phase. When the coupling capacitor is 

small (below 0.5 nF), the synchronized oscillators display a deterministic alternating spiking 

sequence (Figure 3.2b, top panel), which is consistent with multiple previous reports110–112. One 

might intuitively assume that the larger the coupling capacitance, the larger the coupling 

strength, and, consequently, the synchronization between the two spiking devices is more robust. 

Our measurements, however, show that increasing the coupling capacitance leads to the 
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emergence of stochastic disruptive events in the synchronization pattern. The middle and bottom 

panels in Figure 3.2b show the spiking current time traces of two VO2 oscillators coupled using 1 

nF and 10 nF capacitors, respectively. While the coupled nanodevices generate an overall 

periodic spiking, the alternating sequence is often disrupted by stochastic events when one of the 

oscillators (A or B) emits multiple sequential spikes. These stochastic disruption events are 

highlighted using green shaded stripes in Figure 3.2b. The stochastic disruption events can be 

also observed when we increase the applied voltages but a fixed coupling capacitor in Figure 

3.10. The density of the disruption events (i.e., the total number of disruption events per total 

number of spikes) increases with increasing the coupling capacitance as shown in Figure 3.2c. 

The circuit RC constant increases with increasing the coupling capacitance, which, in turn, 

causes a proportional inter-spike interval increase (Figure 3.11). This implies that the circuit 

electrical inertia is the primary parameter determining the spiking dynamics for the coupled 

oscillators. It can be expected that if the parasitic capacitance becomes larger and the spiking 

frequency decreases, a larger coupling capacitor would be needed to synchronize the oscillators. 

We note that the data presented in the figures were recorded in the same pair of VO2 

nanodevices and the only modification needed to induce stochastic disruption events in the 

alternating spiking sequence was increasing the coupling capacitance. Figure 3.2b shows only 80 

μs time window of the spiking current traces to facilitate visual separation of individual spikes. 

Experimentally recorded traces were 4 ms long containing hundreds of spikes and the emergence 

of disruption events was observed throughout the entire recording time. A few examples of 

different time windows similar to data in Figure 3.2a are shown in Figure 3.12, Figure 3.13, 

Figure 3.14. We observed similar behavior in multiple pairs of different VO2 nanodevices 

(Figure 3.15), therefore the emergence of disruption events in the deterministic alternating 
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spiking sequence is not accidental, but rather a general property of these coupled spiking 

oscillators. As we describe below, the origin of the observed alternating sequence disruptions 

stems from the interplay between the small intrinsic cycle-to-cycle stochasticity present in our 

VO2 devices and the nature of coupled spiking systems, in which very short-time interactions 

occurring during the spike emission make the system highly susceptible to fluctuations. 

 

3.4 Inter-spike interval distribution in capacitively coupled spiking oscillators 

 

Figure 3.3 ISI distribution in coupled spiking oscillators. 
(a-h) Statistical analysis of the ISI distributions of two coupled VO2 spiking oscillators. The 
histograms are experimental data and lines are Gaussian fits. Same red and black coloring 
convention is used in the plots as in the previous figures. Perfectly alternating spiking sequence 
produces single ISI peak (a and b). The disruption events in the spiking sequence caused by 
increasing the coupling capacitance lead to the emergence of satellite peaks at multiples of the 
main ISI peak (c-d). At extreme coupling capacitance values (e-h), alternating spiking bursts 
become the dominant spiking pattern, which results in the pronounced ISI peak at a half-integer 
value of the alternating sequence ISI. 
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The disruptions of deterministic alternating sequence of the coupled spiking oscillators 

lead to an emergent stochastic pattern. Figure 3.3 shows the ISI statistics evolution of the two 

oscillators coupled using different capacitors. For a small coupling capacitor (0.5 nF, top panels), 

the ISI of both oscillators has only a single peak corresponding to the alternating spiking 

synchronization. As the coupling capacitor increases (1 nF and 4.7 nF, middle panels), satellite 

peaks emerge at multiples of the main ISI peak, corresponding to the emergent stochastic pattern. 

With the largest capacitor (10 nF, bottom panel), the most pronounced distribution peak shifts to 

half of the alternating spiking period, which indicates that alternating spiking bursts (i.e., several 

consecutive spikes of one oscillator followed by several consecutive spikes of the second 

oscillator) become the most prominent spiking pattern. The stochastic pattern in coupled VO2 

oscillators, caused by alternating sequence disruptions, qualitatively resembles those in 

biological sensory neurons113–116, which is argued to be an important feature for processing 

information from different sensory modalities in the nervous system. Thus, our results could find 

applications in expanding the range of biologically plausible behaviors that can be emulated 

using IMT-based spiking oscillator devices20,117–119. 
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3.5 Voltage dynamics of the capacitively coupled spiking oscillators 

 

Figure 3.4 Voltage dynamics of coupled spiking oscillators.  
(a,d) Voltage time traces of two VO2 spiking nanodevice coupled using 0.5 nF (a) and 10 nF (d). 
Same red and black coloring convention is used in the plots as in the previous figures. Pink and 
grey shaded stripes highlight the spikes by the oscillators A and B, respectively. Blue arrows 
highlight disruption events. For a small coupling capacitance (a), one oscillator discharges only 
partially when the other one spikes. For a large coupling capacitor (d), both oscillators discharge 
nearly completely when one of them emits a spike. (b,c,e,f) Statistical analysis of the spike-
triggering voltages. Histograms correspond to the experimental data and lines are Gaussian fits. 
VAA and VBB are voltages that trigger spikes in devices A and B, respectively. VAB and VBA are 
voltages on one device, A or B, when the other one, B or A, emits a spike. For small coupling 
capacitance (b,c), the distributions corresponding to the two types of voltages are well separated 
allowing  perfect alternating spiking sequence. For large coupling capacitance (e,f), the 
distributions overlap making the spiking probability of oscillator A or B nearly identical, which 
results in stochastic disruptions of the alternating spiking sequence. 
 

To understand the origin of stochastic disruptions of the deterministic alternating spiking 

sequence we investigated voltage dynamics in the circuit. Figure 3.4a shows voltage time traces 

of two VO2 nanodevices coupled with a small capacitor of 0.5 nF. The pink and grey shaded 

stripes highlight which oscillator, A or B, emits a spike. An oscillator spikes when the voltage 

reaches the threshold to trigger the IMT in VO2. Because of the subtle intrinsic stochasticity of 
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the IMT triggering, the threshold voltage displays small cycle-to-cycle variations (Figure 3.16, 

Figure 3.17) producing proportional variations in spike current amplitudes (Figure 3.18). When a 

spike is emitted by oscillator A, its voltage discharges nearly to zero. At the same time, the 

voltage in the oscillator B also discharges, but only partially. This partial discharge is due to an 

extra current flow through the small coupling capacitor. In the next cycle, the charging of 

oscillator B is far ahead of oscillator A, assuring that the next spike is emitted by the oscillator B. 

As a result, synchronized deterministic alternating spiking sequence is produced when the two 

devices are coupled using a small capacitance.  

Figure 3.4b and c show the statistical distribution of the VO2 voltages at the moments of 

the spike emission. We distinguish two cases: (i) voltage on a VO2 nanodevice when it emits a 

spike (VAA or VBB), (ii) voltage on the VO2 nanodevice when the other oscillator emits a spike 

(VAB or VBA). It is evident that when the two oscillators are coupled with a small capacitor, the 

two types of voltages are well separated, VAA > VAB and VBB > VBA. In other words, when one 

device spikes the voltage on the other one is far below the IMT triggering threshold. In contrast, 

when the oscillators are coupled by a large capacitor, such as 10 nF, it is no longer possible to 

distinguish between VAA and VAB and between VBB and VBA. When one oscillator spikes and 

discharges, the other oscillator also discharges almost completely because the large coupling 

capacitor allows a large current flow between the two VO2 devices (Figure 3.4d). Because both 

oscillators begin each cycle from a discharged state, they arrive at the IMT threshold at 

approximately the same time, which results in the overlap of VAA and VAB as well as VBB and 

VBA distributions (Figure 3.4e and Figure 3.4f). When both VO2 devices are on the verge of the 

IMT, it becomes indeterminate which oscillator, A or B, would emit a spike. Therefore, 
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alternating A-B spiking or consecutive A-A or B-B spiking are possible when the oscillators are 

coupled by a large capacitance. 

3.6 Numerical simulations 

 

Figure 3.5 Simulations of synchronized stochastic spiking oscillators.  
(a) The circuit schematically shows the simulation procedure. The model considers that the device 
turns into a short (i.e. switches into a low resistance state) when the device emits a spike. (b-d) 
Simulated voltage dynamics for different values of coupling capacitance Cc. Pink and grey shaded 
stripes in the plots highlight the spiking events produced by one or the other oscillator. Blue arrow 
highlight a disruption event. The oscillators are not synchronized when Cc = 0 (b). The oscillators 
show a synchronized alternating sequence when Cc = 0.5 (c). The alternating sequence is disrupted 
when Cc = 2 (d). In (b, c, d), time, voltage and capacitance values are in arbitrary units. 
 

Numerical simulations further corroborate the importance of small VO2 intrinsic 
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resistance states under an applied voltage (Figure. 3.5a). The voltage- and time-dependent 

probability of the switching was introduced as 

 𝑃𝑃(𝑉𝑉, 𝑡𝑡) = 1 −
1

1 + 𝑡𝑡 exp[(𝑉𝑉 − 𝑉𝑉𝑡𝑡ℎ)/𝛿𝛿𝛿𝛿] , (1) 

where 𝑉𝑉𝑡𝑡ℎ is the instantaneous threshold voltage and 𝛿𝛿𝛿𝛿 describes the stochastic range. Eq. (1) 

was previously found to provide excellent fit for the experimental data of switching probability 

in VO2 devices120. To enable self-oscillations in the simulated circuit, we introduced capacitors 

Cp connected in parallel to the VO2 devices, which emulates the parasitic capacitance of the 

experimental setup. At the beginning of each oscillation cycle, the Cp capacitor charges 

producing gradual voltage buildup on the VO2 device, thus increasing the probability of high-to-

low resistance switching in accordance with Eq. (1). When switching is induced, Cp fully 

discharges resetting the voltage on the VO2 device. The two VO2 devices considered in the 

simulations had 10% different threshold voltages, therefore the natural oscillation frequencies 

differ when the devices are uncoupled, i.e., when Cc = 0 (Figure 3.5b). When a small coupling 

capacitance is introduced (Cc = 0.5), the oscillators synchronize and display an alternating 

spiking sequence (Figure 3.5c). This synchronization is due to the partial discharge of one 

oscillator when the other oscillator switches into the low resistance state. The remaining charge 

on one device when the other device switches can be written as 

 𝑄𝑄 = 𝑄𝑄𝑓𝑓
𝐶𝐶𝑝𝑝

𝐶𝐶𝑝𝑝 + 𝐶𝐶𝑐𝑐
 , (2) 

where 𝑄𝑄𝑓𝑓 is the accumulated charge on the device at the moment just prior to the switching of 

the other device. Eq. (2) shows that the larger the coupling capacitance, the stronger the 

discharge effect, i.e., the difference between Qf and Q. When the coupling capacitor is large 

enough, both oscillators start the charging sequence from a relatively low level and arrive at the 
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switching conditions almost simultaneously. In such a case, it becomes random which device 

undergoes the switching and the alternating oscillations pattern is often disrupted by one device 

switching multiple times in a row (Figure 3.5d), reproducing well the experimental observations. 

We note that these disruptions in the alternating oscillation sequence cannot be achieved in the 

simulations if the two VO2 devices switch at deterministic threshold voltages. The key aspect of 

the simulations that allowed reproducing the experimental results is the assumption of inherent 

stochasticity in the resistive collapse of VO2 nanodevice. 

3.7 Conclusion 

We demonstrated that increasing the strength of capacitive coupling between spiking 

Mott oscillators results in stochastic disruptions of the deterministic alternating spiking sequence. 

