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DISCLAIMER 
 
 

This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government nor any agency thereof, nor any 
of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights.  Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof.  The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof. 
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Abstract 
 

The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical 

techniques are examined as monitoring tools for geologic sequestration of CO2.  This work 

does not represent an exhaustive study, but rather demonstrates the capabilities of a number 

of geophysical techniques on two synthetic modeling scenarios.  The first scenario 

represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil 

field, the Schrader Bluff field on the north slope of Alaska, USA.  EOR/sequestration 

projects in general and Schrader Bluff in particular represent relatively thin injection 

intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO2).  This 

model represents the most difficult end member of a complex spectrum of possible 

sequestration scenarios.  The time-lapse performance of seismic, gravity, and EM 

techniques are considered for the Schrader Bluff model.  The second scenario is a gas field 

that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of 

California.  Surface gravity, and seismic measurements are considered for this model.   
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Executive Summary  
 

This report considers the application of a number of different geophysical techniques for 
monitoring geologic sequestration of CO2.  The relative merits of seismic, gravity, and 
electromagnetic are considered for monitoring.  Numerical modeling has been done on 
flow simulations based on a proposed CO2 sequestration project in the Schrader Bluff field 
on the North Slope of Alaska as well as a gas field that in general resembles conditions of 
Rio Vista reservoir in the Sacramento Basin of California.   
 
The time-lapse performance of seismic, gravity, and EM techniques are considered for the 
Schrader Bluff model.  This model represents the most difficult end member of a complex 
spectrum of possible sequestration scenarios because of thin injection intervals with 
multiple fluid components (oil, hydrocarbon gas, brine, and CO2).  The spatial variations in 
the changes in the vertical component of gravity as well as the vertical gradient of the 
vertical component of gravity directly correlate with the spatial variations in the net density 
changes within the reservoir.  Although the magnitude of the signals measured on the 
surface is in the noise level of the field survey, borehole measurements just above the 
reservoir do produce measurable change in the vertical component of gravity that could be 
used to map lateral distributions of injected CO2.  The difference in both the borehole 
gravity response and the vertical gravity gradient measured in vertical profiles within 
boreholes clearly identifies the position of the reservoir.  There is a clear change in seismic 
amplitude associated with the reservoir caused by the changes is water and CO2 saturation. 
In addition, there is a change in the seismic AVO effects.  Both seismic amplitude and 
AVO can be exploited to make quantitative estimates of saturation changes.  There is a 
direct one-to-one correspondence with the change in Sw and the change in the electric field 
amplitude.  While this signal level is low, it can be measured give the signal-to-noise ratio 
of the data.  While this represents a potential low-cost monitoring technique it is best suited 
for CO2 – brine systems where there is a one-to-one correlation between the change in 
water saturation and the change in CO2 saturation (since Sw + SCO2 = 1).  In petroleum 
reservoir such as Schrader Bluff the presence of hydrocarbon as additional fluids eliminates 
the one-to-one correlation between changes in Sw and changes in SCO2.   
 
The seismic and gravity responses were simulated for a simplified flow simulation model 
of the Rio Vista gas field in Sacramento Basin, California.  Models were used to calculate 
anticipated contrasts in seismic velocity, density and impedance in gas-saturated rock when 
CO2 is introduced.  Numerical simulations were performed to evaluate whether a CO2-CH4 
front can be monitored using seismic and/or gravity.  For the gas field used in this study, 
the change in reservoir properties are very small and neither gravity nor seismic methods 
would provide information necessary for monitoring of CO2 movement. 
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Introduction  
 

Petroleum reservoirs are the most obvious sequestration targets.  Petroleum reservoirs have 

the natural advantages that they are already well characterized, have a demonstrated seal, 

have an existing infrastructure, and offer cost offsets in the form of enhanced petroleum 

production as CO2 is injected.  From a monitoring standpoint, petroleum reservoirs offer 

more challenges than for brine formations because they typically have less vertical extent 

(~25m for oil vs. 100’s of m for brine formations) and have multiple in-situ fluids.  Not 

withstanding their inherent monitoring challenges, petroleum reservoir will undoubtedly 

provide many of the early sequestration examples. 

 

Candidate sites for geologic sequestration included Elk Hills, California (Occidental), 

Ventura, California (Aera), and Schrader Bluff, Alaska (BP).  Occidental decided not to 

participate in this study, Ventura didn’t have an existing reservoir model and available 

information wasn’t enough to create one.  Since depleted gas reservoirs are another 

candidate for CO2 sequestration, we included the study of Rio Vista gas field in 

Sacramento Basin, California.  This report provides an evaluation of several geophysical 

monitoring techniques. This analysis makes use of realistic scenarios for a combined 

enhanced oil/gas recovery (EOR/EGR) and CO2 storage project.  It is based on the 

Schrader Bluff oil field on the North Slope of Alaska and the Rio Vista gas field in 

Sacramento Basin, California.  

 

 

On-shore EOR project – Schrader Bluff, Alaska 
 

A joint industry project comprising BP, ChevronTexaco, Norsk Hydro, Shell, Statoil, 

Suncor was formed with the goal of developing technologies to enable the cost effective 

CO2 capture and sequestration.  One site being considered is the Schrader Bluff reservoir 
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on Alaska’s North Slope (Figure 1).  Preliminary evaluations show that a CO2 based 

enhanced oil recovery could increase oil recovery by up to 50% over waterflooding (Hill et 

al, 2000).  Furthermore, the studies concluded that up to 60% of the CO2 injected as part of 

the EOR scheme would remain in the reservoir.  A schematic geological cross-section 

through the Schrader Bluff Formation is shown in Figure 2. 

 

 

 
 

Figure 1: Location of Schrader Bluff reservoir on Alaska’s North Slope. 
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Figure 2: A schematic geological cross-section through the Schrader Bluff Formation. 
 
 
In order to compare the spatial resolution and sensitivity of various geophysical 

techniques being considered for CO2 sequestration monitoring a three-dimensional (3D) 

flow simulation model the reservoir provided by BP was used in conjunction with rock-

properties relations developed from log data to produce geophysical models from the 

flow simulations.  The Schrader Bluff reservoir is a sandstone unit, between 25 and 30 m 

thick, at a depth of 1,100 – 1,400 m.  Figure 3 shows a 3-D view of the portion of the 

reservoir under consideration for a CO2 sequestration test.  The reservoir unit gently dips 

to the east with major faulting running mainly north-south.  Two faults with offsets in 

excess of 75 m cut the reservoir with several smaller sub-parallel faults present.  Time-

lapse snap shots of the reservoir at initial conditions and 5-year increments out to 2035 

were used.  A water after gas (WAG) injection strategy is considered which produces 

complicated spatial variations in both CO2 and water saturation within the reservoir over 

time. 
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Figure 3.   Three-dimensional view of the portion of the reservoir under consideration for 

CO2 sequestration test at Schrader Bluff.  Depths range between 3,800 and 4,400 feet 
(1,158 and 1,341 m) true vertical depth. 

