
UCLA
UCLA Previously Published Works

Title
Automatic Differentiation is no Panacea for Phylogenetic Gradient Computation.

Permalink
https://escholarship.org/uc/item/5mv3z4jp

Journal
Genome biology and evolution, 15(6)

ISSN
1759-6653

Authors
Fourment, Mathieu
Swanepoel, Christiaan J
Galloway, Jared G
et al.

Publication Date
2023-06-01

DOI
10.1093/gbe/evad099

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mv3z4jp
https://escholarship.org/uc/item/5mv3z4jp#author
https://escholarship.org
http://www.cdlib.org/

GBE

Automatic Differentiation is no Panacea for Phylogenetic
Gradient Computation
Mathieu Fourment 1, Christiaan J. Swanepoel2,3, Jared G. Galloway4, Xiang Ji5, Karthik Gangavarapu6,
Marc A. Suchard 6,7,8,*, and Frederick A. Matsen IV 4,9,10,11,*

1Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
2Centre for Computational Evolution, The University of Auckland, Auckland, New Zealand
3School of Computer Science, The University of Auckland, Auckland, New Zealand
4Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
5Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
6Department of Human Genetics, University of California, Los Angeles, California, USA
7Department of Computational Medicine, University of California, Los Angeles, California, USA
8Department of Biostatistics, University of California, Los Angeles, California, USA
9Department of Statistics, University of Washington, Seattle, Washington, USA

10Department of Genome Sciences, University of Washington, Seattle, Washington, USA
11Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

*Corresponding authors: E-mails: msuchard@ucla.edu; matsen@fredhutch.org.

Accepted: 25 May 2023

Abstract

Gradients of probabilistic model likelihoods with respect to their parameters are essential for modern computational statistics
and machine learning. These calculations are readily available for arbitrary models via “automatic differentiation” implemented
in general-purpose machine-learning libraries such as TensorFlow and PyTorch. Although these libraries are highly optimized, it
is not clear if their general-purpose nature will limit their algorithmic complexity or implementation speed for the phylogenetic
case compared to phylogenetics-specific code. In this paper, we compare six gradient implementations of the phylogenetic like
lihood functions, in isolation and also as part of a variational inference procedure. We find that although automatic differen
tiation can scale approximately linearly in tree size, it is much slower than the carefully implemented gradient calculation for tree
likelihood and ratio transformation operations. We conclude that a mixed approach combining phylogenetic libraries with ma
chine learning libraries will provide the optimal combination of speed and model flexibility moving forward.

Key words: phylogenetics, Bayesian inference, variational inference, gradient.

Significance
Bayesian phylogenetic analysis plays an essential role in understanding how organisms evolve, and is widely used as a
tool for genomic surveillance and epidemiology studies. The classical Markov chain Monte Carlo algorithm is the engine
of most Bayesian phylogenetic software, however, it becomes impractical when dealing with large datasets. To address
this issue, more efficient methods leverage gradient information, albeit at the cost of increased computational demands.
Here we present a benchmark comparing the efficiency of automatic differentiation implemented in general-purpose
libraries against analytical gradients implemented in specialized phylogenetic tools. Our findings indicate that imple
menting analytical gradients for the computationally intensive components of the phylogenetic model significantly en
hances the efficiency of the inference algorithm.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023 1

https://orcid.org/0000-0001-8153-9822
https://orcid.org/0000-0001-9818-479X
https://orcid.org/0000-0003-0607-6025
mailto:msuchard@ucla.edu
mailto:matsen@fredhutch.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/gbe/evad099

Fourment et al. GBE

Introduction
Gradients (i.e. multidimensional derivatives) of probabilistic
model likelihoods with respect to their unknown para
meters are essential for modern computational statistics
and machine learning. For example, gradient-based
Hamiltonian Monte Carlo (HMC) (Neal 2011), implemented
in the Stan statistical framework (Carpenter et al. 2017), is a
cornerstone of the modern Bayesian statistical toolbox.
Variational Bayesian (VB) inference algorithms (Blei et al.
2017), which use gradients to improve fit of a variational
distribution to the posterior, are another key modern tech
nique. In the more general setting of machine learning, gra
dients are used to train predictive models such as deep
neural networks.