We show that this effect is caused by the slight, unavoidable intrinsic stochasticity of spiking 

oscillators. Non-intuitive synchronization, such as oscillation clustering and chimera states, is 

often observed in large networks of coupled oscillators, which could stem from nonlinear and 

nonlocal coupling, coupling delay, network geometry and heterogeneity, etc121–127. The important 

result of our work is that stochastic disruptions of the alternating oscillation sequence already 

emerge on the level of a single pair of a strongly coupled spiking oscillators, in stark contrast to a 

pair of harmonic oscillators where increasing coupling strength produces more robust 

synchronization. Understanding unique features of spiking oscillators becomes extremely 

important with the advent of neuromorphic computing and particularly relevant to recent interest 

in spiking neural network23,128,129. Specifically, we point out that coupling between individual 

devices could lead to an emergent stochastic behavior as shown in this work. This might be a 

useful feature in large scale spiking neural networks to produce desirable such as found in 
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biological systems130. Stochastic coupling in spiking oscillators might also find applications in 

stochastic computing for the development of stochastic bit generation sources131–133. 
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Chapter 4 Stochastic synchronization in thermally coupled oscillators  

4.1 Introduction 

Synchronization is a universal behavior that is commonly observed in a variety of natural 

and engineered systems 134. In natural systems, synchronization ranges from collective 

oscillations in bacteria 135 to beating of cilia 136, from rhythms in biological neurons 137,138 to 

phase synchronization in the brain 139,140. Synchronization emerges in engineered physical 

systems of interacting oscillators, such as nanomechanical and nanoelectromechanical oscillators 

36,40,141,142, spin Hall and spin torque nano-oscillators 38,143–145, chemical oscillators 146–148, etc. 

With the recent advent of biologically inspired computing, synchronization between 

special type of oscillators that produce short-duration spikes (in contrast to smoothly evolving 

harmonic oscillators) has attracted significant attentions 149–151. Spiking oscillators can emulate 

the electrical activity of brain 31,33 and can find applications in the development of hardware-

level energy-efficient implementations of neural networks 23,34,35. Recently we showed that 

increasing the coupling strength between the anti-phase synchronized spiking oscillators leads to 

synchronization disruptions 151, contradicting naïve expectations based on the typical behavior of 

harmonic oscillators in which stronger coupling develops more robust synchronization. The stark 

differences between the spiking and harmonic oscillators motivate extensive studies of 

synchronization phenomena in spiking devices driven by different types of interactions. 

This work presents an investigation of the synchronization evolution in coupled spiking 

nano-oscillators based on a Mott material where strong thermal interactions promote in-phase 

synchronization. We observed the occurrence of unique spiking patterns controlled by a DC 

voltage applied independently to each oscillator. For small or large applied voltages, the 

oscillators develop robust 2:1 or 1:1 integer synchronization spiking modes. However, in a 
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relatively wide range of intermediate applied voltages, the oscillators enter a stochastic 

synchronization regime where the spiking pattern unpredictably alternates between the two 

discrete integer synchronization modes. These findings highlight unique dynamic 

synchronization properties of spiking oscillators as compared to conventional harmonic 

oscillators. The ability to electrically control the synchronization modes and drive the coupled 

spiking devices into a stochastic synchronization regime is important for practical 

implementations of neuromorphic and stochastic computing circuits. 

4.2 Heat propagation between nanodevices 

We studied spike synchronization in VO2 nanodevices. VO2 undergoes an insulator-to-

metal transition at Tc = 340 K that can be also triggered by application of an electric stimulus, 

voltage or current 152,153. A 100 nm thick VO2 thin film was deposited on a (012)-oriented Al2O3 

substrate by reactive rf magnetron sputtering. Specular x-ray diffraction analysis revealed 

textured film growth along (110) crystallographic direction (Figure 4.5). The film had a sharp 

insulator-to-metal transition with ~2 orders of magnitude resistance change across Tc (Figure 

4.6). The film was patterned into 500×500 nm2 devices separated by 500 nm gaps as shown in 

Figure 4.1a. The VO2 between the devices was etched to electrically isolate each device. 

Although the nanodevices are electrically decoupled (Al2O3 is a good electrical insulator), they 

are thermally coupled through the substrate (Al2O3 is a good thermal conductor). 

Heat propagation is observed by measuring the resistance change ΔR in different 

nanodevices when one of the neighboring nanodevice is powered with a significant current. This 

way the powered device acts as a heat generator, while resistance of the surrounding devices 

serves as probe of the temperature change caused by the heat transfer through the Al2O3 

substrate. A small 1µA current was applied to measure the resistance of the probe devices. Such 
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a small probing current generates negligible heat and does not induce by itself any noticeable 

resistance change. 

 

 

Figure 4.1 Heat propagation between nanodevices.  
(a) SEM image with false color of four neighboring VO2 devices. Each device is 500×500 nm2. 
The devices are separated by a 500 nm gaps and are electrically isolated from each other. The first 
device (black) acts as a “heat generator”, while the other three (red, blue, and cyan) are “probes”. 
(b) Normalized resistance changes (ΔR/R0) of the second, third and fourth devices as a function of 
dissipated power in the first device. The measurements were performed at 327 K base temperature. 
The resistance decrease with increasing driving power indicates heat propagation from the first 
device that increases the temperature of the other devices. 
 

We observed that as the power applied to the heat generator device increases (black 

device in Figure 4.1a), the resistances of the neighboring devices decrease linearly (Figure 4.1b). 

The resistance of the closest probe device (500 nm distance, red device in Figure 4.1a) is reduced 

by ~0.5% at 45 µW power dissipated in the generator device. Comparing this resistance 

reduction to the equilibrium resistance-temperature dependence (Figure 4.6), temperature 

increase of the closet probe device can be estimated as ~0.1 K. The temperature increase of the 
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probe devices located further away from the generator device, as expected, is smaller, estimated 

as ~0.06 K at 1500 nm distance and ~0.03 K at 2500 nm distance. Detailed resistance-

temperature mapping is shown in Suppl. Information (Figure 4.7). The small temperature 

increase in the probe devices under the employed measurement conditions explains the linear 

resistance-power dependence in Figure 4.1b. For higher driving power, the resistance change 

becomes nonlinear and even displays signatures of the electrical triggering of insulator-to-metal 

phase transition and filament formation (Figure. 4.8). 

4.3 Synchronization of spiking oscillators via thermal interaction 

Spiking auto-oscillations under the application of dc voltage can be produced using a 

simple circuit shown in Figure. 4.2a 59,151,154,155. Individual dc voltage sources power each VO2 

nanodevice. Each nanodevice is connected in series with a load resistor and a 50 Ω input 

impedance oscilloscope channel to monitor current spikes. At the instant when dc voltage is 

turned on, voltage over the initially insulating VO2 nanodevice begins to increase. The voltage 

increases dynamically and consequently the spiking frequency is set by the RC constant of the 

circuit where the reactive component is due to the parasitic capacitance (estimated as 0.2 nF). 

When voltage across the nanodevice reaches a threshold, the device transitions into the metallic 

state which produces a current surge (i.e., a spike) in the circuit. When VO2 is in the metallic 

state, most of the applied voltage drops across the load resistor. As only a small voltage is 

applied across the VO2, the metallic state cannot be sustained and VO2 reverts back to the 

insulating phase. Then the cycle repeats and persistent generation of spiking auto-oscillations is 

established. 



46 
 

 

Figure 4.2 Synchronization of spiking oscillators via thermal interaction.  
(a) Electrical circuit used to generate spiking oscillations in VO2 nanodevices. The SEM image 
shows two neighboring VO2 nanodevices. (b) Overlaid current traces showing incoherent spiking 
in two non-interacting VO2 nano-oscillators when they are biased with 8.4 V independently in two 
separate measurements. (c) Current traces showing coherent in-phase spiking in the same pair of 
nano-oscillators as in (b) when they are biased with 8.4 V simultaneously. 
 

Thermal interactions due to the very close physical proximity of the devices promote 

spike synchronization. When two neighboring oscillators (500 nm separation) are powered 

individually one at a time with the same voltage of 8.4 V, their inter-spike intervals (ISI) are 

different, 8.39 µs and 9.89 µs. Overlaying the individually recorded spike current time traces 

produces an incoherent pattern (Figure 4.2b). When two neighboring devices are biased with 8.4 

V simultaneously, robust in-phase 1:1 current spiking synchronization establishes (Figure 4.2c), 

consistent with the previous report 156. We note that resistance between the etched VO2 

nanodevices was higher than the measurement limit (1011 Ω) excluding direct electrical current 

exchange, while capacitive coupling promotes anti-phase synchronization 149 inconsistent with 
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our observations. Because we observed thermal interactions in the dc measurements (see Figure 

4.1b and the corresponding discussion), it is reasonable to conclude that the spike 

synchronization is also driven by thermal interactions. When one device spikes, the heat 

generated by the current surge propagates to the neighboring device through the sapphire 

substrate. As the temperature of the neighboring device increases, it approaches the insulator-to-

metal transition, which reduces the threshold voltage for the generation of a current spike. 

Therefore, when one device spikes, it becomes favorable for the neighboring device to spike as 

well producing the observed 1:1 in-phase synchronization. 

When the distance between nano-oscillators increases, the thermal coupling between 

them decreases weakening the synchronization. Application of an above threshold voltage 

simultaneously to two nanodevices separated by 1500 nm (first and third devices in Figure 4.1a), 

produces unstable synchronization. As shown in Figure 4.9, a sequence of several current spikes 

can be synchronized (i.e., the spikes overlap) while the following spike sequence can be 

incoherent. At the extreme, two nanodevices at the opposite corners of the sample (~14 mm 

distance) have completely incoherent current spike sequences when powered simultaneously 

(Figure 4.10). The above observations perfectly follow the expectation for the thermal coupling 

origin of the synchronization in our spiking nano-oscillators. 

4.4 Synchronized spiking pattern evolution 

Varying the driving voltage individually on each nano-oscillator leads to the 

synchronization mode transition as shown in Figure 4.3. When the applied voltages are close (for 

example, 10 V and 9.2 V, Figure 3c), the two devices spike simultaneously, i.e., the 

synchronization mode is 1:1, similar to the results discussed in the above paragraphs. When one 

device is powered with a considerably larger voltage than the other one, a different 
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synchronization mode emerges (Figure 4.3a and Figure 4.3c): every second spike of the high-

voltage oscillator coincides with a spike of the low-voltage oscillator, i.e., a 2:1 mode. We note 

that by fixing voltage on one device and adjusting voltage on the other or vice versa, 2:1 or 

equivalent 1:2 integer synchronization modes can be established (compare panels a and c in 

Figure 4.3), which highlights the generality of this one-to-two spikes synchronization. 

One can expect that as the applied voltages change from the values favoring 2:1 mode to 

that favoring 1:1 mode, the spikes would first decohere and then lock into the new mode. We 

found, however, that the transition between the two integer synchronization modes in spiking 

nano-oscillators occurs through an unusual stochastic synchronization regime. Panels d and e in 

Figure 4.3 show that at intermediate applied voltages, the spikes emitted by the two nanodevices 

are still synchronized, i.e., the spikes always coincide and show no signs of decoherence, but no 

stable spiking pattern over prolonged time can be discerned. This stochastic synchronization is 

qualitatively different from the chaotic spiking that has been reported in the MIT-based nano-

oscillators 157 as the spikes emitted in our devices occur at well-defined time intervals. Instead of 

chaotic or de-synchronized oscillations, the spike sequence in our experiments might show the 

1:1 pattern, and then unpredictably break with the occurrence of a 2:1 pattern. 
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Figure 4.3 Synchronized spiking pattern evolution.  
Current traces displaying spiking oscillations of two VO2 nanodevices under different applied 
voltages. (a) 2:1 synchronization: two red spikes are locked to one black spike when 9.2 V is 
applied to the red oscillator and 7.8 V is applied to the black oscillator. (b) 1:1 synchronization: 
each red spike locks into each black spike when 9.2 V is applied to the red oscillator and 10V to 
the black oscillator. (c) 1:2 synchronization: one red current spike locks into every second black 
spike when 3.2 V is applied to the red oscillator and 10 V is applied to the black oscillator. (d, e) 
Stochastic synchronization emerges at transitions between the modes at intermediate applied 
voltages. While spikes of the two oscillators overlap, random length spiking sequences 
corresponding to 2:1 and 1:1 modes (highlighted by green and blue backgrounds, respectively) 
emerge at random positions. 
 

It is important to note that the stochastic synchronization found here in closely spaced 

nano-oscillators is in stark contrast to the behavior in micron-size spiking devices. In the micron-

size devices the transition between 2:1 and 1:1 modes occurs by the development of intermediate 

non-integer 3:2 and 4:3 modes 156. In our case, the stochastic synchronization between integer 
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modes replaces the transient non-integer modes. We observed the stochastic synchronization in 

multiple device pairs located in different parts of the VO2 sample and in multiple samples with 

different device geometry (Figure 4.11 and Figure 4.12). This robust reproduction of the same 

phenomenon between different devices and samples suggests that stochastic synchronization 

could be a general feature in spiking nano-oscillators. Although further studies are necessary to 

identify critical parameters enabling the stochastic synchronization, it is likely that nanoscale 

sizes (i) make the devices susceptible to fluctuations and (ii) allow strong thermal interactions 

because of the very close proximity as compared to the microscale devices. Our theoretical 

modeling further supports that the intrinsic stochasticity, i.e., cycle-to-cycle variations of the 

MIT triggering threshold, and strong thermal coupling promote stochastic synchronization at the 

transition between 1:1 and 2:1 modes (Figure 4.15), while lowering the thermal coupling 

strength, e.g., by increasing the separation between the devices, results in non-integer 

synchronization patterns (Figure 4.16). 