 

Rock Properties Model 

 

Rock properties models were developed from log data for the reservoir.  These models 

relate reservoir parameters to geophysical parameters and are used to convert the flow 

simulation model parameters to geophysical parameters (VP, VS, density and electrical 

resistivity).  A description of the rock-properties modeling process is given by Hoversten 

et al. (2003).  Electrical resistivity as a function of porosity and water saturation using an 

Archie’s law formulation is used.  Seismic properties are modeled as shown in Figure 4. 

The predicted Vp, Vs and density from the derived model based on log data from the 

MSP-15 well are shown. 
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Figure 4.  Rock properties model based on un-consolidated sandstone model (Dvorkin & 

Nur, 1996).  Measured log values shown as blue dots.  Parameters (right side) are 
derived from a simplex minimization of the misfit between observed and calculated Vp, 
Vs and density logs.  Predicted Vp, Vs and density are shown as red lines. 

 

A critical porosity appropriate for sandstone of 35% is assumed.  Oil API gravity and 

brine salinity are taken from measured values.  The regression determined values of the 

grain shear modulus and Poisson ratio are appropriate for quartz grains.  The model 

parameters are determined for the reservoir interval in the logs.  The full geophysical 

models are built by interpolating available well logs in 3D using the seismic reservoir 

surfaces as a spatial guide.  This produces a background model in Vp, Vs, density and 

resistivity.  The reservoir flow simulations, which only cover the reservoir interval, are 

then filled in at the time intervals where flow simulations were done.  The model shown 

in Figure 4, along with Archie’s law, is used to convert the porosity, water saturation, oil 

saturation, gas saturation, CO2 saturation, pressure and temperature from the flow 

simulation to Vp, Vs, density and electrical resistivity.   
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Gravity modeling 

 

A snapshot of the model at initial conditions, before CO2 injection begins, is shown in 

Figure 5.  Figure 5a is a cross-section of bulk density as a function of depth and 

horizontal distance between a pair of injection wells.  In this figure, gravimeters are 

located in two wells roughly 8 km apart.  The reservoir interval is outlined in white on 

Figure 5a.  Figure 5b is a plan view of the density at initial conditions at a depth of 1,200 

m with positions of 23 injecting wells taken from the reservoir simulation.  The positions 

of the gravimeters are indicated by black squares.  Spacing between the gravimeters in 

depth (z) is 10 m outside of the reservoir and 5 m inside of the reservoir.  The white circle 

in the upper part of Figure 5b indicates a well for which borehole gravity responses are 

shown in Figure 11 and 12.   

 

 

 
 

Figure 5a. Cross-section of a density field (kg/m3) as a function of depth and horizontal 
position. 
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Figure 5b.  Plan view of a density (kg/m3) field at a depth z = 1,200 m.  The white circle 
indicates the well location used for borehole gravity calculations shown in Figures 11 
and 12. 

 

The surface gravity response was calculated on a grid of stations with 1 km spacing from 

2,000 m to 22,000 m in x and from 2,000 m to 16,000 m in the y direction.  In general 

since CO2 is less dense (at reservoir conditions) than either oil or water, addition of CO2 

to the reservoir will cause a reduction in the measured gravitational attraction either at the 

surface or in a borehole. 
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Figure 6.    (a) Plan view of the net change in density (kg/m3) within the reservoir.  (b) Plan 
view of the net changes in CO2 saturation within the reservoir.  The change in Gz at the 
surface for the same time period is shown as black contours with hatch marks 
indicating decreasing Gz values. 

 

The change in the vertical attraction of gravity (Gz) at the ground surface between 2020 

and initial conditions is overlaid as black contours in Figure 6a on the net density changes 

within the reservoir.  The peak-to-peak change in Gz is on the order of 2 μgal, which 

would be in the noise level of a field survey using current technology (Hare, 1999).  The 

changes in the vertical gradient of gravity (dGz/dz) between 20 years into CO2 injection 

and initial conditions (not shown) are approximately 0.01 Eötvos units (EU), and also 

below the noise level of current instruments.  The high spatial variations of the net 

density changes within the reservoir are expressed as a filtered response at the surface 

and only show the average changes on a larger scale.  It should be noted that petroleum 

reservoirs in general, and this reservoir in particular, are thinner (30 m) than most brine 

formations considered for CO2 sequestration (100–200 m).  This difference means that 

while the calculated response for Schrader Bluff at the surface are below current 

technology repeatability, brine formations at the same depths would produce measurable 

responses.  This is the experience at the Sleipner CO2 project (Nooner et al., 2003) for a 

gravity survey conducted in 2002 and not yet published.  These results suggest future 

analysis to determine the maximum sensitivity of Gz and dGz/dz that could be obtained by 

permanent emplacement of sensors with continuous monitoring coupled with surface 

deformation measurements to reduce noise levels. 

 

Figure 6b shows the change in surface gravity Gz as black contours overlaid on 

the net change in CO2 saturation within the reservoir.  Because the density changes within 

the reservoir are caused by a combination of CO2, water and oil saturation changes as the 

WAG injection proceeds, there is not a one-to-one correlation in space between either the 

net change in density and the change in Gz or the net change in CO2 saturation (SCO2) and 

the change in Gz.  There is correlation between the change in surface Gz and the net 

change in SCO2 on a large scale. For example, the largest changes in SCO2 occur in the 
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south-west quadrant of the image (Figure 6b) where the largest change in Gz occurs.  This 

scenario, injecting CO2 into an oil reservoir with multiple fluid components, is a worst 

case for the use of gravity to directly map changes in SCO2.  In a CO2 injection into a brine 

formation there would only be water and CO2, in this case the net changes in density 

within the reservoir would directly correlate with the net changes in SCO2 as would the 

change in Gz at the surface. 

 

Access to boreholes allows the gravity measurement to be made closer to the 

reservoir, thus strengthening the signal compared to observations made on the surface.  

Figure 7a shows the change in Gz (2020 – initial) at a depth of 1,200 m (just above the 

reservoir in this section of the field), while Figure 7b is a change in dGz/dz at the same 

depth.  In both figures, the data are calculated on the same grid of 1km by 1km site 

locations as on the surface.  The color images in Figures 7a and 7b are the net density 

changes in the reservoir from Figure 7a.  The changes in Gz and dGz/dz respectively, 

correlate directly with the maximum density changes.  The magnitude of the changes in 

both Gz and dGz/dz is larger than for surface measurements, although only the change in 

Gz would be measurable in the boreholes with current commercial technology.  It should 

be noted however that work on more sensitive borehole Gz and dGz/dz meters is ongoing 

and has the potential to significantly lower the sensitivity of such devices in the near 

future (Thomsen et al, 2003).   
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Figure 7.    (a) Plan view of the color coded net change in density within the reservoir (2020-
initial). The change in Gz (μGal) at a depth of 1,200 m is overlaid as black contours.  
The peak-to-peak change in Gz is approximately 10 μGal.  (b) The change in dGz/dz 
(EU) at a depth of 1,200 m overlaid on the net change in density. The peak-to-peak 
change in dGz/dz is approximately 0.25 EU. 