Although gradients have been considered for a long
time in phylogenetics (Schadt et al. 1998; Kenney and Gu
2012), they are now becoming of central importance to en
able faster approaches to Bayesian phylogenetic analysis.
Bayesian methods have gained popularity among phylo
genetic practitioners due to their ability to integrate mul
tiple data sources, including ecological factors (Lemey
et al. 2020) and clinical outcomes (Bedford et al. 2014)
into a single analysis. A drawback of these methods is scal
ability, as it is well known that Bayesian phylogenetic
packages, such as BEAST (Suchard et al. 2018), struggle
with datasets containing thousands of sequences with
moderately complex models. Bayesian phylogenetic ana
lysis typically uses classical Markov chain Monte Carlo
(MCMC) and therefore does not need to calculate compu
tationally intensive gradients.

In order to go beyond classical MCMC, recent research
has developed HMC (Fisher et al. 2021) and Variational
Bayes phylogenetic analysis (Dang and Kishino 2019;
Fourment and Darling 2019; Zhang and Matsen 2019;
Liu et al. 2021; Moretti et al. 2021; Ki and Terhorst
2022; Koptagel et al. 2022; Zhang and Matsen 2022).
These methods require fast and efficient gradient calcula
tion algorithms to give viable alternatives to MCMC.
Correspondingly, recent work has developed fast algo
rithms and implementations of phylogenetic likelihood gra
dient calculation (Ji et al. 2020) in the BEAGLE (Ayres et al.
2019) library.

Outside of phylogenetics, gradient-based analysis has
also exploded in popularity, in part driven by easy to use
software libraries that provide gradients via automatic dif
ferentiation (AD). AD libraries “record” function composi
tions, have gradients on hand for component functions,
and combine these simple gradients together via the chain
rule (see Margossian 2019 for a review). This work has, re
markably, been extended to many computable operations
that are not obviously differentiable such as dynamic con
trol flow and unbounded iteration (Yu et al. 2018). These
libraries, exemplified by TensorFlow (Abadi 2016) and

PyTorch (Paszke et al. 2019), are often developed by large
dedicated teams of professional programmers.

The combination of these various advances raises a num
ber of questions. Can we rely on AD exclusively in phyloge
netics, and avoid calculating gradients using hand-crafted
algorithms? How do AD algorithms scale when presented
with interdependent calculations on a tree? Does perform
ance depend on the package used?

In this paper, we address these questions by performing
the first benchmark analysis of AD versus carefully imple
mented gradient algorithms in compiled languages. We
find that AD algorithms vary widely in performance de
pending on the backend library, the dataset size and the
model/function under consideration. All of these AD imple
mentations are categorically slower than libraries designed
specifically for phylogenetics; we do, however, find that
they appear to scale roughly linearly in tree size. Moving
forward, these results suggest an architecture in which
core phylogenetic likelihood and branch-length transform
ation calculations are performed in specialized libraries,
whereas rich models are formulated, and differentiated,
in a machine learning library such as PyTorch or TensorFlow.

Results

Overview of Benchmarking Setup

To coherently describe our results, we first provide a suc
cinct overview of the phylogenetic and machine learning
packages that we will benchmark as well as the computa
tional tasks involved.

We benchmark two packages where the core algorithm
implementation is specialized to phylogenetics: BEAGLE
(Ji et al. 2020), wrapped by our Python-interface C++ library
bito, as well as physher (Fourment and Holmes 2014).
The bito library also efficiently implements gradients of
the ratio transformation, following (Ji et al. 2021), for uncon
strained node-height optimization. We compare these to the
most popular AD libraries available, namely TensorFlow
(Abadi 2016), PyTorch (Paszke et al. 2019), JAX (Bradbury
et al. 2018), and Stan (Carpenter et al. 2017). These are
leveraged in phylogenetics via treeflow, torchtree,
phylojax, and phylostan (Fourment and Darling
2019), respectively. When using AD, these programs make
use of reverse-mode automatic differentiation. Every pro
gram uses double precision unless specified otherwise.

We divide the benchmarking into two flavors: a “micro-”
and “macro-” benchmark. The macrobenchmark is meant
to mimic running an actual inference algorithm, though
stripped down to reduce the burden of implementing a
complex model in each framework. Specifically, we infer
parameters of a constant size coalescent process, strict
clock, as well as node heights under a typical continuous-
time Markov chain (CTMC) model for character substitution

2 Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023

https://doi.org/10.1093/gbe/evad099

Phylogenetic Gradient Benchmark GBE

along an unknown phylogeny. Every implementation uses
the automatic differentiation variational inference (ADVI)
framework (Kucukelbir et al. 2017) to maximize the evi
dence lower bound (ELBO) over 5000 iterations. A priori
we assume the CTMC substitution rate is exponentially dis
tributed with mean 0.001 and we use the Jeffrey’s prior for
the unknown population size parameter.