Synchronization transitions in oscillator systems often display similarities to phase 

transitions 147. Spatial phase coexistence is the basic feature of the 1st order phase transition. The 

stochastic transition between the 2:1 and 1:1 integer synchronization spike sequences in our 

nano-oscillators could be a manifestation of a time domain phase coexistence that develops at the 

transition between the two integer synchronization modes. Further experimental studies are 

necessary, however, to test if the synchronization transition in the coupled spiking oscillators 

exhibits other features of the 1st order phase transition, such as hysteretic 2:1 → 1:1 → 2:1 

behavior and critical scaling phenomena. 
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4.5 Stochastic synchronization regime 

For a quantitative characterization of stochastic synchronization, we analyze the inter-

spike interval (ISI) distribution. Figure 4.4a shows the ISI time evolution during a 4 ms long 

measurement (corresponds to several hundred spikes) of one of the nano-oscillators during the 

transition between 2:1 and 1:1 integer synchronization modes. The ISI shows two distinct levels: 

a larger one of ~18 μs (cyan symbols) that belongs to 2:1 mode, and a smaller one of ~9 μs (blue 

symbols) that corresponds to 1:1 mode. The ISI spontaneously jumps between the two levels, 

which is highlighted by light red vertical lines in Figure 4.4a, providing a visualization of the 

stochastic synchronization. To obtain the boundaries of the stochastic regime, we sweep the 

applied voltage of one nano-oscillator while keeping the other one at fixed 10 V. By defining the 

2:1 mode fraction as 

 2: 1 mode fraction =
Number of ISI of 2: 1 mode

Total number of ISI
 , 

 

(1) 

we obtain that the stochastic regime emerges between 3.3 V and 4.2 V as the 2:1 mode fraction 

changes from 0 to 1 (Figure 4.4b). By adjusting voltage within the 3.3 – 4.2 V window, it is 

possible to create spiking sequences that contain random length inclusions of 2:1 mode at 

random positions, making this stochastic synchronization potentially interesting for stochastic 

computing and encryption applications 133,158. 
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Figure 4.4 Stochastic synchronization regime.  
(a) Inter-spike interval (ISI) evolution of one oscillator at 3.7 V applied voltage when the 
neighboring oscillator is powered with 10 V at the same time. (b) 2:1 mode fraction as a function 
of applied voltage. The stochastic region appears between 3.3 V to 4.2 V. (c) Autocorrelation 
function (ACF) of two ISI sequences recorded at 3.7 V and 4.1 V. Before applying ACF, the ISI 
data was converted into binary sequences (see the description in the text). 
 

To further evaluate the stochasticity of the spiking sequence transitions, we apply an 

autocorrelation function (ACF) analysis to the ISI data. To develop sensitivity only to the order 

of 2:1 mode and 1:1 mode and not to small cycle-to-cycle deviations of the ISI, we converted the 

ISI data to a binary sequence by defining short ISIs (1:1 mode) as 0’s and long ISI’s (2:1 mode) 
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as 1’s. This conversion can be applied straightforwardly because the ISI data has a clear two-

level distribution (see Figure 4.4a). ACF is defined as 

  ACF =
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)(𝑌𝑌𝑖𝑖+𝑘𝑘 − 𝑌𝑌�)𝑁𝑁−𝑘𝑘
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑁𝑁
𝑖𝑖=1

 . 

 

(2) 

ACF tests for the presence of repeating patterns in the sequence {Yi} by comparing it to its copy 

shifted by a time lag k, {Yi+k}. Y̅ in Eq. 2 is the mean of the sequence {Yi}. ACF is commonly 

used to test the stochasticity of generated bit sequences 159,160. As shown in Figure 4.4c, the ACF 

of the sequences generated by our nano-oscillators at different applied voltages is nearly zero at 

all time lags, revealing that there is no apparent order in the occurrence of 2:1 mode and 1:1 

mode, i.e., the spiking sequence transitions are stochastic. 

4.6 Conclusion 

In summary, we enabled thermally driven synchronization between nanoscale spiking 

oscillators by placing them in close physical proximity. By controlling the applied voltage, we 

achieved robust 1:1 and 2:1 synchronization. We found that the transition between the two 

modes occurs through an extended stochastic synchronization regime where random length spike 

sequences corresponding to the two modes are intermixed. This stochastic synchronization 

emerges in nano-oscillators instead of non-integer mode that separate different synchronization 

modes in micron-sized devices 156. In dense integrated circuits containing large number of 

spiking nano-oscillators, for example in neural networks hardware, thermal interactions might 

become an important factor which determines the circuit operation. Basic understanding of the 

unique features of spiking nanodevice synchronization, such as the occurrence of the stochastic 

regime presented in this work, is important for designing circuits capable of harnessing the full 

potential of novel computational paradigms. 
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Chapter 5 Reconfigurable cascaded thermal neuristors for neuromorphic computing 

5.1 Introduction 

Neuromorphic computing, which takes inspiration from the brain's information 

processing capabilities, offers an energy-efficient alternative to traditional von Neumann 

architectures 13,74–78. At the heart of neuromorphic computing are spiking neural networks 

(SNNs) 74,79, which simulate the event-driven nature and sparse communication patterns of 

biological neurons by using precisely timed spikes across layers of artificial neurons and 

synapses. Input data is represented and transmitted through time-varying spikes that are 

processed by interconnected neurons. Much of the current research has been centered on 

software simulations 11,80 or implementations using complementary metal-oxide-semiconductors 

(CMOS) 81–84. Notable CMOS-based SNNs include IBM's TrueNorth chip 82 and Intel's Loihi 84 

which are built using cutting-edge, costly technologies and complex circuit designs. A CMOS 

neuron typically encompasses components like temporal integration, spike/event generation, 

refractory period, spike frequency adaptation, and spiking threshold adaptation blocks 83. 

However, the significant circuit footprint, limitations in scaling, and energy consumption may 

impede the progress of CMOS-based SNNs. 

Beyond CMOS-based models, there has been a recent emergence of spiking neuron 

devices 85,86 constructed using quantum materials, which are now at the forefront of 

neuromorphic computing, including but not limited to Mott neurons 87–90, magnetic neurons 

14,15,27 and phase change neurons 91–93. These devices have the potential to significantly reduce 

both the circuit complexity and the physical size of artificial neurons. However, the development 

of these quantum material-based artificial spiking neuron devices is still in its infancy, and 

various challenges and issues have been observed in initial demonstrations. 
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One of the primary challenges facing artificial spiking neuron devices, which is often 

overlooked, is the difficulty in directly transmitting information between layers without intricate 

circuit configurations. The issue stems from the fact that the presence of a subsequent neural 

layer alters the output of the preceding layer due to the loading effect. Solutions typically involve 

the integration of complex buffer circuits 94,95, which substantially increase the overall size, often 

overshadowing the spiking neurons themselves in terms of space. Some studies sidestep this 

issue altogether 16,96,97, focusing solely on network-level simulations based on the properties of 

individual neuron devices, without considering the challenges of transmitting information 

between layers at hardware level. As a result, the efficient integration of cascading neural layers 

remains elusive. 

Furthermore, current spiking neuron configurations lack versatility. For instance, 

inhibitory neurons play a critical role in neural activities, but replicating this functionality in 

artificial spiking neurons is no easy feat. Some attempted solutions involve elaborate circuits 98–

100, synaptic weight alternations 94, or optical inhibition 95. However, none of these can directly 

implement an inhibitory neuron in a single simple device, which poses significant constraints on 

the application of learning algorithms. 

In our study, we introduce a dynamic system comprised of two thermally coupled spiking 

oscillators based on Mott insulators, which effectively addresses the aforementioned challenges. 

These spiking oscillators, referred to as neuristors, exhibit a range of neural functions. Notably, 

we demonstrate the implementation of an inhibitory neuristor using simple Mott oxides, such as 

VO2, by trapping the metallic state, eliminating the need for complex circuits. Additionally, both 

excitatory and inhibitory neuristors can be realized using the same device by employing different 

inputs, thereby enhancing the device's versatility and applicability. The neuristor also displays a 
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rich array of reconfigurable electrical behaviors such as rate coding and stochastic leaky 

integrate-and-fire. Crucially, we demonstrate the feasibility of cascading neural layers through 

thermal interactions, which effectively eliminate the necessity for complex input/output circuits 

between layers. Our straightforward and innovative approach paves the way for advancements in 

reconfigurable cascading neural layers, which hold promise for applications in artificial 

intelligence. 

5.2 Single spiking oscillator as a thermal neuristor 

We have successfully implemented neuristors with reconfigurable functionalities using 

thermally coupled spiking oscillators, which are based on the insulator-to-metal transition (IMT) 

of the Mott insulator VO2. We patterned a 100 nm thick VO2 thin film into an array of 

nanodevices, each measuring 100 x 500 nm². As illustrated in Figure 5.1a, each nanodevice is 

separated from its neighbors by a 500 nm gap. To examine the thermal interactions between 

neuristors, we etched away the VO2 material between the nanodevices to electrically isolate each 

spiking oscillator. Despite electrical isolation, the oscillators remain thermally coupled through 

the Al2O3 substrate, which serves as an effective thermal conductor due to its high thermal 

conductivity. 

The working principle of the spiking oscillator circuit is described as follows. As 

depicted in Figure 5.1b, the VO2 nanodevice, initially in its insulating state, is connected in series 

with a variable load resistor, 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and in parallel with an intrinsic parasitic capacitance, C. 

When an input voltage is applied to the circuit, the ensuing current heats up the VO2 nanodevice, 

concurrently charging up the parasitic capacitance. Upon reaching the critical threshold voltage, 

the VO2 undergoes an IMT. This abrupt decrease in the VO2 resistance prompts the parasitic 

capacitance to discharge, resulting in a current spike. As the capacitance discharges, most input 
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voltage is dropped across 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and the voltage across VO2 does not generate sufficient heat to 

sustain the metallic state, causing the VO2 to revert to its insulating state (16, 17, 34). This 

process repeats, generating a series of stable, spiking, auto-oscillations as depicted in Figure 5.6. 

By tuning the input voltage and load resistance, a wide variety of reconfigurable neural dynamics 

can be demonstrated within the same neuristor. 

 

Figure 5.1 Spiking oscillator as thermally coupled neuristors. 
(A) An SEM image of two adjacent VO2 nanodevices. Each nanodevice has dimensions of 100 x 
500 nm². To study the thermal interactions between two spiking oscillators, the nanodevices are 
placed in close proximity, separated by a 500 nm gap, electrically isolated by etching away the 
VO2 between them. (B) The schematic of the equivalent circuit setup for a single spiking oscillator. 
To generate electrical spikes, a variable load resistor, 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, is connected in series with the VO2 
nanodevice. An intrinsic parasitic capacitance, approximately 0.15 nF, is connected in parallel with 
the VO2 nanodevice. The circuit represents a single spiking oscillator configured as a neuristor, 
which is reconfigured for various neuronal functionalities in subsequent measurements. (C) The 
hysteresis loops of resistance versus temperature for both experimental data and theoretical 
modeling. The major loop ranges from 320 K to 360 K and two minor loops start from 330 K and 
335 K, respectively. The cooling branches of the loops overlap, while the heating branches vary 
for different loops. The major and minor loops are essential for realizing excitatory and inhibitory 
neuronal functionalities. The theoretical model closely aligns with the experimental results. 
 
5.3 Single neuristor characteristics 

First, we demonstrate that our Mott insulator VO2-based neuristor exhibits spiking 

behavior analogous to a biological neuron. Specifically, we demonstrate the all-or-nothing law 
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161, which states that with external stimuli, a neuristor either gives maximal response or no 

response at all; and the rate coding law 88,162, showing that the spiking frequency increases with 

increasing input stimulus.  

