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Fossil fuel carbon emissions, oceanic carbon sinks and atmo-
spheric carbon dioxide growth rates have been quantified 
reasonably well in global carbon cycle analyses; however, 

estimates of land carbon sinks/sources still have large uncertain-
ties1–3. Further, the trends in global land-use-change emissions are 
uncertain in the global carbon budget1, with results averaged from 
three bookkeeping models showing either increases or decreases 
in land-use emissions in the past decade1,4. In addition, the Global 
Carbon Budget 20211 suggests a negative imbalance between 
sources and sinks, whereas the Global Carbon Budget 20195 shows 
a positive imbalance. The contradictory trends in land-use-change 
emissions from different bookkeeping models result from differ-
ences in input land-use data, demonstrating the need for more 
accurate estimates to address the persistent uncertainty in closing 
the global carbon budget.

The net land carbon flux is the most uncertain component of 
the global carbon budget2,3. Deforestation in the tropics, currently 
the hotspot of global forest carbon loss6–8, directly releases carbon 
stored in vegetation and soil and indirectly decreases the carbon 
sink capacity of terrestrial ecosystems9–11. Large uncertainties exist 
in the spatiotemporal pattern of tropical forest loss and associated 
carbon stock changes in the twenty-first century12,13, such that the 

contribution of tropical forest ecosystems to the global carbon bud-
get is contested12–14. Spatially explicit quantification of tropical forest 
carbon loss and its trajectory greatly helps reduce uncertainties and 
ascertain the contribution of tropical forest ecosystems to the global 
carbon budget over time.

In this article, we analyse gross forest carbon loss associated 
with forest removal over the tropics (between 23.5° N and 23.5° S 
but excluding northern Australia) during the twenty-first century. 
We quantify regional fluxes and trends, as well as examine the 
drivers of change and the fate of transitioning land uses follow-
ing forest loss in an effort to gain insights on the permanence of 
forest conversion to other land-use types. Our analysis co-locates 
high-spatiotemporal-resolution forest loss from the Global Forest 
Change (GFC) product15 (annual data at 30 m spatial resolution) 
with corresponding values of forest (aboveground and belowground) 
biomass carbon and soil organic carbon (SOC). The GFC product 
was created using different algorithms and satellite data during the 
study period, potentially resulting in temporal inconsistencies16,17. 
To address this issue, we use a stratified random-sample approach18 
to analyse forest loss area trends, following the recommendation 
of the Global Forest Watch19. Different from existing studies7–9,12,20, 
our analysis is based on the quantification of forest loss area using a 
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Previous estimates of tropical forest carbon loss in the twenty-first century using satellite data typically focus on its magni-
tude, whereas regional loss trajectories and associated drivers are rarely reported. Here we used different high-resolution 
satellite datasets to show a doubling of gross tropical forest carbon loss worldwide from 0.97 ± 0.16 PgC yr−1 in 2001–2005 
to 1.99 ± 0.13 PgC yr−1 in 2015–2019. This increase in carbon loss from forest conversion is higher than in bookkeeping mod-
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stratified random-sample approach and of forest carbon loss using 
a ‘stratify and multiply’ approach21,22. Belowground biomass and soil 
carbon losses occur in nature as a transient legacy of forest aboveg-
round carbon loss, but they are presented here as committed losses. 
Further, we assess the spatiotemporal dynamics of forest carbon 
loss, the different drivers of forest transitions and the permanence 
of land-use types established after forest loss. Our estimates of gross 
carbon losses ignore partial carbon recovery in secondary forests 
and plantations; and they cover all activities that result in forest 
cover loss, including both natural and anthropogenic disturbances.

Patterns of forest carbon loss
Overall, the stratified random-sample estimate of mean annual 
carbon loss from tropical forest conversion is 1.39 ± 0.14 PgC yr−1 
during 2001–2019 (Fig. 1a). This estimate includes an aboveground 
shoot biomass carbon loss of 1.01 ± 0.11 PgC yr−1 (73%), a below-
ground root biomass committed carbon loss of 0.28 ± 0.03 PgC yr−1 
(20%) and a SOC committed loss of 0.10 PgC yr−1 (7%). We find that 
mean annual tropical forest carbon loss during the last five years 
of our analysis (2015–2019, 1.99 ± 0.13 PgC yr−1; Fig. 1a) has more 
than doubled from that of the first five years of the twenty-first 
century (2001–2005, 0.97 ± 0.16 PgC yr−1). The increase in aboveg-
round carbon loss dominates this doubling of the total loss (72%, 
0.74 ± 0.06 PgC yr-1), followed by belowground committed carbon 
loss (20%, 0.20 ± 0.02 PgC yr−1) and SOC committed loss (8%, 
0.08 PgC yr−1). Throughout the study period, annual forest carbon 
loss significantly increased at a rate of 0.60+0.21

−0.10 PgC yr−1 decade–1 
(subscript and superscript values give the 95% confidence inter-
val; Mann–Kendall test; P < 0.01). We further find that 22% of the 
total tropical forest carbon loss occurred in the mountains during 
the 19 yr study period (Fig. 1b), even though they represent only 
17.8% of the whole tropical land areas. Mountain areas contrib-
ute 33% of the doubling in tropical forest carbon loss, indicating 
a clear acceleration in mountain forest carbon loss23. In particu-
lar, mountain forests in tropical Asia, which have relatively high 
biomass carbon stocks23,24 (Supplementary Fig. 1), have experi-
enced high rates of conversion during the past two decades. These 
trends have not been explicitly incorporated in recent assessments, 
including the Intergovernmental Panel on Climate Change Sixth 
Assessment Report6.

