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A Model of Fast Human Performance on a Computationally Hard Problem 
 

Bradley J. Best (bbest@maad.com) 
Micro Analysis & Design, 4949 Pearl E. Circle, Suite 300 

Boulder, CO 80301 USA 

 

 

Abstract 

Human performance on the Traveling Salesperson Problem 

(TSP) is of consistently high quality and scales approximately 

linearly in time with problem size.  A model leveraging 

parallel processing of perceptual grouping and a local serial 

search achieves both a comparable quality of performance and 

comparable time complexity. 

Human Performance on the Traveling 

Salesperson Problem 

The Traveling Salesperson Problem (TSP) consists of 

attempting to find the shortest complete tour through a 

series of points (cities), starting and ending with the same 

point.  This problem is a member of the set of 

computationally hard, or NP-complete, problems, for which 

the best solutions known are obtained in exponential time 

relative to the problem size. 

Michie, Oldfield, and Fleming (1968) performed one of 

the earliest studies of human performance on the Traveling 

Salesperson Problem (TSP).  They found that human 

performance approached, and in the case of one individual, 

exceeded, that of a specialized graph traversal algorithm 

designed for solving search problems. 

MacGregor and Ormerod (1996) described a set of 

experiments designed to test the hypothesis that the 

difficulty of a TSP is due to the number of points falling on 

the interior of the problem as opposed to those falling on the 

convex hull, or outer contour of the problem.  In general 

they found that human performance was, in fact, less good 

on those problems with more points in the interior. 

Ormerod and Chronicle (1999) conducted experiments to 

determine whether human solvers of the TSP were sensitive 

to the global contour of individual problems, and found 

evidence confirming this hypothesis. 

Best and Simon (2000) described a solution method based 

on a spatially local search of alternative paths that attained 

the quality of human solutions with low computational 

expense.  Graham, Joshi, and Pizlo (2000) developed a fully 

parallel solution algorithm for the TSP based on a 

hierarchical processing approach and proposed it as a 

candidate model of human performance on the task.  

MacGregor, Ormerod, and Chronicle (2000) advanced a 

different model of human performance on the task, 

suggesting that the human solution process starts with the 

convex hull, and iteratively adds points to the solution by 

comparing costs among the remaining (unused) points, and 

selecting the lowest cost insertion. 

Figure 1 displays a TSP with the convex connected by 

arcs and with one insertion of an interior point (point 3) 

completed.  Optimal solutions must connect points on the 

convex hull in order, so for problems such as this one where 

the majority of the points fall on the convex hull, the convex 

hull provides a good basis for problem solution. 

 

 
Figure 1:  Traveling Salesperson Problem with convex hull 

 

To allow for discrimination between the various 

alternative theories of human performance on the TSP, Best 

(2004) conducted a set of experiments collecting fine-

grained performance data describing human performance on 

the TSP.  In addition to recording the quality of individual 

solutions, detailed latency data were also collected.  These 

data encompassed all interactions with the task interface at 

the level of individual mouse movements recorded at the 

time resolution of the operating system in a computer 

version of the TSP task.  Significant findings included 

effects of problem size on accuracy and latency, individual 

differences on accuracy and latency, and a distinct pattern of 

latency of movement within problems that provided insight 

into the process used by solvers.  The remainder of this 

paper presents a summary of the Best (2004) studies. 

Human solvers were presented with blocks of TSP 

problems of the following types: 1) the problem set from 

MacGregor and Ormerod (1996) consisting of 10 and 20 

point problems, 2) 10 and 20 point problems constructed 

from a uniform random distribution, 3) 20 and 30 point 

problems constructed from a uniform random distribution, 

and 4) problems with definite contours (e.g., points selected 

along intersecting lines).  Solvers connected points in the 

order of their choosing but were not permitted to backtrack.  

The performance of human solvers in percentage deviation 

from the optimal solution is presented in Table 1. 
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Table 1:  Quality of Human Solution by Problem Type  
(% above optimal ± SD). 

