
Measuring Dependency Freshness in
Software Systems

Joël Cox∗, Eric Bouwers†, Marko van Eekelen∗‡ and Joost Visser∗†
∗Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands

Email: joel@joelcox.nl, marko@cs.ru.nl and j.visser@cs.ru.nl
†Software Improvement Group, Amsterdam, The Netherlands

Email: e.bouwers@sig.eu and j.visser@sig.eu
‡Computer Science Department, Heerlen, Open University of the Netherlands

Email: marko.vaneekelen@ou.nl

Abstract—Modern software systems often make use of third-
party components to speed-up development and reduce main-
tenance costs. In return, developers need to update to new
releases of these dependencies to avoid, for example, security
and compatibility risks. In practice, prioritizing these updates is
difficult because the use of outdated dependencies is often opaque.
In this paper we aim to make this concept more transparent by
introducing metrics to quantify the use of recent versions of
dependencies, i.e. the system’s “dependency freshness”.

We propose and investigate a system-level metric based on
an industry benchmark. We validate the usefulness of the
metric using interviews, analyze the variance of the metric
through time, and investigate the relationship between outdated
dependencies and security vulnerabilities. The results show that
the measurements are considered useful, and that systems using
outdated dependencies four times as likely to have security issues
as opposed to systems that are up-to-date.

I. INTRODUCTION

The use of third-party-components allows organization to
develop systems at a lower cost in a shorter period of time [1].
Once a third-party component is added, it becomes a depen-
dency of the system.

Throughout the lifetime of a system, developers need to
invest time to update dependencies for a variety of reasons.
For example, older versions of a dependency can contain
security issues which can put the system using that version
of a dependency at risk. Moreover, more recent versions of
dependencies often include fixes related to the stability of the
dependency. Lastly, using up-to-date versions normally makes
it easier to upgrade the dependencies, which makes the entire
system more flexible in terms of upgrading.

However, updating dependencies can come at a high
cost [2], for example because manual testing is required to
check for regressions after a dependency update. In addition,
the team working on the software system may have little
influence on the development process of the dependency, yet
it relies on the developers of the dependency to provide non-
trivial security and bug fixes [3]. Finally, bug fixing and
adding features to a system is often prioritized over preventive
maintenance. Dependency updates may contain trivial changes
not directly affecting the system, which makes it hard to justify
the update effort at the time of the release of the dependency.

Deciding to update the dependencies of a system is thus a
double edged sword and requires a careful balance of the effort
needed to update the dependencies and the benefits gained
by updating. While there exist ways to estimate the costs of
upgrading dependencies, there is currently no way to quantify
the long-term benefits of upgrading. In this paper, we take one
step towards this type of quantification by proposing a way to
quantify whether the dependencies of a system are up-to-date.

Before defining a system-level measurement, we first define
a measurement to quantify the “freshness” of a single depen-
dency. In this paper, the term “freshness” is used to denote
the difference between the used version of a dependency and
desired version of a dependency. The freshness values of
all dependencies, are aggregated to the system-level using a
benchmark based approach.

This system level metric is validated along three axis.
First, we investigate the assumption that up-to-date versions
of a dependency are desired by investigating the relationship
between known security vulnerabilities and the system-level
dependency freshness. Secondly, the usefulness of the metric
is evaluated by interviews with practitioners. Lastly, the vari-
ability of the metric is assessed to make sure the changes in
the value of the metrics can be placed into context.

II. BACKGROUND

Recent research acknowledges the importance of proper
dependency handling, as it is the most common build prob-
lem [4]. This study investigates one of the aspects of depen-
dency management, namely the updating of dependencies.

Our research is inspired by the concept of “update lag”
as described by Raemaekers et al. [5] while researching API
stability of popular open source libraries. In a later study it was
concluded that this lag is slightly correlated with the amount
of change introduced in a new version of a dependency [6].

To the best of our knowledge, no research has been done
towards quantifying the freshness of dependencies. However,
others have studied various aspects of the update cycle of
dependencies.

For example, a longitudinal study of changes to the de-
pendencies of a project has been performed by Businge et
al. [7], in which several quality aspects of Eclipse plugins

were analyzed. This analysis also involved the changes made
to the external dependencies of the plugins through time. The
change in dependencies is expressed in a churn-like metric,
counting the number of dependencies added and removed.

Moreover, research has been done on the API usage of
dependencies, for instance to automate the migration between
versions of a dependency [8]. Migration patterns between
dependencies that provide comparable functionality were also
studied, showing how dependencies are swapped within a
system when the used dependency is no longer to be found
suitable [9].

More closely related to our topic, Mileva et al. [10] per-
formed an analysis of different version of external dependen-
cies so see which version was the most popular. The “wisdom
of the crowd” is used to determine the “best” dependency
version, categorizing some of the dependency users as earlier
adopters or late followers. They also observed the processes
of migrating back to an old version of a dependency in case
of compatibility issues.

III. PROBLEM STATEMENT

This study is performed at the Software Improvement Group
(SIG), an independent advisory firm that evaluates the quality
of software systems. Our study builds upon previous research
and practices developed at SIG. Based on this context we
define the goal of our study following the guidelines of
Basili [11]:

To quantify the dependency freshness of a given
software system from the point of view of external
quality evaluators.

