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Abstract

Central obesity is a leading health concern with a great burden carried by ethnic minority populations, especially
Hispanics/Latinos. Genetic factors contribute to the obesity burden overall and to inter-population differences. We aimed to
identify the loci associated with central adiposity measured as waist-to-hip ratio (WHR), waist circumference (WC) and hip
circumference (HIP) adjusted for body mass index (adjBMI) by using the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL); determine if differences in associations differ by background group within HCHS/SOL and determine whether
previously reported associations generalize to HCHS/SOL. Our analyses included 7472 women and 5200 men of mainland
(Mexican, Central and South American) and Caribbean (Puerto Rican, Cuban and Dominican) background residing in the
USA. We performed genome-wide association analyses stratified and combined across sexes using linear mixed-model
regression. We identified 16 variants for waist-to-hip ratio adjusted for body mass index (WHRadjBMI), 22 for waist
circumference adjusted for body mass index (WCadjBMI) and 28 for hip circumference adjusted for body mass index
(HIPadjBMI), which reached suggestive significance (P < 1 × 10−6). Many loci exhibited differences in strength of associations
by ethnic background and sex. We brought a total of 66 variants forward for validation in cohorts (N = 34 161) with
participants of Hispanic/Latino, African and European descent. We confirmed four novel loci (P < 0.05 and consistent
direction of effect, and P < 5 × 10−8 after meta-analysis), including two for WHRadjBMI (rs13301996, rs79478137); one for
WCadjBMI (rs3168072) and one for HIPadjBMI (rs28692724). Also, we generalized previously reported associations to
HCHS/SOL, (8 for WHRadjBMI, 10 for WCadjBMI and 12 for HIPadjBMI). Our study highlights the importance of large-scale
genomic studies in ancestrally diverse Hispanic/Latino populations for identifying and characterizing central obesity
susceptibility that may be ancestry-specific.

Introduction
Obesity, and especially central obesity, is a leading risk factor for
metabolic and cardiovascular diseases (CVDs), with the greatest
burden carried by minority populations (1–4), particularly
Hispanic/Latino Americans and African Americans (5). Emerging
evidence suggests that genetic factors may contribute not
only to the obesity burden overall, explaining 40–70% of
the inter-individual variation (6), but also to population-
specific differences in obesity susceptibility (7–12). For example,
although a majority of the >1000 genome-wide association
study (GWAS)-identified obesity [body mass index (BMI), waist-
to-hip ratio (WHR), waist circumference (WC), hip circumference
(HIP) and body fat percentage] loci generalize across populations
(13–20), recent studies in populations of Asian (19,20) and African
(16,21) ancestry have revealed a number of novel and population-
specific loci. These observations highlight the importance of
large-scale genomic studies in ancestrally diverse populations,
including Hispanic/Latinos, to identify obesity-susceptibility
loci, and more specifically, alleles that are ancestry-specific
and may thus partly explain disparities. However, no large-
scale GWAS for any obesity-related traits has been performed in
Hispanic/Latino populations despite their increased prevalence
of obesity.

While obesity is commonly assessed by BMI, measures
of central adiposity, such as WHR and WC, are predictors of

increased cardiometabolic risk independent of BMI (22–25).
Here, we consider three measures of central obesity: WHR,
WC and HIP after accounting for overall body size, measured
as BMI [waist-to-hip ratio adjusted for body mass index
(WHRadjBMI), waist circumference adjusted for body mass index
(WCadjBMI) and hip circumference adjusted for body mass index
(HIPadjBMI)]. Larger WHR indicates higher visceral fat and is
associated with increased risk for type 2 diabetes (T2D) and CVD
(26–28), while smaller WHR indicates a proportionately greater
fat accumulation around the hips and is associated with lower
risk for T2D, hypertension and dyslipidemia (29). Previous GWAS
have identified WHR, WC and HIP loci, which are enriched for
association with other cardiometabolic traits and suggested
that different fat distribution patterns can have distinct genetic
underpinnings (30–32). Identifying genetic risk variants across
these traits in Hispanic/Latinos may provide insights into these
mechanisms and highlight population-specific variants that
increase susceptibility to obesity in specific groups.

We aimed to: (1) identify novel genetic loci associated with
central obesity, measured here as WHRadjBMI, WCadjBMI and
HIPadjBMI, in Hispanics/Latinos; (2) determine if differences
in genetic associations by background group (mainland or
Caribbean) and sex exist in Hispanic Community Health
Study/Study of Latinos (HCHS/SOL) and (3) assess generalization
of central adiposity-associated loci, discovered in European,
African and multi-ethnic studies, to Hispanics/Latinos.
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Results
Discovery