 

While Figure 7 illustrated the potential resolution by measuring close to the 

reservoir, access though the existing injection wells would substantially reduce the data 

coverage.  Figure 8a shows a map of contoured changes in Gz measured only in the 23 

boreholes at a depth of 1,200 m.  Figure 8b is a net change of CO2 saturation for 

comparison.  Figure 8a was generated using a minimum curvature algorithm for data 

interpolation; however it is representative of the general features present in all of the other 

types of interpolation tested.  In general, interpretation of the interpolated Gz changes from 

the boreholes would lead to an over estimate of the CO2 saturation changes in the reservoir.  

This problem is particularly evident at the north end of the field where increased CO2 

saturation at two isolated wells produces an interpolated image that would be interpreted as 

increased CO2 between the wells where none exists.  

 

Borehole measurements would have to be used in conjunction with some form of 

surface measurement to guide the interpolation between wells.  Alternatively, pressure 

testing between wells could provide estimates of spatial variations in permeability that 

could be used to condition, in a statistical sense, interpolation of the borehole gravity data.  

Many possibilities exist for combining the borehole data with other information in order to 

produce more accurate maps of change within the reservoir.  This is an area where further 

work could be done. 
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a) b)  

Figure 8:    (a) Plan view of the change in Gz (μGal) at a depth of 1,200 m between 20 years 
into CO2 injection and initial conditions using 23 wells indicated by red dots. (b) Plan 
view of the net change in SCO2 within the reservoir between 20 years into CO2 injection 
and initial condition. 

 

In addition to considering spatial variations in Gz and dGz/dz on both the surface 

and at a constant depth within boreholes the response of Gz and dGz/dz in vertical profiles 

down boreholes has been considered.  Figure 9 is the change in Sw between 2020 and initial 

conditions along a vertical slice through the reservoir at an injection well indicated by a 

white circle in Figure 5b.  Figure 10 shows the change in SCO2 between 2020 and initial 

conditions.  At the top of the reservoir near the injection well, Sw decreases while SCO2 

increases.  At the bottom of the reservoir, both SCO2 and Sw increase slightly.  Gz measured 

in the borehole, shown in Figure 11a, reflects this change by a decrease in the response at 

the top of the reservoir, and an increase in the response at the bottom.  The change in Gz is 

± 8 μGal.  The reservoir interval is between 1,325 and 1,350 m at this location.  The change 

in Gz between 2020 and initial conditions (Figure 11b) clearly identifies the position of the 

reservoir.  The sign of the change reflects the changes in the local densities caused by the 

combined changes in all fluids (oil, water and CO2).  The reservoir is outlined by the 

shaded blue area.   
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Figure 9.  Change in Sw between 2020 and initial conditions. Greens and blues are an 

increase in Sw, yellows and reds are a decrease. 
 

 
Figure 10. Change in SCO2 between 2020 and initial conditions. Greens and blues are an 

increase in SCO2, yellows and reds are a decrease. 
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   (a)           (b) 

Figure 11. (a) Borehole Gz for initial conditions (dark blue line) and 2020 (red line), (b) 
Change in Gz between 2020 and initial conditions.  The reservoir interval is indicated 
by the light blue area. 

 

The vertical gradient response (dGz/dz) is shown in Figure 12a, and the change 

between 2020 and initial conditions is shown in Figure 12b.  The change in the response 

is about 0.1 EU, which is not measurable with current technology.   

 

     
  (a)        (b) 

Figure 12.  (a) Borehole vertical gradient response (dGz/dz) for initial conditions (dark blue 
line) and 2020 (red line), (b) Change in dGz/dz between 2020 and initial conditions.  
The reservoir interval is indicated by the light blue area. 
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Popta et al. (1990) showed that a geological structure with a sufficient density 

contrast can be detected by borehole gravity measurements if the observation well is not 

further away than one or two times the thickness of the zone of density contrast.  Figure 

13 shows a CO2 wedge of 250 m radius and density of 2,260 kg/m3 (representing 20% 

CO2 saturation in 20% porosity) inside of 100 m thick sand layer with a density of 2,285 

kg/m3 at the depth of 1 km.  The background density is 2,160 kg/m3.  The borehole 

gravity response as a function of distance from the right edge of the wedge is shown in 

Figure 14a.  The maximum response at the edge of the CO2 wedge is 10 μGal (due to 1% 

change in density).  The responses decrease with distance away from the wedge.  50 m 

away from the wedge the response is 6 μGal, 100 m away response decreases to 4.4 

μGal, and 200 m away it is down to 2.5 μGal.  The borehole vertical gradient response 

for the same model is shown in Figure 14b.  The response changes from 7 EU at the edge 

of the CO2 wedge to 1 EU 50 m away from the edge.  

 

 
Figure 13:  CO2 wedge model. 
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Figure 14a: Borehole gravity response of the model in Figure 13 as a function of distance 

from the wedge edge.  
 

 
Figure 14b: Borehole vertical gradient gravity response of the model in Figure 13 as a 

function of distance from the wedge edge.  
 

Current borehole gravimeter technology has a repeatability of around 5 μGal for Gz, 

this means that with current technology borehole measurements are sensitive to changes in 

a zone up at distances equal to the zone thickness away from the zone edge.  
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Seismic modeling 

 

The flow simulation models for Schrader Bluff have been converted to acoustic 

velocity, shear velocity and density.  A simulated seismic line has been calculated 

running approximately N45°E across the reservoir.  The elastic response to a 50 Hz 

Ricker wavelet was calculated.  The general increase in SCO2 in portions of the reservoir 

near injection wells produces an approximately 20% decrease in seismic velocity as 

shown in Figure 15 (change in P-wave velocity between 2020 and 2005).  The SCO2 and 

Sw changes are shown in Figures 16 and 17 respectively.  The seismic pressure responses, 

for a single shot located at 7,500 m (covering the area of the reservoir with maximum 

change in SCO2) on the 2D profile, for 2005 and 2020 are shown in Figure 18 with the 

difference shown in Figure 19.  There is a significant class 3 type AVO effect as SCO2 

increases in the reservoir.  

 

 
 

Figure 15.  Change in the acoustic velocity (Vp) between 2020 and 2005 along a 2D profile 
extracted form the 3D model volume. The profile runs N45°E across the 3D model. 
Note the significant decrease in acoustic velocity associated with the increase in SCO2 
(Figure 16). 
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Figure 16.  Change in the SCO2 between 2020 and 2005. 

 

 
Figure 17.  Change in Sw between 2020 and 2005. 

 

 
Figure 18.  Seismic pressure response (shot gather) for 2005 and 2020. 
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Figure 19.  Change in pressure response (shot gather) between 2020 and 2005. Note 

amplitude change and AVO effects associated with Sw and SCO2 changes in the 
reservoir. 

