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Abstract

Gradients of probabilistic model likelihoods with respect to their parameters are essential for modern computational statistics 
and machine learning. These calculations are readily available for arbitrary models via “automatic differentiation” implemented 
in general-purpose machine-learning libraries such as TensorFlow and PyTorch. Although these libraries are highly optimized, it 
is not clear if their general-purpose nature will limit their algorithmic complexity or implementation speed for the phylogenetic 
case compared to phylogenetics-specific code. In this paper, we compare six gradient implementations of the phylogenetic like
lihood functions, in isolation and also as part of a variational inference procedure. We find that although automatic differen
tiation can scale approximately linearly in tree size, it is much slower than the carefully implemented gradient calculation for tree 
likelihood and ratio transformation operations. We conclude that a mixed approach combining phylogenetic libraries with ma
chine learning libraries will provide the optimal combination of speed and model flexibility moving forward.

Key words: phylogenetics, Bayesian inference, variational inference, gradient.

Significance
Bayesian phylogenetic analysis plays an essential role in understanding how organisms evolve, and is widely used as a 
tool for genomic surveillance and epidemiology studies. The classical Markov chain Monte Carlo algorithm is the engine 
of most Bayesian phylogenetic software, however, it becomes impractical when dealing with large datasets. To address 
this issue, more efficient methods leverage gradient information, albeit at the cost of increased computational demands. 
Here we present a benchmark comparing the efficiency of automatic differentiation implemented in general-purpose 
libraries against analytical gradients implemented in specialized phylogenetic tools. Our findings indicate that imple
menting analytical gradients for the computationally intensive components of the phylogenetic model significantly en
hances the efficiency of the inference algorithm.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
Gradients (i.e. multidimensional derivatives) of probabilistic 
model likelihoods with respect to their unknown para
meters are essential for modern computational statistics 
and machine learning. For example, gradient-based 
Hamiltonian Monte Carlo (HMC) (Neal 2011), implemented 
in the Stan statistical framework (Carpenter et al. 2017), is a 
cornerstone of the modern Bayesian statistical toolbox. 
Variational Bayesian (VB) inference algorithms (Blei et al. 
2017), which use gradients to improve fit of a variational 
distribution to the posterior, are another key modern tech
nique. In the more general setting of machine learning, gra
dients are used to train predictive models such as deep 
neural networks.

Although gradients have been considered for a long 
time in phylogenetics (Schadt et al. 1998; Kenney and Gu 
2012), they are now becoming of central importance to en
able faster approaches to Bayesian phylogenetic analysis. 
Bayesian methods have gained popularity among phylo
genetic practitioners due to their ability to integrate mul
tiple data sources, including ecological factors (Lemey 
et al. 2020) and clinical outcomes (Bedford et al. 2014) 
into a single analysis. A drawback of these methods is scal
ability, as it is well known that Bayesian phylogenetic 
packages, such as BEAST (Suchard et al. 2018), struggle 
with datasets containing thousands of sequences with 
moderately complex models. Bayesian phylogenetic ana
lysis typically uses classical Markov chain Monte Carlo 
(MCMC) and therefore does not need to calculate compu
tationally intensive gradients.

In order to go beyond classical MCMC, recent research 
has developed HMC (Fisher et al. 2021) and Variational 
Bayes phylogenetic analysis (Dang and Kishino 2019; 
Fourment and Darling 2019; Zhang and Matsen 2019; 
Liu et al. 2021; Moretti et al. 2021; Ki and Terhorst 
2022; Koptagel et al. 2022; Zhang and Matsen 2022). 
These methods require fast and efficient gradient calcula
tion algorithms to give viable alternatives to MCMC. 
Correspondingly, recent work has developed fast algo
rithms and implementations of phylogenetic likelihood gra
dient calculation (Ji et al. 2020) in the BEAGLE (Ayres et al. 
2019) library.

