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A B S T R A C T

Gene regulatory network inference is a standard technique for obtaining structured regulatory information from,
for instance, gene expression measurements. Methods performing this task have been extensively evaluated on
synthetic, and to a lesser extent real data sets. In contrast to these test evaluations, applications to gene ex-
pression data of human cancers are often limited by fewer samples and more potential regulatory links, and are
biased by copy number aberrations as well as cell mixtures and sample impurities. Here, we take networks
inferred from TCGA cohorts as an example to show that (1) transcription factor annotations are essential to
obtain reliable networks, and (2) even for state of the art methods, we expect that between 20 and 80% of edges
are caused by copy number changes and cell mixtures rather than transcription factor regulation.

1. Introduction

Gene Regulatory Network (GRN) inference describes the process of
identifying regulator-target relationships from experimental molecular
data. These data can be protein-protein interactions (often referred to as
interaction networks) or protein-DNA binding (obtained by chromatin
immunoprecipitation and sequencing, or ChIP-seq), but is most com-
monly gene expression data (obtained by microarrays or more recently
RNA-seq).

For gene expression data, the rationale behind GRN inference is that
if a transcription factor (TF) is more highly expressed, it is also likely to
be more active and mediate a higher downstream expression of its
target genes (TGs). While this ignores potential post-translational
modifications that may also influence a transcription factor's activity, as
well as epigenetic marks at the enhancer and promoter sites of target
genes, GRN inference methods have been shown to be useful in eluci-
dating transcriptional programmes in a variety of contexts [1–7].

There are different kinds of data that one can use to infer networks
from. For instance, we can follow a perturbation over time (time-course
networks), or take multiple snapshots of the same underlying system in
different states. The latter is referred to as observational (meaning
comparing different samples) steady-state networks [8], which occur
when we for instance measure gene expression in a yeast strain with
different growth conditions or in cancer patients across a cohort of the
same tumor type.

Each kind of network inference requires different assumptions and

hence demands different specialized tools. Here, we focus on steady-
state observational networks, where we assume the underlying reg-
ulatory structure to be the same or at least its differences small enough
so we can ignore them. This is likely true when e.g. a mutation in a
signaling molecule activates a certain part of a downstream GRN, but it
will not be if a transcription factor loses its affinity to its target genes or
a subset thereof. While previous studies have shown this to happen for
some genes (reviewed in [9]), observational GRN inference methods
assume that this will not change the overall correlation structure across
many samples.

Methods that have been developed for observational GRNs can
roughly be classified by the theoretical framework they use in order to
infer regulatory relationships. The classical approaches come from in-
formation theory and employ some kind of mutual information, or
correlation and regression-based approaches (classification and theo-
retical background have been reviewed before [8]). These tools have
been continuously developed, but more recently the focus has shifted to
machine learning methods such as random forest and neural networks
(recent overview of methods reviewed in [10]).

These network inference methods have been extensively evaluated
e.g. in the Dialogue of Reverse Engineering and Assessment of Methods
(DREAM) competitions [11] and many more comparisons on smaller
scale [12–18]. They have provided many biological insights, and have
been particularly useful to elucidate mechanisms of pathogenicity in
human diseases such as cancer [1,2,19–24]. However, there is a dis-
connect between evaluation in often relatively simple systems
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(synthetic networks or GRNs in E. coli and yeast) and their application
to much more complex mammalian systems.

One application where this disconnect is particularly striking is
human cancer, because (a) individual patients harbor different chro-
mosomal aberrations [25] that change the expression of many genes in
a coordinated fashion [26], and (b) cancer cells attract different im-
mune and stromal cells that dilute gene expression measurements with
their own regulatory programmes [27].

Here, we aim to bridge this gap by investigating how well GRN
inference methods perform in the context of cancer, and particularly
how much they are influenced by specific confounding factors outside
of TF-TG relationships such as aneuploidies and sample impurities. In
particular, we show that the inferred links are strongly enriched by
these confounding factors, whereas this is not the case for TF binding
data.

2. Network inference methods have been extensively evaluated on
synthetic data sets

2.1. Network inference methods

For steady-state networks, the basic idea is that the same underlying
regulatory structure (the network to be inferred) will be sampled at
different states by measuring gene expression of e.g. multiple cancer
patients. Genes that are up- or downregulated in a subset of samples
compared to the rest will change their expression in accordance to the
underlying regulatory network, which can in turn be inferred by
looking at this correlation structure: If two genes are correlated across
many samples, they are likely to either regulate each other or be
regulated by a common third gene (albeit not always directly).