 

The pressure response was sorted to CDP gathers, NMO corrected and stacked to produce 

the sections for 2005 and 2020 shown in Figure 20.  The red line is a constant time horizon 

within the reservoir for reference.  The 30 m reservoir interval is not uniform and is 

comprised of 5 m thick substrata, each of which has reflection coefficients at their top and 

base that vary with SCO2.  These sub-strata are all below the seismic tuning thickness.  This 

produces a seismic response without a clear top and base reflector.  There is a significant 

increase in SCO2 to the right of CDP 8412.5 producing the large change in the stacked 

sections shown in Figure 20. 

 

 
Figure 20.  Stacked section for 2005 and 2020. 
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The change in the stacked sections between 2020 and 2005 is shown in Figure 21.  Below 

the areas of major change in the reservoir (to the right of CDP 8412.5) the decrease in the 

velocity of the reservoir produces a time shift in the 2020 seismic responses below the 

reservoir, resulting in the events around 1,100 ms that do not reflect CO2 saturation changes 

at this depth, only the time shift from CO2 above. 

 

 
Figure 21. Change in the stacked sections between 2020 and 2005 (2020-2005). 
 

There is a large, and easily measurable, change in the stacked trace amplitude associated 

with the reservoir caused by the changes in Sw and SCO2.  In addition, there is a change in 

the AVO effects as seen in Figure 19.  Both amplitude and AVO can be exploited to make 

quantitative estimates of saturation changes under certain conditions.  Forward calculations 

using the Zoeppritz equation for both the 2005 and 2020 models provide insight into the 

AVO dependence on model parameters.  The forward modeling creates a synthetic seismic 

gather from a given set of elastic parameters VP, VS and density as a function of depth.  The 

full Zoeppritz equation is used to compute the acoustic to acoustic (pp) reflection 

coefficient Rpp(θ) for each angle and at each layer boundary.  Synthetic seismic CDP 

gathers are calculated by convolving the angle dependent reflection coefficients with a 50 

Hz Ricker wavelet.  The convolution model assumes plane-wave propagation across the 

boundaries of horizontally homogeneous layers, and takes no account of the effects of 
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geometrical divergence, inelastic absorption, wavelet dispersion, transmission losses, mode 

conversions and multiple reflections.   

 

 The change in VP, VS, and density within the reservoir (between 1250 and 1275 m) 

is shown in Figure 22.   

 

 
Figure 22. Difference in VP, VS, and density profiles between 2020 and 2005 for the Schrader 

Bluff model at the center of maximum CO2 saturation increase.   
 

The synthetic CDP gathers as a function of angle are shown in Figures 23a and 23b for 

2005 and 2020 respectively.  The change in reflection amplitude between 2020 and initial 

conditions is shown in Figure 24.  The AVO response of the composite reflections from 

the reservoir interval shows increasing negative amplitude with offset, a typical Class 3 

gas response.  The negative trough (associated with the top of the reservoir) increases its 

magnitude with offset and is followed by an increasing peak amplitude with offset  
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       (a)                (b) 

Figure 23.  Synthetic gather for (a) 2005 and (b) 2020. 
 

 
Figure 24.  Difference between 2020 and 2005 gathers. 

 

 

Use of AVO in fluid saturation prediction 

 

The AVO attributes of reflections from the reservoir can be used to estimate fluid 

saturations under certain circumstances.  AVO data can be used to estimate the acoustic 

and shear impedance of the reservoir (Castagna et al., 1998).  When used in a time-lapse 

sense, these data can provide estimates of the change in water saturation and pressure 

within the reservoir (Landro, 2001).  The ability to predict changes in water saturation and 

pressure within a reservoir is illustrated in Figure 25.  In Figure 25 the rock properties 

model derived for the North Sea sands of the Troll reservoir (Dvorkin and Nur, 1996) is 

used to calculate the changes in shear and acoustic impedance of the reservoir as the water 

saturation and pore pressure for two cases of oil saturation as CO2 is introduced.  The first 
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case (open circles) has initial oil and water saturation of 50%, as CO2 is introduced it 

replaces water.  The second case has an initial oil saturation of 60% and 40% water, with 

CO2 replacing water.  In both cases SCO2 ranges from 0 to 30%.  Each point in the figure 

represents a unique value of SW and SCO2 with the oil saturation held fixed at either 50% or 

60%.  SCO2 values increase in increments of 0.015% from right to left on the figure, and 

pore pressure increases and decreases (indicated by arrows) from the reference pressure of 

24.24 MPa by increments of 0.7 MPa.   

 

Figure 25 illustrates three important points; 1) if the oil saturation is known the 

changes in shear and acoustic impedance of the reservoir can determine the change in 

pressure and CO2 saturation, 2) the changes in the shear impedance required to make the 

estimates is quite small and would require extremely good shear data, 3) an uncertainty in 

the oil saturation level of 10% in this example has only a small effect on the estimated 

values of changes in SCO2 and almost no effect on the estimates of pressure change. 

 

An uncertainty on the value of oil saturation has limited effects in these calculations 

because of the relative similarity of the bulk modulus and density of oil compared to water 

when either is compared to the properties of CO2.  The situation is significantly different if 

there is hydrocarbon gas (such as methane) in the reservoir.  In this case (due to the 

extreme differences between the properties of methane and water) even a small uncertainty 

in the hydrocarbon gas saturation leads to very large uncertainties in the estimated values of 

pressure and CO2 saturation changes, making this technique essentially unusable unless an 

independent estimate of water saturation or gas saturation can be obtained from other 

methods (Hoversten et al., 2003). 
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Figure 25.  Each point represents a unique value of changes in pore pressure (ΔPp) and CO2 

saturation (ΔSCO2) as a function of changes in the shear and acoustic impedance of the 
reservoir.  Open circles represent oil saturation of 50% with CO2 replacing water.  
Filled dots represent oil saturation of 60% with CO2 replacing water.  Initial pore 
pressure is 25.24 MPa, initial SCO2 is 0%.  SCO2 increments are 0.015 and pressure 
increments are 0.7 MPa. 
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While estimation of changes in fluid saturation using AVO is complicated by the multiple 

fluid components in oil or gas reservoir, the situation is simpler in a brine reservoir.  For 

cases were CO2 is injected into a brine reservoir there are only two fluid components (brine 

and CO2) and the added constraint that their saturations levels sum to one.  In this case 

AVO information can more easily be used to estimate the level of CO2 in the reservoir.  

The following example illustrates this process.  An unconsolidated North Sea sand of the 

Troll reservoir (Dvorkin and Nur, 1996) that is encased in shale is assumed to contain 50% 

brine and 50% CO2 as the reference point for these calculations.  Pressure and temperature 

are such that the CO2 is in the liquid state.  The values of CO2 (and hence water) saturation 

and pore pressure are varied about this starting point and the acoustic and shear velocities 

as well as density are calculated.   

