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I. SUMMARY

This thesis project is about studying the viability of low-
cost biosensors, EEG in particular, to determine the focus of
software developers’ attention.

The primary research question we will answer is how well
these sensors can be used to differentiate between different
activities, similarly to how previous research has shown it to

be possible to differentiate other tasks, such as prose vs code
comprehension [!].

This will be accomplished by measuring brain activity using
EEG while simultaneously tracking what activity the developer
is engaging in (such as writing code, reading documentation,
or engaging with a non-work application such as social media).
This will then be used to train a classifier to differentiate
between the activities, in an attempt to determine if the EEG
data contains sufficient information to approximate the focus
of the developer’s attention.

II. BACKGROUND

People spend more time than ever using computing devices.
Work, entertainment, and services, have been steadily moving
online over the last few decades and this trend is expected
to continue. While several studies have been tracking how
people spend time on their devices a wider study of how
people’s app usage is changing over time and how it varies
with demographics, is not publicly available.

Furthermore, how different device activities affect the user
behaviorally and neurologically is of interest for many areas
of research, including:

« psychological well-being, such as depression and social
anxiety [2, 3], stress [4], self-esteem, life satisfaction,
loneliness, and depression [5].

« the impact of screen time on children and adolescents [0].

« attention span among media multitasking adults [4].

« enhancing personal productivity [7].

Understanding device use and the underlying cognitive pro-
cesses are essential when designing for motivation, engage-
ment and wellbeing in digital experiences [&].

This becomes especially relevant for knowledge workers,
such as software developers, who spend the majority of their
working time on computing devices.


https://erik.bjareholt.com/thesis/goaldocument.pdf

A. Automated time trackers

Automated time-trackers have been developed for computing
devices for various applications such as tracking productivity,
managing excessive use of social networking sites (SNSs).

1) Commercial use: Companies like RescueTime [9], Hub-
staff [10], and others offer automated time tracking as a
service. These services let the user track their screen time by
installing a program on their device which tracks the active
application and sends the data to their servers for storage and
analysis. The user can then view their data in a dashboard on
the service’s website. Some of these services, like RescueTime
and Hubstaff, are marketed towards teams and professionals,
who want to keep track of individual and team productivity.

However, these services have some issues for use by re-
searchers and individuals alike. Notably, their collection of
detailed and non-anonymized behavioral data into a centralized
system bring significant privacy concerns, especially in cases
where the data is shared with a team or an employer.

Other limitations of these services, such as low temporal
resolution and limited event detail, cause additional issues
for certain tasks that are timing-sensitive (such as ERPs), or
preprocessing steps that can take advantage of high level of
detail (like classifying activity).

2) Research use: Previous research has been published which
used automated time trackers, such as TimeAware [7] and
ScreenLife [!1]. However, these previous contributions are
— like the commercial services — not open source nor
permissively licensed, and therefore not available for external
research use nor further development.

3) ActivityWatch: The free and open source automated time
tracker ActivityWatch [12] addresses aforementioned issues
with other software around source availability/licensing, pri-
vacy, temporal resolution, event detail, and cross-platform
support.

B. Low-cost functional brain imaging

Functional brain imaging methods such as fMRI, fNIRS,
and EEG, have been used to study the relationship between
cognitive or physical activity, and brain activity [13, 14, 1].
The more accurate methods such as fMRI are costly and
inflexible/impractical for many uses.

However, the recent availability of low-cost biosensors such as
EEG, HEG, and fNIRS, enables studying brain activity during
real-life tasks. As an example it has been shown that it is
possible to classify what task a participant is undertaking using
fMRI [13], which has been replicated using EEG and low-cost
biosensors [1].

But they are not without their limitations — among them a
notably low signal-to-noise ratio [15] — yet visual evoked
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Figure 1: ActivityWatch activity dashboard. Showing top ap-
plications, window titles, browser domains, and categories.

potentials (VEPs) have been shown to be sufficient for high-
speed BCI applications [16].

To combat the low signal-to-noise ratio, machine learning
methods have been employed with varying degrees of suc-
cess. Examples from previous research include Convolutional
Neural Networks (CNNs), which have been successful in
classifying time series in general [I7], and EEG data in
particular [18]. As well as Hierarchical Convolutional Neural
Networks (HCNNs), which have been used for EEG-based
emotion recognition [19].

ITI. PROBLEM DESCRIPTION, RESEARCH GOALS AND
QUESTIONS

Knowledge workers in general, and software developers in
particular, have varying degrees of productivity that is in part
mediated by varying degrees of focus (or “flow”). Physical
devices which use device activity as an indicator of flow
have been developed to reduce interruptions at work, and
subsequently improve productivity [20].

Since EEG and other low-cost biosensors have been used to
classify developers emotions [2 1] and comprehension tasks [ 1]
we will investigate if they can also be used to classify which
device activity the user is engaging in.

The goal of this project is therefore to investigate whether
EEG and other low-cost biosensors can be used to improve
the productivity of developers by studying the relationship
between device activity and brain activity. This will be done
in part by training a device activity classifier from EEG data.



