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ABSTRACT

Potential-based reward shaping can significantly improve
the time needed to learn an optimal policy and, in multi-
agent systems, the performance of the final joint-policy. It
has been proven to not alter the optimal policy of an agent
learning alone or the Nash equilibria of multiple agents learn-
ing together.

However, a limitation of existing proofs is the assumption
that the potential of a state does not change dynamically
during the learning. This assumption often is broken, espe-
cially if the reward-shaping function is generated automati-
cally.

In this paper we prove and demonstrate a method of ex-
tending potential-based reward shaping to allow dynamic
shaping and maintain the guarantees of policy invariance in
the single-agent case and consistent Nash equilibria in the
multi-agent case.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial

Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems

General Terms

Theory, Experimentation

Keywords
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1. INTRODUCTION
Reinforcement learning agents are typically implemented

with no prior knowledge and yet it has been repeatedly
shown that informing the agents of heuristic knowledge can
be beneficial [2, 7, 13, 14, 17, 19]. Such prior knowledge
can be encoded into the initial Q-values of an agent or the
reward function. If done so by a potential function, the two
can be equivalent [23].

Originally potential-based reward shaping was proven to
not change the optimal policy of a single agent provided a
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static potential function based on states alone [15]. Contin-
uing interest in this method has expanded its capabilities to
providing similar guarantees when potentials are based on
states and actions [24] or the agent is not alone but acting
in a common environment with other shaped or unshaped
agents [8].

However, all existing proofs presume a static potential
function. A static potential function represents static knowl-
edge and, therefore, can not be updated online whilst an
agent is learning.

Despite these limitations in the theoretical results, em-
pirical work has demonstrated the usefulness of a dynamic
potential function [10, 11, 12, 13]. When applying potential-
based reward shaping, a common challenge is how to set the
potential function. The existing implementations using dy-
namic potential functions automate this process making the
method more accessible to all.

Some, but not all, pre-existing implementations enforce
that their potential function stabilises before the agent. This
feature is perhaps based on the intuitive argument that an
agent cannot converge until the reward function does so [12].
However, as we will show in this paper, agents can converge
despite additional dynamic rewards provided they are of a
given form.

Our contribution is to prove how a dynamic potential
function does not alter the optimal policy of a single-agent
problem domain or the Nash equilibria of a multi-agent sys-
tem (MAS). This proof justifies the existing uses of dynamic
potential functions and explains how, in the case where the
additional rewards are never guaranteed to converge [10],
the agent can still converge.

Furthermore, we will also prove that, by allowing the po-
tential of state to change over time, dynamic potential-based
reward shaping is not equivalent to Q-table initialisation.
Instead it is a unique tool, useful for developers wishing to
continually influence an agent’s exploration whilst guaran-
teed to not alter the goal(s) of an agent or group.

In the next section we will cover all relevant background
material. In Section 3 we present both of our proofs re-
garding the implications of a dynamic potential function on
existing results in potential-based reward shaping. Later, in
Section 4, we clarify our point by empirically demonstrat-
ing a dynamic potential function in both single-agent and
multi-agent problem domains. The paper then closes by
summarising the key results of the paper.
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2. PRELIMINARIES
In this section we introduce all relevant existing work upon

which this work is based.

2.1 Reinforcement Learning
Reinforcement learning is a paradigm which allows agents

to learn by reward and punishment from interactions with
the environment [21]. The numeric feedback received from
the environment is used to improve the agent’s actions. The
majority of work in the area of reinforcement learning ap-
plies a Markov Decision Process (MDP) as a mathematical
model [16].

An MDP is a tuple 〈S,A, T,R〉, where S is the state space,
A is the action space, T (s, a, s′) = Pr(s′|s, a) is the prob-
ability that action a in state s will lead to state s′, and
R(s, a, s′) is the immediate reward r received when action
a taken in state s results in a transition to state s′. The
problem of solving an MDP is to find a policy (i.e., mapping
from states to actions) which maximises the accumulated
reward. When the environment dynamics (transition prob-
abilities and reward function) are available, this task can be
solved using policy iteration [3].