In the context of our research a dependency is a third-party
component that is added and directly called by a system. Given
our goal we define the following research questions to guide
our research:
RQ1 How can we measure the dependency freshness of a

single dependency?
RQ2 How can we measure the dependency freshness of a

system as a whole?
The remainder of this paper is structured as follows; in Sec-

tion IV we investigate different dependency-level metrics to
quantify the difference between two versions of a dependency.
Based on the values of these metrics in practice (Section V),
one metric is selected to be aggregated to the system level
in Section VI. The different validation studies are presented
in Section VII, Section VIII discusses the results, after which
Section IX concludes.

IV. DEPENDENCY FRESHNESS AT THE
DEPENDENCY-LEVEL

In this work we define dependency freshness as the dif-
ference between the currently used version of a dependency,
and the version of a dependency the system would ideally
use. As discussed, the “ideal” version of a dependency can be
context-specific; one can choose for the most stable version,
a specific long-term support version, or the latest version of a

t t + 1 t + 2

s s s

d1 d1 d1

d2 d2

1

1

1

2

2

depends on

succeeded by

0

0

0

Fig. 1. Example of a system with two dependencies. Dependency d1 is kept
up-to-date with every version of system s, while the system only updated to
dependency d12 in system version s2

dependency. For our study, we equate the ideal situation with
using the latest version of the dependency. In other words, as
soon as a new version of a dependency is released this version
should be used. Although we make this assumption here, the
defined metrics are also applicable to other definitions of the
“ideal” version.

As an example of our situation consider Figure 1 which
shows a system s depending on two dependencies d1 and
d2. On the top we see that dependency d1 is kept up-to-date
with every release of s, while the new version of d2 was not
immediately used in s. Thus at time t+1 the freshness of d1
is higher than d2. In the second release of s the new version of
d2 is used, making the freshness of both dependencies equal
again.

In this section we first lay out the criteria for selecting
an appropriate metric given our research context (Section
IV-A). We then define three different component-level metrics
(Section IV-B, IV-C and IV-D) and test them to the criteria
we explained earlier (Section IV-E).

A. Metric criteria

To select appropriate metrics for our research context we
consider the criteria defined by Heitlager et al. [12]. These
criteria are the minimal requirements that most be fulfilled in
order to result in a practical metric model.
Technology independent A metric should be applicable to a

wide range of systems and programming languages.
Ease of implementation The definition of a metric should be

straight forward, easy to compute, and implement.
Simple to understand The metric should be easy to explain

to non-technical staff and management.
Enable root-cause analysis Causative relations between sys-

tem properties and quality factors should be clear.
To satisfy the criteria above we set out to define three

relatively simple metrics that only take into account properties
of a dependency release, rather than more complex metrics that
take into account how a dependency interacts with a system.
In the next section we describe the following metrics and
their considerations: version sequence number (Section IV-B),
version release date (Section IV-C), and version number delta
(Section IV-D).

TABLE I
EXAMPLE OF HOW TO COMPUTE THE VERSION NUMBER DELTA
DISTANCES BETWEEN SEVERAL VERSIONS OF A DEPENDENCY.

Version Version number Delta Cumulative delta
dn (1, 2, 0)
dn+1 (1, 2, 1) (0, 0, 1) (0, 0, 1)
dn+2 (1, 3, 0) (0, 1, 0) (0, 1, 1)
dn+3 (1, 3, 1) (0, 0, 1) (0, 1, 2)

B. Version Sequence Number

The difference between two separate versions of a de-
pendency can be expressed by the difference of the version
sequence numbers of two releases. This measurement does
not necessarily take into account the version number of a
dependency, but can also employ the release date of the
dependency to order difference versions. I.e., for a dependency
with the versions (dn, dn+1, dn+2) ordered by release date, the
version sequence distance between dn and dn+2 is 2.

Consideration: Dependencies with short release cycles
are penalized by this measurement, as the version sequence
distance is relatively high compared to other dependencies.

C. Version Release Date

The distance between two releases of a dependency can also
be expressed by the number of days between the release dates.
I.e., let r be a function which returns the release date for a de-
pendency version. The distance between r(dn) = 10/3/2014
and r(dn + 2) = 30/6/2014 is defined as 113 days. Unlike
the other measures presented in this section, this measurement
can be calculated without knowledge of intermediate releases.

Consideration: This measurement heavily penalizes de-
pendencies that release a new version of a dependency after
large periods of inactivity. This is often the case for depen-
dencies with a high level of maturity.

D. Version Number Delta

Lastly, the distance can be computed by comparing the
version numbers of the releases of a dependency. Comparing
two version number tuples can be done by calculating the
delta of all version number tuples between two releases. A
version number is defined as a tuple (x, y, x) where x signifies
the major version number, y the minor version number and x
the patch version number. The function v returns the version
numbers tuple for a version of a dependency.

The delta is defined as the absolute difference between the
highest-order version number which has changed compared to
the previous version number tuple. To compare multiple con-
secutive version number tuples, the deltas between individual
versions are added like normal vectors.

For example, two consecutive versions of a dependency
v(dn) = (1, 2, 2) and v(dn+1) = (1, 3, 0) results in the version
delta distance (0, 1, 0). A more elaborate example can be found
in Table I.