Outside of phylogenetics, gradient-based analysis has 
also exploded in popularity, in part driven by easy to use 
software libraries that provide gradients via automatic dif
ferentiation (AD). AD libraries “record” function composi
tions, have gradients on hand for component functions, 
and combine these simple gradients together via the chain 
rule (see Margossian 2019 for a review). This work has, re
markably, been extended to many computable operations 
that are not obviously differentiable such as dynamic con
trol flow and unbounded iteration (Yu et al. 2018). These 
libraries, exemplified by TensorFlow (Abadi 2016) and 

PyTorch (Paszke et al. 2019), are often developed by large 
dedicated teams of professional programmers.

The combination of these various advances raises a num
ber of questions. Can we rely on AD exclusively in phyloge
netics, and avoid calculating gradients using hand-crafted 
algorithms? How do AD algorithms scale when presented 
with interdependent calculations on a tree? Does perform
ance depend on the package used?

In this paper, we address these questions by performing 
the first benchmark analysis of AD versus carefully imple
mented gradient algorithms in compiled languages. We 
find that AD algorithms vary widely in performance de
pending on the backend library, the dataset size and the 
model/function under consideration. All of these AD imple
mentations are categorically slower than libraries designed 
specifically for phylogenetics; we do, however, find that 
they appear to scale roughly linearly in tree size. Moving 
forward, these results suggest an architecture in which 
core phylogenetic likelihood and branch-length transform
ation calculations are performed in specialized libraries, 
whereas rich models are formulated, and differentiated, 
in a machine learning library such as PyTorch or TensorFlow.

Results

Overview of Benchmarking Setup

To coherently describe our results, we first provide a suc
cinct overview of the phylogenetic and machine learning 
packages that we will benchmark as well as the computa
tional tasks involved.

We benchmark two packages where the core algorithm 
implementation is specialized to phylogenetics: BEAGLE 
(Ji et al. 2020), wrapped by our Python-interface C++ library 
bito, as well as physher (Fourment and Holmes 2014). 
The bito library also efficiently implements gradients of 
the ratio transformation, following (Ji et al. 2021), for uncon
strained node-height optimization. We compare these to the 
most popular AD libraries available, namely TensorFlow 
(Abadi 2016), PyTorch (Paszke et al. 2019), JAX (Bradbury 
et al. 2018), and Stan (Carpenter et al. 2017). These are 
leveraged in phylogenetics via treeflow, torchtree, 
phylojax, and phylostan (Fourment and Darling 
2019), respectively. When using AD, these programs make 
use of reverse-mode automatic differentiation. Every pro
gram uses double precision unless specified otherwise.

We divide the benchmarking into two flavors: a “micro-” 
and “macro-” benchmark. The macrobenchmark is meant 
to mimic running an actual inference algorithm, though 
stripped down to reduce the burden of implementing a 
complex model in each framework. Specifically, we infer 
parameters of a constant size coalescent process, strict 
clock, as well as node heights under a typical continuous- 
time Markov chain (CTMC) model for character substitution 
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along an unknown phylogeny. Every implementation uses 
the automatic differentiation variational inference (ADVI) 
framework (Kucukelbir et al. 2017) to maximize the evi
dence lower bound (ELBO) over 5000 iterations. A priori 
we assume the CTMC substitution rate is exponentially dis
tributed with mean 0.001 and we use the Jeffrey’s prior for 
the unknown population size parameter.

The microbenchmark, on the other hand, is meant to 
identify which parts of a phylogenetic model are the most 
computationally expensive in the context of gradient-based 
inference. This involves evaluating likelihoods and functions 
used in phylogenetic analysis and calculating their gradient 
(1) the phylogenetic likelihood, (2) the coalescent likeli
hood, (3) node-height transform, and (4) the determinant 
of the Jacobian of the node-height transform. Specifically, 
these tasks are: 