When the environment dynamics are not available, as
with most real problem domains, policy iteration cannot be
used. However, the concept of an iterative approach re-
mains the backbone of the majority of reinforcement learn-
ing algorithms. These algorithms apply so called temporal-
difference updates to propagate information about values
of states, V (s), or state-action pairs, Q(s, a) [20]. These
updates are based on the difference of the two temporally
different estimates of a particular state or state-action value.
The Q-learning algorithm is such a method [21]. After each
transition, (s, a) → (s′, r), in the environment, it updates
state-action values by the formula:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where α is the rate of learning and γ is the discount factor.
It modifies the value of taking action a in state s, when
after executing this action the environment returned reward
r, and moved to a new state s′.

Provided each state-action pair is experienced an infinite
number of times, the rewards are bounded and the agent’s
exploration and learning rate reduce to zero the value table
of a Q-learning agent will converge to the optimal values Q∗

[22].

2.1.1 Multi-Agent Reinforcement Learning

Applications of reinforcement learning to MAS typically
take one of two approaches; multiple individual learners or
joint action learners [6]. The latter is a group of multi-
agent specific algorithms designed to consider the existence
of other agents. The former is the deployment of multiple
agents each using a single-agent reinforcement learning al-
gorithm.

Multiple individual learners assume any other agents to
be a part of the environment and so, as the others simul-
taneously learn, the environment appears to be dynamic as
the probability of transition when taking action a in state
s changes over time. To overcome the appearance of a
dynamic environment, joint action learners were developed
that extend their value function to consider for each state the
value of each possible combination of actions by all agents.

Learning by joint action, however, breaks a fundamental
concept of MAS in which each agent is self-motivated and so
may not consent to the broadcasting of their action choices.
Furthermore, the consideration of the joint action causes an
exponential increase in the number of values that must be
calculated with each additional agent added to the system.
For these reasons, this work will focus on multiple individual
learners and not joint action learners. However, these proofs
can be extended to cover joint action learners.

Unlike single-agent reinforcement learning where the goal
is to maximise the individual’s reward, when multiple self
motivated agents are deployed not all agents can always
receive their maximum reward. Instead some compromise
must be made, typically the system is designed aiming to
converge to a Nash equilibrium [18].

To model a MAS, the single-agent MDP becomes inade-
quate and instead the more general Stochastic Game (SG)
is required [5]. A SG of n agents is a tuple
〈S,A1, ..., An, T, R1, ..., Rn〉, where S is the state space, Ai

is the action space of agent i, T (s, ai...n, s
′) = Pr(s′|s, ai...n)

is the probability that joint action ai...n in state s will lead
to state s′, and Ri(s, ai, s

′) is the immediate reward received
by agent i when taking action ai in state s results in a tran-
sition to state s′ [9].
Typically, reinforcement learning agents, whether alone or

sharing an environment, are deployed with no prior knowl-
edge. The assumption is that the developer has no knowl-
edge of how the agent(s) should behave. However, more
often than not, this is not the case and the agent(s) can
benefit from the developer’s understanding of the problem
domain.

One common method of imparting knowledge to a rein-
forcement learning agent is reward shaping, a topic we will
discuss in more detail in the next subsection.

2.2 Reward Shaping
The idea of reward shaping is to provide an additional re-

ward representative of prior knowledge to reduce the number
of suboptimal actions made and so reduce the time needed
to learn [15, 17]. This concept can be represented by the
following formula for the Q-learning algorithm:

Q(s, a)← Q(s, a)+α[r+F (s, s′)+γmax
a′

Q(s′, a′)−Q(s, a)]

(2)
where F (s, s′) is the general form of any state-based shaping
reward.

Even though reward shaping has been powerful in many
experiments it quickly became apparent that, when used
improperly, it can change the optimal policy [17]. To deal
with such problems, potential-based reward shaping was
proposed [15] as the difference of some potential function
Φ defined over a source s and a destination state s′:

F (s, s′) = γΦ(s′)− Φ(s) (3)

where γ must be the same discount factor as used in the
agent’s update rule (see Equation 1).