TABLE II
COMPARISON OF THE DIFFERENT DEPENDENCY-LEVEL FRESHNESS
METRICS. CRITERIA CAN EITHER BE ADHERE TO (+), OR NOT (–).

Version
sequence
number

Version
release
date

Version
number
delta

Technology independent + + –
Ease of implementation + + +
Simple to understand + + –
Enable root-cause analysis + + +

Consideration: The main problem with this measurement
is that there is no meaningful way of aggregating the tuple of
major, minor and patch version numbers to come to with a
single number to represent the version delta. Intuitively it can
be said that x > y > z, but it is impossible to generalize the
values of the variables as they are completely dependent on a
dependency’s individual release cycle.

E. Measurement overview

Table II shows how each of the three metrics adheres to
the different criteria. The version number delta adheres to
only two criteria. The reliance on a specific versioning scheme
makes this metric technology dependent, while the additional
aggregation step makes this metric harder to understand.

The other two metrics satisfy all four criteria and do
not make any assumptions about versioning schemes of the
software. Because of this, the version release date (VRD)
and version sequence number (VSN) metrics are selected as
candidate metrics in our study.

V. DEPENDENCY FRESHNESS IN PRACTICE

Although a high level of freshness is desired for a depen-
dency, our experience tells us that in practice dependencies
are not updated frequently. Like many other software system
properties, we expect the distribution of freshness to follow a
fat-tailed power-law distribution [13].

To asses this hypothesis the freshness information from a
large group of systems is needed. To calculate this information
two datasets are required, one containing the dependency
information of a set of systems (Section V-A), and one
containing the versions available for the used dependencies
(Section V-B).

A. Dependency Information Dataset

Out of the systems analyzed by SIG we selected 75 systems
from 30 different clients. All of these systems were identi-
fied as Java systems that manage their dependencies through
Maven1, a tool for managing software dependencies. We chose
the Maven package manager as it is the most prevalent package
manager in the repository of industry systems.

Maven requires dependencies to be specified in a manifest
file (pom.xml), located in the root directory of a system.
Additional manifests files can be placed in subdirectories. To

1http://apache.maven.org

Freshness measured by release date distance

F
re

qu
en

cy

0 500 1000 1500 2000 2500 3000

0
20

0
40

0
60

0

(a) Freshness by version release date.

Freshness measured by release sequence distance

F
re

qu
en

cy

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0
10

00
12

00

(b) Freshness by version sequence number

Fig. 2. Distribution of dependency freshness at the dependency-level.

obtain a list of dependencies for a specific system we therefore
need a two-step process:

1) Search the system for files called pom.xml.
2) Parse the XML files to retrieve the dependencies and

remember the dependency if the dependency wasn’t
already specified for this system.

Variable version numbers are replaced by the value found
for the key in the <properties> element. Dependencies
with undeclared version numbers are discarded. This was only
the case for 34 unique dependencies in our dataset.

A total of 3107 unique dependencies were retrieved from
the dataset of industry system, consisting out of 8718 unique
dependency versions. Of these dependency versions 5603
(64%) were classified as internal dependencies unavailable to
us. A dependency is considered internal if the groupId of
the dependency is equal to the groupId of the system.

B. Dependency Versions Dataset
To construct the database of dependency versions, e.g. the

version number and release dates, the Maven.org repository is
used. This repository is the most widely used repository for
Java packages and used by the Maven package manager in its
default configuration. For every unique dependency (combi-
nation of groupId and artifactId) found in our dataset
of industry systems, a query was made to the Maven.org
repository. If an exact match was found, all versions of that
unique dependency were added to our database, together with
their respective release dates.

Querying the Maven.org repository resulted in 2326 unique
dependency versions with release dates out of 3115, a hit
percentage of 75%. A total of 23431 unique intermediate
dependency versions were retrieved. These are the dependency
versions which were not found in the dataset of industry sys-
tems, but are earlier or later versions of unique dependencies
which were found in this dataset.

C. Dependency Freshness distribution
Based on the datasets described above the dependency

freshness in terms of the release date and release sequence
was calculated, Figure 2 shows the results of this calculation.

When analyzing Figure 2 (a) the length of the tail stands
out, showing that some dependencies are over 3000 days old.
Upon further investigation these cases often involve rather
mature dependencies such as those maintained by the Apache
Commons project2.

An example of such a dependency would be the release
of the commons-logging. commons-logging package,
version 1.1.1 on 2007-11-26. This release was followed by
version 1.1.2 on 2013-03-16. Calculating the release date
distance between the two versions would yield a number found
in the tail of the overall distribution, while the actual perceived
freshness is probably deemed to be higher.

The release sequence histogram (Figure 2 (b)) follows
the anticipated power-law distribution more accurately. This
measurement is more forgiving to mature dependencies which
are updated after several years of inactivity, as described in
the previous paragraph. However, it is more susceptible to de-
pendencies which have a shorter release cycling. For instance,
the org.eclipse.jetty.jetty-client package saw
128 releases in a timespan of less than 5 years.

Performing a Spearman correlation test between both met-
rics yields a value of 0.637, indicating a strong, significant
(P < 0.05) correlation. This result confirms that as the version
release date distance increases, it is highly probable that the
version sequence number distances increases, too (and vice
versa).