In Figure 5.2., we conducted measurements on a single neuristor configured in series with 

a 12 kΩ load resistor at a base temperature of 325 K under varying input voltages. With a 9 V 

bias, the neuristor displays no response due to the subthreshold input, as illustrated in Figure 

5.2a. With a suprathreshold voltage of 12.5 V, the neuristor exhibits a full current spiking 

response as depicted in Figure 5.2b. Almost all current spikes exhibit nearly identical amplitudes, 

except the first, which has a larger amplitude due to the initial insulating state requiring a higher 

firing threshold, causing a larger current surge. This behavior, also observed at different 

suprathreshold voltages (Figure 5.7),  exemplifies the “all-or-nothing” law 161. 

Although the amplitude of the current spikes remains constant as the input voltage varies, 

there is an observed increase in spiking frequency with increasing input voltage, as shown in 

Figure 5.7. We plotted the spiking frequencies against each input voltage (Figure 5.2d), revealing 

a discontinuous frequency-voltage relationship with a threshold at 10.5 V. Beyond this, the firing 

rate increases with stimulus intensity, mirroring typical type-II neuronal rate coding 95,163,164. 

However, our neuristor exhibits a critical feature differing from traditional neuron models, which 

is the key to implementing the inhibitory functionality. As demonstrated in Figure 5.2c, when 

biased with 15.8 V, the neuristor becomes quiescent after a few initial spikes. This phenomenon 

arises because VO2 gets trapped in its metallic state, with a constant current flowing through the 

metallic filament, instead of reverting to its insulating state 46,165. The inhibitory behavior is also 

reproduced with a bias voltage of 17 V, as depicted in Figure 5.7K. To rule out the possibility of 

nanodevice degradation causing this behavior, we tested at 15.7 V again and confirmed stable 
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spiking behavior, as shown in Figure 5.7L. We incorporated this distinctive inhibitory feature 

into the rate coding graph in Figure 5.2D, presenting a comprehensive representation of neuristor 

behavior.  

To understand the mechanism of the spiking oscillators, we constructed a theoretical 

model, which comprises of the circuit from Figure 5.1B, the hysteresis model in Figure 5.1C, and 

a simple heat conduction model. As depicted in Figure 5.2A-D, the simulations align well with 

the experimental results. A detailed explanation of this model is presented in the supplemental 

materials (SM).  

Using the theoretical model, we show further insights into the three distinct operational 

modes of our neuristor, depicted in the resistance-time and resistance-temperature plots in Figure 

5.2E. At a subthreshold voltage of 9 V, the generated heat is insufficient to trigger the IMT, 

thereby confining VO2 to its insulating state. Conversely, at 15.8 V, the system produces 

excessive heat, preventing VO2 from fully reverting to its insulating state before the arrival of the 

next current spike, eventually trapping VO2 in its metallic state. However, with a moderate 

voltage of 12.5V, VO2 is adequately heated to transition into its metallic state and subsequently 

allowed sufficient time to fully revert to its insulating state. This allows VO2 to traverse the full 

hysteresis loop and return to its initial state, facilitating stable oscillations. 
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Figure 5.2 Single neuristor characteristics. 
All measurements in this figure were conducted at a base temperature of 325 K, with a load 
resistance of 12 kΩ. (A) With an applied voltage of 9 V, the neuristor shows no current response 
in either the experiment (solid line) or simulation (dashed line). (B) When subjected to 12.5 V, the 
neuristor exhibits a full current response in both the experiment (solid line) and simulation (dashed 
line). This phenomenon is termed the “all-or-nothing” law. (C) When subjected to 15.8 V, both 
the experimental (solid line) and simulated (dashed line) neuristor become inhibited after the initial 
two spikes, failing to return to the insulating state and maintaining a thin metallic filament through 
which a small (1mA) current flow. (D) The graph shows the spiking frequency as a function of 
input voltages, for both experimental (solid line) and simulation (dashed line) data. This typical 
type-II neuronal functionality shows a discontinuous frequency jump upon reaching the 10.5 V 
threshold voltage. In between the threshold and cutoff voltages, the spiking frequency changes 
monotonically, a phenomenon known as “rate coding”. (E) Simulated resistance versus time (left 
panel), and resistance as a function of temperature (right panel) at different input voltages. This 
illustrates the mechanism behind the three different working modes of our neuristor. 
 

5.4 Reconfigurable neural functionalities 

The diverse reconfigurable neural functionalities are manifested via the thermal 

interaction of coupled neuristors. As shown in the schematic inset of Figure 5.3A, the two 

neuristors, spaced 500 nm apart, are electrically isolated but thermally coupled through the Al2O3 
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substrate. The phenomenon of thermal interactions between spiking oscillators has been 

previously documented 166,167. Leveraging the characteristics of a single neuristor, the pair of 

thermally coupled neuristors exhibits a diverse range of reconfigurable neural functionalities, 

which can be tuned by adjusting their input voltages and load resistances.  

In Figure 5.3A, neuristor A is subjected to a short 200 ns pulse at 1.3 V without any load 

resistor, generating a 4 mA current pulse. This, in turn, creates a heat spike that propagates to 

neuristor B, which locally increases neuristor B’s temperature, lowers its threshold voltage and 

causes the IMT at a subthreshold voltage of 1.5 V. Since neuristor B is not connected to any load 

resistor, it stays in the metallic state and yields a direct current (DC) output. 

The spike-in and DC-out effect, as shown in Figure 5.3A, can be reconfigured to a spike-

in and spike-out behavior, as shown in Figure 5.3B, by incorporating a 9 kΩ load resistor to 

neuristor B. On its own, with a 2.7 V bias and no thermal interaction, neuristor B is unable to 

trigger spikes, as illustrated in Figure 5.8. However, when neuristor A is subjected to a brief 200 

ns pulse at 3.3 V, the heat spike it generates enables neuristor B to produce stable spikes. 

Remarkably, this process is highly energy efficient. As an example, a single spike consuming 

6.45 nJ from neuristor A can initiate 14 spikes in neuristor B with a total energy output of 5.56 

nJ, as detailed in Figure 5.9. 

The electrical dynamics of coupled neuristors can also be reconfigured to exhibit another 

distinctive feature, known as stochastic leaky integrate-and-fire. In this configuration, neuristor 

A is consistently subjected to a suprathreshold voltage of 7V in series with a 22 kΩ load resistor, 

resulting in stable spikes, while neuristor B, in series with a 30 kΩ load resistor, is subjected to a 

subthreshold voltage of 5 V, which alone is not sufficient for it to fire. However, neuristor B can 

integrate multiple current spikes from neuristor A and fire a spike, as shown in Figure 5.3C. The 
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initial current spike from neuristor A is insufficient to elevate the temperature enough to activate 

neuristor B. Yet, the accumulated heat from multiple current spikes eventually causes neuristor B 

to undergo the IMT, resulting in a spike 88. Importantly, the number of spikes neuristor B 

integrates from neuristor A before firing is inherently stochastic due to jittering behaviors in the 

neuristor 72 and stochasticity in thermal propagation 168. In this case, neuristor B may integrate 3, 

4, 5, or 8 spikes from neuristor A to produce a single spike.  

Figure 3D depicts how the stochastic firing probability of the number of integrated spikes 

from neuristor A changes with different subthreshold voltages applied to neuristor B. When 

neuristor B is subjected to stronger subthreshold stimuli, it exhibits a more deterministic firing 

probability and requires fewer integrated spikes from neuristor A. Conversely, weaker 

subthreshold stimuli result in a more pronounced stochastic leaky integrate-and-fire behavior 88. 

For a more comprehensive and detailed view of the stochastic and deterministic spiking patterns, 

Figure 5.10. presents the behavior of two thermally coupled neuristors, highlighting the 

distinctive stochastic leaky integrate-and-fire characteristic. Distance between neuristors also 

affects their coupling pattern, and a demonstration is shown in Figure 5.11.  
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Figure 5.3 Reconfigurable electrical dynamics in coupled neuristors. 
(A) Spike-in and DC-out. The load resistance for both neuristors is set to zero in this configuration. 
Neuristor A (black), triggered by a 1.3 V pulse lasting 200 ns, generates a 4 mA current spike. 
This functions as a heat spike-in for neuristor B (red), which is biased at a subthreshold voltage of 
1.5 V. This induces an IMT and leads to a DC output. This is termed as the spike-in and DC-out 
effect. (B) Spike-in and spike-out. By adding a 9 kΩ load resistor to neuristor B, the output of 
neuristor B can be reconfigured from DC-out to spike-out. (C) Stochastic leaky integrate-and-fire 
functionality. This is an example where neuristor A, with a suprathreshold input voltage of 7V, 
generates stable spikes, and neuristor B, subjected to a 5V subthreshold voltage, produces current 
spikes by integrating multiple current spikes from neuristor A. (D) Heatmap of a comprehensive 
stochastic leaky integrate-and-fire behavior. This demonstrates the relationship between firing 
probability and input voltages. The x-axis represents the input subthreshold voltage to neuristor B, 
and the y-axis shows the number of spikes integrated from neuristor A. The heatmap values 
indicate the firing probabilities (in percentages) of neuristor B integrating different numbers of 
spikes for various input voltages. 
 

To the best of our knowledge, this is the first instance of cascading neural layers in 

hardware exclusively implemented with thermally coupled neuristors, eliminating the need for 

complicated CMOS circuits. The top section of Figure 5.4 shows a flowchart that illustrates the 
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information transfer process between the neural layers. Neuristor A integrates multiple input 

electrical pulses and produces a current spike, which acts as the heat spike input for neuristor B 

through the sapphire substrate. Subsequently, neuristor B stochastically integrates the propagated 

heat spike from neuristor A to create its own spike.  

As depicted in the bottom left panel, neuristor A in the preceding layer is supplied with 

consecutive square pulses at 9.1 V, with a period of 1µs and a 50% duty cycle (light blue curve). 

The rapid charging and discharging induced by these square pulses result in a serrated voltage 

curve for neuristor A (black curve). When the accumulated voltage across neuristor A reaches 

the threshold, it undergoes an IMT, leading to a full discharge and the generation of a current 

spike. Simultaneously, while neuristor B in the subsequent layer is subjected to a subthreshold 

DC voltage of 5.7 V, the heat spike from neuristor A lowers the threshold voltage and triggers an 

IMT in neuristor B (red curve), also resulting in a spike (see Figure 5.12). In this way, we 

achieve cascaded information transfer between different neural layers at the hardware level , 

eliminating the necessity for complex input/output circuits between layers 94. 

The bottom right panel portrays a similar scenario, but with input square pulses having an 

80% duty cycle. Due to the extended duty cycle, neuristor A has longer charging and shorter 

discharging time per pulse. This means it needs fewer input pulses to reach the threshold, and 

consequently fires a spike at a faster rate.  However, this does not necessarily speed up spiking in 

neuristor B, as its charging time to reach the threshold remains invariant. As a result, some 

current spikes from neuristor A do not trigger a corresponding spike from neuristor B, adhering 

to its refractory period – another key neural function 88,90. As depicted in the bottom right panel, 

neuristor B needs to integrate 2 or 3 spikes from neuristor A to generate its own spike. More 

details about the impact of the duty cycle and the pulse amplitude can be found in Figure 5.12 
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and Figure 5.13. By adjusting the input waveform, the cascaded neuristors exhibit rich 

reconfigurable dynamics, effectively modulating the flow of information. 

 

Figure 5.4 Cascaded information transfer between different neural layers. 
Both neuristors A and B are connected in series with load resistors – 22 kW for neuristor A and 
30 kW for neuristor B – and share the same input threshold voltage of 6 V. Neuristor A is fed with 
a sequence of suprathreshold pulses at 9.1 V, each with a 1µs period, while neuristor B is powered 
with a constant subthreshold voltage of 5.7 V. Top: Flowchart illustrating the cascaded information 
transfer between different neural layers via thermal interactions through Al2O3 substrate. Neuristor 
A in the preceding layer integrates multiple electrical pulses from the input and generates current 
spikes, which serve as the cascading heat spike input of the neuristor B in subsequent layer. In this 
fashion, neuristor B integrates multiple heat spikes from neuristor A and fires a spike. Bottom left: 
Voltage traces for neuristors A, B, with a 50% duty cycle square input pulses. Neuristor A exhibits 
leaky integration of the input electrical pulses, while neuristor B performs similar integration of 
heat spikes from neuristor A, eliminating the need for complex buffer circuits. Bottom right: 
Similar configuration but with 80% duty cycle square input pulses. 
 

In large-scale spiking neural networks, not only is the information transfer important, but 

the inhibitory functionality is also significant 79,80,94. In Figure 5.5, we demonstrate the versatility 

of our neuristors, where excitatory and inhibitory functionalities are displayed within the same 

neuristor by controlling their input voltages. 