Ng et al. [15] proved that potential-based reward shap-
ing, defined according to Equation 3, guarantees learning a
policy which is equivalent to the one learnt without reward
shaping in both infinite and finite horizon MDPs.

Wiewiora [23] later proved that an agent learning with
potential-based reward shaping and no knowledge-based Q-
table initialisation will behave identically to an agent with-
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out reward shaping when the latter agent’s value function is
initialised with the same potential function.

These proofs, and all subsequent proofs regarding potential-
based reward shaping including those presented in this pa-
per, require actions to be selected by an advantage-based
policy [23]. Advantage-based policies select actions based on
their relative differences in value and not their exact value.
Common examples include greedy, ǫ-greedy and Boltzmann
soft-max.

2.2.1 Reward Shaping In Multi-Agent Systems

Incorporating heuristic knowledge has been shown to also
be beneficial in multi-agent reinforcement learning [2, 13, 14,
19]. However, some of these examples did not use potential-
based functions to shape the reward [14, 19] and could,
therefore, potentially suffer from introducing beneficial cyclic
policies that cause convergence to an unintended behaviour
as demonstrated previously in a single-agent problem do-
main [17].

The remaining applications that were potential-based [2,
13], demonstrated an increased probability of convergence to
a higher value Nash equilibrium. However, both of these ap-
plications were published with no consideration of whether
the proofs of guaranteed policy invariance hold in multi-
agent reinforcement learning.

Since this time, theoretical results [8] have shown that
whilst Wiewiora’s proof [23] of equivalence to Q-table ini-
tialisation holds also for multi-agent reinforcement learning
Ng’s proof [15] of policy invariance does not. Multi-agent
potential-based reward shaping can alter the final policy a
group of agents will learn but, instead, does not alter the
Nash equilibria of the system.

2.2.2 Dynamic Reward Shaping

Reward shaping is typically implemented bespoke for each
new environment using domain-specific heuristic knowledge
[2, 7, 17] but some attempts have been made to automate
[10, 11, 12, 13] the encoding of knowledge into a potential
function.

All of these existing methods alter the potential of states
online whilst the agent is learning. Neither the existing
single-agent [15] nor the multi-agent [8] proven theoretical
results considered such dynamic shaping.

However, the opinion has been published that the poten-
tial function must converge before the agent can [12]. In the
majority of implementations this approach has been applied
[11, 12, 13] but in other implementations stability is never
guaranteed [10]. In this case, despite common intuition, the
agent was still seen to converge to an optimal policy.

Therefore, contrary to existing opinion it must be possi-
ble for an agent’s policy to converge despite a continually
changing reward transformation. In the next section we will
prove how this is possible.

3. THEORY
In this section we will cover the implications of a dy-

namic potential function on the three most important exist-
ing proofs in potential-based reward shaping. Specifically,
in subsection 3.1 we address the theoretical guarantees of
policy invariance in single-agent problem domains [15] and
consistent Nash equilibria in multi-agent problem domains
[8]. Later, in subsection 3.2, we will address Wiewiora’s
proof of equivalence to Q-table initialisation [23].

3.1 Dynamic Potential-Based Reward Shaping
Can Maintain Existing Guarantees

To extend potential-based reward shaping to allow for a
dynamic potential function we extend Equation 3 to include
time as a parameter of the potential function Φ. Informally,
if the difference in potential is calculated from the potentials
of the states at the time they were visited the guarantees
of policy invariance or consistant Nash equilibria remain.
Formally:

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t) (4)

where t is the time the agent arrived at previous state s

and t′ is the current time when arriving at the current state
s′ (i.e. t < t′).

To prove policy invariance in the single-agent case and
consistent Nash equilibria in the multi-agent case it suffices
to show that the return a shaped agent will receive for fol-
lowing a fixed sequence of states and actions is equal to the
return the non-shaped agent would receive when following
the same sequence minus the potential of the first state in
the sequence [1, 8].

Therefore, let us consider the return Ui for any arbitrary
agent i when experiencing sequence s̄ in a discounted frame-
work without shaping. Formally:

Ui(s̄) =

∞∑

j=0

γ
j
rj,i (5)

where rj,i is the reward received at time j by agent i from
the environment.