 

The reflection coefficient at the top of the reservoir can be approximated (Shuey, 

1985) by: 
2 2( ) sin ( ) sin ( ) tan ( )R A B C 2θ θ θ≈ + + θ      (2) 

where θ is the average of the reflection and transmission angle for a plane wave hitting the 

interface.  The constants A and B are referred to as the intercept and slope respectively in 

the AVO literature.  The constants A, B and C are functions of the velocity and density of 

the media on either side of the reflecting interface and are given by: 

 

1/ 2( / /
p p

A V V ρ ρ= Δ + Δ     (3) 

21/ 2( / 2( / ) (2 / / )
p p s p s s

B V V V V V V ρ ρ= Δ − Δ + Δ    (4) 

1/ 2( /
p p

C V= Δ V                 (5) 

 

where ΔVp is the change in acoustic velocity across the interface and 
p

V  is the average 

acoustic velocity across the interface, ΔVs , s
V ,  Δρ, and ρ  are changes and averages 

for shear velocity and density respectively.  If time lapse seismic data is acquired, and A 

and B are estimated from the AVO data and used to calculate ΔA and ΔB, the associated 
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ΔSCO2 and ΔPp can be estimated from model based calculations such as are illustrated in 

Figure 26. 

 

 
Figure 26. Contours of the change in CO2 saturation (left panel) and effective pressure 

(lithostatic – pore pressure) (right panel) as function of the change in the AVO intercept 
(A) and slope (B) for an unconsolidated sand surrounded by shale. 

 

This example illustrates a theoretical case without noise in the seismic data, in practice 

estimation of the “slope”, B, is the most difficult.  Extremely high signal to noise (S/N) 

seismic data would be required for accurate estimates of B and hence accurate estimates 

of pressure and saturation changes. 
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Electromagnetic modeling 

 

 
Figure 27.  Reservoir bulk resistivity as a 

function of gas saturation (Sg).  
Porosity = 25%. 

The electrical resistivity of reservoir rocks is 

highly sensitive to changes in water 

saturation. This can be seen from Archie’s 

Law (Archie 1942), which has been 

demonstrated to accurately describe the 

electrical resistivity of sedimentary rocks as 

a function of water saturation, porosity, and 

pore fluid resistivity. Figure 27 shows the 

rock bulk resistivity (Ωm) as a function of 

gas saturation (1–water saturation) for a 

reservoir with brine resistivity equivalent to 

sea water (ρbrine = 0.33) with 25% porosity.  

All petroleum fluids (oil, condensate, and hydrocarbon gas) as well as CO2 are electrically 

resistive, hence the relation shown in Figure 27 is appropriate for any combination of oil, 

hydrocarbon gas, condensate or CO2. 

 

The bulk resistivity in Figure 27 is plotted on a log scale to span the large range of 

resistivity values as a function of the gas saturation (Sg).  This high sensitivity to water 

saturation in a reservoir can be exploited by electromagnetic (EM) techniques where the 

response is a function of the earths electrical resistivity.  Of all the possible combination of 

EM sources and measured EM fields one system combines both relative ease of 

deployment with high sensitivity to reservoirs of petroleum scale and depth.  This 

technique uses a grounded electric dipole that is energized with an alternating current at a 

given frequency to produce time varying electric and magnetic fields that can be measured 

on the earth’s surface.  The electric dipole can consist of two steel electrodes (1 m2 plates 

or sections of drill pipe) buried at a shallow depth (1-10 m) separated by 100 m and 

connected by cable to a low power generator (a portable 5,000 W generator is sufficient).  
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The measured data would consist of the electric field at a given separation from the 

transmitter acquired on the surface or within the near surface.   

 

To simulate such an EM system we have calculated the electric field on the surface of the 

Schrader Bluff model using 100 m electric dipoles operating at 1 Hz an measuring the 

resulting electric field at a separation of 2 km in-line with the transmitting dipole.  Figure 

28 shows the amplitude of the generated EM field at 2 km separation and 1 Hz together 

with the natural background electric field generated from worldwide thunderstorms and 

pulsations in the earths ionosphere (the source field for the magnetotelluric method).  The 

significance of Figure 28 is that the generated electric field for the Schrader Bluff model, 

using only a small portable generator (producing a 10 A current in the source dipole) is an 

order of magnitude above the background electric field (noise) at the operating frequency 

of 1 Hz.  This means that synchronous detection of the signal combined with stacking can 

recover signal variations to better than 1 percent. 

 

Figure 29 shows the net change in water saturation within the reservoir (vertically 

integrated ΔSw) between 2020 and initial conditions.  The change in the electric field 

amplitude for the same interval is overlaid as black contour lines, with peak-to-peak 

amplitude of 1.2%.  There is a direct one-to-one correspondence with the change in Sw and 

the change in the electric field amplitude.  While this signal level is low, it can be measured 

give the signal-to-noise ratio of the data (Figure 28).  While this represents a potential low-

cost monitoring technique it is best suited for CO2 – brine systems where there is a one-to-

one correlation between the change in water saturation and the change in CO2 saturation 

(since Sw + SCO2 = 1).  In petroleum reservoir such as Schrader Bluff the presence of 

hydrocarbon as additional fluids eliminates the one-to-one correlation between changes in 

Sw and changes in SCO2.  This is illustrated in Figure 30 where the same changes in electric 

field amplitude are overlaid on the net change in the CO2 saturation within the reservoir 

between 2020 and initial conditions.  In this case we see that the correlation between 

changes in SCO2 and changes in the electric field amplitude are not as good as seen between 

changes in Sw and the electric field data. 
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This type of EM technique has not yet been employed as a monitoring tool within the 

petroleum industry.  However, EM technology is currently the subject of a significant 

upsurge in industry interest.  Several commercial contractors are now offering this 

technique as a survey tool, most notably, in the offshore environment where it is currently 

being used as an exploration tools (Ellingsrud et al. 2002).  The equipment and service 

providers exist to apply this technique for monitoring in the future. 
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Figure 28. Amplitude of naturally occurring electric field as a function of frequency 
(Gasperikova et al. 2003), that would be considered noise to that electromagnetic 
system considered here for monitoring, shown as blue curve.  The horizontal red line 
represents the signal amplitude at a source-receiver separation of 2 km at an operating 
frequency of 1 Hz for a 100 m electric dipole energized with 10 A of current. 
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Figure 29.  Color contours of the net change in water saturation over the vertical interval of 
the reservoir between 2020 and initial conditions.  The change in the amplitude of the 
electric field from an electric dipole source at a separation of 2 km is overlaid as black 
contours.  The peak-to-peak change is electric field amplitude is 1.2 %.  Note the direct 
correlation between decreases in the electric field amplitude and increases in water 
saturation (decreased electric resistivity of the reservoir).  Locations of injection wells 
are shown by black circles with arrows through them. 
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Figure 30. Color contours of the net change in CO2 saturation (ΔSCO2) over the vertical 
interval of the reservoir between 2020 and initial conditions.  The change in the 
amplitude of the electric field from an electric dipole source at a separation of 2 km is 
overlaid as black contours.  The peak-to-peak change is electric field amplitude is 1.2 
%.  Location of injection wells are shown by black circles with arrows through them. 
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On-shore EGR project - Rio Vista Gas Field, California 
 
It is natural to consider geophysical techniques for monitoring of CO2 movement within 

hydrocarbon reservoirs whether the CO2 is introduced for enhance oil/gas recovery or for 

geologic sequestration because of the large body of experience in their application in the 

petroleum industry.  Among geophysical techniques, seismic methods are by far the most 

highly developed.  Due to cost considerations, other less expensive techniques are being 

considered for monitoring.  This part of the report considers the use of surface gravity and 

seismic as a means of monitoring the movement of CO2 within a gas reservoir. 