We identified 16 loci for WHRadjBMI, 22 for WCadjBMI and 28
for HIPadjBMI, which exhibited suggestive evidence of associa-
tion in the HCHS/SOL (N = 12 472, 58% women, Supplementary
Material, Table S1) in at least one stratum (Table 1, Figs 1–3,
Supplementary Material, Tables S2–S4, Supplementary Material,
Figs S1–S21). For WHRadjBMI, we identified four loci that reach
suggestive significance (P < 1 × 10−6) in the combined sexes,
including rs12435790 near KIAA0391, which is within a previ-
ously reported WHRadjBMI locus [+/−500 Kb from tag single
nucleotide polymorphism (SNP)] (33). We also identified five loci
for men only, including one reaching genome-wide significance
(GWS, P < 5 × 10−8). A total of eight suggestive loci were iden-
tified in the women-only analyses, including one, rs115981023
in TAOK3, which also reached suggestive significance in the
combined sexes analysis and identified rs79478137 in solute car-
rier family 22 (organic cation transporter), member 18 antisense
(SLC22A18AS) near a previously implicated WHRadjBMI locus
(34). For WCadjBMI, we identified nine loci, including one GWS
locus in the combined sexes; 11 for men only, including two
SNPs that reach GWS, and two for women only. Of the WCadjBMI
loci identified, two were nearby previously reported WCadjBMI
loci, rs6809759 near PROK2 (men-only) (14,15,17) and rs77319470
near ADAMTS3 (sexes-combined) (15,17,35). For HIPadjBMI, we
identified eight loci that reach P < 1 × 10−6 for the combined
sexes; nine for men only, including one in a locus that reached
suggestive significance for the combined sexes as well (near
ANO10), and 12 for women only, including one SNP in a locus
that reached suggestive significance for the combined sexes as
well (near LPPR4). Of the WCadjBMI loci, rs10818474 near MEGF9
was within 500 Kb of a recently reported WHRadjBMI association
in women (14).

Association differences by genetic ancestry

All of the top loci were directionally consistent in each
background group, yet many of the loci exhibited effect
heterogeneity by background group (Table 2, Figs 1–3, Supple-
mentary Material, Tables S5–S7), as exhibited by moderate-
to-high I2 values [I-squared heterogeneity (ISQ) > 65%) and/or
significant interaction across background groups (Pdiff < 0.05).
For example, rs113818604 (β = 0.0269, P = 5.47 × 10−8), I2 = 78.5%,
Pdiff = 0.38) in NTM is significantly associated with WHRadjBMI in
women from the mainland background groups [N = 4220, minor
allele frequency (MAF) = 0.014, β = 0.0343, P = 1.63 × 10−8] but
not in women from Caribbean background groups (N = 3238,
MAF = 0.013, β = 0.0144, P = 0.08) (Supplementary Material, Table
S5). Also, for the women-only primary analysis, the rs77186623
in LOC105375745 locus associated with HIPadjBMI (β = −0.006,
P = 1.74 × 10−7) exhibited nominally significant interaction by
background group (I2 = 55.3%, Pdiff = 0.042) and was GWS in
the Caribbean group (N = 3231, MAF = 0.041, β = −0.0078, P = 3.05
× 10−8) but not significant in the mainland group (N = 4216,
MAF = 0.008, β = −0.0015, P = 0.567, Supplementary Material,
Table S7). Additional examples that cannot be explained
because of power (i.e. MAF and sample size are similar) for
WHRadjBMI include rs77377042 near MARCKSL1 and rs61305557
in C19orf67 for women and rs16977373 near RIT2 for men; for
WCadjBMI in women-only, these include rs76842062 in MAP4K4
and rs76941364 near COBL; and for HIPadjBMI, these include
rs6860625 near NREP for women and rs145815581 in ANO10 for
the combined sexes.

For other loci, allele frequency and linkage disequilibrium
(LD) differences across Hispanic/Latino populations likely
contributed to observed differences in the magnitude of effect
and significance levels (Supplementary Material, Table S8). For
example, while the magnitude of effect for the rs115981023
TAOK3 association with WHRadjBMI in women (β = −0.029,
P = 8.88x10−7, I2 = 0, Pdiff = 0.391) was similar across background
groups, the P-value was far more significant in the Caribbean
background group (MAF = 0.016, β = −0.030, P = 2.72 × 10−5)
when compared with the mainland (MAF = 0.003, β = −0.027,
P = 0.025), likely because of the higher MAF in the Caribbean
group. Of note, the minor allele at this SNP is more common
in the 1000 Genomes AFR compared with the EUR and AMR
reference samples (Supplementary Material, Table S5), and the
local ancestry of participants at this locus indicate that those
with African ancestry exhibit the highest MAF (Supplementary
Material, Table S8). Additional loci where the significance
level differences between Caribbean and mainland background
groups appear to be driven by increased MAF owing to African
ancestry in Caribbean populations include the SLC22A18AS
and CDH4 loci for WHRadjBMI; LOC102723448, FZD7, WSB2 and
ACTRT2 loci for WCadjBMI; and COQ2, LPPR4, TMEM63A and
FHIT loci for HIPadjBMI (Supplementary Material, Tables S5–S8).
Rs12478843 in HEATR5B (β = −0.002, P = 8.2 × 10−8, I2 = 1.7%,
Pdiff = 0.385) is more significantly associated with HIPadjBMI
in mainland (MAF = 0.320, β = −0.002, P = 6.50 × 10−6) women
when compared with Caribbean (MAF = 0.154, β = −0.002, P = 6.03
× 10−3), likely reflecting the higher MAF among those from
mainland Latin America with greater Native American ancestry
(Supplementary Material, Table S8). Similarly, differences in
effect magnitude between mainland and Caribbean background
groups for the TAF4 (HIPadjBMI in women) and the ESRRG
(WCadjBMI in men) loci may also be owing to higher MAF in
the mainland group because of a greater proportion of Native
American ancestry (Supplementary Material, Tables S6–S8).