Classic methods that infer networks from gene expression in mul-
tiple unperturbed samples can roughly be divided in information-the-
oretic and correlation-based models. These and more methods have
been reviewed in detail [8,10,28,29] and hence we only provide a brief
overview. Information-theoretic approaches started out with relevance
networks [12], in which the pairwise mutual information (MI) is
computed between all pairs of genes. Subsequently, all gene pairs above
a certain threshold (that can be estimated from the data itself) are kept.
ARACNe (algorithm for the reconstruction of accurate cellular net-
works) [1,13] added an additional filtering step where the authors
eliminate the weakest link in all gene triplets (using the data processing
inequality) unless they are protected by a transcription factor link. The
recent ARACNe-AP [30] (for adaptive partitioning) implementation
adds further performance optimizations. By contrast, the PCIT [31]
algorithm only removes edges in triplets if two genes are conditionally
independent given the third. Other approaches were taken by CLR [14]
(context likelihood of relatedness; using the z-score of the MI dis-
tribution) or C3NET [15] (conservative causal core networks; keeping
only the strongest MI edge for each gene) and its extension BC3NET
[32] (bagging of C3NET results). Yet another approach is taken by
MRNET [33], which concurrently maximizes the relevance (MI) while
minimizing redundancy (MRMR is a feature selection technique in su-
pervised learning). For practical purposes, it should be noted that MI-
based methods are nonparametric, i.e., these methods perform on the
ranks of gene expression values rather than the gene expression values
themselves. Many of these methods are implemented in the minet R
package [34].

Correlation- and regression-based models are another class of gene
regulatory network inference methods. In their simplest form, these
methods perform a regression or correlation test between two variables.
As there are many gene interactions that need to be tested, feature
selection is a common feature of these techniques. For instance, Least
Angle Regression (LARS) [35,36] starts with the best correlated pre-
dictor and then iteratively adds other predictors based on their corre-
lation with the residual. TIGRESS (Trustful Inference of Gene Regula-
tion with Stability Selection) [17] adds the concept of stability selection

to LARS. Instead of adding and removing individual predictors, the
GeneNet package [37] estimates all predictors simultaneously by in-
verting the gene expression matrix. Another approach is to combine
regression models with decision trees, finding sets of genes that best
explain the expression of a target [38–40]. GENIE3 (Gene Network
Inference with Ensemble of trees) [16] integrates information of many
such trees in order to make regulatory predictions. NIMEFI (Network
Inference using Multiple Ensemble Feature Importance algorithms)
[18] goes one step further and integrates the results of both TIGRESS
and GENIE3 into a combined prediction method.

2.2. Finding a reference set for method evaluation

A challenge in evaluating network inference methods is that in
order to score the performance of different methods, we need to com-
pare the edges they infer to edges we know are correct vs. edges we
know not to be correct. However, we often do not know the ground
truth for real gene regulatory networks. While many interactions may
be known, it is likely that only a small fraction of the relevant inter-
actions has been discovered. An alternative approach is to simulate a
GRN according to a known network structure and a set of rules about
how the different nodes influence each other. Examples of such simu-
lators are SynTren [41] and GeneNetWeaver [42]. The advantage of
such a synthetic network is that the ground truth is known, but it may
not exhibit all the properties of a real GRN. Method evaluation was
often focused on synthetic or synthetic-like datasets. When evaluations
on real data were done, they usually were small in scale owing to the
limited amount of orthogonal data available.

More recently, the number of available human TF-gene interactions
has grown tremendously due to large-scale efforts like the ENCODE
project [43], but also curation of individual ChIP binding experiments
[44]. These have produced consensus regulons for individual TFs,
where binding was observed in a variety of tissues. The latter comprises
100 transcription factors that cover 16,500 target genes in a dataset
available from the Enrichr platform [45]. Another option would be the
UniBind database with 231 transcription factors [46]. While these
consensus interactions are still not proof of actual regulatory interac-
tions, they provide a sufficient number of orthogonally-derived re-
lationships in order to use this set to identify large-scale biases of net-
work inference algorithms with respect to copy number changes or
sample impurities.