When looking at the overall state of dependency freshness
using the version sequence number metric we conclude that
only 16.7% of the dependencies display no update lag at all;
the most recent version of a dependency is used. Over 50%
of the dependencies have an update lag of at least 5 versions,
which is considerable. The version release date distance paints
an even worse picture. The large majority (64.1%) of the
dependencies has an update lag of over 365 days, with a tail up
to 8 years. Overall we conclude that it is not common practice
to update dependencies on a regular basis.

While both measurements are sensitive to outliers, we
decided to use the version sequence number distance as

2http://commons.apache.org

the basis for our system-level metric, as we rather discount
dependencies on fast release cycles (and thus more subject
to change), rather than mature projects that receive potential
minor updates.

VI. DEPENDENCY FRESHNESS AT THE SYSTEM-LEVEL

Given the measurement of freshness on the dependency
level, a system level metric can be defined by aggregating
the lower level measurements. As discussed before, there is
no absolute threshold available for the “ideal” freshness of
dependencies. Therefore, we opted for a benchmark based
aggregation approach. Given the power-law distribution of the
data (see Figure 2) we use the risk based aggregation approach
of Alves et al. [13][14].

This aggregation method works with a so-called risk profile
which, in our case, describes which percentage of depen-
dencies falls into one of four risk categories. To determine
the thresholds for the risk profile a two-phase calibration
process needs to be followed. In the first phase the thresholds
for the four risk categories are derived from a benchmark
(Section VI-A), this enables the creation of a risk profile on
a per system basis.

In the second phase, thresholds are established to assign
a rating to each risk profile (Section VI-B) based on the
percentage of dependencies in each risk category. This allows
the risk profiles to be sorted, which enables the comparison
between systems.

A. First-level calibration

In the first-level calibration phase the thresholds for the
risk profiles are determined. Based on these thresholds, each
dependency is assigned to one of four risk categories. For
example, if the thresholds are defined as 〈5, 10, 20〉 for the
categories “low”, “moderate”, “high”, and “very high”, a
dependency with a freshness of 9 would be assigned to the
“moderate risk” category. Performing this classification for
all dependencies of a system can result in a risk profile
like 〈27, 9, 5, 2〉, meaning that a system has 27 “low risk”,
9 “moderate risk”, 5 “high risk” and 2 “very high risk”
dependencies.

The threshold values for this classification are determined
by plotting a cumulative density function, containing all
dependency-level freshness measurements across a dataset.
Figure 3 shows the overall distribution of dependency fresh-
ness as well as the distribution for each system extracted from
the dataset as described in Section V-A. Three red lines are
plotted to indicate the 70th, 80th and 90th percentile, which
are used to derive the values of the thresholds for the risk
categories. The exact numeric thresholds corresponding to the
quantiles are listed in Table III.

One additional decision that needs to be made in this
phase is whether each dependency is of equal importance,
e.g. whether each dependency is assigned the same weight or
whether some dependencies need to be weighted differently.
Following the advice of Alves et al. [13] we assign each
dependency a weight of 1. Determining whether a more

0

50

100

0.00 0.25 0.50 0.75 1.00
Quantiles (% of dependencies)

F
re

sh
ne

ss

Fig. 3. Dependency freshness per system, measured by release sequence
distance. The black line indicates the average. Red vertical lines are placed
on the 70th, 80th and 90th percentile.

TABLE III
FIRST-LEVEL THRESHOLDS FOR DEPENDENCY RISK PROFILES.

Risk category
Risk category Low Moderate High Very high
Interval [0, 10) [10, 16) [16, 22) [22,∞)

elaborate weighting scheme provides more value is left as
future work.

After establishing these thresholds, risk profiles for each
separate system can be created. As explained, the classification
of a dependency is done by computing the version release
sequence distance, after which the corresponding risk category
is determined. Given the current thresholds, a dependency with
a version release sequence distance of 12 is classified as a
“moderate risk” dependency. This process is repeated for each
dependency with a known version release sequence distance
and results in a system-level risk profile.

B. Second-level calibration

While the risk profiles provide an indication of the distribu-
tion of undesirable dependency versions for a single system,
it is difficult to intuitively compare them across systems.
For example, given two relative risk profiles (containing per-
centages instead of absolute counts) A = 〈20, 45, 30, 5〉 and
B = 〈15, 55, 22, 8〉 it is unclear which one should be preferred.

To solve this issue, Alves et al. [14] proposed an algorithm
for ranking these risk profiles as well as a way to derive a
rating from such a profile. To accommodate this, a mapping
has to be created that assigns a rating based on the relative
size of the risk categories. This rating scale can be completely
arbitrary. However, to embed the rating into our research
context we follow the already used approach by defining a
5 star rating system using a 〈5, 30, 30, 30, 5〉 distribution. In
other words, 5% of the systems is assigned a rating of 1, 5%
of the systems is assigned a rating of 5, while the other 90%

TABLE IV
NORMAL RISK PROFILES ARE TRANSFORMED INTO CUMULATIVE RISK

PROFILES BY ADDING THE DEPENDENCIES OF HIGHER RISK CATEGORIES.

Risk category
Risk profiles Low Moderate High Very high
Non-cumulative 62.2% 20.7% 13.3% 3.8%
Cumulative 100% 37.8% 17.1% 3.8%

TABLE V
SECOND-LEVEL CALIBRATION THRESHOLDS FOR CUMULATIVE RISK

PROFILES.