Replication

We brought 66 variants forward for replication in nine cohort
studies (N up to 34 161), with participants of Hispanic/Latino,
African and European descent, and for further examination of
replication by ancestral background (Supplementary Material,
Tables S1–S4). Our criteria for replication included both nom-
inal evidence of an association (P < 0.05), consistent direction
of effect between the replication results and the HCHS/SOL
discovery results for any ancestry/sex stratum and genome-wide
significance (P < 5 × 10−8) when meta-analyzed together with
HCHS/SOL. Based on these criteria, we were able to replicate
four novel loci (Table 1) after combining our HCHS/SOL discov-
ery sample with specific ancestry results. For WHRadjBMI in
men and women combined, rs13301996 was significant after
meta-analyzing HCHS/SOL with the African American replica-
tion sample (P = 2.88 × 10−8). For WHRadjBMI in women only,
rs79478137 was GWS after combining HCHS/SOL with the His-
panic/Latino replication sample (P = 3.64 × 10−9). For WCad-
jBMI in men and women combined, rs3168072 was significant
after combining HCHS/SOL with the European American repli-
cation sample (P = 4.21 × 10−8). For HIPadjBMI in women only,
rs28692724 was significant after meta-analyzing HCHS/SOL with
the European American replication sample (P = 4.02 × 10−8).

Of note, for rs13301996, which only replicated in African
Americans, we saw a larger effect size in the Caribbean back-
ground group compared with the mainland, although this is
not a significant difference (Table 2, Supplementary Material,
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Figure 1. WHRadjBMI Synthesis View plot that shows −log10 P-values, beta (effect estimate), effect/coded allele frequency (CAF) and sample size across analysis

samples for all loci that reached suggestive significance in one or more of our discovery strata. This chart also shows the CAF of each of our top loci by background

group and by 1000 genomes reference panel. European, EUR; Latin American, AMR; African, AFR.

Table S5, Supplementary Material, Fig. S2A). This finding may
provide insight into why the variants were more successful
upon replication with a particular ancestry. For the remaining
loci, there is little difference in effect magnitude between the
Caribbean and the mainland background groups, which could
explain differences in replication by ancestral group.

Generalization of previous loci

We examined previously reported association regions from the
Genetic Investigation of Anthropometric Traits (GIANT) Consor-
tium (14) to assess generalization to the HCHS/SOL (Supple-
mentary Material, Tables S9–S11, Supplementary Material, Figs
S22–S30). To account for the differences in LD between GIANT
(primarily European descent populations) and HCHS/SOL (highly
admixed Hispanic/Latino populations), we report generalization
results based on the lead generalized SNP (the SNP with lowest r-
value in the region of the previously reported variant in GIANT).
In sex-combined analyses, there were a total of 12 association
regions across the genome, which generalized to HCHS/SOL for
WHRadjBMI (r < 0.05), including three for both women-only and
sexes-combined, three for women-only and six for the sexes-
combined analysis (Supplementary Material, Table S9). A total of
15 association regions generalized to HCHS/SOL for WCadjBMI,
including seven sex-specific loci (two for men, five for women;
Supplementary Material, Table S10), one for the sexes-combined
only and seven for more than one stratum. Of note, we identified
rs6809759 near PROK2, which was significantly associated with
WCadjBMI in HCHS/SOL for men-only and sexes-combined and

was within 500 kb (+/−) of rs12330322, as identified in Shungin
et al. (14). However, this previously identified locus did not gener-
alize to HCHS/SOL (r > 0.05) and may represent an independent
association signal in a known region [i.e. all GIANT variants
at this locus with P < 1 × 10−6 exhibit r > 0.05 in HCHS/SOL
and rs6809759 had a P > 1 × 10−6 in Shungin et al. (14) (P = 1.4
× 10−1)]. A total of 40 regions generalized to HCHS/SOL for
HIPadjBMI, including 29 for sexes-combined, three of which were
significant for both women-only and sexes-combined analyses
(Supplementary Material, Table S11).

Because some of the SNPs previously reported by GIANT may
not have generalized owing to lack of power in HCHS/SOL, we cal-
culated individual-level genetic scores based on trait-increasing
alleles for each central adiposity phenotype (Supplementary
Material, Table S12) and sex stratum (three association tests per
phenotype). For genetic scores based on SNPs with P-value < 1 ×
10−7 in GIANT, all association tests were significant (P < 0.05). For
genetic scores calculated from GIANT SNPs with 1 × 10−7 < P < 1
× 10−6, six of the nine association tests were significant. Given
that only three out of 27 analyses had a P > 0.05, there is consid-
erable overlap in the association results of Hispanics/Latinos to
those previously reported in the GIANT multi-ethnic analysis.