An excitatory neuristor becomes active upon receiving external stimuli. In our case, the 

neuristors interact with each other through heat interaction via the sapphire substrate. Neuristor 

Input A B
Integrate Integrate

⋯
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A functions as a heat pump, generating a continuous stream of heat spikes when biased at 2.9 V. 

Neuristor B, with an applied subthreshold voltage of 2.6 V, is excited by neuristor A in a 1:1 

excitation mode, as shown in Figure. 5.5A. The heat synchronizes the phases and frequencies of 

the two neuristors. When neuristor A is subjected to suprathreshold voltage of 4.3 V while 

neuristor B remains at a subthreshold voltage of 2.6 V, neuristor A excites neuristor B in a mixed 

integer excitation mode with 3:1 and 2:1 spiking pattern, demonstrating stochastic leaky-and-fire 

characteristics. Notably, the heat still maintains phase-locking between both neuristors. The 

evolution of excitatory interaction characteristics in response to changes in input voltage is 

shown in Figure 5.14. 

We can convert neuristor B from an excitatory to an inhibitory neuristor by carefully 

adjusting its bias voltage just below its upper limit. Surprisingly, the inhibitory functionality 

emerges in the same device without any physical alterations. As shown in Figure 5.5D, neuristor 

B exhibits stable spiking when neuristor A is inactive. However, upon neuristor A’s activation, 

neuristor B is effectively inhibited, ceasing to spike after a few initial spikes. The stream of heat 

spikes from neuristor A raises the temperature of neuristor B and this pushes B above the upper 

threshold of stable rate coding as described in Figure 5.2D. This consequently traps neuristor B 

in the metallic state with a conductive filament and disables its capability to sustain stable auto-

oscillations. Another reconfigurable inhibitory characteristic is presented in Figure 5.15, showing 

mutual inhibition between neuristors. 

By introducing a thermal coupling term for adjacent neuristors, our theoretical model 

accurately replicates these behaviors, as shown in Figure 5.5C and Figure 5.5F. The SM provides 

more details of this model, including a study on the effect of coupling strength in Fig. 5.16., and 

additional simulations of the excitatory and inhibitory behaviors in Figure 5.17 and Figure 5.18. 
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Figure 5.5 Excitatory and inhibitory interactions between neuristors. 

Both neuristors are connected in series with a 12 𝑘𝑘𝑘𝑘 load resistance. Neuristor A has an input 
threshold voltage of 2.9 V, while neuristor B has an input threshold voltage of 2.8 V. (A) When 
neuristor A is biased at 2.9 V and neuristor B is biased at 2.6 V subthreshold voltage, neuristor A 
excites neuristor B in a 1:1 excitation mode, resulting in both phase and frequency synchronization. 
(B) Neuristor A, at 4.3 V suprathreshold voltage, excites neuristor B (at 2.6 V subthreshold 
voltage) in a mixed-integer excitation mode with 3:1 and 2:1 spiking patterns. (C) Numerical 
simulation replicating the 1:1 excitation mode with subthreshold input voltages. (D) Neuristor B 
generates stable spikes when biased at 4.1V, with neuristor A inactive. (E) With both neuristors 
biased at 4.1V, neuristor B becomes quiescent after initial spikes due to inhibition by neuristor A. 
The stable heat spikes from neuristor A traps the neuristor B in the metallic state. (F) Numerical 
simulations mirroring the inhibitory behavior that neuristor A inhibits the stable spiking neuristor 
B, which is biased just below the upper threshold. 
 

5.5 Conclusion 

In this study, we engineered and analyzed thermally coupled neuristors utilizing the 

insulator-to-metal transition of vanadium dioxide. By exploiting VO2's hysteresis loop and 

thermal interactions, we demonstrated versatile neural dynamics without relying on complex 

CMOS circuits. This paves the way for scalable spiking neural networks and computation blocks 

like logic gates and feed-forward layers. Furthermore, our comprehensive theoretical model 

elucidates the neuristors' operational principles, facilitating simulation and design of large-scale 
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neuristor networks. This opens avenues for the advancement of efficient and compact neural 

networks with applications spanning artificial intelligence to brain-inspired computing.  

Nonetheless, our design has its limitations. The spatial layout imposes constraints on 

thermal interactions, which in turn limit the fan-in/fan-out capacities of neuristors. Moreover, 

regulating heat flows in large-scale networks presents an important challenge. Intriguingly, a 

large, unregulated neuristor network could potentially be used as a reservoir in reservoir 

computing. Moreover, investigating long-range correlations among distantly positioned 

neuristors could also yield fascinating insights into the brain’s dynamic behavior. 
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Chapter 6 Conclusion and Future prospects 

6.1 Conclusion 

In this dissertation, we demonstrated stochastic spiking oscillator based on Mott insulator 

VO2. In order to design a complex spiking neural network capable of performing advanced 

computational tasks, we investigate the collective dynamics of the interactions between two 

spiking devices. 

In Chapter 3, we observed unusual stochastic patterns in capacitively coupled spiking 

Mott nanodevices. When these oscillators are moderately coupled, they exhibit a predictable 

pattern of alternating spikes. However, increasing the coupling strength leads to unexpected 

disruptions in this sequence, resulting in a stochastic pattern. This behavior is linked to subtle 

inherent randomness in the electrical triggering of the insulator-metal transition, which becomes 

amplified when oscillators are capacitively coupled. The observed stochastic spiking pattern 

bears resemblance to those found in biological neurons, suggesting potential applications in 

hardware-based neural computing. 

Chapter 4 explores the synchronization evolution in thermally coupled spiking nano-

oscillators based on Mott materials. By varying the DC voltage applied to each oscillator, we 

observed a distinct spiking pattern, stochastic synchronization. At low or high applied voltages, 

the oscillators maintained robust integer synchronization modes (2:1 or 1:1). However, within a 

wide range of intermediate voltages, they entered a stochastic synchronization regime, where the 

spiking pattern unpredictably switched between the two integer synchronization modes. This 

unique behavior underscores the dynamic synchronization properties of spiking oscillators and 

their potential for use in neuromorphic and stochastic computing circuits. 
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Chapter 5 continues to examine thermally coupled spiking oscillators, also called 

neuristors, which exhibit neural functionalities. These thermal neuristors function and 

communicate exclusively through thermal processes, utilizing the insulator-to-metal transition in 

vanadium dioxide. We showcase a diverse range of reconfigurable electrical behaviors that 

closely resemble those of biological neurons, including phenomena like the all-or-nothing law, 

type-II neuronal rate coding law, spike-in and DC out effect, spike-in and spike-out effect, and 

stochastic leaky integrate-and-firing law. Remarkably, inhibitory capabilities are achieved using 

just a single oxide device, and the transmission of cascaded information occurs solely through 

thermal interactions without any intricate circuits. This research serves as the groundwork for 

scalable and energy-efficient thermal neural networks, advancing the field of brain-inspired 

computing. 

Overall, these studies highlight the unique properties and behaviors of coupled spiking 

oscillators. Their ability to emulate neural functions, along with their adaptability and 

reconfigurability, offers promising prospects for energy-efficient large scale neural networks and 

hardware-based artificial intelligence systems. By understanding the intricate collective 

dynamics and synchronization patterns of the two coupled spiking oscillators, we are laying the 

groundwork for innovative hardware-level solutions in neuromorphic computing. 

6.2 Future Prospects 
 

There are still many intriguing follow ups to be explored in the spiking oscillator. 

First and foremost, the spiking oscillator represents an artificial dynamic system that 

consistently stays in a state of nonequilibrium, displaying transient spiking behaviors. In chapter 

3, I observed that the relaxation of the VO2 metallic domain is stochastic due to the varied 

distribution of long-lived metallic domains. It is worthwhile to investigate the distinct relaxation 
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dynamics of these metallic domains. I also aim to investigate the nucleation and growth of 

metallic domains, as well as the formation of metallic filaments. 

In my project on thermally coupled spiking oscillators, I discovered that randomness lies 

hidden within the synchronization of two such devices. This inherent stochasticity can be 

harnessed to create a true random number generator (RNG) that successfully passes the NIST 

test for randomness. What's even more significant is that this concept of an RNG based on 

synchronization might be applicable to all synchronized systems, offering valuable potential for 

cryptography and security applications. 

It is also important to explore heat generation, heat transport, heat evolution, and heat 

interactions between the VO2 spiking oscillators using transient thermal mapping techniques, 

such as time resolved Thermoreflectance Thermal Imaging and Infrared Thermography. 

Investigating how different distances between devices and various substrates affect heat 

interaction is also essential. Such thermal analysis is key to improving the thermal management 

of spiking oscillators and to support the electro-thermal co-design for future large-scale thermal 

neuristor network chips. 

Last but not least, it is necessary to construct a crossbar array of thermal neuristors to 

perform some computational tasks. Within this network, individual thermal neuristors produce 

heat spikes, transfer heat, and engage with one another through heat interactions. This process 

results in a variety of complex collective dynamics, opening the door to computing methods that 

rely on collective states, such as Hopfield-like networks and reservoir computing. 
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Appendix A - Supplementary Materials for Chapter 3 

Sample Preparation: 

A 100 nm-thick VO2 thin film was grown on a (012)-oriented sapphire substrate by reactive 

rf magnetron sputtering in 86%-14% Ar-O2 atmosphere. The substrate temperature during the 

growth was 500 ºC. The sample was cooled down at a rate of 12 ºC·min-1 after the deposition. X-

ray diffraction shows textured VO2 thin film along (110) direction (Figure 3.19). The 100×400 nm2 

nanodevices were defined by e-beam lithography. (20 nm Ti)/(30 nm Au) electrodes were 

deposited by e-beam evaporation. To isolate electrically the devices, a combination of e-beam 

lithography and reactive ion etching in Cl2/Ar atmosphere was used. 

Transport Measurements: 

The measurements were performed in a TTPX Lakeshore cryogenic probe station. A 

Keithley 6221 current source and a Keithley 2812 nanovoltmeter were used to obtain resistance vs 

temperature (Figure 3.20) and dc resistive switching (Figure 3.21). A Tektronix Arbitrary Function 

Generator 3252C was used to supply voltage and a Tektronix broadband mixed signal oscilloscope 

MSO54 was used to monitor the output signals. 1 MΩ impedance oscilloscope channel was used 

to measure the voltage across the nanodevice, while the 50 Ω impedance channel was used to 

monitor the current passing through the device. The spiking oscillation measurements were 

performed at 325 K. 

 
Supporting figures. 
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Figure 3.1 Inter-spike interval (ISI) for different input voltages. The device is measured at a fixed 
temperature 325 K in series with a fixed load resistor 15.2 k Ω. 
 
 
 

 
Figure 3.2 Inter-spike interval (ISI) for different load resistors. The device is measured at a fixed 
temperature 325 K with a fixed input voltage 3.2 V. 
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Figure 3.3 Inter-spike interval (ISI) for different temperatures. The device is applied a fixed input 
voltage 4.2 V in series with a fixed load resistor 27 k Ω. 
 

 
 

 
Figure 3.4 Power spikes of a random device on the chip. The power consumption per spike is 
around 1 nJ. 
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Figure 3.5 The influence of increasing input voltage on spiking pattern. 

(a-c) The overlaid current time traces of two spiking oscillators show the synchronization patterns 
obtained for different values of the applied voltages and a fixed coupling capacitance of 0.39 nF. 
As the applied voltages increase, the deterministic alternating synchronization pattern is disrupted 
by stochastic events. (d-f) The inter-spike interval (ISI) distributions of the red oscillator. The 
satellite peaks appear when the applied voltage increases. 
 
 

 
Figure 3.6 Inter-spike interval (ISI) of coupled VO2 oscillators as a function of the circuit RC 

constant for different values of coupling capacitor (0.5 nF, 1 nF, 4.7 nF, 10 nF).  
The RC constant was obtained by fitting recorded voltage-time traces. As the external coupling 
capacitance increases, the ISI increases linearly with the RC time constant, suggesting that the 
circuit electrical inertia is the primary parameter that determines the spiking frequency. 
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Figure 3.7 Current spiking time trace of two oscillators coupled using different capacitors.  

Data is recorded in the same pair of VO2 nanodevices as used in the main text. Different time 
window is shown compared to Figure 3.2b. Similar to the results discussed in the main text, 
increasing the coupling capacitance results in the emergence of stochastic disruptions of the 
alternating spiking sequence. 
 
 

 
Figure 3.8 Current spiking time trace of two oscillators coupled using different capacitors.  