1. Phylogenetic likelihood: the likelihood of observing 
an alignment under the Jukes–Cantor substitution mod
el (Jukes and Cantor 1969) is efficiently calculated using 
the pruning algorithm (Felsenstein 1981) requiring O(N) 
operations where N is the number of taxa. In this bench
mark, the derivatives are taken with respect to the 
branch lengths. Although a naive implementation of 
the gradient calculation requires O(N2) calculations, ef
ficient implementations (Fourment and Holmes 2014; 
Ji et al. 2020) necessitate only O(N) operations. We 
also benchmark the tree likelihood using the GTR substi
tution model. The gradient with respect to the GTR 
parameters is calculated analytically in physher while 
bito utilizes finite differences. Analytical gradients of 
the tree likelihood require O(N) operations for each of 

the eight free parameters while numerical gradients 
require two evaluations of the tree likelihood per 
parameter.

2. Coalescent likelihood: the likelihood of observing a 
phylogeny is calculated using the constant size popula
tion coalescent model (Kingman 1982). The gradient 
with respect to the node heights and the population 
size parameter requires O(N) time.

3. Node-height transform: Node ages of time trees need 
to be reparameterized in order to perform uncon
strained optimization (Fourment and Holmes 2014; Ji 
et al. 2021). Evaluating this function requires a single 
preorder traversal and requires O(N) operations.

4. Determinant of the Jacobian of the node-height 
transform: The transformation of the node ages re
quires an adjustment to the joint density through the in
clusion of the determinant of the Jacobian of the 
transform (Fourment and Darling 2019). The Jacobian 
is triangular and the determinant is therefore straight
forward to compute. Although calculating its gradient 
analytically is not trivial, requiring O(N2) calculations, re
cent work (Ji et al. 2021) proposed an O(N) algorithm. 
The derivatives are taken with respect to the node 
heights.

AD Implementations Vary Widely in Performance, and 
Custom Gradients are Far Faster

We find that on the macrobenchmark, AD implementations 
vary widely in their speed (fig. 1). This is remarkable given 
that these are highly optimized libraries doing the same 
flavor of operations. Specifically, both just-in-time (JIT) 

FIG. 1.—Speed of implementations for 5000 iterations of variational time-tree inference with a strict clock. See supplementary figure S1, Supplementary 
Material online for results without phylojax.
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compiled JAX and compiled TensorFlow use XLA as a back
end, although they have strikingly different performance. 
(We note that this is now a known issue with JAX https:// 
github.com/google/jax/issues/10197.) Specifically, JAX 
was the only package that clearly scales quadratically in 
the number of tips. Moreover, PyTorch was several times 
faster than TensorFlow for our tasks of interest, which 
was surprising to us because of PyTorch uses a dynamic 
computation graph. Results for phylojax with datasets 
larger than 750 sequences are not reported as they ex
ceeded the maximum allocated computation time.

None of these AD libraries approach the speed of hand- 
coded phylogenetic gradients. The BEAGLE gradients 
wrapped in bito and gradients computed in physher 
show comparable performance, which are at least eight 
times the speed of the fastest AD implementation 
(supplementary fig. S2, Supplementary Material online).

As expected, memory usage of the pure C program 
physher is the smallest, while torchtree is less memory 
heavy than treeflow and phylostan’s memory usage in
creases significantly more rapidly (supplementary fig. S3, 
Supplementary Material online). It is worth noting that bito 
noticeably decreases the memory usage of torchtree.

Overall using a specialized library for the tree likelihood 
within a Python program greatly improves the performance 
of a program making use of gradient-based optimization 
(e.g. ADVI, HMC) while incurring a small performance 
and memory cost compared to a fully C-based tool.

Relative Performance of AD Depends on the Task

To break down our inferential task into its components, we 
then performed a “microbenchmark” divided into the in
gredients needed for doing gradient-based inference 
(fig. 2 and supplementary fig. S4, Supplementary Material 
online). See Methods for a precise description of the indi
vidual tasks. Across tasks, we see the following shared fea
tures. The specialized phylogenetic packages (bito/ 
BEAGLE and physher) perform similarly to one another 
and are consistently faster than the AD packages, except 
for the Jacobian task. As expected, the tree likelihood is 
the computational and memory bottleneck (fig. 2 and 
supplementary fig. S3, Supplementary Material online) in 
phylogenetic models and efficient gradient calculation are 
warranted. TensorFlow-based treeflow was the slowest 
implementation across the board after excluding JAX.