Biological curation

We examined the four SNPs (i.e. rs13301996, rs79478137,
rs28692724 and rs3168072) in novel loci identified in the repli-
cation analyses (Table 1) for association with other phenotypes,
gene expression and metabolites in publicly available data using

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
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Figure 2. WCadjBMI Synthesis View plot that shows −log10 P-values, beta (effect estimate), effect/CAF, and sample size across analysis samples for all loci that reached

suggestive significance in one or more of our discovery strata. This chart also shows the CAF of each of our top loci by background group and by 1000 genomes reference

panel. European, EUR; Latin American, AMR; African, AFR.

Phenoscanner (36,37), and we assessed the potential regulatory
role of these variants and those in LD using publicly available
databases, including RegulomeDB (38), Haploreg (39), UCSC
GenomeBrowser (40) and GTeX (41). Known associations with
these variants meeting Bonferroni-corrected significance after
correcting for number of reported associations in Phenoscanner
for the four variants within each category (P < 0.05/7631 = 6.55
× 10−5 for GWAS; P < 0.05/88 = 5.68 × 10−4 for gene expression;
P < 0.05/488 = P < 1.02 × 10−4 for metabolites) are provided in
Supplementary Material, Tables S13–S15.

WHRadjBMI-associated variant, rs13301996, which is intronic
to cyclin-dependent kinase 5 (CDK5) regulatory subunit-
associated protein 2 (CDK5RAP2), was significantly associated
with the expression of 15 genes and one lncRNA across 17
tissue types (Supplementary Material, Table S13). The most
significant of these associations was with multiple epidermal
growth factor-like domains 9 (MEGF9) in whole blood (P = 1.8
× 10−149), a gene that rests 30 Kb upstream of rs1330996. This
SNP is also significantly associated with expression of MEGF9
in subcutaneous adipose tissue, sun-exposed skin and T-cells.
Additionally, our lead variant in CDK5RAP2 is associated with the
expression of MEGF9 in whole blood and the testis and with the
expression of proteasome (prosome, macropain) 26S subunit,
non-ATPase, 5 (PSMD5) and/or PSMD5-AS1 in several relevant

tissues, including whole blood, tibial artery, tibial nerve, lung,
thyroid, esophagus muscle, skeletal muscle, liver, cerebellum
and subcutaneous adipose tissues, among others. There is
additional support for a regulatory role of rs13301996 and those
with which it is in high LD (r2 > 0.8). For example, our lead SNP
lies just outside of a DNase hypersentivitiy cluster; lies within
a region with evidence of histone modification in nine tissues,
including brain, skin, muscle and heart; and likely falls in a
transcription factor binding site active in skeletal and lung
tissue; etc. (Supplementary Material, Table S16) (38–40). While
there are multiple lines of evidence for a regulatory role of this
variant and multiple genes, rs13301996 has RegulomeDB score
of 6, indicating little evidence of binding.

WHRadjBMI-associated SNP, rs79478137, is a low-frequency
variant (MAF = 1.6%) intronic in SLC22A18AS. This region is
subject to genomic imprinting (42), which has been linked
with Beckwith-Wiedemann syndrome, a disease caused by an
increased rate of growth in children (43–45). Our lead variant is
associated with two Electronic Health Record (EHR)-derived phe-
notypes (cause of death: multisystem degeneration; and cause
of death: tongue, unspecified) (Supplementary Material, Table
S13) in Phenoscanner. There is limited evidence of a regulatory
role for our lead SNP (RegulomeDB score = 4), but rs79478137 is
in perfect LD with several variants with evidence of regulation

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
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Figure 3. HIPadjBMI Synthesis View plot that shows the −log10 P-values, beta (effect estimate), effect/CAF and sample size across analysis samples for all loci that

reached suggestive significance in one or more of our discovery strata. This chart also shows the CAF of each of our top loci by background group and by 1000 genomes

reference panel. European, EUR; Latin American, AMR; African, AFR.

(histone modification, open chromatin, DNAse hypersensitivity
and transcription factor binding) in more than 50 tissues, includ-
ing blood, pancreas, liver and skeletal muscle, hippocampal
tissues, etc. (Supplementary Material, Table S16) (38–40).

WCadjBMI-associated SNP, rs3168072, was significantly
associated with existing GWAS traits present in Phenoscanner,
including ‘cause of death: other specified respiratory disorders’
(Supplementary Material, Table S13). Additionally, rs3168072
is significantly associated with the expression of several
genes in whole blood but is most significantly associated
with the expression of transmembrane protein 258 (TMEM258)
(Supplementary Material, Table S14). Rs3168072 is ∼95 Kb
upstream of TMEM258. Our lead variant is likely to play a role
in gene expression regulation (RegulomeDB score = 2b, ‘likely to
affect binding’) (38). Additionally, our lead variant and those in
high LD (R2 > 0.8) lie within known DNase hypersentivitiy regions
and within active areas of histone modification, open chromatin

and likely gene enhancer regions (Supplementary Material,
Table S16) (38–40). Our lead SNP associated with WCadjBMI,
rs3168072, is significantly associated with five lipid-related
metabolites (Supplementary Material, Table S15), including
‘Other polyunsaturated fatty acids than 18:2’, ‘CH2 groups in
fatty acids’, ‘Ratio of bis allylic bonds to double bonds in lipids’,
‘CH2 groups to double bonds ratio’ and ‘Ratio of bis allylic bonds
to total fatty acids in lipids’.