We structure our goals according to the Goal-Question-Metric
(GQM) paradigm. The goals are grouped into phases, which
are explained in the Methodology section.

Phases

Pilot study - Multi-subject study - Analysis

N

Understand EEG profile  Develop a classifier __

Figure 2: Overview of the goals/phases (with a subset of
the questions and metrics), structured according to the Goal-
Question-Metric (GQM) paradigm.

Goal: Characterize the EEG profile of different device activi-
ties, to inform the design of the multiple-subject experiment.

e Question: Which device activities are the easiest to dis-
tinguish from each other based solely on EEG data?
— Metrics: PSD, covariance matrix.

e Question: Roughly how much data is required to charac-
terize the EEG of a particular activity?
— Metrics: Time for aggregated power spectra to con-

verge.

e Question: Which electrode placements (in the 10-20
system) are most suitable for the task?
— Metrics: Covariance matrix.

e Question: What is the baseline power spectra of device
activity in general for a particular user?
— Metrics: Power spectra.

o Question: What are the power spectra of different activ-
ities (like work vs social media use)?
— Metrics: Power spectra aggregated by device activity,

o Question: Does the same activity consistently yield sim-
ilar power spectral densities.
— Metrics: Variance of the aggregated power spectra,

both per user and across the entire group.

o Question: Are any brain regions more strongly associated
with certain activity? (similar to G2-Q3)
— Metrics: Source estimation, covariance matrix.

Goal: Develop a classifier for device activity from EEG data.

o Question: Is the EEG data sufficient for building a
accurate classifier for device activity?
— Metrics: Classifier performance

e Question: What classifier is suitable for the dataset?
— Metrics: Accuracy, precision, F1 score of different

classifiers.

o Question: Which electrode placements/brain regions have
the most predictive power?
— Metrics: Source estimation, covariance matrix.

A. Research Questions

Can low-cost biosensors, like EEG, be used to...

e« RQI. How well can data from low-cost EEG sensors be
used to train a classifier separating software developers’
device activities?

« RQ2. Can we improve upon previous results in classi-
fying code vs prose comprehension with EEG@? (more
channels, improved classification pipeline)

B. Challenges

e Low volume of EEG data collected (limited time for data
collection)

o Limitations of low-cost EEG equipment (small number
of channels)

o Orthogonal stimuli (eye movement/blinking, use of key-
board/mouse) which will contribute significant noise to
the EEG readings not relevant for the classification task.

IV. METHODOLOGY

We will simultaneously collect EEG and device activity data
from subjects during device use. EEG data will be collected
with the 8-channel OpenBCI Cyton biosensing board and
Ultracortex headset. Device activity data will be collected and
categorized with ActivityWatch. The activity categories will
be used to label the dataset so we can train the classifier.

Project planning and tasks will be managed using GitHub
issues and the Kanban-like board provided by GitHub (GitHub
Projects).

The project can be roughly split into three phases.

« Run a single-subject pilot study and perform preliminary
analysis.

o Design and run a multiple-subject study.

o Develop a classifier for device activity.

A. Pilot study

The purpose of the first phase is to collect a pilot dataset (using
a single subject) to inform the design of the main study.

The main questions we want to answer in this phase are about
the study design in phase 2. Such as to identify which activities
are the easiest to distinguish using EEG and are thus best
suited for further study. (See GQM for more questions to be
answered)

B. Multiple-subject study

The purpose of this phase is to collect data from controlled
experiments with multiple subjects.

The experimental design and protocol will be partially drawn
from previous research, including a study on recognizing



developers emotions while programming [21], along with a
replication study utilizing EEG to classify code comprehen-
sion [1].

C. Develop classifier

Using the data collected from the previous phase we will
develop a classifier that classifies the category of device
activity using EEG data.

Additionally, there are numerous available EEG datasets and
challenges on Kaggle which will be used to inform the
development of the classifier.

V. SCIENTIFIC CONTRIBUTIONS

« Developing a classifier for device activity using low-cost
biosensors.

o Identifying relationships between device activity and
brain activity, as measured by EEG.

« Validating previous research on biofeedback in software
engineering.

« Developing a framework for using ActivityWatch in re-
search.

VI. RESOURCES

I have access to all the resources I need to perform the project,
including:

o OpenBCI Ultracortex headset and Cyton biosensing board
(8 channels)

e Muse S EEG headset (4 channels)

e Access to significant CPU & GPU compute capacity
(helpful for machine learning)

« 3-5 male test subjects who have given informed consent.

o ActivityWatch, an open source automated time tracker
(already developed by the author, but never before used
in a scientific publication)

o Resources from the NeuroTechX community, such as
code notebooks.[22]

e Open source software for EEG research such as MNE-
Python [23] and Brainflow [24].

« Publicly available EEG datasets on Kaggle.[25]

o Access to researchers who work with EEG at Lund
University (at Department of Automatic Control and
Department of Psychology)

« Computer
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