Data is recorded in the same pair of VO2 nanodevices as used in the main text. A different time 
window is shown compared to Figure 3.2b. Similar to the results discussed in the main text, 
increasing the coupling capacitance results in the emergence of stochastic disruptions of the 
alternating spiking sequence. 
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Figure 3.9 Current spiking time trace of two oscillators coupled using different capacitors.  

Data is recorded in the same pair of VO2 nanodevices as used in the main text. Different time 
window is shown compared to Figure 2b. Similar to the results discussed in the main text, 
increasing the coupling capacitance results in the emergence of stochastic disruptions of the 
alternating spiking sequence. 

 
 

 
Figure 3.10 Current spiking time trace of two oscillators coupled using different capacitors.  

Data is recorded in a different pair of VO2 nanodevices compared to the main text. Similar to the 
results discussed in the main text, increasing the coupling capacitance results in the emergence of 
stochastic disruptions of the alternating spiking sequence. 
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Figure 3.11 Experimental threshold voltage vs. cycle number (scatter plot). Threshold voltage, i.e. 
voltage that triggers spike emission, displays small stochastic undershoots/overshoots with respect 
to the mean value (horizontal red line). 

 
 

 
Figure 3.12 Simulated threshold voltage vs. cycle number (scatter plot). Threshold voltage, i.e. 
voltage that triggers spike emission, displays small stochastic undershoots/overshoots with respect 
to the mean value (horizontal red line), similar to experimental data in Figure 3.10. 
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Figure 3.13 Threshold voltage vs. current spike amplitude. Stochastic cycle-to-cycle 
undershoot/overshoot in threshold voltage produces proportional increase of current spike 
amplitude for the coupled oscillator A and B. 

 
 

 
Figure 3.14 X-ray diffraction of an unpatterned VO2 film showing the film growth along the (110) 
crystallographic direction. 
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Figure 3.15 Resistance-temperature dependence of an unpatterned VO2 film (black line) and 
fabricated 100×400 nm2 nanodevice (red line). The two curves are identical proving that the device 
fabrication process did not alter the material properties. 
 
 

 
Figure 3.16 Current-controlled dc I-V curves of VO2 nanodevices at different temperatures. 
Volatile resistive switching due to electrical triggering of the MIT can be observed, as normally 
expected in VO2 devices. 
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Appendix B - Supplementary Materials for Chapter 4 

 

 

Figure 4.1. Specular x-ray diffraction of a VO2 thin film on an Al2O3 substrate. 
 

 

 

Figure 4.2 Resistance vs. temperature of 100 nm thick VO2. 
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Figure 4.3 Inferred temperature change of three nanodevices when a neighboring nanodevice at 
0.5, 1.5 and 2.5 μm separation distance is powered with a significant current.  

This graph was obtained by mapping the resistance change data shown in Figure 4.1b in the main 
text onto the equilibrium resistance-temperature dependence. 
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Figure 4.4 Non-linear resistive switching. 
(a) A current trace of the first device (heat generator) vs. time. (b) The resistance trace of the first 
device (heat generator) vs. time. Resistive switching happened and the filament formed. (c) The 
resistance trace of the second device (probe device) vs. time. When resistive switching happens 
and the filament forms in the first device, less power is generated and propagated. Simultaneously, 
the resistance of the second device jumps up (i.e., probe device cools down). 
 

 

Figure 4.5 Weak thermal coupling between the first and the third nanodevices placed 1.5 µm apart 
as shown in Figure 4.1a results in an unstable synchronization. 7.1 V (above threshold voltage) is 
applied to these two nanodevices simultaneously using the circuit shown in Figure 2a. 
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Figure 4.6 No thermal coupling between two nanodevices positioned on two opposite corners of 
the sample when 7.7 V (above threshold voltage) is applied to these two nanodevices 
simultaneously using the circuit setup in Figure 4.2a. The spike trains of the two devices show no 
sign of synchronization. 

 

Figure 4.7 Synchronized spiking pattern evolution in a different pair of 500×500 nm2 devices in 
the same VO2 sample. 

Stochastic synchronization transition (b) between 2:1 synchronized mode (a) and 1:1 synchronized 
mode (c) observed in a different pair of 500×500 nm2 devices in the same VO2 sample that was 
used to acquire data presented in the main text. 
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Figure 4.8 Synchronized spiking pattern evolution in a pair of 100×400 nm2 devices in a 
different VO2 sample. 

Stochastic synchronization transition (b) between 3:1 synchronized mode (a) and 2:1 synchronized 
mode (c) observed in a pair of 100×400 nm2 devices in a different VO2 sample. 
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Figure 4.9 Stochastic pattern characterization for the black oscillator in Figure 4.2a.  
(a) Inter-spike interval (ISI) evolution of the black oscillator versus time trace when 9.2 V is 
applied to the black oscillator and 9.2 V is applied to the red oscillator. (b) The dependence of 2:1 
mode fraction on the black oscillator input voltage for different emergent patterns. 2:1 mode 
fraction is defined by the total number of 2:1 mode spikes per the total number of 2:1 mode spikes 
plus 1:1 mode spikes. The input voltage of the red oscillator is fixed at 9.2 V. The boundaries of 
the stochastic pattern region are 7.8 V and 10 V. (c) The autocorrelation (ACF) as a function of 
time lag k for the black oscillator. 
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Simulation of the thermally coupled spiking oscillators: 

We simulated the electro-thermal dynamics of the spiking devices by using a lumped-

element circuit (Fig. S10). The behavior of VO2 gap is modeled as a resistor in parallel with a 

capacitor to account for the parasitic capacitance. Same as in the experiments, a load resistance is 

connected in series and DC voltage is applied in the circuit. 

 

 

Figure 4.10 Lumped-element model. 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎1,2 are the applied voltages, 𝑅𝑅𝐿𝐿1,2 are load resistors, 𝑅𝑅1,2 are resistances of the VO2 devices 
that can switch between insulator and metallic phase, 𝐶𝐶1,2 are parasitic capacitances. The term 
𝛼𝛼(𝑇𝑇1 − 𝑇𝑇2) introduces thermal coupling between the devices. Here 𝑇𝑇1,2 are temperatures of the 

two VO2 devices. 
 

The state of the thermally coupled oscillators are described by the coupled electrical (1-2) 

and thermal (3-4) differential equations: 

 

 
𝐶𝐶1𝑅𝑅𝐿𝐿1

𝑑𝑑𝑉𝑉1
𝑑𝑑𝑑𝑑

+ �1 +
𝑅𝑅𝐿𝐿1
𝑅𝑅1

�𝑉𝑉1 − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎1 = 0, 

 

(1) 

 
𝐶𝐶2𝑅𝑅𝐿𝐿2

𝑑𝑑𝑉𝑉2
𝑑𝑑𝑑𝑑

+ �1 +
𝑅𝑅𝐿𝐿2
𝑅𝑅2

�𝑉𝑉2 − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎2 = 0, 

 

(2) 
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𝐶𝐶𝑡𝑡ℎ

𝑑𝑑𝑇𝑇1
𝑑𝑑𝑑𝑑

−
𝑉𝑉12

𝑅𝑅1
− 𝑘𝑘(𝑇𝑇𝑠𝑠 − 𝑇𝑇1) − 𝛼𝛼(𝑇𝑇2 − 𝑇𝑇1) = 0, 

 

(3) 

 
𝐶𝐶𝑡𝑡ℎ

𝑑𝑑𝑇𝑇2
𝑑𝑑𝑑𝑑

−
𝑉𝑉22

𝑅𝑅2
− 𝑘𝑘(𝑇𝑇𝑠𝑠 − 𝑇𝑇2) − 𝛼𝛼(𝑇𝑇1 − 𝑇𝑇2) = 0, 

 

(4) 

where 𝑉𝑉𝑖𝑖, 𝑅𝑅𝑖𝑖, 𝑇𝑇𝑖𝑖, 𝐶𝐶𝑖𝑖, 𝑅𝑅𝐿𝐿𝐿𝐿, 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are voltage, resistance, temperature, parasitic capacitance, load 

resistors, and applied voltage in the i-th oscillator circuit (𝑖𝑖 = 1,2). 𝑇𝑇𝑠𝑠 is the substrate 

temperature, 𝑘𝑘 is thermal conductivity describing the heat exchange between the VO2 and the 

substrate, 𝛼𝛼 is the substrate thermal conductivity allowing the heat transfer between the 

oscillators, and 𝐶𝐶𝑡𝑡ℎ is thermal capacitance. Importantly, the resistances of VO2 devices were 

allowed to switch between low and high resistance states as the temperature of the device crosses 

the phase transition temperature 𝑇𝑇𝑐𝑐. To account for subtle cycle-to-cycle stochastic variability 

commonly observed in experiments, we explicitly introduced in the model the cumulative 

transition probability into the metallic phase as a function of temperature given by sigmoid 

function: 

 𝑃𝑃(𝑇𝑇) = 1 −
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇 − 𝑇𝑇𝑐𝑐
𝛿𝛿𝛿𝛿 �

 (5) 

where 𝛿𝛿𝛿𝛿 is the parameter describing the temperature window where the metal-insulator 

transition can occur. 

The simulations showed that the stochastic transition between 1:2 and 1:1 

synchronization modes appears when the coupling between the devices is strong and when 

devices have a moderate intrinsic stochasticity (Fig. S11). Such a case can correspond to the 

closely placed nanoscale devices, as studied in this work (small devices are susceptible to 
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fluctuations and short physical separation enables strong thermal interactions). On the contrary, 

when the coupling is weak and the stochasticity is insignificant, the transition between 1:2 and 

1:1 synchronization modes occurs by the development of an intermediate 2:3 mode (Figure S12). 

Such a case can correspond to microscale devices, as studied in A. Velichko, M. Belyaev, V. 

Putrolaynem, V. Perminov, A. Pergament, Solid State Electronics 141, 40, 2018 (large size 

devices are robust against fluctuations and the separation distance between them is large 

reducing the thermal coupling). 

 
Figure 4.11 Simulation results for stochastic synchronization pattern.  

Stochastic transition between 1:2 and 1:1 synchronization modes occurs when the coupling 
between the oscillators is strong (𝛼𝛼 = 0.1 arb. units) and the intrinsic stochasticity is moderate 
( 𝑇𝑇𝑐𝑐 = 340  arb. units, 𝛿𝛿𝛿𝛿 = 1  arb. units). These simulation results closely resemble the 
experimental data presented in this work. 
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Figure 4.12 Simulation results for non-integer synchronization patterns 
Intermediate 2:3 synchronization mode appears at the transition between 1:2 and 1:1 
synchronization modes when the coupling between the oscillators is weak (𝛼𝛼 = 0.06 arb. units) 
and the intrinsic stochasticity is negligible (𝑇𝑇𝑐𝑐 = 340 arb. units, 𝛿𝛿𝛿𝛿 = 0.01 arb. units). These 
simulation results are reminiscent of the synchronization in microscale devices reported in Solid 
State Electronics 141, 40 (2018). 
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Appendix C - Supplementary Materials for Chapter 5 

Synthesis of epitaxial VO2 on Al2O3 substrate  

The VO2 films were deposited on the (012)-oriented Al2O3 substrate by reactive RF 

magnetron sputtering. Initially, the (012) oriented Al2O3 substrate was loaded into a high vacuum 

chamber with a base pressure of ~ 1x 10-7 Torr. The sample holder was heated to 680 oC. Then 

pure argon was flown into the chamber at 2.2 s.c.c.m and 2.1 s.c.c.m mixed gases (20% oxygen 

and 80% argon). The sputtering plasma was triggered at a pressure of 4.2 mTorr by applying a 

forward power of 100 W to the target, which corresponded to an applied voltage of 

approximately 240 V. The deposition of VO2 films lasted 30 mins, achieving a thickness of 100 

nm.     Upon completion, the sample holder was cooled down to room temperature at a 12 oC/min 

rate. 

VO2 crystal structure 

The crystal structure of the VO2 thin film was confirmed with a Rigaku Smartlab using 2-

theta/omega scan from 20 deg. to 100 deg. in 0.01 deg steps. The Smartlab has a high resolution 

of 0.0001o and the characteristic wavelength of the copper X-ray tube is 1.5406 Angstroms.       