FIG. 2.—Speed of implementations for the gradient of various tasks needed for inference. See text for description of the tasks. JAX is excluded from this 
plot due to slow performance stretching the y-axis; see supplementary figure S5, Supplementary Material online for JAX. See supplementary figure S6, 
Supplementary Material online for function evaluations.
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The AD programs also performed significantly worse in 
the node-height transform and tree likelihood tasks. 
Function calls in python are notoriously more expensive 
than in C and C++, potentially explaining the decrease in 
performance for algorithms involving a tree traversal. In 
addition, the tree likelihood implementations in BEAGLE 
and physher are highly optimized with SSE vectorization 
(Ayres et al. 2019) and manual loop unrolling.

The calculations of the coalescent function and its gradi
ent were slightly faster in physher than in torchtree, 
although the difference was slight. The ratio transform 
has nontrivial computational expense—comparable to the 
phylogenetic likelihood gradient—in AD packages; how
ever, specialized algorithms for calculating these gradients 
scale much better. Interestingly, for large datasets, 
torchtree outperforms the specialized phylogenetic 
packages for the Jacobian ratio transform gradient calcula
tion. Since this is the fastest task, the overall execution time 
is not, however, significantly impacted.

The phylogenetic gradient is approximately linear 
for packages other than JAX (supplementary fig. S7, 
Supplementary Material online), although the specialized 
phylogenetic packages are about 10 times faster. For the 
GTR calculation, we actually compare two flavors of evalu
ation: finite differences for bito and analytic gradients for 
physher. As expected, bito is increasingly faster than 
physher as the datasets increase in size.

With the exception of the tree likelihood, JAX’s JIT cap
abilities greatly improved the performance of the algo
rithms in the microbenchmark (supplementary fig. S8, 
Supplementary Material online). Analytically calculating 
the gradient of the tree likelihood considerably improved 
the running time of phylojax  pointing at implementa
tion issues in the gradient function in JAX for this type of al
gorithm (supplementary fig. S8, Supplementary Material 

online). In contrast, enabling JIT in torchtree showed 
no improvement and was not included in the results. The 
calculation of the tree likelihood and its gradient were sig
nificantly slower using single precision for datasets larger 
than 500 sequences. This is because torchtree, like 
most phylogenetic programs, rescales partial likelihood vec
tors in order to avoid underflow; using single precision re
quires more rescaling operations.

Discussion
We have found that, although AD packages provide unri
valed flexibility for model development and flexible like
lihood formulation, they cannot compete with carefully 
implemented gradients in compiled languages. Furthermore, 
they do differ between each other significantly in computa
tion time and memory usage for phylogenetic tasks.

Our results motivate the design of bito: leverage specia
lized algorithms for phylogenetic gradients and ratio trans
forms, but wrap them in a way that invites model flexibility. 
In this paper, we have focused on two functionalities of 
bito: first as a wrapper for the high-performance BEAGLE 
library, and second, as a fast means of computing the ratio 
transforms. This is our first publication using this library, which 
will be the computational core of our future work on Bayesian 
phylogenetic inference via optimization. We will defer a more 
comprehensive description of bito to future work.

Our results also motivate us to focus our future model 
developments using the PyTorch library, which shows the 
best performance as well as ease of use.

Our study has the following limitations. First, these librar
ies are developing quickly and they may gain substantially in 
efficiency in future versions. Second, these results concern 
CPU computation only. Future work, including development 
of phylogenetic gradients using graphics processing units 
(GPUs), will evaluate the promise of GPUs for gradient-based 
inference. However, we note that initial results using GPUs 
for AD packages did not lead to a significant speedup.