Given this definition of return, the true Q-values can be
defined formally by:

Q
∗

i (s, a) =
∑

s̄

Pr(s̄|s, a)Ui(s̄) (6)

Now consider the same agent but with a reward function
modified by adding a dynamic potential-based reward func-
tion of the form given in Equation 4. The return of the
shaped agent Ui,Φ experiencing the same sequence s̄ is:

Ui,Φ(s̄) =

∞∑

j=0

γ
j(rj,i + F (sj , tj , sj+1, tj+1))

=
∞∑

j=0

γ
j(rj,i + γΦ(sj+1, tj+1)− Φ(sj , tj))

=

∞∑

j=0

γ
j
rj,i +

∞∑

j=0

γ
j+1Φ(sj+1, tj+1)

−

∞∑

j=0

γ
jΦ(sj , tj)

= Ui(s̄) +
∞∑

j=1

γ
jΦ(sj , tj)

−

∞∑

j=1

γ
jΦ(sj , tj)− Φ(s0, t0)

= Ui(s̄)− Φ(s0, t0) (7)

Then by combining 6 and 7 we know the shaped Q-function
is:
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Q
∗

i,Φ(s, a) =
∑

s̄

Pr(s̄|s, a)Ui,Φ(s̄)

=
∑

s̄

Pr(s̄|s, a)(Ui(s̄)− Φ(s, t))

=
∑

s̄

Pr(s̄|s, a)Ui(s̄)−
∑

s̄

Pr(s̄|s, a)Φ(s, t)

= Q
∗

i (s, a)− Φ(s, t) (8)

where t is the current time.
As the difference between the original Q-values and the

shaped Q-values is not dependent on the action taken, then
in any given state the best (or best response) action remains
constant regardless of shaping. Therefore, we can conclude
that the guarantees of policy invariance and consistent Nash
equilibria remain.

3.2 Dynamic Potential-Based Reward Shaping
Is Not Equivalent To Q-Table Initialisa-
tion

In both single-agent [23] and multi-agent [8] reinforcement
learning, potential-based reward shaping with a static po-
tential function is equivalent to initialising the agent’s Q-
table such that:

∀s, a|Q(s, a) = Φ(s) (9)

where Φ(· ) is the same potential function as used by the
shaped agent.

However, with a dynamic potential function this result no
longer holds. The proofs require an agent with potential-
based reward shaping and an agent with the above Q-table
initialisation to have an identical probability distribution
over their next action provided the same history of states,
actions and rewards.

If the Q-table is initialised with the potential of states
prior to experiments (Φ(s, t0)), then any future changes in
potential are not accounted for in the initialised agent. There-
fore, after the agents experience a state where the shaped
agent’s potential function has changed they may make dif-
ferent subsequent action choices.

Formally this can be proved by considering agent L that
receives dynamic potential-based reward shaping and agent
L′ that does not but is initialised as in Equation 9. Agent
L will update its Q-values by the rule:

Q(s, a) ← Q(s, a) +

α (ri + F (s, t, s′, t′) + γmax
a′

Q(s′, a′)−Q(s, a))
︸ ︷︷ ︸

δQ(s,a)

(10)

where ∆Q(s, a) = αδQ(s, a) is the amount that the Q
value will be updated by.

The current Q-values of Agent L can be represented for-
mally as the initial value plus the change since:

Q(s, a) = Q0(s, a) + ∆Q(s, a) (11)

where Q0(s, a) is the initial Q-value of state-action pair
(s, a). Similarly, agent L′ updates its Q-values by the rule:

Q
′(s, a)← Q

′(s, a) + α (ri + γmax
a′

Q
′(s′, a′)−Q

′(s, a))
︸ ︷︷ ︸

δQ′(s,a)

(12)
And its current Q-values can be represented formally as:

Q
′(s, a) = Q0(s, a) + Φ(s, t0) + ∆Q

′(s, a) (13)

where Φ(s, t0) is the potential for state s before learning
begins.