Rating Moderate risk High risk Very high risk
? ? ? ? ? 8.3% 0% 0%
? ? ?? 30.4% 14.3% 7.7%
? ? ? 38.9% 30.6% 19.7%
?? 60.0% 46.3% 27.8%

is equally divided over the 2, 3, and 4 ratings. In this system,
higher ratings are given to systems with less risk, e.g. more
dependency freshness.

The first step to aggregating these risk categories is trans-
forming the risk profile into a cumulative risk profile. This is
done by including the dependencies of higher risk categories
into the original risk category. Intuitively this makes sense;
dependencies which are of “very high risk” are of at least
“high risk”, too. An example of this transformation is shown
in Table IV.

Once the risk profiles are transformed, exact threshold
values for the categories have to be set. Using the set of
systems in the benchmark and their associated risk profiles,
thresholds are computed so that our desired distribution of
〈5%, 30%, 30%, 30%, 5%〉 of system ratings is reached.

To assign a discrete rating to a risk profile the rating has
to be found for which no cumulative risk category from a
risk profile is greater than the threshold. It is also possible
to assign a more fine-grained rating to a risk profile by
using linear interpolation. This is done by first computing
the discrete rating of a system and subtracting the absolute
volume of dependencies in this risk category, normalized by
the length of the risk category’s interval. The lowest value
of this computation for each risk category is taken and 0.5
is added for ease of arithmetic rounding when the rating is
translated to a star rating.

As an example, the risk value in Table IV would be assigned
four stars for the “very high risk” rating, three stars for the
“high risk” rating, and three stars for the “moderate risk”
rating. Taking the lowest of these ratings results in a rating
of a maximum of three stars. Interpolating the moderate risk
category gives (38.9− 37.8)/(38.9− 30.4) = 12, resulting in
an interpolated score of 2.5 + 0.12 = 2.62.

VII. VALIDATION

To validate the system level freshness rating three different
types of studies are defined. First of all, we asses the relation-
ship between dependency freshness and security vulnerabilities
found in dependencies (Section VII-A). A positive relationship
(e.g. less vulnerabilities are found in newer dependencies)
would strengthen the argument that upgrading libraries is im-

portant. Secondly, we interview practitioners to determine the
usefulness of the system level metric (Section VII-B). Finally,
we perform a longitudinal analysis to analyze whether the
metric can be used for long-term monitoring (Section VII-C).

A. Vulnerabilities in dependencies

To determine the relationship between the dependency
freshness rating and security vulnerabilities we calculate the
rating for each system and determine how many of the depen-
dencies used by a system have a known security vulnerability.
To determine whether a specific dependency versions contains
a security vulnerabilities we use data obtained from a Com-
mon Vulnerabilities and Exposures (CVE) system. Component
maintainers use these systems to spread security advisories to
the users of their software.

1) Data Gathering: Because CVEs are mostly unstruc-
tured, the data obtained from the CVE system has to be
processed before it can be matched to a specific dependency.
In this study the dataset from Cadariu [15] is used in which
dependencies found in the Maven.org ecosystem were matched
with CVEs using the DependencyCheck3 tool.

This dataset contains information about
which version of a dependency is linked to
a CVE identifier and is formatted as follows:
org.apache.wicketwicket6.5.050484787010570
26157.txt (cpe:/a:apache:wicket:6.5.0) :
CVE-2013-2055

The first part of each line is the path to a file, containing
the groupId, artifactId, version number, and a random
number. The token between parentheses is the name of the
matches software package according to the CPE naming
convention, while the last token references the CVE-ID which
was matched.

It is clear that this data is not formatted in such a way
that is can be incorporated in the dependency version dataset
directly. The following steps were performed to recreate the
fully qualified name of the dependencies in the dataset.

1) Find the longest repeating token in the file path. This
would be “wicket” in the example.

2) Split the file path after this token, resulting in the
dependency’s
groupId “org.apache.wicket” and artifactId
“wicket6.5.05048478 701057026157.txt”.

3) Find the version number either from the CPE definition,
or perform a pattern match on the file path. In the
example the version number can be taken from the CPE
definition: “6.5.0”.

4) Strip the version number from the artifactId, re-
sulting in“wicket”.

By using this algorithm we were able to fully qualify 1642
out of 1683 items from the original dataset, the remaining 41
records were discarded to keep the steps reproducible. After
manual inspection 339 dependency versions were marked as
containing at least one reported security vulnerability, this

3https://github.com/jeremylong/DependencyCheck

TABLE VI
SYSTEM VULNERABILITY DATA GROUPED BY STAR RATING.

Rating No vulnerable dependencies Vulnerable dependencies
? ? ? ? ? 2 1
? ? ?? 11 3
? ? ? 18 4
?? 11 15
? 4 2

low number is attributed to a high number of duplicate and
mismatches in this used dataset as well as noise in the CVEs
themselves. An example of such a mismatch is a non-Java
project, matched to a Java project with comparable names.

Analysis result

Figure 4 (a) shows the distribution of dependency freshness
grouped by the number of security vulnerabilities found. The
main observation is that the majority of the systems were
found to have no reported vulnerabilities. The data becomes
increasingly sparse as the number of vulnerable dependencies
increases.