Methods

Data

To evaluate the performance of each implementation, we 
reused parts of the validation workflow introduced by 
Sagulenko et al. (2018). The data in this workflow consist 
of a collection of influenza A datasets ranging from 20 to 
2000 sequences sampled from 2011 to 2013. Our bench
mark is built on top of this pipeline and makes use of a 
reproducible Nextflow (Di Tommaso et al. 2017) pipeline.

Software Benchmarked

torchtree is a Python-based tool that leverages the 
Pytorch library to calculate gradients using reverse mode AD.

Table 1 
Code Availability and Version Number of Each Phylogenetic Program. 
Version Identifiers Correspond to Git Tags.

Program Availability Version

bito https://github.com/ 
phylovi/bito

autodiff-benchmark

phylojax https://github.com/4ment/ 
phylojax

v1.0.1

phylostan https://github.com/4ment/ 
phylostan

v1.0.5

physher https://github.com/4ment/ 
physher

v2.0.0

torchtree https://github.com/4ment/ 
torchtree

gradient-benchmark

torchtree-bito https://github.com/4ment/ 
torchtree-bito

gradient-benchmark

treeflow https://github.com/ 
christiaanjs/treeflow

autodiff-benchmark

Genome Biol. Evol. 15(6) https://doi.org/10.1093/gbe/evad099 Advance Access publication 2 June 2023                                          5

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad099#supplementary-data
https://github.com/phylovi/bito
https://github.com/phylovi/bito
https://github.com/4ment/phylojax
https://github.com/4ment/phylojax
https://github.com/4ment/phylostan
https://github.com/4ment/phylostan
https://github.com/4ment/physher
https://github.com/4ment/physher
https://github.com/4ment/torchtree
https://github.com/4ment/torchtree
https://github.com/4ment/torchtree-bito
https://github.com/4ment/torchtree-bito
https://github.com/christiaanjs/treeflow
https://github.com/christiaanjs/treeflow
https://doi.org/10.1093/gbe/evad099


Fourment et al.                                                                                                                                                                GBE

torchtree-bito is a torchtree plugin that offers 
an interface to the bito library (https://github.com/phylovi/ 
bito). Within bito, analytical derivatives with respect to the 
branch lengths are calculated through the BEAGLE library 
(Ayres et al. 2019; Ji et al. 2020) while the gradient with re
spect to the GTR substitution model parameters are calculated 
numerically using finite differences. bito and BEAGLE do 
not provide analytical derivatives of the coalescent function, 
hence no results are shown in figure 2 and supplementary 
figures S4–S7, Supplementary Material online.
physher is a C program that allows one to approximate 

distributions using ADVI (Fourment et al. 2020), while every 
derivative is calculated analytically. The derivatives with re
spect to the branch lengths are efficiently calculated using a 
linear-time algorithm developed independently of Ji et al. 
(2020). The gradient of the Jacobian transform is efficiently 
calculated using the method proposed by Ji et al. (2021).
phylostan is a Python-based program (Fourment and 

Darling 2019) that generates phylogenetic models that are 
compatible with the Stan package.
phylojax is a Python-based tool that leverages the JAX 

library to calculate gradients using reverse mode AD.
treeflow is a Python-based tool that leverages the 

TensorFlow library to calculate gradients using reverse mode 
AD. treeflow’s implementation of the phylogenetic likeli
hood uses TensorFlow’s TensorArray construct (Yu et al. 
2018), a data structure which represents a collection of arrays. 
Each array can only be written once in a computation, and 
read many times. Using these data structure to implement 
the dynamic programming steps of the pruning algorithm po
tentially allows for more scalable gradient computations.

Computational Infrastructure

The automated workflow was run using the Fred 
Hutchinson gizmo scientific computing infrastructure. A 
single node with 36 (2 sockets by 18 cores) Intel ® Xeon 
Gold 6254 CPU @ 3.10GHz cores was used for all individual 
processes in the pipeline. A total of 48G RAM was allo
cated. The node was running on Ubuntu 18.04.5 LTS 
(Bionic Beaver) with Nextflow (version 22.04.3.5703) and 
Singularity (version 3.5.3) modules installed.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online.
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