For the two agents to act the same they must choose their
actions by relative difference in Q-values, not absolute mag-
nitude, and the relative ordering of actions must remain the
same for both agents. Formally:

∀s, a, a′|Q(s, a) > Q(s, a′)⇔ Q
′(s, a) > Q

′(s, a′) (14)

In the base case this remains true, as both ∆Q(s, a) and
∆Q′(s, a) equal zero before any actions are taken, but after
this the proof falters for dynamic potential functions.

Specifically, when the agents first transition to a state
where the potential has changed agent L will update Q(s, a)
by:

δQ(s, a) = ri + F (s, s′) + γmax
a′

Q(s′, a′)−Q(s, a)

= ri + γΦ(s′, t′)− Φ(s, t)

+γmax
a′

(Q0(s
′

, a
′) + ∆Q(s′, a′))

−Q0(s, a)−∆Q(s, a)

= ri + γΦ(s′, t′)− Φ(s, t0)

+γmax
a′

(Q0(s
′

, a
′) + ∆Q(s′, a′))

−Q0(s, a)−∆Q(s, a) (15)

and agent L′ will update Q′(s, a) by:

δQ
′(s, a) = ri + γmax

a′

Q
′(s′, a′)−Q

′(s, a)

= ri + γmax
a′

(Q0(s
′

, a
′) + Φ(s′, t0) + ∆Q

′(s′a′))

−Q0(s, a)− Φ(s, t0)−∆Q
′(s, a)

= ri + γmax
a′

(Q0(s
′

, a
′) + Φ(s′, t0) + ∆Q(s′a′))

−Q0(s, a)− Φ(s, t0)−∆Q(s, a)

= ri + γΦ(s′, t0)− Φ(s, t0)

+γmax
a′

(Q0(s
′

, a
′) + ∆Q(s′, a′))

−Q0(s, a)−∆Q(s, a)

= δQ(s, a)− γΦ(s′, t′) + γΦ(s′, t0) (16)

But the two are not equal as:

Φ(s′, t′) 6= Φ(s′, t0) (17)

Therefore, for this state-action pair:

Q
′(s, a) = Q(s, a)+Φ(s, t0)−αγΦ(s′, t′)+αγΦ(s′, t0) (18)

but for all other actions in state s:

Q
′(s, a) = Q(s, a) + Φ(s, t0) (19)
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Once this occurs the differences in Q-values between agent
L and agent L′ for state s would no longer be constant across
all actions. If this difference is sufficient to change the order-
ing of actions (i.e. Equation 14 is broken), then the policy
of any rational agent will have different probability distri-
butions over subsequent action choices in state s.

In single-agent problem domains, provided the standard
necessary conditions are met, the difference in ordering will
only be temporary as agents initialised with a static-potential
function and/or those receiving dynamic potential-based re-
ward shaping will converge to the optimal policy. In these
cases the temporary difference will only affect the explo-
ration of the agents not their goal.

In multi-agent cases, as was shown previously [8], altered
exploration can alter final joint-policy and, therefore, the
different ordering may remain. However, as we have proven
in the previous sub-section, this is not indicative of a change
in the goals of the agents.

In both cases, we have shown how an agent initialised as
in Equation 9 can after the same experiences behave differ-
ently to an agent receiving dynamic potential-based reward
shaping. This occurs because the initial value given to a
state cannot capture subsequent changes in it’s potential.

Alternatively, the initialised agent could reset its Q-table
on each change in potential to reflect the changes in the
shaped agent. However, this approach would lose all his-
tory of updates due to experiences had and so again cause
differences in behaviour between the shaped agent and the
initialised agent.

Furthermore, this method and other similar methods of
attempting to integrate change in potential after the agent
has begun to learn are also no longer strictly Q-table initial-
isation.

Therefore, we conclude that there is not a method of
initialising an agent’s Q-table to guarantee equivalent be-
haviour to an agent receiving dynamic potential-based re-
ward shaping.

4. EMPIRICAL DEMONSTRATION
To clarify our contribution in the following subsections we

will demonstrate empirically for both a single-agent and a
multi-agent problem domain that their respective guarantees
remain despite a dynamic potential function. Specifically in
both environments we implement agents without shaping
or with a (uniform or negatively biased) random potential
function that never stabilises.