 

Problem type Human Performance 
MacGregor & Ormerod 
(1996)  10 Point 

2.7%±1.7% 

MacGregor & Ormerod 
(1996)  20 Point 

8.2%±2.9% 

Random 10 Point 1.7%±1.2% 
Random 20 Point 4.1%±3.0% 
Random 30 Point 5.0%±1.1% 

Shaped 3.7%±2.5% 

 

In addition to variation of problem type, solvers were also 

presented with two other manipulations: 1) a repeated block 

of 20 point problems to determine the impact of learning 

(the improvement was non-significant; see Table 2), and 2) 

an interface manipulation where the problem was blurred 

except for the area immediately around the mouse pointer.  

The intention of this manipulation was to examine the 

detrimental effects of obscuring the global display 

information.  Surprisingly, performance was actually better 

in this condition (though non-significantly; see Table 3). 

 
Table 2:  Quality of human solution on 20 point problems in 

blocks 1 and 2 (% above optimal ± SD). 
 

Random 20 Point Block 1 Random 20 Point Block 2 
4.1%±3.0% 3.1%±1.3% 

 
Table 3:  Quality of human solution for random 10 and 20 
point problems using the normal and obscured interface 

(% above optimal ± SD). 
 

Problem Set Normal Obscured 

Random 10 Point 1.7%±1.2% 0.7%±0.6% 

Random 20 Point 4.1%±3.0% 2.7%±2.0% 

 

Human solutions were also characterized in terms of 

latency to complete solutions (Table 4). 
 

Table 4:  Latency of human solution by problem type 
(time in seconds ± SD). 

 

Problem type Human Performance 
MacGregor & Ormerod 
(1996)  10 pt 

23.8s±16.2s 

MacGregor & Ormerod 
(1996)  20 pt 

39.6s±19.4s 

Random 10 Point 15.2s±5.6s 
Random 20 Point 29.3s±10.3s 
Random 30 Point 52.3s±33.6s 

Shaped 16.8s±6.7s  

 

Besides accuracy for complete solutions, the resolution of 

the data permits examining latency for moves within a 

particular solution (i.e., for each move from the first move 

to the last move).  Figure 2 shows a graph of the human 

latency performance for individual moves for random 10 

point problems (similar results are obtained for other 

problem types but are omitted here due to space limitations). 
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Figure 2:  Latency in ms for moves 1-11 during 10 point 

random problem solution (with standard error bars). 

 

The mouse movement data from the task was analyzed to 

provide a more complete picture of the TSP solution 

process.  The initial moves during problem solution were 

characterized by a large number of individual mouse 

strokes, representing exploratory movements around the 

problem (Figure 3 presents results for random 20 point 

problems; other problem types produced consistent results).  

Although it is normal to covertly shift attention without 

moving the mouse, the converse is unlikely, and these 

individual mouse movements can be interpreted as shifts of 

attention.  This indicates that there is significant scanning of 

the problem during the initial stages of solution, and rules 

out a purely “pop out” explanation of human performance. 
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Figure 3:  Individual mouse movements taken for moves 1-

21 during problem solution for 20 point random problems 

(with standard error bars). 
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Summarizing the results of Best (2004), human 

performance during the solution process is characterized by 

the following findings: 1) Problem solution times are 

approximately linearly proportional to the number of 

problem points, with individual moves taking ~1.5 seconds; 

2) Solution accuracy is generally within ~5% of optimal 

path length for the majority of solvers and problems; 3) 

Accuracy is lower on more complex problems where 

complexity is determined by factors including the number of 

points in a problem, problem shape, and the number of 

interior (non-convex hull) points; 4) Problem solving is 

preceded by 2-3 seconds during which the problem is 

scanned and a rough solution is developed; 5) Planning 

requires only low-frequency spatial information provided by 

a blurred display; 6) The pattern of mouse movement 

involved initial travel that was indirect, consisting of 

multiple exploratory movements, while beyond the first two 

moves, mouse movements become more direct and there is 

a reduction of distance traveled and time and strokes taken; 

7) Evidence for learning is minimal indicating that the 

strategies and processes used by human solvers are innate or 

well-practiced, and therefore general (e.g., perceptually 

based, weak methods, etc.). 

Implications for Modeling Human 

Performance 

The experimental data presented above demonstrates that 
the human performance scales roughly linearly with 
problem size.  This implies that the human solution is likely 
to rely on either parallel processing, or a locally constrained 
serial search that only considers a constant sized subset of 
the problem as solutions progress, or some combination of 
these.  In fact, the data is sufficiently detailed to rule out all 
of the aforementioned computational accounts of human 
performance on the problem.   
The model of Best and Simon (2000) does not consider 

the contour of the entire problem (the convex hull) to 

formulate a rough solution.  The data collected by Best 

(2004) indicates that human solvers do, in fact, start with a 

rough solution, while Ormerod and Chronicle (1999) 

demonstrated that human solvers were both sensitive to and 

used the convex hull in judgments of TSP solution quality. 