Fabrication of VO2 neuristor arrays 

A Vistec (100kV) Electron Beam Lithography system was used to pattern VO2 neuristor 

arrays. Each neuristor has dimensions of 100 x 500 nm2 and is separated by 500 nm gaps. The e-

beam resist, PMMA-A4, was spin-coated onto samples measuring 10 mm x 10 mm followed by 

a baking process at 115 oC for 20 mins for the first lithography step. Electrodes were defined by 

depositing a 15 nm Ti layer followed by a 40 nm Au layer. To investigate the thermal interaction 

between two neuristors, a second lithography and etching process were required. The negative e-

beam resist ma-N 2405 was spin-coated onto the previously prepared samples and subsequently 
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baked for 1 min at 91 oC for the second lithography step. An Oxford Plasmalab 80 Plus RIE 

system was used to etch the uncovered VO2 films between the devices, while the negative resist 

protected the covered electrodes and the devices from being etched away. 

Fast electrical dynamics measurements 

A Tektronix Dual Channel Arbitrary Function Generator, AFG 3252C, was used to apply 

DC or pulse voltage bursts to the circuit. The AFG 3252C offers precise waveforms with both 

fast leading and trailing times of 2.5ns. The dual-channel feature allows us to control the device 

under test (DUT) individually while ensuring synchronized output signals to the circuit. 

For recording ultrafast electrical dynamic signals, we employed the Tektronix 

Oscilloscope MSO54, which offers a maximum bandwidth of 1GHz and sampling rates of 6.25 

GS/s. In particular, the channel impedance for measuring the voltage dynamics was configured 

to 1 MΩ, while the channel impedance for measuring the spiking current dynamics was set to 50 

Ω. 
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Numerical simulations 

Model of the VO2 hysteresis loop. 

We employed the hysteresis model developed in (44), which assumes that in the 

insulating phase, VO2 functions as an inherent semiconductor, characterized by an exponential 

R-T curve. Conversely, the metallic phase of VO2 exhibits constant resistance. The metallic 

phase fraction of VO2 undergoes a smooth transition from 0 to 1 across a critical temperature, 

which is different for the heating and cooling branches. Without delving into the derivations, we 

present the resulting equations: 

𝑅𝑅(𝑇𝑇) = 𝑅𝑅0 exp �
𝐸𝐸𝑎𝑎
𝑇𝑇
�𝐹𝐹(𝑇𝑇) + 𝑅𝑅𝑚𝑚                                                         (S1) 

𝐹𝐹(𝑇𝑇) =
1
2

+
1
2

tanh �𝛽𝛽 �𝛿𝛿
𝑤𝑤
2

+ 𝑇𝑇𝑐𝑐 − �𝑇𝑇 + 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 �
𝑇𝑇 − 𝑇𝑇𝑟𝑟
𝑇𝑇𝑝𝑝𝑝𝑝

����       (S2) 

𝑇𝑇𝑝𝑝𝑝𝑝 = 𝛿𝛿
𝑤𝑤
2

+ 𝑇𝑇𝑐𝑐 −
1
𝛽𝛽

[2𝐹𝐹(𝑇𝑇𝑟𝑟) − 1] − 𝑇𝑇𝑟𝑟                                               (S3) 

𝑃𝑃(𝑥𝑥) =
1
2

(1 −sin 𝛾𝛾𝛾𝛾 )[1 +tanh (𝜋𝜋2 − 2𝜋𝜋𝜋𝜋) ]                                 (S4) 

 

In Eq. (S1), 𝑅𝑅0 exp �𝐸𝐸𝑎𝑎
𝑇𝑇
�  represents the resistance of the insulating phase, 𝑅𝑅𝑚𝑚 denotes the 

resistance of the metallic phase, and 𝐹𝐹(𝑇𝑇) is the volume fraction of the insulating phase. 𝐹𝐹(𝑇𝑇) is 

defined by Eq. (S2), exhibiting a smooth transition from 1 to 0. In Eq. (S2), 𝛽𝛽 serves as a fitting 

parameter, 𝛿𝛿 takes the value of 1 in the heating branch and −1 in the cooling branch, 𝑤𝑤 is the 

width of the hysteresis loop, and 𝑇𝑇𝑐𝑐 is the critical temperature. 𝑇𝑇𝑝𝑝𝑝𝑝 is the proximity temperature at 

the reversal point, which is introduced to characterize the distance from the current point to the 

major loop and is essential for characterizing minor and nested loops. 𝑃𝑃 stands for the proximity 

function, which is an arbitrarily chosen, monotonically decreasing function, introduced to 
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approximate the proximity temperature at an arbitrary point. 𝑇𝑇𝑝𝑝𝑝𝑝 is further defined in Eq. (S3), in 

which 𝑇𝑇𝑟𝑟 is the reversal temperature. Additionally, 𝑃𝑃(𝑥𝑥) is provided in Eq. (S4), with 𝛾𝛾 as 

another fitting parameter. A detailed description and explanation of Eqs. (S1) - (S4) is described 

in reference (44). 

We conducted experimental measurements of the R-T curves for our VO2 sample using 

various heating and cooling cycles. The results are illustrated in Figure 1C in the main text. To 

estimate the optimal parameters for the model, we employed the differential evolution algorithm 

(45), as implemented in the SciPy library (46), to fit the experimental data to Eqs. (S1) - (S4). 

The results are: 𝑅𝑅0 = 5.359 × 10−3𝛺𝛺, 𝑅𝑅𝑚𝑚 = 262.5𝛺𝛺, 𝐸𝐸𝑎𝑎 = 5220𝐾𝐾, 𝛽𝛽 = 0.253𝐾𝐾−1, 𝑤𝑤 =

7.193𝐾𝐾, 𝑇𝑇𝑐𝑐 = 332.8𝐾𝐾, and 𝛾𝛾 = 0.956.  

Note that the measured resistance curves contain non-ideal factors such as contact 

resistance between VO2 and the electrodes. For comparison, the conductivity of metallic VO2 is 

8 × 105𝑆𝑆/𝑚𝑚 (47), or 2.5 Ω for our sample of dimensions 100 nm × 500 nm × 100 nm. Given the 

fitted 𝑅𝑅𝑚𝑚 = 262.5𝛺𝛺, this indicates that the contact resistance is the primary contributor in the 

metallic state. On the other hand, for the insulating state, the activation energy of VO2 thin films 

at 20°C is about 0.22 eV (44), which gives a theoretical value of 𝐸𝐸𝑎𝑎 = 2553𝐾𝐾, about half of the 

fitted result. Indeed, we can observe a divergence between data and model in the insulating state 

as depicted in Figure 1C, suggesting some limitation in our model. However, it is important to 

note that this model does accurately reproduce the R-T curves near the insulator-to-metal 

transition, which is our principal area of interest. 
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Model of a single neuristor.  

The circuit configuration is shown in Figure 1B in the main text, where the VO2 

nanodevice is modeled as a temperature-dependent resistor in parallel with an intrinsic parasitic 

capacitance. A variable load resistor is connected in series with the VO2 nanodevice, whose 

resistance is typically comparable to the insulating state of the VO2 nanodevice.   

The model of the hysteretic behavior of VO2 is already illustrated in the previous section. 

However, it is worth noting that the hysteresis loop in Figure 1C is measured through a quasi-

static process, where the device undergoes slow heating, ensuring the entire sample transitions 

completely into the metallic state above the transition temperature. On the other hand, the 

scenario in a spiking oscillator is markedly different. As demonstrated in (39), narrow metallic 

channels emerge within the insulating bulk during each current spike, which yields a higher 

resistance relative to the fully metallic state recorded in the quasi-static process. In practice, to 

bypass the intricate task of modeling the complex nonequilibrium thermodynamics, we assume 

that the metallic channel has a volume fraction of 1/𝑘𝑘, where 𝑘𝑘 is a numerically fitted parameter. 

In other words, the resistance of the metallic state increases to 𝑘𝑘 times the value measured 

through the quasi-static process. Then, thermal conduction is modeled assuming uniform 

temperature within the neuristor and a constant environmental temperature. 

Combining the circuit model and thermal model, we arrive at the following equations:  

 

𝑑𝑑𝑉𝑉1
𝑑𝑑𝑑𝑑

=
𝑉𝑉𝑖𝑖𝑖𝑖

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶
− 𝑉𝑉1 �

1
𝑅𝑅𝑉𝑉𝑂𝑂2𝐶𝐶

+
1

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶
�                    (S5) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑉𝑉12

𝑅𝑅𝑉𝑉𝑂𝑂2𝐶𝐶𝑡𝑡ℎ
−
𝑆𝑆𝑡𝑡ℎ(𝑇𝑇 − 𝑇𝑇0)

𝐶𝐶𝑡𝑡ℎ
                                     (S6) 
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Here, 𝑉𝑉1 represents the voltage across the neuristor, 𝑉𝑉𝑖𝑖𝑖𝑖 is the input voltage, 𝑅𝑅𝑉𝑉𝑂𝑂2 refers to the 

resistance of VO2, 𝐶𝐶 is the parasitic capacitance, 𝑇𝑇 denotes the temperature of VO2, 𝑇𝑇0 denotes 

the environment temperature, and 𝑆𝑆𝑡𝑡ℎ and 𝐶𝐶𝑡𝑡ℎ stands for the thermal conductance and thermal 

capacitance of the neuristor, respectively.  

The resistance of VO2 is slightly altered from the quasi-static hysteresis behavior in Eq. 

(S1) and is expressed as:  

𝑅𝑅𝑉𝑉𝑉𝑉2(𝑇𝑇) = 𝑅𝑅0exp �
𝐸𝐸𝑎𝑎
𝑇𝑇
�𝐹𝐹(𝑇𝑇) + 𝑘𝑘𝑅𝑅𝑚𝑚                     (S7) 

where an additional factor, 𝑘𝑘, is introduced in Eq. (S7). This factor accounts for the formation of 

thin metallic channels during the spiking dynamics. 

To precisely emulate the spiking behaviors, we extracted key features from the 

experimentally measured I-t curves and employed the numerical model to replicate these 

features. Specifically, the characteristics utilized in the numerical fittings include the amplitudes 

and positions of the first three spikes, the average width of the spikes, and the frequency of 

spiking. Once again, the differential evolution algorithm was employed to optimize the 

parameters, yielding the following results: 𝐶𝐶 = 145𝑝𝑝𝑝𝑝, 𝑘𝑘 = 4.90, 𝑆𝑆𝑡𝑡ℎ = 0.206𝑚𝑚𝑚𝑚/𝐾𝐾 and 

𝐶𝐶𝑡𝑡ℎ = 49.6𝑝𝑝𝑝𝑝/𝐾𝐾. These lead to an excellent agreement between the experimental and simulated 

curves as shown in Fig 2. 

It is important to mention that we operated under the simplified assumption of a uniform 

temperature across the neuristor and a constant environment temperature. Therefore, the thermal 

conductance and capacitance calculated here are equivalent values considering the entirety of the 

device, which includes the VO2, the electrodes, and the surrounding substrates. For comparison, 

the heat capacity per volume of VO2 at 336K is 3.07 × 106 𝐽𝐽 𝑚𝑚−3 𝐾𝐾−1 (48). For our sample with 

dimensions 100 nm × 500 nm × 100 nm, the heat capacitance is a mere 15.2 fJ/K, representing 
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only 1/3000 of the fitted value. This demonstrates that the heat capacitance of VO2 constitutes 

only a minuscule portion of the neuristor. 

Model of thermal coupling between adjacent neuristors.  

To account for the thermal coupling between two adjacent neuristors, we introduce a 

coupling term to Eq. (S6):  

 

𝑑𝑑𝑇𝑇1
𝑑𝑑𝑑𝑑

=
𝑉𝑉12

𝑅𝑅𝑉𝑉𝑂𝑂2,1𝐶𝐶𝑡𝑡ℎ
−
𝑆𝑆𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇1 − 𝑇𝑇0)

𝐶𝐶𝑡𝑡ℎ
−
𝑆𝑆𝑡𝑡ℎ12(𝑇𝑇1 − 𝑇𝑇2)

𝐶𝐶𝑡𝑡ℎ
    (𝑆𝑆8) 

𝑑𝑑𝑇𝑇2
𝑑𝑑𝑑𝑑

=
𝑉𝑉22

𝑅𝑅𝑉𝑉𝑂𝑂2,2𝐶𝐶𝑡𝑡ℎ
−
𝑆𝑆𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇2 − 𝑇𝑇0)

𝐶𝐶𝑡𝑡ℎ
−
𝑆𝑆𝑡𝑡ℎ12(𝑇𝑇2 − 𝑇𝑇1)

𝐶𝐶𝑡𝑡ℎ
    (𝑆𝑆9) 

 

Here, the subscripts 1 and 2 denote the two neuristors. 𝑆𝑆𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 represents the thermal 

conductance between a neuristor and the environment, and 𝑆𝑆𝑡𝑡ℎ12 represents the thermal 

conductance between the two neuristors. 