 

The applicability of geophysical techniques depends, first, on the magnitude of the change 

in the measured geophysical property produced by CO2, and second, on the inherent 

resolution of the technique.  Finally, the applicability also depends on the configuration in 

which the measurement is deployed. 

 

Gravity methods sense changes in density, and seismic methods depend on both density 

and elastic stiffness.  These physical properties are known for CO2, typical reservoir fluids, 

and their mixtures (Batzle and Wang, 1992; Magee and Hawley, 1994, NIST, 1992) so 

assessments can be made of expected changes in geophysical properties. 

 

Rock Properties Model 
 

One of the scenarios we have studied was a gas field that in general resembles conditions 

of the Rio Vista reservoir in Sacramento Basin.  The field size is about 15 km x 15 km.  

The zone of interest is at about 1,300 m depth.  The unit is of the Eocene age and it is 

called the Domengine sand.  The average thickness of the reservoir is about 50 m.  

Contacts with the underlying Capay shale and overlying Nortonville shale are 

conformable (Johnson, 1990).  The unit consists of series of interbedded marine sands 
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and shales, with sand being a predominant lithology.  The Domengine sand is poorly 

consolidated.   

 

We have used a reservoir simulation (Oldenburg et al., 2004) where the CO2 injection well 

is in the center of the field and four production CH4 wells are at the corners about 800 m 

away from the injection well (Figure 31b).  This is only one five-spot simulation domain; 

there are 25 CO2 injection wells, and 16 CH4 production wells, and 8 monitoring wells 

placed over the central part of the gas field (Oldenburg et al., 2004) as shown in Figure 31a.  

CO2 injection begins at the base of the 50 m thick reservoir interval.  The porosity is 0.30, 

permeability is 10-12 m2 (1 Darcy), residual brine saturation is 0.20, and reservoir 

temperature is 75° C.  Reservoir pressure at the start of CO2 injection is 5 MPa, and at the 

end of the last simulation (15 years) is 6 MPa.  CH4 density is 29.0 kg/m3 at pressure of 5.0 

MPa and temperature of 75° C.  The density of CO2 under the same conditions is 90.5 

kg/m3.  The CO2 injection rate is 3 kg/s (260 t/day) and CH4 production rate is 0.56 kg/s 

(48 t/day).   

 

 
Figure 31:  (a) Schematic of well pattern for CO2 sequestration/enhanced gas recovery 

simulation with well spacing of 1.6 km, (b) Perspective view of quarter five-spot 
simulation domain (after Oldenburg et al., 2004).   

 

The properties (density and bulk modulus) of the CO2 are calculated assuming hydrostatic 

pressure and a temperature at 1,300 m of 75°C using the NIST14 code (Magee and 

Howley, 1994).  The bulk rock density Dbulk of the reservoir is calculated using; 
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2
(1 )bulk w CO grain w brine CO COD S S D S D S= − − + +

2 2
D    (1) 

 

where, Sw is the brine saturation, SCO2 is the CO2 saturation, Dgrain is the grain density, Dbrine 

is the brine density and DCO2 is the CO2 density.  The density effect of CO2 dissolved in the 

brine is neglected.  Quartz sand grains (Dgrain = 2650 kg/m3) are assumed. 

 

Four time steps were considered – initial conditions, 5 years, 10 years and 15 years into the 

CO2 injection.  Using these flow simulations, geophysical models were created to study the 

gravity and seismic methods responses to changes in the reservoir due to the CO2 injection.   

 

Figure 32 is a plane view of CO2 saturation in the reservoir at the depth of 1,325 m after 10 

years of CO2 injection.  The CO2 injection well is at (0,0) and CH4 production wells are at 

the corners of the grid: (-800, -800), (800, -800), (-800, 800), and (800, 800).   

 

 
Figure 32:  Plan view of CO2 saturation at the depth of 1,325 m as a function of x and y 

coordinates after 10 years of injection. 
 

Figure 33 is a cross-section of CO2 saturation through the center of the reservoir after 10 

years of CO2 injection.  The injector is at the bottom of the reservoir (depth of 1,350 m) at 

x = 0 m.   
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Figure 33: A cross-section of CO2 saturation in the center of the reservoir after 10 years of 

CO2 injection as a function of depth and horizontal position. 
 

Figures 34 - 36 respectively are cross-sections of Vp-velocity, Vs-velocity, and density 

through the center of the reservoir after 10 years of CO2 injection.  All these figures 

indicate a symmetric pattern between the injection and production wells and relatively 

small changes both in velocity and density. 

 
Figure 34: Vp-velocity change between initial conditions and 10 years into the CO2 

injection as a function of depth and horizontal position. 
 

 
Figure 35: Vs-velocity change between initial conditions and 10 years into the CO2 

injection as a function of depth and horizontal position. 
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Figure 36: Density change between initial conditions and 10 years into the CO2 injection as 

a function of depth and horizontal position. 
 

Gravity modeling and inversion 

 

The vertical component of the surface gravity response of the model after 5 years, 10 years, 

and 15 years of CO2 injection is shown in Figures 37, 38, and 39, respectively.  CO2 has 

higher density than CH4 under reservoir conditions and therefore by injecting CO2 into the 

reservoir density increases which in turn causes an increase in the gravity response.  The 

peak surface gravity response is about 2 μGal, 3.5 μGal, and 5 μGal after 5, 10 and 15 

years of injection.  Signals for 5 and 10 years are very close to the limits of current survey 

technologies and might not be measurable in the field.  The response after 15 years of CO2 

injection should be measurable in the field.  Brown et al. (2002) reported repeatability of 

3.5 μGal for a gravity survey at Prudhoe Bay, Alaska.  Nooner et al. (2003) reported 

repeatability of 2.5 μGal and a detection threshold for time-lapse changes of 5 μGal for a 

time-lapse gravity survey of the Sleipner CO2 sequestration site in the North Sea.    
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Figure 37: Vertical component of the surface gravity response of the model after 5 years of 
CO2 injection as a function of x and y coordinates.   

 

 
 

Figure 38: Vertical component of the surface gravity response of the model after 10 years 
of CO2 injection as a function of x and y coordinates.   
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Figure 39: Vertical component of the surface gravity response of the model after 15 years of 
CO2 injection as a function of x and y coordinates.   