The microbenchmark, on the other hand, is meant to
identify which parts of a phylogenetic model are the most
computationally expensive in the context of gradient-based
inference. This involves evaluating likelihoods and functions
used in phylogenetic analysis and calculating their gradient
(1) the phylogenetic likelihood, (2) the coalescent likeli
hood, (3) node-height transform, and (4) the determinant
of the Jacobian of the node-height transform. Specifically,
these tasks are:

1. Phylogenetic likelihood: the likelihood of observing
an alignment under the Jukes–Cantor substitution mod
el (Jukes and Cantor 1969) is efficiently calculated using
the pruning algorithm (Felsenstein 1981) requiring O(N)
operations where N is the number of taxa. In this bench
mark, the derivatives are taken with respect to the
branch lengths. Although a naive implementation of
the gradient calculation requires O(N2) calculations, ef
ficient implementations (Fourment and Holmes 2014;
Ji et al. 2020) necessitate only O(N) operations. We
also benchmark the tree likelihood using the GTR substi
tution model. The gradient with respect to the GTR
parameters is calculated analytically in physher while
bito utilizes finite differences. Analytical gradients of
the tree likelihood require O(N) operations for each of

the eight free parameters while numerical gradients
require two evaluations of the tree likelihood per
parameter.

2. Coalescent likelihood: the likelihood of observing a
phylogeny is calculated using the constant size popula
tion coalescent model (Kingman 1982). The gradient
with respect to the node heights and the population
size parameter requires O(N) time.

3. Node-height transform: Node ages of time trees need
to be reparameterized in order to perform uncon
strained optimization (Fourment and Holmes 2014; Ji
et al. 2021). Evaluating this function requires a single
preorder traversal and requires O(N) operations.

4. Determinant of the Jacobian of the node-height
transform: The transformation of the node ages re
quires an adjustment to the joint density through the in
clusion of the determinant of the Jacobian of the
transform (Fourment and Darling 2019). The Jacobian
is triangular and the determinant is therefore straight
forward to compute. Although calculating its gradient
analytically is not trivial, requiring O(N2) calculations, re
cent work (Ji et al. 2021) proposed an O(N) algorithm.
The derivatives are taken with respect to the node
heights.

AD Implementations Vary Widely in Performance, and
Custom Gradients are Far Faster

We find that on the macrobenchmark, AD implementations
vary widely in their speed (fig. 1). This is remarkable given
that these are highly optimized libraries doing the same
flavor of operations. Specifically, both just-in-time (JIT)

FIG. 1.—Speed of implementations for 5000 iterations of variational time-tree inference with a strict clock. See supplementary figure S1, Supplementary
Material online for results without phylojax.

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023 3

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
https://doi.org/10.1093/gbe/evad099

Fourment et al. GBE

compiled JAX and compiled TensorFlow use XLA as a back
end, although they have strikingly different performance.
(We note that this is now a known issue with JAX https://
github.com/google/jax/issues/10197.) Specifically, JAX
was the only package that clearly scales quadratically in
the number of tips. Moreover, PyTorch was several times
faster than TensorFlow for our tasks of interest, which
was surprising to us because of PyTorch uses a dynamic
computation graph. Results for phylojax with datasets
larger than 750 sequences are not reported as they ex
ceeded the maximum allocated computation time.

None of these AD libraries approach the speed of hand-
coded phylogenetic gradients. The BEAGLE gradients
wrapped in bito and gradients computed in physher
show comparable performance, which are at least eight
times the speed of the fastest AD implementation
(supplementary fig. S2, Supplementary Material online).

As expected, memory usage of the pure C program
physher is the smallest, while torchtree is less memory
heavy than treeflow and phylostan’s memory usage in
creases significantly more rapidly (supplementary fig. S3,
Supplementary Material online). It is worth noting that bito
noticeably decreases the memory usage of torchtree.