Our lead SNP associated with HIPadjBMI in women,
rs28692724 (NC_000014.9:g.77027445C>T), is a synonymous
variant exonic to interferon regulatory factor 2-binding protein-
like (IRF2BPL) that is significantly associated with expression
of the same gene in whole blood (Supplementary Material,
Table S14). Additionally, this variant lies in a known CCCTC-
binding factor (CTCF)-binding site (RegulomDB Score = 2b),
among other transcription factors, and a DNAse Hypersentivity
cluster (Supplementary Material, Table S16) (38–40).

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
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Discussion
We performed the first large-scale GWAS of three central adi-
posity traits (i.e. WHRadjBMI, WCadjBMI and HIPadjBMI) in a
sample of approximately 12 672 Hispanic/Latino individuals. We
identified 16 variants that were suggestively associated (P < 1
× 10−6) with WHRadjBMI, 22 for WCadjBMI and 28 for HIPad-
jBMI. Of these 66 variants that were suggestively associated
with the three central adiposity traits, four novel loci replicated
after meta-analysis with replication samples. Additionally, we
demonstrated that eight previously identified GWAS loci gener-
alized to Hispanic/Latino study participants for WHRadjBMI, 10
for WCadjBMI and 12 for HIPadjBMI in HCHS/SOL.

Discovery of four novel loci

Given the large number of published GWAS on central adi-
posity measures, it may seem surprising that four novel
loci (rs13301996, rs79478137, rs28692724 and rs3168072) were
mapped. There are a few explanations for these novel findings,
including (1) previous GWAS were primarily conducted in
European populations. Indeed, all four novel SNPs were absent
from previous GIANT HapMap imputed analyses (14), and one
(rs28692724) of the four absent from a more recent GWAS
that included Europeans from the UK Biobank (33); (2) the
consideration of a broad spectrum of ancestrally diverse
Hispanic/Latino populations, including not just those of Mexican
ancestry but also those with ancestry from the Caribbean,
Central, and/or South America (46); (3) the use of the entire
1000 Genomes Phase I Reference panel, including populations
with Native American ancestry: Mexico (MXL), Colombia (CLM)
and Puerto Rico (PUR); (4) demonstrated differences in the
patterning of body composition by ancestry (47,48). More
specifically, African ancestry populations have lower body fat
percentages than men and women of non-Hispanic European,
Native American and East Asian ancestry at the same BMI.
Additionally, non-Hispanic African ancestry men and women
have greater skeletal and muscle mass than their non-Hispanic
European ancestry counterparts who, in turn, have greater
skeletal and muscle mass than men and women of East Asian
origin (47,49–51).

Recent GWAS for coding variation of WHRadjBMI identified
the importance of central adiposity genes in lipid regulation,
storage and homeostasis (52). Similarly, we found a novel
association of a variant in FADS2 (rs3168072) with WCadjBMI
following meta-analysis of HCHS/SOL results with the results
from an independent sample of European descent individuals,
which further implies a role of this locus in central adiposity
and lipid homeostasis. Genetic variations in the FADS2 gene
has been associated with several traits related to obesity and
cardiometabolic health, including fatty acid metabolism and
adipose tissue inflammation, leading to an interaction between
weight loss and FADS2 genes in the regulation of adipose
tissue inflammation (53). A nearby variant, rs174546 (R2 = 0.3523,
D′ = 0.916 in AMR), in FADS1 has previously been associated with
four lipid traits (54). The A allele (MAF = 38%) for our lead SNP is
associated with greater WC in our samples and is nearly fixed
among sub-Saharan African populations (99% in 1000 Genomes
AFR) at very high frequency in European populations (97% in
EUR) and at a lower frequency in East Asian (75% in EAS) and
Native American populations (63% in AMR). Rs3168072 is intronic
to FADS2—a member of the fatty acid desaturase (FADS) gene
family—and is involved in the endogenous conversion of short-
chain polyunsaturated fatty acids to long chain fatty acids.
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The FADS cluster of genes appears to have been under strong
selection in several human populations, which likely explains
the large differences in allele frequencies across global pop-
ulations (55–58) and why previous GWASs of waist traits that
primarily focused on European descent populations did not
detect an association signal in this region.

We identified a novel association for WHRadjBMI with
rs13301996 following meta-analysis with an independent
sample of African descent individuals. Rs13301996 is intronic
to CDK5RAP2, which encodes a regulator of CDK5 activity (59),
interacts with CDK5R1 and pericentrin (PCNT) (59), plays a role in
centriole engagement and microtubule nucleation (60) and has
been linked to primary microcephaly and Alzheimer’s disease
(61,62). In addition, we identified a novel association for WHRad-
jBMI with rs79478137 (P-value = 3.64E−9) in Hispanic/Latino
women. Rs79478137 is intronic to the antisense SLC22A18AS
gene, which is highly expressed in the liver and kidney as well
as in the gastrointestinal tract and placenta. Very little is known
of the biological role of this gene (63), and SLC22A18AS has no
counterpart in mice or other rodents (64). Thus, although its
genomic organization is known, the regulation and function of
this gene is not understood (65).