2.3. Previously published method evaluations

In terms of previous method evaluations, the most comprehensive
benchmark studies are the Dialogue of Reverse Engineering and
Assessment of Methods (DREAM) challenges [11]. These are commu-
nity-driven challenges in which a panel of organizers designs compe-
titions about, among other things, network inference. DREAM4 con-
sisted of five synthetic networks with 100 genes and 100 samples. Each
of the 100 genes could be a regulator of other genes. These networks
were called “multifactorial”, as all nodes were perturbed simulta-
neously in the simulations. The expression matrices hence contained
100 different steady state realizations of the same underlying network.
DREAM5 [11] provided three kinds of networks: a synthetic network,
one derived from E. coli, and one derived from S. cerevisiae. The gene
expression matrices were larger and ranged from 1600 to 5900 genes
and 536–805 samples, respectively. In contrast to DREAM4, all net-
works defined a subset of genes that could act as regulators (between
195 and 334; cf. Fig. 1a–b). In addition, newly published methods often
perform their own evaluation [12–14,16–18].

Yet, research investigating gene regulatory networks is often ap-
plied to more complex systems like human cancers [1,2,19], and not
only to simpler and better-defined synthetic networks or networks from
microorganisms. In the context of cancer, a single TF was validated
using a set of 26 known targets or comparison between 11 known
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targets and 11 negative targets [1]. We are currently not aware of a
large-scale study comparing GRN inference methods in the realistic
setting of human cancer gene expression [10], which may be explained
by the fact that it is difficult to obtain a reference network to compare
to.

3. Previous benchmarks do not accurately capture properties of
cancer gene expression

3.1. Evaluating inference methods on cancer gene expression data

While the gene expression data sets that were used for evaluation
have dramatically increased in size in DREAM 5 compared to DREAM 4,
they are still very small in comparison to mammalian organisms
(Fig. 1a, b). This starts from the number of genes and regulators pre-
sent, but is also apparent by the number of confirmed regulatory in-
teractions in the DREAM 5 networks. By contrast, the number of sam-
ples available is often not higher than in the much simpler benchmark
data set (Fig. 1b). Hence, real cancer gene expression data offers a
different kind of challenge for inference methods and may lead to dif-
ferent results compared to the previously published benchmarks.
However, as the same methods are commonly employed to infer reg-
ulatory programmes in cancer, it is important to gain a better under-
standing of the opportunities and pitfalls that are specific to this kind of
data and may not have been accurately covered in simulation studies or
the other DREAM benchmarks.

Here, we are not only interested in the more complex system as de-
fined by the number of genes and regulators, but also in specific biases
that cancer gene expression exhibits and that was not covered

sufficiently by synthetic or micro-organism networks, like copy number
alterations or sample mixtures due to stromal and invading immune cells.
As the network simulators discussed above [41,42] do not allow for these
kinds of biases, we aim to evaluate GRN inference methods on cancer
patient gene expression from The Cancer Genome Atlas (TCGA) [47].

We chose six TCGA cohorts with different numbers of samples
available: Adrenocortical carcinoma (ACC), Breast invasive carcinoma
(BRCA), Colon adenocarcinoma (COAD), Head and neck squamous
carcinoma (HNSC), Prostate adenocarcinoma (PRAD), and Skin cuta-
neous melanoma (SKCM). These range from 77 (ACC) to 1087 (BRCA)
samples per tumor type (cf. Fig. 1b). We filter all mapped genes to those
with 5 or more reads on average per sample, yielding approximately
20,000 genes for all cohorts. We define potential regulators as genes
that are annotated with “Transcription factor activity” in Gene On-
tology [48] (GO:0003700), leaving approximately 830 regulators per
cohort. As a positive set, we used consensus regulons for 101 tran-
scription factors covering 16,500 target genes from ChEA [44] and
ENCODE [43] via the Enrichr platform [45]. We did not use a negative
set, as those are generally not available for transcriptional regulation.