4.1 Single-Agent Example
To demonstrate policy invariance with and without dy-

namic potential-based reward shaping, an empirical study of
a discrete, deterministic grid world will be presented here.

Specifically we have one agent attempting to move from
grid location S to G in the maze illustrated in Figure 1. The
optimal policy/route through the maze takes 41 time steps
and should be learnt by the agent regardless of whether it
does or does not receive the reward shaping.

On each time step the agent receives −1 reward from the
environment. Upon reaching the goal the agent receives
+100 reward from the environment. If an episode reaches
1000 time steps without reaching the goal, the episode is
reset.

At each time step, if the agent is receiving uniform random
shaping, the state entered will be given a random potential

Figure 1: Map of Maze

between 0 and 50 and the agent will receive an additional
reward equal to the difference between this new potential1

and the potential of the previous state.
Likewise, if the agent is receiving negative bias random

shaping, the state entered will be given a random potential
between 0 and it’s current distance to the goal. This po-
tential function is dynamic, never stabilises and encourages
movement away from the agent’s goal.

The agent implemented uses Q-learning with ǫ-greedy ex-
ploration and a tabular representation of the environment.
Experimental parameters were set as α = 0.05,γ = 1.0 and ǫ

begins at 0.4 and reduces linearly over the first 500 episodes
to 0.

4.1.1 Results

All experiments were run for 1000 episodes and repeated
100 times. The results, illustrated in Figure 2, plot the mean
number of steps taken to complete that episode. All figures
include error bars illustrating the standard error from the
mean.

Figure 2: Single-Agent Maze Results

1If γ was less than 1 then this value would be discounted by
γ, as we will demonstrate in the multi-agent example.
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As we expected, regardless of shaping, the agent learns the
optimal policy and can complete the maze within 41 time
steps. This is the first published example of a reinforcement
learning agent converging despite a reward shaping function
that is known not to converge. This example counters the
previously accepted intuition [12] and supports our claim
that the guarantee of policy invariance remains provided the
additional reward is of the form:

F (s, s′) = γΦ(s′, t′)− Φ(s, t)

In this example, the agents with dynamic potential-based
reward shaping take longer to learn the optimal policy. How-
ever, this is not characteristic of the method but of our spe-
cific potential functions. For this problem domain, a uni-
form random potential-function, has been shown to be the
worst possible case. This is because it represents no spe-
cific knowledge whilst the negative bias random potential
function encourages movement away from the goal which in
some parts of the maze is the correct behaviour.

It is common intuition that as reward shaping directs ex-
ploration it can be both beneficial and detrimental to an
agent’s learning performance. If a good heuristic is used,
common in previous published examples [7, 15, 24], the
agent will learn quicker but the lesser published alternative
is that a poor heuristic is used and the agent learns slower.2

However, the more important result of this example is
to demonstrate that despite even the most misleading and
never stable potential functions a single agent can still con-
verge to the optimal policy. In the next section we go on
to demonstrate a similar result but this time maintaining
the guarantee of consistent Nash equilibria despite a never
stable dynamic potential-function in a multi-agent problem
domain.

4.2 Multi-Agent Example
To demonstrate consistent Nash equilibria with and with-

out dynamic potential-based reward shaping, an empirical
study of Boutilier’s coordination game [4] will be presented
here.

The game, illustrated in Figure 3, has six stages and two
agents, each capable of two actions (a or b). The first agent’s
first action choice in each episode decides if the agents will
move to a state guaranteed to reward them minimally (s3) or
to a state where they must co-ordinate to receive the highest
reward (s2). However, in state s2 the agents are at risk of
receiving a large negative reward if they do not choose the
same action.

In Figure 3, each transition is labeled with one or more
action pairs such that the pair a, ∗ means this transition
occurs if agent 1 chooses action a and agent 2 chooses ei-
ther action. When multiple action pairs result in the same
transition the pairs are separated by a semicolon(;).