Lastly, we identified a novel association for HIPadjBMI at
rs28692724 following meta-analysis with an independent sam-
ple of European women. Rs28692724 is a synonymous variant in
IRF2BPL, which encodes a transcription factor that, acting within
the neuroendocrine system, plays a role in regulating female
reproductive function (66).

Differences in association by background group

Many of the loci mapped in this study displayed effect hetero-
geneity by background group. For example, the NTM locus asso-
ciated with WHRadjBMI in women, displayed nearly 3-fold the
effect size in the mainland background group when compared
with the Caribbean background group. Also, for the women-
only primary analysis, rs77186623 in the LOC105375745 locus
displayed a 4-fold greater effect in the Caribbean background
group compared with the mainland group. These and other
loci displaying heterogeneity by background group (i.e. MAR-
CKSL1, C19orf67, RIT2, MAP4K4, COBL, NREP and ANO10) were
not validated in replication analyses, possibly due in part to
heterogeneity by background group.

Limitations

A limitation of this study was the small sample size within
each HCHS/SOL background group. However, the use of genetic
analysis groups in our main analyses accounted for the hetero-
geneity of genetic effects among ethnic groups often ignored
in GWAS studies. Compared with self-identified background
groups, genetic analysis groups are more genetically homoge-
neous and lack principal component outliers in stratified analy-
sis, which may hinder detection of and adjustment for important
population structure when ignored (67). In addition, genetic
analysis groups allow all individuals to be classified in a specific
group, whereas many individuals in HCHS/SOL have a miss-
ing or non-specific self-identified background (67). Therefore,
by using genetic analysis groups in our analysis rather than
self-identified groups, we have increased our study’s power to
detect novel and previously documented associations with cen-
tral adiposity traits (67). Owing to the diverse background of
our discovery population, another limitation was the lack of an
ideal replication study. We attempted to overcome this limitation

by focusing on both multi-ethnic meta-analyses, which would
validate those associations that generalize across ancestries,
and meta-analyses stratified by ancestry, which may allow for
validation of more population-specific associations. However, it
is possible that the limited Native American ancestry present
across our replication cohorts may have hindered replication,
and further analyses in more diverse Hispanic/Latino popula-
tions are needed to confirm the relevance of promising cen-
tral adiposity associated loci identified in our study. Last, we
attempted to leverage bioinformatics databases to assist in eval-
uating the potential functional effects of our top associations,
including lookup of previous evidence of cis regulation of gene
expression. However, a possible limitation of these lookups is the
lack of diversity in resources like GTEx, which are derived from
European ancestry populations (Supplementary Material, Table
S14), and thus our tag SNP may not be well represented owing
to differences in the LD structure. Future investigations into the
potential regulatory function of our associated loci are needed
in ancestrally relevant sample populations and available Omics
data.

Conclusion
We identified four novel loci for central adiposity traits in a large
population of Hispanic/Latino Americans. We also found that
several previously identified central adiposity loci discovered in
European American populations generalized to Hispanic/Latino
Americans. Many of the loci interrogated exhibit background-
group-specific effects, likely owing to population history (admix-
ture and natural selection), that have resulted in changes in
LD, or allele frequency differences or owing to variation in eti-
ology. These observations highlight the importance of large-
scale genomic studies in ancestrally diverse populations for
identifying obesity-susceptibility loci that generalize and those
that are ancestry-specific.

Materials and Methods
Study sample

Details on the study and sampling design of the HCHS/SOL
have been previously described (68). Briefly, HCHS/SOL is a
community-based prospective cohort study of 16 415 self-
identified Hispanic/Latino adults who were aged 18–74 years
at screening from randomly selected households in four US
field centers (Chicago, IL; Miami, FL; Bronx, NY and San Diego,
CA) with baseline examination (2008–2011) and yearly telephone
follow-up assessment for at least 3 years. The HCHS/SOL cohort
includes participants who self-identified as being Central Amer-
ican (n = 1732), Cuban (n = 2348), Dominican (n = 1473), Mexican
(n = 6472), Puerto-Rican (n = 2728) and South American (n = 1072).
The goals of the HCHS/SOL are to describe the prevalence
of risk and the protective factors for chronic conditions (e.g.
CVD, diabetes and pulmonary disease) and to quantify all-
cause mortality, fatal and non-fatal CVD and pulmonary disease
and pulmonary disease exacerbation over time. The baseline
clinical examination (69) included comprehensive biological (e.g.
anthropometrics, blood draw, oral glucose tolerance test, ankle
brachial pressure index and electrocardiogram), behavioral (e.g.
dietary intake assessed with two 24 h recalls, physical activity
assessment by accelerometer and self-report, overnight sleep
exam for apneic events, tobacco and alcohol assessed by self-
report) and socio-demographic (e.g. socioeconomic status and
migration history) assessments. This study was approved by

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
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the institutional review boards at each field center where all
subjects gave written informed consent.