We ran the network inference algorithms ARACNe-AP [30], Gen-
eNet [37], GENIE3 [16], TIGRESS [17], and other methods available
via the NetBenchmark R package [49] on each of our six cohorts using
default options. We then evaluated how many known TF-TG pairs were
recovered in the top N edges (Fig. 1c and d), prioritized by the score
given to each interaction by each method. We found that GENIE3 has a
slight edge over TIGRESS, which again performs slightly better than
ARACNe-AP. The difference between these three methods and all others
is that they take into account TF annotations, which the other methods
do not.
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Fig. 1. Translating DREAM challenges to a cancer data set. (a) Comparison of potential interactions in the previous challenges vs. all binary interactions in a human
genome with and without known regulators. (b) Number of genes, regulators, samples, and known interactions for the different challenges and TCGA cancer cohorts.
(c) Number of known TF-TG pairs recovered by network inference algorithms (y axis) for six selected TCGA cohorts with size cutoff of the inferred network (x axis).
Dashed lines indicate expected recovery if randomly sampling from all gene interactions (lower line) or only from known regulators (upper line) (d) zoomed view of c
for small sizes of the networks.
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3.2. Incorporating prior knowledge is essential for method performance

In terms of network size, the number of potential interactions with
knowledge about regulators compared to without is particularly
striking: If any gene can also act as a regulator, there are approximately
22,000 genes and 484 million binary interactions. By contrast, using
974 annotated TFs in Gene Ontology [48] and only taking them into
account as potential regulators, we are left with only 21 million po-
tential interactions to explore (a 22 fold decrease; cf. Fig. 1a). However,
note that all the networks that we infer are undirected, hence these
numbers should be halved when considering how well a method re-
covers known binding interactions. Also, we do not allow self-regula-
tion, i.e. edges of a gene with itself.

This decrease in potential interactions seems to drive a superior
performance of methods that are able to incorporate TF annotations in
the network they infer. No matter the background or the age of a
method, looking naively at the number of links recovered from known
ChIP binding, there is a substantial increase (Fig. 1c, d). This result
should of course be regarded with respect to the number of potential
interactions: sampling randomly from all gene-gene interactions will
produce a much worse performance than sampling from known TFs
(lower and upper dashed grey lines in Fig. 1c, d, respectively). Never-
theless, if we are interested in recovering true regulatory interactions, it
stands to reason to use a method that makes use of TF annotations. If
not, no method ignoring these annotations performs anywhere close to
randomly sampling from TF-TG interactions (upper dashed line in c, d).

It should be noted that the performance of all methods are close to
their respective random lines. This is likely explained both by the fact
that our positive set likely contains many non-regulatory binding in-
teractions, and the observation that none of the methods in DREAM 5
performed much better than random for the S. cerevisiae network [11].
However, for network sizes up to 200,000 nodes GENIE3, TIGRESS, and
ARACNe-AP perform better than random sampling of TF-TG interac-
tions (cf. Fig. 1d).

3.3. Copy number changes and sample impurities are confounding gene
expression measurements

As gene regulatory networks are often inferred from gene expres-
sion, it is important to consider factors influencing gene expression
outside of transcription factor-target gene relationships. This is why
care needs to be taken when merging together multiple data sets from
e.g. microarrays and RNA-seq, or different processing pipelines that can
lead to technical batch effects. These batch effects have been abun-
dantly discussed in literature before (reviewed in [50]), and there are
many approaches to correct for them [51–53].

However, cancer cells also harbor biological variability influencing
gene expression and hence correlation that has so far not been discussed
in depth. For instance, cancer cells often harbor copy number changes
ranging from small segments (focal CNAs) up to the level of whole
chromosomes (aneuploidies) [54]. Gene expression has been shown to
follow these copy number changes [26,55,56], whereas protein ex-
pression is often compensated for [57].

Another factor that influences cancer gene expression in particular
is that samples obtained from patients will not only consist of a
homogeneous population of cancer cells. Instead, samples will also
contain stromal cells that have been co-opted in tumorigenesis, as well
as immune cells [27] driving inflammation and/or contributing to ac-
tive clearing of tumor cells. Multiple methods have been developed to
estimate cell fractions [58–61], including some that aim to reconstruct
the cancer-specific transcriptome from a cell mixture [62,63]. Another
level of complexity is that cancer cells themselves often consist of
multiple clones and lineages that may exhibit heterogeneous traits not
visible in a bulk transcriptomics measurement. While these issues can
be overcome with recent single-cell sequencing technologies, it will still
take years until these data sets reach a level of comprehensiveness

comparable to the TCGA.
Here, we focus both on focal copy number changes and aneu-