 

The inversion of gravity data is very important since construction of density contrast 

models significantly increases the amount of information that can be extracted from the 

gravity data.  However, a principal difficulty with the inversion of the gravity data is the 

inherent non-uniqueness and that there is no inherent depth resolution.  This difficulty can 

be overcome by introduction of prior information.  Some authors prescribe the density 

variations and invert for the geometrical parameters of the model (e.g. Oldenburg, 1974), 

others assume a constant density contrast and invert for the position of a polyhedral body 

from isolated anomalies (e.g. Pedersen, 1979).  Li and Oldenburg (1998) developed another 

approach, where gravity data is inverted directly by minimizing an objective function of the 

density model subject to fitting the observations.  This approach incorporates also prior 

information via a reference model and depth weighting.  We adopted Smith et al. (1999) 

approach described for magnetotelluric data inversion, in which the top and base of the 

reservoir is known and we invert for a density variation inside of the reservoir.  The 

inversion result is a cumulative density change in the reservoir as a function of x and y 

coordinates.  Because the model space and inversion domain space can be different, one 

needs to calculate a parameter that is equal in both of these domains, a product of a 

cumulative cell density change and its volume, in order to compare inversion results with a 

true model.   
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The gravity inversions of the vertical component of the surface gravity response for each 

time are shown in Figures 40, 41, and 42 respectively.   

 

 
 

Figure 40: Density change (in kg/m3) recovered by inversion of the vertical component of the 
surface gravity response of the model after 5 years of CO2 injection as a function of x 
and y coordinates.   
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Figure 41: Density change (in kg/m3) recovered by inversion of the vertical component of the 
surface gravity response of the model after 10 years of CO2 injection as a function of x 
and y coordinates.   

 

 
 
Figure 42: Density change (in kg/m3) recovered by inversion of the vertical component of the 

surface gravity response of the model after 15 years of CO2 injection as a function of x 
and y coordinates.   

 
Figures 40, 41, and 42 show that CO2 is replacing CH4 further and further from the 

injection well (0, 0) with time and therefore the CO2 - CH4 contact moves away from the 

injection well.  Since the five-point simulation area is centered over the CO2 injection well 

and CH4 production wells contributed only partially, the gravity high is centered on the 

injection well.  To evaluate how much change in the response is due to one injection well 

(0,0) and one production well (800,800) we modified the model after 15 years of CO2 

injection to reflect that, and the gravity response of this model is shown in Figure 43.  

Figure 44 shows the inversion results for this model overlaid on the true density model.  

The gravity inversion used in this study is solving for density changes between the top and 

bottom of the reservoir.  The inversion result is a cumulative density change in the reservoir 

as a function of x and y coordinates.  Because the model space and inversion domain space 

are different, in order to compare inversion results with a true model, we need to calculate a 

parameter that is equal in both of these domains, and that is a product of a cumulative cell 

density change and its volume.  The true model is displayed in color, and the inversion 
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results are displayed as red contours.  The true model shows that density near the injection 

well is higher than near the production well.  The inversion finds a broad smooth anomaly 

centered between the injection and production wells.   

 

 
 
Figure 43: Vertical component of the surface gravity response of a modified model after 15 

years of CO2 injection with an injection well at (0,0) and a production well at (800,800) 
as a function of x and y coordinates.   
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Figure 44: True density model overlaid by contours of the inversion results as a function of x 
and y coordinates.   

 

 

Seismic modeling 

 

NMO CDP stack sections of the model after 5 years, 10 years, and 15 years of CO2 

injection are shown in Figures 45, 46, and 47 respectively.  Reservoir produces weak 

anomalies associated with the changes in CO2 saturation.  Seismic velocities change only 

1–2 %.  The seismic amplitudes are small and therefore seismic is not a reliable monitoring 

tool of CO2 movement under present reservoir conditions.   

 

 49



 
 

Figure 45: NMO CDP stacked section of the model after 5 years of CO2 injection. 
 

 
 

Figure 46: NMO CDP stacked section of the model after 10 years of CO2 injection. 
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Figure 47: NMO CDP stacked section of the model after 15 years of CO2 injection. 
 

Figure 48 shows the NMO section as function of offset centered 300 m away from the 

injection well for the model after 10 years of CO2 injection.  Figure 49 shows amplitude at 

the top of the reservoir at the same location (x=-300 m), as a function of offset after 5, 10, 

and 15 years of CO2 injection.  There is less than a 2% change for models after 5 and 10 

years of CO2 injection, and about 3% for model after 15 years of CO2 injection.  Figure 50 

shows predicted Rpp amplitude as a function of offset for the reservoir properties used in 

this study.  All three figures (Figures 48-50) confirm that the change in the amplitude as a 

function of offset is on the edge of detectability to be able to predict the CO2 saturation 

from AVO measurements for this model.  Assuming normal S/N ratios and changes present 

over many traces, 2-5% change both in amplitude and AVO should be detectable in the 

field data (Daley, personal communication).   
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Figure 48: NMO section for CDP 238 (x = -300 m) showing seismic amplitude as a function 
of offset of model after 10 years of CO2 injection. 

 

 
Figure 49: AVO amplitude ratio as a function of offset for CDP 238, which is 300 m away 

from the injection well.   
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Figure 50: Model AVO results – Rpp amplitude as a function of offset for quartz sand of 

30% porosity and 20% water saturation. 
 

 

Ventura Oil Field 
 

The Ventura Field is located in the center of the Venture Basin, 65 miles west and north of 

Los Angeles.  The basin is filled with tertiary sediments.  The Pliocene section is about 

6,000 m thick and outcrops within the Ventura Field.  This section of deep-water fan 

sediments consists of many interbeded sandstones and shales.  Mid Pleistocene stresses 

compressed the basin, folded the sediments and formed complexly faulted, asymmetric 

structure, the east-west trending Ventura Anticline.  The Ventura Field produces from 

Pliocene unit at depths of 1,000 to over 4,000 m.  Five major fault blocks A, B, C, D, and N 

have been identified during development.  The blocks B, C, and D between 1,500 m and 

3,000 m are candidates for CO2 sequestration.   

 

Using average reservoir properties we calculated a response in seismic amplitude (Figure 

51) and density change (Figure 52) due to the change in CO2 saturation.  The values used in 
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these calculations are: depth to the top of the reservoir = 2,500 m, porosity = 14%, reservoir 

temperature = 87.8° C, reservoir pressure = 22 MPa, GOR ~ 100 l/l, oil gravity = 30° API, 

water saturation = 0.6, oil saturation = 0.4.   

 

 
Figure 51:  Seismic amplitude as a function of angle (offset) for a hypothetical model for 

Ventura oil field.   
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Figure 52:  Density change due to a change in CO2 saturation for a hypothetical model for 
Ventura oil field.   

 

Based on the signal levels in Figures 51 and 52 neither the seismic nor gravity methods 

would be able to monitor changes in the reservoir due to CO2 saturation change for 

conditions used in this hypothetical model. 