Participants in HCHS/SOL self-identified their background as
Mexican, Central American, South American (mainland), Puerto
Rican, Cuban or Dominican (Caribbean). Some participants
chose ‘more than one’, ‘other’ or chose not to self-identify. We
addressed the missing or inconsistent data in self-identified
background groups by defining ‘genetic analysis groups’
described in Conomos et al. (67). To increase power in this anal-
ysis, we chose to stratify by the broader mainland or Caribbean
categories rather than more specific groups. In this paper, we
will use the term ‘background group’ to refer to a super-group
of genetic analysis groups by geographic region, mainland or
Caribbean. Hispanics/Latinos have admixed ancestry from three
continents: Africa, America and Europe. In general, participants
from the mainland group have higher proportions of American
ancestry and lower African ancestry, while participants in
the Caribbean group have higher proportions of African
ancestry (67).

Phenotypes

All variables were taken from the baseline visit. Participants
were dressed in scrub suits or light non-constricting clothing,
and shoes were removed for weight and height measurements.
WC and HIP were measured using Gulick II 150 and 250 cm
anthropometric tape and rounded to the nearest centimeter
(cm). Height was measured using a wall-mounted stadiometer
and rounded to the nearest cm, and weight measured with a
Tanita Body Composition Analyzer, TBF-300A, to the nearest
tenth of a kg. Height and weight were used to calculate BMI
(kg/m2). We applied a log10 transformation on HIP owing to its
non-normal trait distribution.

Genotyping

Our analyses included 7472 women and 5200 men of mainland
(Mexican, Central and South American) or Caribbean (Puerto
Rican, Cuban and Dominican) ancestry residing in the USA. All
participants were genotyped on the Illumina SOL Omni2.5M
custom content array, which was subsequently used to impute
millions of additional variants, based on the entire 1000
Genomes Phase I Reference panel, including populations with
Native American ancestry: MXL, CLM and PUR. Pre-phasing was
performed using SHAPEIT, followed by imputation with IMPUTE2
(70,71).

Discovery analyses

Owing to known differences in genetic effects on waist and hip
traits between men and women (14,32,72), we analyzed associ-
ations stratified by sex for each trait, in addition to the entire
sample. We used linear mixed-model regression, assuming an
additive genetic model adjusted for age, age2, study center, sam-
ple weights, genetic analysis background group (67,73), princi-
pal components to account for ancestry, population structure
using kinship coefficients and sample eigenvectors, household,
census block group and sex in the combined analysis. Kinship,
household and block group were treated as random effects in
each model. Sample weights were incorporated in our models
as a fixed effect to account for oversampling of the communities
in the 45–74 age group (n = 9714, 59.2%), which was intended to

facilitate the examination of HCHS/SOL target outcomes. HCH-
S/SOL sampling weights are the product of a ‘base weight’ (recip-
rocal of the probability of selection) and three adjustments:
(1) non-response adjustments made relative to the sampling
frame, (2) trimming to handle extreme values (to avoid a few
weights with extreme values being overly influential in the
analyses) and (3) calibration of weights to the 2010 US Census
according to age, sex and Hispanic background. We used genetic
analysis groups in our analyses that accounted for heterogeneity
of genetic effects among ethnic groups. Compared with self-
identified background groups, genetic analysis groups are more
genetically homogeneous and lack principal component out-
liers in stratified analysis, which may hinder detection of and
adjustment for important population structure when ignored
(67). In addition, genetic analysis groups allow all individuals to
be classified in a specific group, whereas many individuals in
HCHS/SOL have a missing or non-specific self-identified back-
ground (67). Also, we conducted stratified analyses by region
(mainland vs. Caribbean) to identify potential heterogeneity in
effect by background group. We examined heterogeneity across
background group using I2 statistics calculated using METAL (74)
and tested for significant interaction (Pdiff < 0.05) by background
group using EasyStrata (75).

To decrease the number of spurious associations, we filtered
all results on MAF < 0.5%, Hardy–Weinberg Equilibrium (HWE)
P < 1 × 10−7, minor allele count [MAC (effective N)] < 30 (67).
Additionally, we categorized suggestive loci as those with vari-
ants reaching P < 1 × 10−6 and with at least one additional
variant within 500 kb+/− with a P < 1 × 10−5. We used regional
association plots produced in LocusZoom to visualize associa-
tion regions using unrelated individuals from HCHS/SOL for LD
(http://locuszoom.sph.umich.edu/).

Local ancestry estimation

We estimated local ancestry (African, Native American and Euro-
pean) using RFMix (76), which applies a conditional-random-
field-based approach for estimation to inform differences by
background group. We used 236 456 genotyped SNPs available
in both HCHS/SOL and reference-panel datasets in the Human
Genome Diversity Project (HGDP) (77), HapMap 3 (78) and 1000
Genomes phase 1 for detecting African, Native American and
European ancestry. We used BEAGLE (v.4) to phase and impute
sporadic missing genotypes in the HCHS/SOL and reference-
panel datasets (79).