Overall using a specialized library for the tree likelihood
within a Python program greatly improves the performance
of a program making use of gradient-based optimization
(e.g. ADVI, HMC) while incurring a small performance
and memory cost compared to a fully C-based tool.

Relative Performance of AD Depends on the Task

To break down our inferential task into its components, we
then performed a “microbenchmark” divided into the in
gredients needed for doing gradient-based inference
(fig. 2 and supplementary fig. S4, Supplementary Material
online). See Methods for a precise description of the indi
vidual tasks. Across tasks, we see the following shared fea
tures. The specialized phylogenetic packages (bito/
BEAGLE and physher) perform similarly to one another
and are consistently faster than the AD packages, except
for the Jacobian task. As expected, the tree likelihood is
the computational and memory bottleneck (fig. 2 and
supplementary fig. S3, Supplementary Material online) in
phylogenetic models and efficient gradient calculation are
warranted. TensorFlow-based treeflow was the slowest
implementation across the board after excluding JAX.

FIG. 2.—Speed of implementations for the gradient of various tasks needed for inference. See text for description of the tasks. JAX is excluded from this
plot due to slow performance stretching the y-axis; see supplementary figure S5, Supplementary Material online for JAX. See supplementary figure S6,
Supplementary Material online for function evaluations.

4 Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023

https://github.com/google/jax/issues/10197
https://github.com/google/jax/issues/10197
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
https://doi.org/10.1093/gbe/evad099

Phylogenetic Gradient Benchmark GBE

The AD programs also performed significantly worse in
the node-height transform and tree likelihood tasks.
Function calls in python are notoriously more expensive
than in C and C++, potentially explaining the decrease in
performance for algorithms involving a tree traversal. In
addition, the tree likelihood implementations in BEAGLE
and physher are highly optimized with SSE vectorization
(Ayres et al. 2019) and manual loop unrolling.

The calculations of the coalescent function and its gradi
ent were slightly faster in physher than in torchtree,
although the difference was slight. The ratio transform
has nontrivial computational expense—comparable to the
phylogenetic likelihood gradient—in AD packages; how
ever, specialized algorithms for calculating these gradients
scale much better. Interestingly, for large datasets,
torchtree outperforms the specialized phylogenetic
packages for the Jacobian ratio transform gradient calcula
tion. Since this is the fastest task, the overall execution time
is not, however, significantly impacted.

The phylogenetic gradient is approximately linear
for packages other than JAX (supplementary fig. S7,
Supplementary Material online), although the specialized
phylogenetic packages are about 10 times faster. For the
GTR calculation, we actually compare two flavors of evalu
ation: finite differences for bito and analytic gradients for
physher. As expected, bito is increasingly faster than
physher as the datasets increase in size.

With the exception of the tree likelihood, JAX’s JIT cap
abilities greatly improved the performance of the algo
rithms in the microbenchmark (supplementary fig. S8,
Supplementary Material online). Analytically calculating
the gradient of the tree likelihood considerably improved
the running time of phylojax pointing at implementa
tion issues in the gradient function in JAX for this type of al
gorithm (supplementary fig. S8, Supplementary Material

online). In contrast, enabling JIT in torchtree showed
no improvement and was not included in the results. The
calculation of the tree likelihood and its gradient were sig
nificantly slower using single precision for datasets larger
than 500 sequences. This is because torchtree, like
most phylogenetic programs, rescales partial likelihood vec
tors in order to avoid underflow; using single precision re
quires more rescaling operations.

Discussion
We have found that, although AD packages provide unri
valed flexibility for model development and flexible like
lihood formulation, they cannot compete with carefully
implemented gradients in compiled languages. Furthermore,
they do differ between each other significantly in computa
tion time and memory usage for phylogenetic tasks.

Our results motivate the design of bito: leverage specia
lized algorithms for phylogenetic gradients and ratio trans
forms, but wrap them in a way that invites model flexibility.
In this paper, we have focused on two functionalities of
bito: first as a wrapper for the high-performance BEAGLE
library, and second, as a fast means of computing the ratio
transforms. This is our first publication using this library, which
will be the computational core of our future work on Bayesian
phylogenetic inference via optimization. We will defer a more
comprehensive description of bito to future work.

Our results also motivate us to focus our future model
developments using the PyTorch library, which shows the
best performance as well as ease of use.