The model of Graham, Joshi, and Pizlo (2000) does not 

proceed with a serial solution process the way human 

solvers do.  The similarity between human solutions using 

the obscured interface in Best (2004) with the normal 

interface indicates that human solvers are not simply 

playing out a complete solution that was developed prior to 

working on the problem, but rather are working 

interactively with the problem in a serial fashion. 

The model of MacGregor, Ormerod, and Chronicle 

(2000) does not consider just the (locally) relevant points at 

a particular point in the solution process.  However, mouse-

tracking results from Best (2004) show only local    

movements later in problem solving, thus ruling out this 

model 

Using Constraints from Human Performance 

to Develop a Computational Model 

The constraints from empirical studies of human 
performance on the TSP suggest that a computational model 
of human performance should incorporate the following 
elements: 1) a global, parallel process that produces the 
convex hull of the problem, 2) a hierarchical clustering 
process that decomposes the problem into sub-problems for 
local solution, 3) a serial method of local search that 
considers a roughly constant-sized set of candidate points, 
and 4) a perceptual method for avoiding premature closure 
of paths (which would produce crossed arcs).  The 
remainder of this paper describes the construction and 
evaluation of such an algorithm, designated the GL-TSP 
(Global-Local TSP solver). 

Mechanisms for Clustering and Contour 

Perception 

Compton and Logan (1993) described an extension to the 
CODE theory of clustering which was developed to account 
for human behavior in grouping (clustering) of dot 
diagrams.  Although related to theoretical approaches such 
as Kubovy and Wagemans (1995), and computational 
approaches based on hierarchical clustering methods, this 
theory provides an added advantage by describing a 
‘strength of grouping’ surface which allows the direct 
calculation of goodness of Figure (Best, 2004). 
The CODE theory specifies the construction of a ‘strength 

of grouping’ surface where the value of the surface at any 

point is given by the sum of exponential intensity 

distributions centered about the problem points.  Each of 

these distributions has a standard deviation proportional to 

the distance to the nearest point.  A two-dimensional cross 

section of an example surface produced by three points is 

shown in Figure 4 while a three dimensional depiction of a 

CODE surface is shown in Figure 5. 
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Figure 4:  Cross section of strength of grouping surface 

corresponding to three points. 

 

Goodness of Figure Calculations The calculation of 

goodness of Figure can be accomplished by using the 

‘strength of grouping’ surface produced by the algorithm the 

CODE theory is based on.  By inspecting the shape of the 

surface between any two points, a determination of 

goodness can be produced through calculating the number 

of distinct bumps (i.e., zero crossings of the derivative).  For 

the purposes of this algorithm, any two points that can be 
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reached across the surface without crossing any additional 

bumps are defined as a ‘good’ path and is perceptually 

valid.  An example of a TSP displaying the good paths 

obtained using this method is presented in Figure 5 (the 

paths are superimposed over the three dimensional CODE 

surface which is displayed in relief). 

 

 
Figure 5:  Good paths (perceptually valid paths) extracted 

from strength of grouping surface.     

Mechanisms for Local (Serial) Search 

Recasting problem solving as search through a problem 
space has a long history within problem solving research 
(e.g., Newell and Simon, 1972).  More recent efforts, such 
as Gobet (1997) and Gobet and Simon (1996), have 
carefully specified the constraints and limitations of search 
as a human problem solving process.  One of the primary 
findings of this research is that pruning and selective 
exploration play a significant role in reducing the number of 
computations performed by human solvers.  That is, human 
solvers do not perform exhaustive search, but instead 
perform a more limited search of the better options in the 
search space. 
Human solvers of the TSP appear to have two main 

methods for reducing the computational complexity of the 

search space.  One of these methods is the hierarchical 

decomposition of the overall problem into smaller problems, 

which is achieved by clustering and forming a rough overall 

plan without considering details.  The other method is the 

dependence on good paths in the representation of the 

problem which reduces the number of branches at each 

point in the search space.  Although the total number of TSP 

solutions possible is equal to the factorial of the number of 

points, the number of perceptually valid paths is 

substantially less than that, and allows search to proceed in 

a remarkably smaller subspace. 