The box plot shows that systems with a high median depen-
dency freshness rating have a lower number of dependencies
with reported security vulnerabilities. Systems with a low
median dependency freshness rating have a higher number of
vulnerable dependencies. However, due to the sparsity of the
data the statistical tests do not show statistically significant
results. To make statistically significant claims about the data
the results have to be aggregated further.

Figure 4 (b) shows the distribution of systems without
vulnerable dependencies and with vulnerable dependencies.
This plot clearly shows the shift in distribution, which is
significantly different (Wilcoxon rank-sum test, W = 25,
n = 71, P < 0.05 two-sided). Systems with vulnerable depen-
dencies have a mode of 2.2 and systems without vulnerable
dependencies have a mode of 3.3. The mode is used to describe
the central tendency of the distributions as they are clearly
skewed.

When the data is tabulated (Table VI) and grouped by the
star rating a tipping point can be observed between two and
three stars systems. The distinction that can be made here
is that dependencies with three or more stars are considered
fresh, while others are considered stale, from a security per-
spective. A change in non-vulnerable versus vulnerable ratio
can also be seen for systems rating two stars, although this can
not be observed for one star systems. This can be attributed
to the small number of systems in this group.

After making this subdivision, the effect size can be ex-
pressed through an odds ratio by simple cross-multiplication:
(2+11+18)/(1+3+4)

(11+4)/(15+2) = 4.3. This effect size means that systems
which score less than three stars are more than four times as
likely to have vulnerable dependencies.

B. Interviews on Usefulness

Five semi-structured interviews were conducted with five
technical consultants at SIG. Technical consultants support

general consultants on client projects and develop the tooling
to perform their analysis. Technical consultants are generally
highly educated (Master degree or higher) and experienced
software engineers. All 30 minute interviews were conducted
by the first author at the SIG premises.

The technical consultants were asked about two types of
systems, known and unknown systems:

Known system A system from a client that the technical
consultant is assigned to. The exact system was selected
by the first author from the set of systems assigned to the
consultant which contain at least 20 dependencies.

Unknown systems Five systems from the dataset of industry
systems, with a similar number of dependencies and
distinctive star ratings.

Printouts containing the dependencies and version distance
of each dependency were brought to the interviews. Each
line contains the groupId and artifactId of the de-
pendency, together with the version number, followed by the
component-level dependency freshness. The last line shows
the total amount of dependencies in the system, the amount of
dependencies that were classified as internal, and the number
of dependencies with unknown histories (e.g. not found in the
central Maven.org repository). The following is an example of
such a printout.
- commons-lang.commons-lang at 2.6.0 with
dependency freshness 0
- org.springframework.spring-web at 3.2.3
with dependency freshness 10
- javax.mail.mail at 1.4.1 with dependency
freshness 11
Found 58 dependencies, 15 with unknown
histories, 10 internal-only.

We asked the following questions to each of the interviewees.
(The printout of the known system was only provided after
question 5).

1) Are you aware of any issues – current or past – related
to dependency management in the known system?

2) Is the development team responsible for the known
system aware of issues arising from bad dependency
management?

3) Do you have an idea about the dependency freshness of
the known system?

4) If you were to rate the known system – considering
the 〈5%, 30%, 30%, 30%, 5%〉 distribution – what rating
would you give?

5) If you were to rank the following unknown systems from
a low to high dependency freshness rating, how would
you rank them?

6) Do you think this is a valuable metric considering its
impact on security, stability and flexibility of the known
system?

7) Would this metric translate to an advice to the customer?
8) Would you take any specific action given the printout of

the known system?

●

0 1 2 3 4

1
2

3
4

5

Number of dependencies with reported vulnerability

D
ep

en
de

nc
y

fre
sh

ne
ss

 ra
tin

g

(a) Dependency freshness rating by number of depen-
dencies with reported vulnerabilities.

0.0

0.2

0.4

0.6

1 2 3 4 5
Dependency freshness rating

D
en

si
ty

Vulnerable FALSE TRUE

(b) Dependency freshness rating for systems with and
without reported vulnerabilities.

Fig. 4. Dependency freshness rating and dependency vulnerabilities

TABLE VII
SYSTEMS AS RANKED DURING THE INTERVIEWS AND RANK PRODUCED

BY THE DEPENDENCY FRESHNESS METRIC.

System Subject
Rating Rank 1 2 3 4 5
1108 5.053 5 5 5 5 5 5
1994 4.105 4 4 2 4 4 4
850 3.248 3 3 3 3 3 3
362 2.188 2 2 4 2 2 2
181 1.427 1 1 1 1 1 1

Quantitative Interview Results

During the interview interviewees were presented with 5
printouts of systems and asked to rank these systems from a
low-level to a high-level of dependency freshness. Printouts
were fully anonymous; only a unique identifier was displayed
on the paper. The results of this test are shown in Table VII.
Numbers in bold indicate systems ranked differently than the
metric’s ranking.

As shown in Table VII, all interviewees except for one
ranked the systems identical to the metric, which indicates
a relative good agreement between the consultants and the
rating from the metric.

Qualitative Interview Results

Several of the technical consultants consider dependency
management an issue within the projects they evaluate. This is
especially true for older systems with a relative large number
of dependencies. Organizations with critical application and
rigid processes often impose restrictions on the dependencies
that can be used by the (internal) development team, either at
the library level or runtime environment.