Our study has the following limitations. First, these librar
ies are developing quickly and they may gain substantially in
efficiency in future versions. Second, these results concern
CPU computation only. Future work, including development
of phylogenetic gradients using graphics processing units
(GPUs), will evaluate the promise of GPUs for gradient-based
inference. However, we note that initial results using GPUs
for AD packages did not lead to a significant speedup.

Methods

Data

To evaluate the performance of each implementation, we
reused parts of the validation workflow introduced by
Sagulenko et al. (2018). The data in this workflow consist
of a collection of influenza A datasets ranging from 20 to
2000 sequences sampled from 2011 to 2013. Our bench
mark is built on top of this pipeline and makes use of a
reproducible Nextflow (Di Tommaso et al. 2017) pipeline.

Software Benchmarked

torchtree is a Python-based tool that leverages the
Pytorch library to calculate gradients using reverse mode AD.

Table 1
Code Availability and Version Number of Each Phylogenetic Program.
Version Identifiers Correspond to Git Tags.

Program Availability Version

bito https://github.com/
phylovi/bito

autodiff-benchmark

phylojax https://github.com/4ment/
phylojax

v1.0.1

phylostan https://github.com/4ment/
phylostan

v1.0.5

physher https://github.com/4ment/
physher

v2.0.0

torchtree https://github.com/4ment/
torchtree

gradient-benchmark

torchtree-bito https://github.com/4ment/
torchtree-bito

gradient-benchmark

treeflow https://github.com/
christiaanjs/treeflow

autodiff-benchmark

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023 5

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
https://github.com/phylovi/bito
https://github.com/phylovi/bito
https://github.com/4ment/phylojax
https://github.com/4ment/phylojax
https://github.com/4ment/phylostan
https://github.com/4ment/phylostan
https://github.com/4ment/physher
https://github.com/4ment/physher
https://github.com/4ment/torchtree
https://github.com/4ment/torchtree
https://github.com/4ment/torchtree-bito
https://github.com/4ment/torchtree-bito
https://github.com/christiaanjs/treeflow
https://github.com/christiaanjs/treeflow
https://doi.org/10.1093/gbe/evad099

Fourment et al. GBE

torchtree-bito is a torchtree plugin that offers
an interface to the bito library (https://github.com/phylovi/
bito). Within bito, analytical derivatives with respect to the
branch lengths are calculated through the BEAGLE library
(Ayres et al. 2019; Ji et al. 2020) while the gradient with re
spect to the GTR substitution model parameters are calculated
numerically using finite differences. bito and BEAGLE do
not provide analytical derivatives of the coalescent function,
hence no results are shown in figure 2 and supplementary
figures S4–S7, Supplementary Material online.
physher is a C program that allows one to approximate

distributions using ADVI (Fourment et al. 2020), while every
derivative is calculated analytically. The derivatives with re
spect to the branch lengths are efficiently calculated using a
linear-time algorithm developed independently of Ji et al.
(2020). The gradient of the Jacobian transform is efficiently
calculated using the method proposed by Ji et al. (2021).
phylostan is a Python-based program (Fourment and

Darling 2019) that generates phylogenetic models that are
compatible with the Stan package.
phylojax is a Python-based tool that leverages the JAX

library to calculate gradients using reverse mode AD.
treeflow is a Python-based tool that leverages the

TensorFlow library to calculate gradients using reverse mode
AD. treeflow’s implementation of the phylogenetic likeli
hood uses TensorFlow’s TensorArray construct (Yu et al.
2018), a data structure which represents a collection of arrays.
Each array can only be written once in a computation, and
read many times. Using these data structure to implement
the dynamic programming steps of the pruning algorithm po
tentially allows for more scalable gradient computations.

Computational Infrastructure

The automated workflow was run using the Fred
Hutchinson gizmo scientific computing infrastructure. A
single node with 36 (2 sockets by 18 cores) Intel ® Xeon
Gold 6254 CPU @ 3.10GHz cores was used for all individual
processes in the pipeline. A total of 48G RAM was allo
cated. The node was running on Ubuntu 18.04.5 LTS
(Bionic Beaver) with Nextflow (version 22.04.3.5703) and
Singularity (version 3.5.3) modules installed.

Supplementary Material
Supplementary data are available at Genome Biology and
Evolution online.