We define the coupling strength, 𝜂𝜂, such that 𝑆𝑆𝑡𝑡ℎ12 = 𝜂𝜂𝑆𝑆𝑡𝑡ℎ and 𝑆𝑆𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = (1 − 𝜂𝜂)𝑆𝑆𝑡𝑡ℎ. As 

depicted in Figure 5C and 5F of the main text, this thermal coupling model effectively replicates 

the experimentally observed excitatory and inhibitory behaviors.  

The coupling strength 𝜂𝜂 is hard to measure experimentally so we investigated it using 

numerical simulations. Figure S11 illustrates the coupling between two neuristors under varying 

values of η. As the coupling strength increases, the neuristors exhibit a phase-locked, 1:1 spiking 

pattern. Conversely, when the coupling strength is decreased, neuristor B integrates a higher 

number of heat spikes from neuristor A, resulting in 2:1 or 3:1 spiking patterns, and the 

synchronization between the neuristors also weakens. 
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To delve deeper into the phenomenon of thermal coupling, we carried out supplementary 

simulations using the theoretical model, and the outcomes are depicted in Figure S12 and S13.  

Interestingly, phase shifts and interference patterns emerged in these simulations, though 

these phenomena are not as pronounced in experimental environments. When the spiking 

frequency of one neuristor is an integer multiple of the other's, a stable synchronization is 

achieved, which enhances excitatory interaction and reduces the likelihood of inhibitory 

interactions. Conversely, at non-matching frequencies, phase discrepancies arise, dampening the 

excitatory interactions while amplifying the inhibitory ones. 
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Supporting figures. 

 

 
Figure 5.1. Typical Single Neuristor Behavior.  

In this figure, the neuristor is connected in series with a 12 kΩ load resistor, and the input voltage 
is 12 V. When an input voltage is applied to the circuit, the ensuing current heats up the VO2 
nanodevice, concurrently charging up the parasitic capacitance. Upon reaching the critical 
threshold voltage, the VO2 undergoes an IMT. This abrupt decrease in VO2's resistance prompts 
the parasitic capacitance to discharge, resulting in a current spike. As the charge in the capacitance 
depletes, the majority of the input voltage is dropped across 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and the voltage across VO2 
does not generate sufficient heat to sustain the metallic state, causing the VO2 to revert to its 
insulating state. This process repeats, generating a series of stable spiking auto-oscillations. 
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Figure 5.2 Comprehensive Analysis of Single Neuristor Behavior. 

All the measurements presented in this figure were carried out at a baseline temperature of 325 K 
and with a load resistance set at 12 kΩ. The frequency response depicted in Figure 2D of the main 
text is computed utilizing this data set collected using various voltage levels.  (A) At a subthreshold 
voltage of 9V, the neuristor exhibits no current response.  (B)-(I) When supplied with a sufficiently 
high input voltage, the neuristor operates as a spiking oscillator, with the spiking frequency 
increasing as the input voltage increases. (J)-(K) Upon the application of voltage exceeding the 
upper boundary, the neuristor becomes confined to its metallic state following a single current 
spike. (L) Subsequent to the experiments outlined in panels (J) and (K), the neuristor's behavior 
was rebiased at 15.7V, where stable spiking resumes. This confirms that the inhibitory behavior 
depicted in panels (J) and (K) is not due to degradation of the nanodevice.   
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Figure 5.3 Baseline currents in coupled neuristors. 

This figure serves as a supplement to Figure 3A and 3B in the main text, showing the baseline 
currents. (A)(B) Spike-in and DC-out. Panel (A) demonstrates that neuristor B, biased with a 
subthreshold voltage of 1.5V, exhibits no current response     when there is no input to neuristor 
A. However, as illustrated in panel (B), a current spike in neuristor A triggers the insulator-to-
metal transition (IMT) in neuristor B, resulting in a direct current (DC) output. (C)(D) Spike in 
and spike out. Similarly, panel (C) indicates that neuristor B remains unresponsive when neuristor 
A is deactivated. However, a single spike in neuristor A initiates stable spiking patterns in neuristor 
B, as depicted in panel (D). 
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Figure 5.4 Power dissipation in coupled oscillators. 

This figure is related to Figure 3B in the main text and depicts the power dissipation over time in 
two coupled neuristors. The initial spike in neuristor A consumes 6.45 nJ of energy and activates 
14 subsequent spikes in neuristor B. The energy consumption of the first spike in neuristor B is 
0.23 nJ, and the total energy output for the 14 spikes is 5.56 nJ. 
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Figure 5.5 Stochastic leaky integrate-and-fire behavior in coupled neuristors. 

This figure employs the same parameters as Fig. 3C in the main text, with neuristor A receiving 
an input of 7V in series with 22k ohms and neuristor B subjected to varying input voltages in series 
with 30k ohms. As the input voltage is increased, neuristor B needs to integrate fewer spikes from 
neuristor A, and the spiking pattern becomes more deterministic. This phenomenon has been 
systematically analyzed, and a corresponding heatmap is presented in Figure 3D in the main text. 
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Figure 5.6 Impact of Distance on Information Transfer Among Neuristors. 

In this figure, neuristors A, B, and C are positioned in parallel to each other, with a 0.5µm distance 
between A and B and a 1.5µm distance between A and C. All three neuristors have an identical 
threshold voltage of 6V. Neuristor A receives an input voltage of 7V, while neuristors B and C 
both receive input voltages of 5.9V. In this configuration, neuristor B needs to integrate two spikes 
from neuristor A to generate its own spike, whereas neuristor C needs to integrate three spikes.  
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Figure 5.7 Cascaded information transfer between coupled neuristors. 

This figure serves as an extension to Figure 5.4 in the main text and illustrates the variations in 
spiking rates under different input duty cycles, as well as the relationship between current and 
voltage curves. In each panel, the sudden drop in voltage corresponds to a current spike. At a 50% 
duty cycle, neuristor A integrates more input electrical pulses, providing neuristor B with ample 
time for heat spike integration from neuristor A, and resulting in a 1:1 spiking pattern. As the duty 
cycle increases, the spiking frequency of neuristor A escalates. However, this leads to some spikes 
from neuristor A coinciding with neuristor B's refractory period, rendering them unable to trigger 
subsequent spikes in neuristor B. As a result, 2:1 or 3:1 spiking pattern emerges. 
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Figure 5.8 Cascaded Information Transfer in Coupled Neuristors with Varying Amplitudes. 

This figure shares a similar setup with Figure S6, with the distinction that neuristor A receives 
square pulses having a 50% duty cycle, a period of 2µs, and varying amplitudes. The rate coding 
behavior is evident, where an increased input voltage correlates with a higher frequency. This 
behavior is subsequently propagated through the following layers.  
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Figure 5.9 The evolution of excitatory characteristics with input voltage between adjacent 

neuristors. 
This figure is an extension to Figure 5 in the main text. Both neuristors are connected with a load 
resistance of 12kΩ. Neuristor A has a threshold voltage of 2.9V, whereas neuristor B has a 
threshold voltage of 2.8V. In all panels, the input voltage to neuristor B is kept constant at 2.6V, 
which is insufficient for it to spike independently. (A) With 𝑉𝑉𝐴𝐴 at 2.6V, the two neuristors mutually 
excite each other, generating a single spike. (B) At the threshold voltage 𝑉𝑉𝐴𝐴 = 2.9𝑉𝑉, every spike 
from neuristor A induces a corresponding spike in neuristor B, yielding a 1:1 spiking pattern. (C) 
At 𝑉𝑉𝐴𝐴 = 4𝑉𝑉, neuristor A exhibits a higher spiking frequency, leading to a 2:1 spiking pattern. (D) 
At 𝑉𝑉𝐴𝐴 = 4.3𝑉𝑉, the spiking frequency of neuristor A increases even further, while neuristor B 
adjusts to sustain the 2:1 spiking pattern. 
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Figure 5.10 Another reconfigurable inhibitory characteristic between adjacent neuristors. 

This figure also complements the results presented in Figure 5 of the main text. Both neuristors 
are coupled with a load resistance of 12kΩ. Neuristor A possesses a threshold voltage of 2.9V, 
whereas neuristor B has a threshold voltage of 2.8V. Neuristor B's input voltage remains fixed at 
3.7V, close to its upper boundary. (A) At 𝑉𝑉𝐴𝐴 = 4.5𝑉𝑉, the neuristors synchronize, displaying a 1:1 
spiking pattern. (B) Elevating 𝑉𝑉𝐴𝐴  to 5V increases neuristor A’s spiking frequency, thereby 
disrupting the synchronization and causing irregular spiking amplitudes and phase mismatches in 
neuristor B. (C) Further increasing 𝑉𝑉𝐴𝐴 to 5.2V exacerbates the irregularities in neuristor B's spiking 
pattern to the extent that it eventually stops spiking. (D) With 𝑉𝑉𝐴𝐴 at 6.3V, mutual inhibition occurs 
between the neuristors, causing both to terminate spiking after their initial spikes. (E) Without 
input to neuristor B, neuristor A can spike independently with an input voltage of 6.3V. (F) 
Similarly, without input to neuristor A, neuristor B is capable of spiking independently at an input 
voltage of 3.7V. 
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Figure 5.11 Numerical simulations illustrating excitatory behavior under various coupling 

strengths. 
The parameters for the two neuristors in this simulation are the same as those outlined in Figure 
5.2 of the main text, with a spiking interval ranging from 10V to 15.7V when a 12kΩ load 
resistance is connected. The input voltages are set at 𝑉𝑉𝐴𝐴 = 11𝑉𝑉 and 𝑉𝑉𝐵𝐵 = 9.4𝑉𝑉, while the coupling 
strength 𝜂𝜂 between the two neuristors changes. (A) When 𝜂𝜂 = 0.03, thermal energy from neuristor 
A is insufficient to induce spiking in neuristor B, which remains inactive. (B) At 𝜂𝜂 = 0.06, spikes 
are excited within neuristor B, but the interaction is not strong enough to achieve synchronization. 
(C) With 𝜂𝜂 at 0.09, synchronization begins to emerge, albeit with occasional mismatches. (D)-(F) 
As 𝜂𝜂 continues to increase, the neuristors achieve stable 1:1 spiking synchronization, with the 
phase difference between them diminishing as η grows.  
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Figure 5.12 Numerical simulations of excitatory behavior under various input voltages. 

This simulation uses a similar setting to Figure 5.15, with a fixed coupling strength of 𝜂𝜂 = 0.1 and 
𝑉𝑉𝐵𝐵 = 9.4𝑉𝑉, while varying 𝑉𝑉𝐴𝐴. As depicted from panel (A) to panel (H), as 𝑉𝑉𝐴𝐴 increases, neuristor 
B transitions from a quiescent state to a 1:1 spiking mode, then to a 2:1 spiking mode, and 
ultimately reverts back to a quiescent state. When the frequency of neuristor A matches an integer 
multiple of the intrinsic frequency of neuristor B, pronounced synchronization is observed between 
the two neuristors. However, in cases where the frequencies do not align in this manner, phase 
mismatches occur, and the spiking amplitudes of the neuristors are slightly suppressed.  
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Figure 5.13 Numerical simulation of the inhibitory behavior under various input voltages. 

This simulation also has a similar setting to Figure S11, with a fixed coupling strength of 𝜂𝜂 = 0.1 
and 𝑉𝑉𝐵𝐵 = 14𝑉𝑉, while varying 𝑉𝑉𝐴𝐴. (A) With an input voltage of 9V, neuristor A does not spike, 
whereas neuristor B exhibits stable spiking at 𝑉𝑉𝐵𝐵 = 14𝑉𝑉. (B)-(H) A range of inhibitory interactions 
between the two neuristors. When neuristor A spikes stably, neuristor B is typically inhibited and 
ceases to spike after initial spikes. Notable exceptions are observed in panel (C), which shows a 
stable 2:1 spiking pattern, and panel (G), which features stable 1:1 spiking. This suggests that the 
inhibitory interaction stems from phase mismatches between the two neuristors. In panel (H), with 
𝑉𝑉𝐴𝐴 set too high, mutual inhibition occurs between the neuristors.  (I) This panel presents the state 
of neuristor B when different 𝑉𝑉𝐴𝐴 are applied. 1 representing spiking and 0 representing inhibition. 
The interaction proves to be rather complex; however, in general, neuristor B resumes spiking 
when the frequency of neuristor A is an integer multiple of its own. 
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