The game has multiple Nash equilibria; the joint policies
opting for the safety state s3 or the joint policies of moving to
state s2 and coordinating on both choosing a or b. Any joint
policy receiving the negative reward is not a Nash equilib-
rium, as the first agent can choose to change its first action
choice and so receive a higher reward by instead reaching

2For single-agent examples of dynamic potential-based re-
ward shaping providing beneficial gains in learning time we
refer the reader to any existing published implementation
[10, 11, 12, 13].

s1start

s2

s3

s4 +10
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Figure 3: Boutilier’s Coordination Game

state s3.
As before we will compare the behaviour of agents with

and without random dynamic potential-based reward shap-
ing. Each agent will randomly assign its own potential to
a new state upon entering it and be rewarded that poten-
tial discounted by γ less the potential of the previous state
at the time it was entered. Therefore, each agent receives
its own dynamic reward shaping unique to its own potential
function. These experimental results are intended to show,
that regardless of dynamic potential-based reward shaping,
the shaped agents will only ever converge to one of the three
original joint policy Nash equilibria.

The uniform random function will again choose potentials
in the range 0 to 50. It is worthwhile to note here that, in
this problem domain, the additional rewards from shaping
will often be larger than those received from the environment
when following the optimal policy.

The negative bias random function will choose potentials
in the range 35 to 50 for state s5 (the suboptimal state) or
0 to 15 for all other states. This potential function is bias
towards the suboptimal policy, as any transition into state
s5 will be rewarded at least as high as the true reward for
following the optimal policy.

All agents, both with and without reward shaping, use Q-
learning with ǫ-greedy exploration and a tabular representa-
tion of the environment. Experimental parameters were set
as α = 0.5,γ = 0.99 and ǫ begins at 0.3 and decays by 0.99
each episode.

4.2.1 Results

All experiments were run for 500 episodes (15,000 action
choices) and repeated 100 times. The results, illustrated
in Figures 4, 5 and 6, plot the mean percentage of the last
100 episodes performing the optimal, safety and sub-optimal
joint policies for the non-shaped and shaped agents. All
figures include error bars illustrating the standard error from
the mean. For clarity, graphs are plotted only up to 250
episodes as by this time all experiments had converged to a
stable joint policy.

Figure 4 shows that the agents without reward shaping
rarely (less than ten percent of the time) learn to perform
the optimal policy. However, as illustrated by Figures 5
and 6, both sets of agents with dynamic reward shaping
learn the optimal policy more often.
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Figure 4: Without Reward Shaping

Figure 5: With Uniform Random Dynamic Reward

Shaping

Figure 6: With Negative Bias Random Dynamic Re-

ward Shaping

Therefore, in this domain, unlike the single-agent exam-
ple, the dynamic reward shaping has been beneficial to final
performance. This has occured because the agents’ modified
exploration has led to convergence to a different Nash equi-
librium. However, please note, the agents never converge to

perform the suboptimal joint policy. Instead the agents will
only ever converge to the safety or optimal joint policies; the
Nash equilibria of the unshaped and shaped systems. Thus
demonstrating that even with dynamic reward transforma-
tions that never stabilise the Nash equilibria of the system
remain the same provided the transformations are potential
based.

5. CONCLUSION
In conclusion we have proven that a dynamic potential

function can be used to shape an agent without altering its
optimal policy provided the additional reward given is of the
form:

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t)

If multiple agents are acting in the same environment
then, instead, the result becomes that the Nash equilibria re-
main consistent regardless of how many agents are receiving
dynamic potential-based reward shaping.

Contrary to previous opinion, the dynamic potential func-
tion does not need to converge before the agent receiving
shaping can as we have both theoretically argued and em-
pirically demonstrated.

We have also proved that, although there is an equivalent
Q-table initialisation to static potential-based reward shap-
ing, it is not equivalent to dynamic potential-based reward
shaping. We claim that no prior-initialisation can capture
the behaviour of an agent acting due to a dynamic potential-
based reward shaping as the changes that may occur are not
necessarily known before learning begins.

Therefore, the use of dynamic potential-based reward shap-
ing to inform agents of knowledge that has changed whilst
they are learning is a feature unique to this method.

These results justify a number of pre-existing implementa-
tions of dynamic reward shaping [10, 11, 12, 13] and enable
ongoing research into automated processes of generating po-
tential functions.
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