Integrating Local and Global Processes into a TSP 

Solver 

The GL-TSP algorithm integrates a global level that 

produces a rough solution to the problem, and a local level 

that searches through the local section of the rough global 

plan. 

The global plan is initially constructed from the convex 

hull of the clusters produced by the CODE algorithm.  

However, this may leave out some number of clusters from 

inclusion in the plan, and, if so, these clusters must be 

integrated prior to the implementation of the local solution 

(that is, deciding whether a cluster will be included in the 

portion of the local solution being worked on must be 

completed prior to working on that section).  These orphan 

clusters are included by inserting the cluster between a pair 

already included in the plan that minimally increases the 

overall path length (subject to noise in distance estimation).  

These insertions are rarely necessary in problems of 10 

nodes, since most points fall within a cluster that makes up 

the hull of clusters, but become an important determiner of 

overall solution shape for problems of 20 and more nodes.  

Thus, the global plan can be considered a convex hull 

cheapest insertion algorithm performed on the clusters 

instead of on individual points.  The result of the global 

planning process is an ordering of the clusters, while 

ordering of individual points is left up to the local stage of 

the algorithm. 

At each local stage of the algorithm, a path must be 

planned through a set of potential nodes.  This set of nodes 

is created by adding nodes from the current cluster in the 

global plan.  If the set then contains less than six nodes, 

nodes are added from the next cluster in order from the 

global plan.  If the set still contains less than six nodes, 

nodes are added from the third cluster in order.  If, at this 

point, there are only three nodes in the set (i.e., each of the 

clusters was a single point), nodes from a fourth cluster are 

added.  This results in a set of, at most, six nodes, and at 

least, four nodes (except when there are no nodes remaining 

in the problem).  The GL-TSP algorithm establishes a goal 

to reach the last node in this set (the farthest along in the 

global plan), and establishes subgoals to visit all of the 

intervening nodes.  It then uses the operation of traversing 

individual perceptually valid paths to reduce the difference 

from the goal state, and finds a solution path that reaches the 

target node.  Multiple solution paths are evaluated in terms 

of their complete distance (subject to noise in estimation), 

and the first node along the chosen path is selected by 

connecting that edge.  The local stage of the algorithm then 

repeats (without saving its previous result) and replans from 

the new current node.   

The local search is conducted according to the following 

pseudocode: 

 

1) Set the cluster index to the current cluster (cluster 1) 

2) Add nodes from the indexed cluster until either: 

a) The planning set contains six nodes 

b) The planning set contains all remaining nodes 
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3) If (the planning set contains less than six nodes and 

the cluster index is < 3)  

4) or (the planning set contains three nodes) then: 

a) Increment the cluster index 

b) Go to step 2 

 

The selection of an endpoint for the local search 

differentiates this method from hill-climbing.  The path 

selected is the shortest path, given the endpoint.  Shorter 

paths are possible among the set of points.  Further, the 

individual step taken need not be the shortest: it is simply 

the first step along the shortest path to the chosen endpoint 

and may be longer than alternative choices.  This local 

search can be characterized overall as an optimal shortest-

path solver, made stochastic by perceptual noise, and 

limited to searching the representation provided by the 

clustering algorithm. 

Model Evaluation 

The GL-TSP algorithm described here makes an explicit 

accuracy prediction based on the solutions obtained for 

individual problems, and an explicit latency prediction for 

each individual problem based on the time taken to compute 

a global plan, the local hierarchical decomposition, and the 

available perceptually good paths within the local part of the 

problem.  The algorithm uses noise in distance estimation to 

produce stochastic behavior, so algorithm results are 

produced by aggregating multiple runs. 

A latency prediction for solving each problem was 

constructed by adding an estimate for constructing the 

global plan at 300ms per node of the problem 

(approximately 3 seconds for a 10-point problem), plus 

900ms for every untraversed perceptually ‘good’ path 

emanating from the current node (approximately 3 eye 

fixations to measure the path), plus 300ms to actually make 

the move.  These estimates allow direct comparison 

between the latency pattern that arises from the basic 

operations of the GL-TSP algorithm and the pattern of 

latencies demonstrated by human solvers.  Since all 

variation of predictions of latency for problems of the same 

size is due solely to the number of available perceptually 

good paths (for a given problem size, the latency associated 

with constructing a global plan and making moves is 

constant), the latency prediction of this model is that more 

available options will require serial consideration and 

thereby slow the decision time. 