 

 

Results and Discussion 
 

The difference in the vertical component of gravity (Gz) on the surface caused by CO2 

injection over a 20-year period for the Schrader Bluff model is on the order of 2 μGal, 

which is in the noise level of the field survey (Hare, 1999).  The negative change in the 

response is caused by increased CO2 saturations reducing the bulk density of the 

reservoir.  The spatial variations in the changes in Gz as well as the vertical gradient of 

the vertical component of gravity (dGz/dz) directly correlate with the spatial variations in 

the net density changes within the reservoir.  Again, the magnitude of the signal 

measured in the field (2–10 EU) is above the gradiometer accuracy (0.5–1 EU), but the 

difference between initial conditions and 20 years into CO2 injection is very small (~0.1 

EU).  If the noise levels of measurements of the changes in dGz/dz could be reduced by 

permanent sensor emplacement and continuous monitoring gravity and gradient 

measurements may offer a tool for monitoring.   

 

Borehole measurements of gravity just above the reservoir do produce measurable 

change in the vertical component of gravity that could be used to map lateral distributions 

of injected CO2.  The changes in dGz/dz measured in the borehole are below the ability of 

current technology to distinguish.  However, current work on borehole gravity tools may 

change this situation within the next few years.  The difference in both the borehole 

gravity response and the vertical gravity gradient (dGz/dz) measured in vertical profiles 

within boreholes clearly identifies the position of the reservoir.  The sign of the change 

reflects the changes in the local densities caused by either water or CO2.   
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There is a clear change in seismic amplitude associated with the reservoir caused by the 

changes is water and CO2 saturation.  In addition, there is a change in the seismic AVO 

effects.  Both seismic amplitude and AVO can be exploited to make quantitative 

estimates of saturation changes.  Forward calculations using Zoeppritz equation for both 

2005 and 2020 models support this argument.   

 

The electrical resistivity of reservoir rocks is highly sensitive to changes in water 

saturation.  This high sensitivity to water saturation in a reservoir can be exploited by 

electromagnetic (EM) techniques where the response is a function of the electrical 

resistivity of the formation.  Of all the possible combination of EM sources and measured 

EM fields one system combines both relative ease of deployment with high sensitivity to 

reservoirs of petroleum scale and depth.  This technique uses a grounded electric dipole 

that is energized with an alternating current at a given frequency to produce time varying 

electric and magnetic fields that can be measured on the earth’s surface.  To simulate 

such an EM system we have calculated the electric field on the surface of the Schrader 

Bluff model using 100 m electric dipoles operating at 1 Hz an measuring the resulting 

electric field at a separation of 2 km in-line with the transmitting dipole.  The generated 

electric field for the Schrader Bluff model, using only a small portable generator is an 

order of magnitude above the background electric field (noise) at the operating frequency 

of 1 Hz.  This means that synchronous detection of the signal combined with stacking can 

recover signal variations to better than 1 percent.  There is a direct one-to-one 

correspondence with the change in Sw and the change in the electric field amplitude.  

While this signal level is low, it can be measured give the signal-to-noise ratio of the 

data.  While this represents a potential low-cost monitoring technique it is best suited for 

CO2 – brine systems where there is a one-to-one correlation between the change in water 

saturation and the change in CO2 saturation (since Sw + SCO2 = 1).  In petroleum reservoir 

such as Schrader Bluff the presence of hydrocarbon as additional fluids eliminates the 

one-to-one correlation between changes in Sw and changes in SCO2.  This type of EM 

technique has not yet been employed as a monitoring tool within the petroleum industry.  

However, EM technology is currently the subject of a significant upsurge in industry 
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interest.  Several commercial contractors are now offering this technique as a survey tool, 

most notably, in the offshore environment where it is currently being used as an 

exploration tools (Ellingsrud et al. 2002).  The equipment and service providers exist to 

apply this technique for monitoring in the future. 

 

For the gas field used in this study, the change in reservoir properties are very small and 

neither gravity nor seismic methods would provide information necessary for monitoring of 

CO2 movement. 

 

Not enough information was available to create a representative model of the Ventura oil 

field.  Preliminary calculations using average reservoir properties suggest, however, that 

neither gravity nor seismic methods will be able to give information about CO2 saturation 

change. 

 

 

Conclusions 
 

Both surface and borehole gravity measurements have been modeled for Schrader Bluff. 

The injection of CO2 produces a bulk density decrease in the reservoir that in turn produces 

a reduction in the gravitation attraction from the reservoir. The spatial pattern of the change 

in the vertical component of gravity (Gz) as well as the vertical gradient of gravity (dGz/dz) 

is directly correlated with the net change in density of the reservoir. The difference in Gz on 

the surface caused by CO2 injection over a 20-year period is on the order of 2 μGal, which 

is below the level of repeatability of current field surveys (Hare, 1999). However, 

measurements made in boreholes just above the reservoir interval (1,200 m depth) are 

sensitive enough to observe measurable changes in Gz as CO2 injection proceeds. Such 

measurements made in numerous wells could map the areas of net density changes caused 

by injected CO2 and water within the reservoir. The time-lapse changes in the borehole Gz 

and dGz/dz clearly identify the vertical section of the reservoir where fluid saturations are 

changing. 
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Model results show a clear change in seismic amplitude associated with the reservoir due to 

the changes in water and CO2 saturation. Moreover, there is a change in the seismic AVO 

effects. Both seismic amplitude and AVO can be used to make quantitative estimates of 

saturation changes, subject to modeling assumptions.  

 

The electrical resistivity of rocks is primarily a function of porosity and water saturation 

(Sw). When the porosity is known, or can reasonably be assumed to have small spatial 

variation, the changes in electrical resistivity are directly related to the changes in water 

saturation. EM techniques can be used to map such spatial variations in electrical 

resistivity. EM field system that combines relative ease of deployment with high sensitivity 

to petroleum reservoirs generated electric field for the Schrader Bluff model that was an 

order of magnitude above the background electric field (noise) at the operating frequency 

of 1 Hz. This means that synchronous detection of the signal combined with stacking can 

recover signal variations to better than 1 percent. The change in the electric field amplitude 

is directly proportional to the change in Sw. While this signal level is low, it can be 

measured given the signal-to-noise ratio of the data. This potential low-cost monitoring 

technique is best suited for CO2 – brine systems where there is a one-to-one correlation 

between the change in water saturation and the change in CO2 saturation. In petroleum 

reservoirs such as Schrader Bluff, the presence of hydrocarbons as additional fluids 

eliminates this one-to-one correlation. 

 

Because the changes in reservoir properties for the gas field used in this study are very 

small neither gravity nor seismic methods would provide information necessary for 

monitoring of CO2 movement. 

 

Not enough information was available to create a representative model of the Ventura oil 

field.  Preliminary calculations using average reservoir properties suggest, however, that 

neither gravity nor seismic methods will be able to give information about CO2 saturation 

change. 
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