Replication and meta-analyses

An aim of our study was to identify genetic variants that asso-
ciate with central adiposity, which may vary by ancestry. There-
fore, we sought to replicate our association findings using 1000
Genomes imputed GWAS data available in independent cohorts,
including eight studies with Hispanics/Latinos (HL: N up to
12 341), three studies with African Americans (AA; N up to 12 496)
and one study with European-Americans (EUR: N up to 8845).
Study design and descriptive statistics for each replication study
are provided in Supplementary Material, Table S1. Each replica-
tion study excluded individuals who were pregnant or exhibited
extreme values for waist or hip measures (outside of ±4 SD from
the mean). Each study used measures from a single visit with the
greatest sample size. We used linear regression (or linear mixed
effects models if the study had related individuals) association
analyses on the trait residuals after adjustment for age, age2,
principal components to account for ancestry, BMI, other study

http://locuszoom.sph.umich.edu/
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab166#supplementary-data
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specific factors (e.g. study center) and sex in the sex-combined
analysis, stratified by race/ethnicity where applicable for each
SNP that reached suggestive significance (P < 1 × 10−6) in the
discovery analysis.

We employed a fixed-effects meta-analysis using the
inverse variance-weighted method for WHRadjBMI and WCad-
jBMI. For HIPadjBMI, owing to trait transformations, we used
sample-size-weighted meta-analysis. All meta-analyses were
implemented in METAL (80). We conducted meta-analyses
stratified by race/ethnicity group and combined across groups.
We included SNPs with a study- and stratum-specific imputation
quality (Rsq) greater than 0.4, HWE P-value greater than 1 × 10−7

and a MAC greater than five. To declare statistical significance
for replicated loci, we required in each replication sample a
trait and stratum-specific P < 0.05 with a consistent direction
of effect with discovery and genome-wide significance (P < 5 ×
10−8) when meta-analyzed together with HCHS/SOL.

Generalization

To examine whether previously reported association regions
generalized to the HCHS/SOL, we downloaded the publicly
available multi-ethnic (European, Asian and African ancestry)
GWAS results from the GIANT consortium (14) for WHRadjBMI,
WCadjBMI and HIPadjBMI (https://portals.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files#
GIANT_consortium_2012-2015_GWAS_Metadata_is_Available_
Here_for_Download) in men, women and sexes-combined,
and then we applied the framework of Sofer et al. (2017) for
generalization testing (81). We took all variant associations
with P < 1 × 10−6 in GIANT and identified the matching
association test in HCHS/SOL. For each such association, we
calculated a directional False Discovery Rate (FDR) r-value by
combining the P-values from GIANT and HCHS/SOL, while
accounting for multiple testing and for the direction of estimated
associations in each of the studies. An association was declared
as generalized, while controlling for the FDR at the 0.05 level,
if its r-value was smaller than 0.05. Multiple SNPs from the
same region were tested. Therefore, in an iterative procedure,
we pruned the results list by identifying the SNP with the lowest
r-value in an analysis, then finding all SNPs in a 1 MB region
around it and removing them from the list. Thus, the number
of generalized regions is the number of generalized SNPs in the
pruned list.

We also hypothesized that some regions did not generalize
owing to lack of power (the HCHS/SOL sample size is much
smaller than the GIANT sample size). To test this, we took all
tested SNPs from the non-generalized regions and considered
the GIANT multi-ethnic GWAS results. In an iterative procedure,
we pruned the list by first identifying the SNP with lowest GIANT
P-value in the analysis, then found all SNPs in a 1 MB region
around it and removed them from the list. We repeated until
no SNPs remained. All the SNPs in the pruned list were selected
solely based on their GIANT P-values. Since there were many
such variants, we further grouped them according to their P-
values. Groups were formed by trait, sex (men, women and
combined) and GIANT P-value (between 10−6 and 10−7, between
10−7 and 10−8 and smaller than 10−8). For each such group of
SNPs, we created a genetic risk score (GRS) in HCHS/SOL. For
each sex stratum and each group of SNPs, the value of the GRS
was the sum of all trait increasing alleles in that group. We
chose an unweighted GRS as effect sizes derived from primarily
European ancestry GWAS are not easily transferable to admixed

populations (82). We tested the GRS in the appropriate analysis
group (men, women and combined). A low P-value implies that
some of the SNPs in the group are likely associated with the trait
in HCHS/SOL.

Biological curation

To gain further insight into the possible functional role of the
identified variants and to assess the relevance of our identified
variants with other phenotypes, we conducted lookups of our
replicated variants in multiple publicly available databases,
including PhenoScanner (36), RegulomeDB (38), Haploreg (39)
and UCSC GenomeBrowser (40). Additionally, we conducted
lookups of nearby genes in GTeX (41). The R package HaploR was
used to query HaploReg and RegulomeDB (https://cran.r-proje
ct.org/web/packages/haploR/vignettes/haplor-vignette.html).

Supplementary Material
Supplementary Material is available at HMG online.
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