For the purpose of comparison, the Nearest Neighbor 

algorithm also generates latency predictions.  In this case, 

the prediction is a multiple of the number of algorithmic 

comparisons made allowing comparison to the GL-TSP 

algorithm in terms of computational steps taken. 

Figure 6 shows latency predictions for problems 

consisting of 10 and 20 randomly distributed points while 

Figure 7 shows latency predictions for problems consisting 

of 20 and 30 randomly distributed points.  The latency 

predictions are presented in the Figures with actual human 

performance on the task, showing standard error bars for the 

human data.  In general, the latency results for the GL-TSP 

algorithm are consistent with human performance, with the 

GL-TSP latency estimate falling within the confidence 

interval for human performance on almost every individual 

problem.  It is especially noTable that the GL-TSP latency 

predictions scale almost exactly with the human 

performance, while the Nearest Neighbor method does not. 
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Figure 6:  Latency of human performance compared to the 

Nearest Neighbor algorithm and the GL-TSP algorithm for 

10 and 20 point problems with standard error bars. 
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Figure 7:  Latency of human performance compared to the 

Nearest Neighbor algorithm and the GL-TSP algorithm for 

20 and 30 point problems with standard error bars. 

 

Since these estimates are based on the actual number of 

comparisons made by the serial level of the model, this is a 

demonstration of the feasibility of achieving a roughly 

linear time complexity performance through leveraging a 

parallel system that performs clustering (as well as 

‘goodness of path’ evaluations).  The Nearest Neighbor 
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algorithm, and in fact, any algorithm that considers all 

available remaining candidate points at each step, does not 

scale in the same way as either the human performance or 

the GL-TSP algorithm. 

Although the latency results are consistent with human 

performance, this would be meaningless unless the quality 

of the performance also corresponded to human results.  The 

representative model performance is presented in Table 5. 
 

Table 5:  Quality of human solution compared to quality of 
algorithm solution (% above optimal ± SD). 

 
Problem type Human GL-TSP 
MacGregor & 
Ormerod (1996) 10 

2.7%±1.7% 1.1%±1.8% 

MacGregor & 
Ormerod (1996) 20 

8.2%±2.9% 3.9%±5.3% 

Random 10 Point 1.7%±1.2% 0.2%±1.0% 
Random 20 Point 4.1%±3.0% 5.2%±7.6% 
Random 30 Point 5.0%±1.1% 7.4%±7.7% 
Shaped 3.7%±2.5% 2.6%±3.8% 

 

Looking at accuracy in the aggregate, the GL-TSP 

algorithm slightly outperforms the mean human 

performance, but falls within the demonstrated range of 

human performance. 

Conclusion 

This report summarizes the work presented by Best (2004) 

describing the development of a computationally 

instantiated theory that describes human performance on the 

Traveling Salesperson Problem.  This theory is supported by 

a wide variety of empirical constraints and evidence that 

simultaneously argue against existing models of human 

performance on the task.  It is composed of a parallel 

process that performs hierarchical clustering and contour 

detection, and a serial problem-space search process that 

performs local search along the rough solution plan.  The 

serial portion of the algorithm is subject to substantial 

processing constraints that allow only a limited amount of 

processing.  These limitations are overcome by leveraging a 

parallel perceptual implementation that allows the serial 

portion of the model to focus on comparing relatively good 

options, rather than exhaustively comparing all options.  

This theory explains both the quality of human performance 

on the TSP task and the latency performance of human 

performance on the TSP task.  In particular, it provides a 

compelling account of the roughly linear scaling of human 

solution times when comparing solutions of varying sizes. 

Although this theory is presented as a specific theory for 

solving TSPs, it is composed of two independent portions 

that are significantly more general and have been validated 

in other domains: a perceptual front end that produces a 

hierarchically clustered representation of dot patterns and 

good paths connecting the dots, and a general search 

mechanism that works on a problem space representation 

and traverses the problem state graph in pursuit of a 

solution. 
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