ploidies, as well as tumor purity (where the latter is defined as the
fraction of cells in a sample estimated to be cancer cells). As focal copy
number changes, we take recurrently altered regions (RACS) from the
Genomics of Drug Sensitivity in Cancer (GDSC) project [64] as pro-
cessed by ADMIRE [65]. For different cancer types in the TCGA, we
observe a different number as well as different sizes for these regions
(Fig. 2a). Glioblastoma multiforme (GBM) and Ovarian serous cysta-
denocarcinoma (OV) show the highest number of altered regions, with
Breast invasive carcinoma (BRCA) and Lung squamous carcinoma
(LUSC) showing the highest fraction of their genomes altered due to
these local recurrent events. We calculate aneuploidy scores as the
average absolute deviation from euploid over whole chromosomes ac-
cording to copy number segments downloaded via TCGAbiolinks [66]
(Fig. 2b), and use consensus purity estimates for different samples from
the xCell publication [59].

The cohorts we focus on in subsequent analyses show a hetero-
geneous level of focal copy number changes and aneuploidies, as well
as for sample purity (Fig. 2a–c). Looking at individual samples, we can
observe the variability in focal amplifications from an almost euploid
cohort (PRAD) up to a very high level (BRCA; cf. Fig. 2d). Similarly,
PRAD also shows a low and ACC a high level of aneuploidy (Fig. 2e).

In terms of gene regulatory networks, it is unclear how these factors
confounding gene expression influence the inferred edges for different
methods. This is why in this study we evaluate the number of edges
each of our methods infers that fall within (1) a CNA vs. outside and (2)
genes whose expression strongly correlates with sample purity vs. those
that do not. As a control, we check for the same enrichment in known
transcription factor binding sites.

4. Network inference methods are biased towards copy number
aberrations and sample purity

4.1. Focal amplifications have strong local but weak genome-wide effect

In order to test for the effect that focal amplifications have on the
interactions inferred by different network inference methods, we used
our selected methods and cohorts to investigate how many of the in-
ferred edges can likely be explained by the focal amplifications and
aneuploidy scores that we previously obtained (Fig. 2). Briefly, we as-
sume that real TF-TG relationships (obtained from ChIP binding in-
formation) are equally likely to occur within focal CNAs or aneuploidies
as they are between two genes anywhere on the genome. We then
compare the edges obtained by the different inference methods to the
number of edges theoretically possible within CNAs, and see if this
fraction is different to the total number of edges inferred from the total
number of possible edges. As a control, we do the same for known
transcription factor binding associations to confirm our assumption of
equally likely TF-TG relationships within and outside of CNAs.

Because all of the methods we tested provided a score for each in-
ferred edge, we could test different network sizes by setting different
cutoffs on the edge scores. We then went on to show the number of
expected false positive edges with different network sizes for our six
highlighted cohorts (Fig. 3). As our positive set that we test with is
likely incomplete, we can only estimate the fraction of these false po-
sitive links, and not if any individual link is indeed a false positive.

First, we show the effect of focal amplification on the inferred edges
(Fig. 3a). On the top row, we show the sum of observed links within
each CNA over the number of possible links within those CNAs. We find
that starting from very small networks (1000 edges), almost all of the
within-CNA edges inferred by different methods in most cohorts are
likely false positives (FPs), as we observe many more edges than we
could expect given our null model (that edges within a CNA and outside
are equally likely). These false positives, however, have got a relatively
minor impact on all the edges inferred across the genome, as the
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number of genes in the identified recurrent focal amplifications is low
(cf. top vs. bottom row in Fig. 3a). GeneNet is the method that shows
the strongest enrichment of edges in CNAs, with up to 10% of the total
number of edges in a small network (1000 edges). Other methods stay
under 5% of genome-wide false positive edges. As the size cutoff gets
less stringent (100,000 to 1 million edges), the genome-wide FPR for
most of the methods and cohorts drops under 2%. It should, however,
be noted that the total number of possible within-CNA edges is low for
all cohorts and incorporating all of them in a network will still result in
a low genome-wide FPR (cf. Fig. 2d). Hence, a more relaxed definition
of recurrent focal CNAs (compared to the one defined by ADMIRE)
would likely also yield a higher rate of genome-wide FP edges.