Some consultants were not aware of any issues. They either
attributed the absence of problems to the volume, maturity
or environment of the system. Smaller and newer systems

may have a higher dependency freshness because when de-
pendencies are added to a system, the most recent version
of the dependency is included. Internal systems often have
lower security requirements and system owner thus may find
dependency management not too important from a security
perspective.

The consultants were able to accurately rate the system,
as shown in question 4 and 6 – in the proximity of one
star. This indicates that the rating is quite well aligned with
the perceived dependency freshness of the system. It also
shows that the version distance is a good mapping from
individual dependencies to the system dependency freshness,
strengthening the predictive quality of the metric.

Some of the consultants were able to reason about the
dependency freshness using their knowledge of the system,
for instance the system age and owner. A few had actually
inspected the system dependencies earlier, by hand.

When the consultants where asked to rank the unknown
systems, different issues and questions came up:

• Are dependencies that are used more often throughout
the system weighed differently?

• Are dependencies of different types weighed differently?
For instance Hibernate (a database abstraction layer) may
be more crucial than JUnit (a testing framework).

• How are dependencies on fast release cycles weighed?
• Are transitive dependencies taken into account?

These questions were not answered until after the ranking was
finalized. In spite of these concerns, the consultants were able
to accurately rank the system, as shown in Table VII.

All interviewees were favorable towards the usefulness of
the metric. Some saw the metric as an indicator of the client’s
or the supplier’s work processes, or the quality of their work
processes. One consultant elaborated on how the metric served
as an indicator of security, stability and flexibility, ultimately
agreeing with all three aspects.

Throughout the interviews the importance of good depen-
dency management was stressed, but every interviewee also
acknowledged how difficult this really is. “This is a typical
problem developers know about, but there is no clear overview
of the problem and it only becomes apparent when a new
feature has to be implemented and x has to be updated”, was
noted by one of the interviewees.

C. Longitudinal Analysis

To perform a longitudinal analysis the dependency freshness
rating of all available versions of systems in our dataset was
calculated. Systems with fewer than five versions were not
included, reducing the dataset to 50 systems. No restrictions
were placed on the interval between versions of a system.

Analysis Results

The median variance of the rating for the different systems
is quite low, only 0.04 in a range of 5. Only nine systems have
a variance of 0.2 or greater, meaning that the majority of the
systems sees little changes to its dependency freshness rating.
When excluding the systems without dependency churn the
median variance improves only slightly, to 0.06.

Although the rating variance is low, quite some change
can be observed when looking at Figure 5. Snapshots that
include dependency updates are clearly visible in the line
plot, displayed as an ascending line. If a snapshot contains no
updated dependencies the line is stable, or slightly declining
if new versions of the dependencies used in the system were
released. The following types of systems with regards to
dependency freshness can be distinguished:
Stable Systems with a stable dependency freshness rating.

The system dependencies see little to no updates.
Improving Systems with an increasing dependency freshness

rating. Dependencies are updated faster than they are
released.

Declining Systems with an decreasing dependency freshness
rating. Dependencies are updated slower than they are
released.

VIII. DISCUSSION

The reported security vulnerabilities study shows that sys-
tems with a low dependency freshness score are more than
four times as likely to contain security issues in these depen-
dencies. This confirmed the relationship between the security
quality factor of a system and its dependency freshness rating,
although no claims of causation could be made.

All interviewees considered the system-level metric useful
and considered that it also serves as an indicator for several
other properties of the system and it’s development process.
We found that technical consultants are able to accurately dis-
tinguish systems with a high level and low level of dependency
freshness. Moreover, the metrics showed to be good mapping
for the perceived dependency freshness of a system.

While the longitudinal analysis showed a low variance in
ratings, the analysis shows an interesting concept, namely that
the dependency freshness of a system can be characterized

1

2

3

4

5

2010 2011 2012 2013 2014
Time

D
ep

en
de

nc
y

fr
es

hn
es

s
ra

tin
g

Fig. 5. Dependency freshness rating per snapshot grouped by systems with
more than 5 versions.

using two dimensions: the speed at which the dependencies are
updated and the speed at which the dependencies are released.

In turn this shows that good dependency management (i.e. a
high dependency freshness rating) can be achieved by making
the correct combinations of these dimensions. Systems which
use dependencies with a short release cycling thus require a
high update speed in order to achieve a high rating, while
systems with dependencies on a long update cycling can get
away with a slower update speed. Using more mature (i.e. de-
pendencies on a long update cycle) dependencies thus requires
less effort to maintain a certain dependency freshness rating.
On the other hand, systems with a dependency freshness rating
that has been stable for an extensive period of time might also
be an indicator of problems.

A. Treats to validity

A relationship has been found between the dependency
freshness rating of a system and whether this system has a
dependency with a security vulnerability. However, this does
not imply causation as counter examples can also be found:
systems with a higher dependency freshness can also have se-
curity issues. This should not be surprising, as newer software
sometimes also contain reported security vulnerabilities.

Additionally, the data obtained for determining whether
dependencies contained reported vulnerabilities was generated
automatically, which has been shown to be difficult to do
accurately [15]. Because the actual names of the dependencies
are matched to a known set of systems, there is a high
level of confidence that the resulting data set is correct (no
false positives), but not complete. For instance, popular Java
projects like Spring and Hibernate are not included. It is
expected that adding these projects reinforce the conclusions
made in our research as they contain several vulnerabilities
and are widely used.