Acknowledgments
We are grateful to Jonathan Terhorst for discussions
concerning phylogenetic gradients in JAX. This work
was supported through US National Institutes of Health
grants AI162611 and AI153044. Scientific Computing
Infrastructure at Fred Hutch was funded by ORIP grant

S10OD028685. Computational facilities were provided by
the UTS eResearch High-Performance Compute Facilities.
Dr. Matsen is an Investigator of the Howard Hughes
Medical Institute.

Data Availability
The Nextflow pipeline is available from https://github.com/
4ment/gradient-benchmark. The versions of the programs
used in this study are provided in table 1.

Literature Cited
Abadi M, et al. 2016. TensorFlow: a system for large-scale machine

learning. In: Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’16; 2016
Nov; USA. USENIX Association. p. 265–283. Available from:
https://dl.acm.org/doi/10.5555/3026877.3026899.

Ayres DL, et al. 2019. BEAGLE 3: improved performance, scaling, and
usability for a high-performance computing library for statistical
phylogenetics. Syst Biol. 68(6):1052–1061.

Bedford T, et al. 2014. Integrating influenza antigenic dynamics with
molecular evolution. elife. 3:e01914.

Blei DM, Kucukelbir A, McAuliffe JD. 2017. Variational inference: a re
view for statisticians. J Am Stat Assoc. 112(518):859–877. doi:10.
1080/01621459.2017.1285773

Bradbury J, et al. 2018. JAX: composable transformations of Python
+NumPy programs. Available from: http://github.com/google/jax.

Carpenter B, et al. 2017. Stan: a probabilistic programming language.
J Stat Softw. 76(1):1–32. doi:10.18637/jss.v076.i01

Dang T, Kishino H. 2019. Stochastic variational inference for Bayesian
phylogenetics: a case of CAT model. Mol Biol Evol. 36(4):825–833.
doi:10.1093/molbev/msz020

Di Tommaso P, et al. 2017. Nextflow enables reproducible computa
tional workflows. Nat Biotechnol. 35(4):316–319. doi:10.1038/
nbt.3820

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a max
imum likelihood approach. J Mol Evol. 17(6):368–376.

Fisher AA, Ji X, Zhang Z, Lemey P, Suchard MA. 2021. Relaxed random
walks at scale. Syst Biol. 70(2):258–267. doi:10.1093/sysbio/
syaa056

Fourment M, Darling AE. 2019. Evaluating probabilistic programming
and fast variational Bayesian inference in phylogenetics. PeerJ. 7:
e8272.doi:10.7717/peerj.8272

Fourment M, Holmes EC. 2014. Novel non-parametric models to esti
mate evolutionary rates and divergence times from heterochro
nous sequence data. BMC Evol Biol. 14:163. doi:10.1186/
s12862-014-0163-6

Fourment M, et al. 2020. 19 dubious ways to compute the marginal like
lihood of a phylogenetic tree topology. Syst Biol. 69(2):209–220.

Ji X, et al. 2020. Gradients do grow on trees: a linear-time
O(N)-dimensional gradient for statistical phylogenetics. Mol Biol
Evol. 37(10):3047–3060. doi:10.1093/molbev/msaa130

Ji X, et al. 2021. Scalable Bayesian divergence time estimation with ra
tio transformations; October. Available from: http://arxiv.org/abs/
2110.13298.

Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In:
Mammalian protein metabolism. Vol. 3. New York: Academic
Press. p. 21–132.

Kenney T, Gu H. 2012. Hessian calculation for phylogenetic likelihood
based on the pruning algorithm and its applications. Stat Appl
Genet Mol Biol. 11(4):Article 14. doi:10.1515/1544-6115.1779

6 Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023

https://github.com/phylovi/bito
https://github.com/phylovi/bito
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
https://github.com/4ment/gradient-benchmark
https://github.com/4ment/gradient-benchmark
https://dl.acm.org/doi/10.5555/3026877.3026899
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
http://github.com/google/jax
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1093/molbev/msz020
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/sysbio/syaa056
https://doi.org/10.1093/sysbio/syaa056
https://doi.org/10.7717/peerj.8272
https://doi.org/10.1186/s12862-014-0163-6
https://doi.org/10.1186/s12862-014-0163-6
https://doi.org/10.1093/molbev/msaa130
http://arxiv.org/abs/2110.13298
http://arxiv.org/abs/2110.13298
https://doi.org/10.1515/1544-6115.1779
https://doi.org/10.1093/gbe/evad099

Phylogenetic Gradient Benchmark GBE

Ki C, Terhorst J. 2022. Variational phylodynamic inference using
pandemic-scale data. Mol Biol Evol. 39(8):msac154. doi:10.1093/
molbev/msac154

Kingman JFC. 1982. The coalescent. Stoch Process Appl. 13(3):235–248.
Koptagel H, Kviman O, Melin H, Safinianaini N, Lagergren J. 2022.