4.2. Aneuploidies have weaker local but strong genome-wide effect

In contrast to the focal amplifications, aneuploidies show a smaller
within-segment FPR (Fig. 3, top rows). The effect of the genome-wide
FPR, however, is much bigger for aneuploidies than for focal amplifi-
cations (Fig. 3, bottom rows). This makes sense intuitively, as the
number of genes changed with each aneuploidy is much larger than the
number of genes changed with a focal amplification (cf. Fig. 2c–d).
Hence, a smaller fraction of incorrectly identified edges within each
chromosome already has a large effect on the genome-wide false posi-
tive rate. We can observe this in the FP curves between focal amplifi-
cations (Fig. 3a) and aneuploidies (Fig. 3b) that reach a much higher
level of genome-wide FPR for aneuploidies (up to 85% of the total
number of edges inferred, compared to under 10% for focal amplifi-
cations).

These results suggest that aneuploidies are likely a major source of
bias in the total number of inferred edges for most methods, especially
for smaller network sizes. Therefore, caution should be taken when
applying these methods to biological samples that may harbor large-
scale copy number changes. For the methods that performed well in
recovering TF-TG interactions (cf. Fig. 1c–d), we see that TIGRESS is
most influenced by aneuploidies, followed by GENIE3 (although the
effect is reversed in melanoma). Both methods show a larger FP en-
richment with smaller network size, suggesting that they are prone to
assigning high scores to genes co-regulated by aneuploidies instead of
TF-TG interactions. ARACNe is remarkably stable in the fraction with
varying network size, always showing approximately 10–20% of FPs
due to aneuploidy. All methods using TF annotations behave equally in
the range of 100,000 to 1 million edges. Actual TF binding interactions
from ChEA (black line in Fig. 3) are equally likely to be inside and
outside of CNAs.

4.3. Networks are biased due to sample composition

Apart from the copy number aberrations, we also investigated the
number of false positive edges with sample impurities. The rationale is
the same as above: we assume that genes whose expression level is
changing with tumor purity are not more likely to be transcription
factor and target gene compared to the genes whose expression does not
follow that trend. A difference to the analysis before, however, is that
there is no clear set of genes that are influenced by sample purity vs.
genes that are not. In order to address this, we selected either the top
1000 or top 5000 genes that correlated the most with tumor purity in

Fig. 2. Abundance of focal amplifications and aneuploidies in the TCGA. (a) Number of recurrently altered focal segments (x axis) vs. the fraction of the genome that
they cover (y axis) for different TCGA cohorts. (b) Distribution of aneuploidy scores for different TCGA cohorts with chosen cohorts highlighted in color. (c) Average
sample purity by cohort, error bars are standard deviation (d) Distribution of segment (left) and chromosome (right) copy numbers across samples of the six chosen
cohorts.
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each cancer type we highlight, and then performed the same enrich-
ment analysis as we did with the focal copy number changes and an-
euploidies.

For the methods that performed well in recovering TF-TG interac-
tions, we see that GENIE3 is more susceptible to wrongly inferring links
due to samples mixtures than TIGRESS, with more FPs in smaller net-
works (10–40% vs. 10–20%, respectively). ARACNe shows a stable FPR
of 10–15% irrespective of network size. From 100,000 to 1 million
links, the methods largely equalize. Again, we do not observe an en-
richment of TF binding with purity-correlated genes (black line in
Fig. 4). As with the results we find for the CNAs, there is a trade-off
between the within-chromosome FPR vs. the genome-wide FPR de-
pending on the cutoff for selecting the purity-correlated genes (albeit
less pronounced).

5. Conclusion

When inferring gene networks in the context of cancer, it is im-
portant to not only keep in mind the potential technical variability
between batches that may induce false positive correlations and hence
edges when using network inference methods, but also the biologically
intrinsic confounding factors of gene expression, like the one induced
by DNA copy number changes [26,55] or a mixture of different pro-
portions of different cell types [60,61].

We have shown that for recovering an accurate network of TF-TG
interactions in cancer, methods that incorporate TF annotations should
be preferred to those that are not. However, even these methods are
largely susceptible to inferring false positive links due to confounding
factors. Combined, aneuploidies and sample impurities can be expected
to contribute approximately 20–50% of false positive edges for net-
works with 100,000 to 1 million edges, and up to 80% for smaller
networks.

If we are interested in accurately inferring true regulatory interac-
tions, there is a need to correct for these biases. Various methods have

been proposed to correct for confounding factors in gene networks in
general (like Principal Component Analysis to correct for major axes of
variation [67] and linear models to remove unwanted multivariate
noise [68]), but the authors have not investigated how well their
methods adjust for biological influences like the ones we discussed
here. In addition, future method development in this area could address
these biases more directly by also modeling aneuploidies and sample
impurities explicitly.