Another issue is that determining whether a metric is useful
depends on context. This study tried to approach this concept
from two different perspectives, namely whether the metric

serves as an indicator of quality attributes of the system and
whether the metric will translate into advice to the system
owners. The authors believe that these two perspectives serve
the most prevailing use-cases in which this metric may be
used.

There are also several confounding variables which may
have influenced the results of the interviews. For instance, if
technical consultants recently inspected the dependencies of a
system manually as part of their regular work, they are better
able to predict the dependency freshness of a system. Asking
the consultants about different known systems also introduced
another variable as systems vary widely in size, age and func-
tionality. Additionally, interviewer bias may have impacted the
answers to the questions regarding the usefulness of the metric.
These issues have been countered by interviewing a larger set
of technical consultants, and explaining the purpose of the
interviews.

IX. CONCLUSION

The overall result of this study is the definition of a metric
to aid stakeholders in deciding on whether the dependencies
of a system should be updated. In particular, the contributions
of this paper are:

• The definition of several metrics to quantify dependency
freshness at the component-level, including their advan-
tages and disadvantages.

• An assessment of the current state of dependency man-
agement of a large set of industry systems.

• The definition of a system-level metric using a bench-
mark approach, so that a single rating can express the
dependency freshness.

• The validation of this metric, showing the implications
of low dependency freshness with regards to security,
its usefulness in practice and its suitability for long-term
monitoring.

Overall, the metrics show a great potential in quantifying the
dependency freshness of a system. They provide a quantitative
basis for discussions and thus can help stakeholders to make
decisions about updating specific dependencies.

Furthermore, this study outlines several preconditions to
enable a good dependency management process. These pre-
conditions include a high-level of automated testing and agile
processes. The relationship between these requirements and
good dependency management seems worth investigating.
Moreover, to improve the usefulness and applicability of the
proposed metrics we envision three area’s of future work.

Metric refinements: The current metrics do not take at-
tributes of a dependency into account, such as its size,
functionality or popularity. Neither does it look at how the
dependency is used by the system, how tightly the dependency
is coupled or how often it is called. These attributes could
provide an additional layer of granularity and possibly reduce
the outlier sensitivity of the dependency-level metrics.

Update effort estimation: While the metric gives a good
indication of how a system is performing with regards to
dependency freshness, it is still hard to put this number
into context. As discussed in the introduction, the choice of
updating dependencies is a balancing act between effort and
risk. Yet, the metric does not give a clear indication what
amount of effort has to be put into the system in order to
counter the risk expressed in the dependency freshness rating.

Impact on software quality: Metrics are often used to
monitor and improve the quality of software systems. Now
that a metric is defined to monitor the dependency freshness
of a system it would be interesting to see whether applying this
metric has a positive impact on the dependency management
of a system.

REFERENCES

[1] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[2] V. R. Basili and B. W. Boehm, “COTS-based systems top 10 list,”
Computer, vol. 34, no. 5, pp. 91–95, May 2001.

[3] D. J. Reifer, V. R. Basili, B. W. Boehm, and B. Clark, “Eight lessons
learned during COTS-based systems maintenance,” IEEE Software,
vol. 20, no. 5, pp. 94–96, 2003.

[4] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W. Bowdidge,
“Programmers’ build errors: a case study (at Google).” in International
Conference on Software Engineering, 2014, pp. 724–734.

[5] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in Software Main-
tenance (ICSM), 2012 28th IEEE International Conference on. IEEE,
2012, pp. 378–387.

[6] ——, “Semantic versioning versus breaking changes: A study of the
Maven repository,” in Source Code Analysis and Manipulation (SCAM),
2014 IEEE 14th International Working Conference on, 2014.

[7] J. Businge, A. Serebrenik, and M. van den Brand, “An empirical study
of the evolution of Eclipse third-party plug-ins,” in Proceedings of the
Joint ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE), ser. IWPSE-
EVOL ’10. New York, NY, USA: ACM, 2010, pp. 63–72.

[8] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based API-usage
analysis of open-source Java projects,” in Proceedings of the 2011 ACM
Symposium on Applied Computing. ACM, 2011, pp. 1317–1324.

[9] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of library
migration in Java software,” arXiv preprint arXiv:1306.6262, 2013.

[10] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops. ACM, 2009, pp. 57–62.

[11] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” in Encyclopedia of Software Engineering. Wiley, 1994.

[12] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for mea-
suring maintainability,” in Quality of Information and Communications
Technology, 2007. QUATIC 2007. 6th International Conference on the.
IEEE, 2007, pp. 30–39.

[13] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds
from benchmark data,” in Software Maintenance (ICSM), 2010 IEEE
International Conference on. IEEE, 2010, pp. 1–10.

[14] T. L. Alves, J. P. Correia, and J. Visser, “Benchmark-based aggregation
of metrics to ratings,” in Software Measurement, 2011 Joint Conference
of the 21st Int’l Workshop on and 6th Int’l Conference on Software
Process and Product Measurement (IWSM-MENSURA). IEEE, 2011,
pp. 20–29.

[15] M. Cadariu, “Tracking vulnerable components in software systems,”
Master’s thesis, Delft University of Technology, 2014.