VaiPhy: a variational inference based algorithm for phylogeny,
March. Available from: http://arxiv.org/abs/2203.01121.

Kucukelbir A, Tran D, Ranganath R, Gelman A, Blei DM. 2017.
Automatic differentiation variational inference. J Mach Learn
Res. 18(1):430–474.

Lemey P, et al. 2020. Accommodating individual travel history, global
mobility, and unsampled diversity in phylogeography: a
SARS-CoV-2 case study. bioRxiv.

Liu X, Ogilvie HA, Nakhleh L. 2021. Variational inference using ap
proximate likelihood under the coalescent with recombination.
Genome Res. 31(11):2107–2119. doi:10.1101/gr.273631.120

Margossian CC. 2019. A review of automatic differentiation and its ef
ficient implementation. Wiley Interdiscip Rev Data Min Knowl
Discov. 9(4):e1305.

Moretti AK, et al. 2021. Variational combinatorial sequential Monte
Carlo methods for Bayesian phylogenetic inference. In:
Uncertainty in artificial intelligence. PMLR. p. 971–981.

Neal R. 2011. MCMC using Hamiltonian dynamics. In: Brooks S,
Gelman A, Jones G, Meng XL, editors. Handbook of Markov chain
Monte Carlo. Chapman & Hall/CRC Handbooks of Modern

Statistical Methods. Taylor & Francis. Available from: http://
books.google.com/books?id=qfRsAIKZ4rIC.

Paszke A, et al. 2019. PyTorch: an imperative style, high-performance
deep learning library; December. Available from: https://papers.
nips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-
Paper.pdf.

Sagulenko P, Puller V, Neher RA. 2018. TreeTime: maximum-likelihood
phylodynamic analysis. Virus Evol. 4(1):vex042.

Schadt EE, Sinsheimer JS, Lange K. 1998. Computational advances in
maximum likelihood methods for molecular phylogeny. Genome
Res. 8(3):222–233. doi:10.1101/gr.8.3.222

Suchard MA, et al. 2018. Bayesian phylogenetic and phylodynamic
data integration using beast 1.10. Virus Evol. 4(1):vey016.

Yu Y, et al. 2018. Dynamic control flow in large-scale machine learn
ing. In: Proceedings of the Thirteenth EuroSys Conference.
New York: Association for Computing Machinery (ACM). p. 1–15.

Zhang C, Matsen FA IV. 2019. Variational Bayesian phylogenetic infer
ence. In: International Conference on Learning Representations
(ICLR). New Orleans: OpenReview.net. Available from: https://
openreview.net/pdf?id=SJVmjjR9FX.

Zhang C, Matsen FA IV. 2022. A variational approach to Bayesian
phylogenetic inference, April. Available from: http://arxiv.org/abs/
2204.07747.

Associate editor: Tom Williams

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023 7

https://doi.org/10.1093/molbev/msac154
https://doi.org/10.1093/molbev/msac154
http://arxiv.org/abs/2203.01121
https://doi.org/10.1101/gr.273631.120
http://books.google.com/books?id=qfRsAIKZ4rIC
http://books.google.com/books?id=qfRsAIKZ4rIC
https://papers.nips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://papers.nips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://papers.nips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1101/gr.8.3.222
https://openreview.net/pdf?id=SJVmjjR9FX
https://openreview.net/pdf?id=SJVmjjR9FX
http://arxiv.org/abs/2204.07747
http://arxiv.org/abs/2204.07747
https://doi.org/10.1093/gbe/evad099

	Automatic Differentiation is no Panacea for Phylogenetic Gradient Computation
	Introduction
	Results
	Overview of Benchmarking Setup
	AD Implementations Vary Widely in Performance, and Custom Gradients are Far Faster
	Relative Performance of AD Depends on the Task

	Discussion
	Methods
	Data
	Software Benchmarked
	Computational Infrastructure

	Supplementary Material
	Acknowledgments
	Data Availability
	Literature Cited