6. Methods

6.1. Gene expression and copy number data from the TCGA

We have downloaded the raw read counts for gene expression as
well as the inferred continuous regions of the same DNA copy number
(copy number segments) from the harmonized TCGA data obtained
through the R package TCGAbiolinks [66]. We chose the cohorts (ACC,
BRCA, COAD, HNSC, PRAD, and SKCM) because they represented a
wide range of sample sizes, ploidy, and purity values (cf. Fig. 2).

We further filtered the samples set to only contain primary tumors
(TCGA sample type of “01A”). We filtered the genes to only contain
genes on human chromosomes 1 to 21 (excluding X, Y, and MT) and to
have more than 20% of the samples with 10 or more reads. We then
used the DESeq2 R package [69] to estimate library size factors and get
variance stabilized gene expression values.

Finally, we mapped Ensembl IDs to HGNC gene symbols using
Ensembl 96 and removed all genes that did not have a valid gene
symbol or were duplicated.

6.2. Focal and chromosome copy numbers

For regions with recurrent copy number alterations for both our
cohorts, we downloaded Table S2D from https://www.cancerrxgene.
org/gdsc1000/GDSC1000_WebResources/ [64].
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To get copy numbers of either these segments or whole chromo-
somes, we calculated the average copy number along the respective
regions for each sample in our cohorts.

6.3. Sample purity and purity-correlated genes

We obtained consensus purity estimate from xCell [59] using their
“estimate” field in their Additional File 6.

For the primary samples of each of our cohorts, we then calculated
differential expression along this estimate (using a likelihood ratio test
over the intercept using the DESeq2 package), and selected the top N
genes by lowest p-value.

6.4. Transcription factor annotations and binding data

To generate a list of genes that may act as transcription factors, we
downloaded all HGNC symbols associated with GO:0003700 (DNA-
binding transcription factor activity) from Ensembl 96 [70].

For our positive set of real transcriptional regulation, we down-
loaded the “ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X” HGNC
symbols from the Enrichr platform [45], encompassing 16,500 different
target genes of 100 transcription factors.

6.5. Network inference

For inferring our networks, we used the following methods:
ARACNe-AP [30], which is a Java implementation that extends the
original ARACNe method; the GeneNet R package [37]; the GENIE3 R
package [16], the TIGRESS R package [17], and other methods avail-
able in the NetBenchmark R package [49].

We infer one network per cohort per method, and look for enrich-
ment of edges that are likely due to copy number changes or sample
mixtures. As not all of these methods provide a significance measure,
we instead look at the order of edges inferred, from the highest score to
the lowest.

6.6. Quantifying possible TF-TG interactions

To quantify enrichment of real TF-TG interactions (obtained from
ChIP binding experiments) within the top N genes of a given network,
we first need to enumerate the possible number of edges given how
many genes and transcription factors we have, and whether a GRN
inference method knows the difference between regulators and targets.

In particular, if there are no known regulators we consider the
number of possible edges to be:

× ×0.5 (ng 1) ng

And if they are known instead:

× + × ×(ng ntf) ntf 0.5 (ntf 1) ntf

where ng is the total number of genes and ntf is the number of potential
regulators. Note that if every gene can be a regulator, the lower formula
simplifies into the upper.

6.7. Enrichment of edges within gene sets

We quantify bias by copy number changes or purity by assuming
that the genes in a set (focal regions, chromosomes, or purity-associated
genes) are equally likely to form links within the respective set as they
are with genes outside the set. We then look for enrichment of edges
within a given region over the total number of edges.

In particular, we first compute the odds ratio of a method obtaining
links in a segment vs. the overall number of edges:

= ÷OR inferred edges in segment
inferred network size

possible edges in segment
possible edges in genome

Then, the local false positive rate (FPR) is defined as:

=FPR OR1 1/segment

While the genome-wide FPR is the number of expected FP links
divided by the size of the inferred network:

= ×FPR FPR inferred edges in segment
inferred network sizegenome segment

6.8. Code availability

The analysis code of this manuscript, including code to generate all
figures is available at https://github.com/mschubert/GRN-aneup-
purity, licensed under GNU GPL version 3 or later.
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