The spatial pattern of changes in annual forest carbon loss 
varies regionally (Fig. 2). Since 2001, annual forest carbon loss 
increased significantly and continuously over tropical Africa and 

Asia (P < 0.01), accounting for 38% and 43% of the increase in 
pan-tropical carbon loss, respectively (Supplementary Fig. 2). In 
Africa, annual forest carbon loss sharply increased in the Congo 
basin (for example, Democratic Republic of the Congo (D. R. 
Congo) and Cameroon), Angola and some countries to the north 
on the west African coast (for example, Guinea, Ivory Coast and 
Liberia) during 2015–2019 (Table 1). Parts of Southeast Asia (SEA), 
particularly Peninsular Malaysia, Sabah state and some Indonesian 
islands, are lingering hotspots of forest carbon loss25. More recently, 
forest carbon loss increased quickly in northern parts of montane 
mainland SEA (Fig. 2 and Table 1). By contrast, the trend in forest 
carbon loss over tropical America during 2001–2019 is not signifi-
cant (P > 0.05), even though losses are locally high in some areas. 
For example, during 2001–2005, most forest carbon loss occurred 
between the Cerrado and Amazonian biomes in Brazil, in the area 
known as the Arc of Deforestation (Fig. 2a). During 2015–2019, 
forest carbon loss declined in southeastern Amazonian regions of 
Brazil, including the Mato Grosso and Rondônia states, but increased 
in the central Para and Maranhão states. Increases also occurred in 
southeast Bolivia, central Peru, Mexico and Central America (Fig. 
2b,c). Annual forest carbon loss over tropical America reached its 
highest levels during 2016–2017, occurring mostly in Amazonia 
(Supplementary Fig. 3a–c). It was once projected that Brazil would 
halve deforestation rates by 2020, on the basis of data from 2001 to 
201320. However, our updated analysis shows a reversal and a new 
increase in Brazil’s forest carbon loss after 2015. Our reported trend 
in forest carbon loss during the 2010s in Brazil is in agreement with 
forest area change observed in the Brazilian Amazon using a differ-
ent methodology26, further confirming the increase in forest carbon 
loss in the region since 2015 and demonstrating that our results are 
robust to the choice of a forest loss algorithm17.

Drivers of forest carbon loss
By combining our results with a map of forest loss drivers27, we find 
that the conversion of forest to some types of agricultural land dom-
inates forest carbon loss in all three continents, but geographical dif-
ferences do occur over time (Fig. 3). In tropical America, much of the 
lands replacing forest are large-scale commodity agriculture opera-
tions, including rangelands for beef, and croplands for oilseeds and 
cereals (Fig. 3b). In Brazil (Fig. 3e), for example, commodity-driven 
conversions decreased sharply from 2004 to 2009, remained stable 
during 2010–2014 and substantially increased afterwards. Small-scale 
agriculture (including various forms of shifting agriculture)  
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Fig. 1 | Forest carbon loss across the tropics during 2001–2019. a, Forest carbon loss during different subperiods. Four grouped bars (left to right) show 
mean annual forest carbon loss during the four periods of 2001–2005, 2006–2010, 2011–2014 and 2015–2019, respectively. Error bars represent the s.d. 
of total forest carbon loss (including losses aboveground, belowground and from the soil) estimated by four carbon density maps. Sample bars show that 
mean annual forest carbon loss for the last five years (2015–2019, 1.99 PgC yr−1) is 2.1 times as large as that for the beginning of the twenty-first century 
(2001–2005, 0.97 PgC yr−1). b, Increasing carbon loss resulting from tropical mountain forest loss in elevation–year space. Forest carbon loss includes 
aboveground and (committed) belowground biomass carbon loss and (committed) soil organic carbon loss.
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also plays an increasingly important role in forest carbon loss in 
this region. In Brazil, a substantial acceleration in forest carbon 
loss from small-scale agriculture (24.3 TgC yr−1 decade–1, P < 0.05) 
was partly opposed by a slight decrease in forest carbon loss from 
large-scale (commodity) agriculture (−2.4 TgC yr−1 decade–1; Table 
1). Overall, total annual forest carbon loss in Brazil for the 19 yr 
period is the highest globally (373.0 TgC yr−1; Table 1), far exceeding 
losses in any other country.

In contrast with tropical America, the increases in annual for-
est carbon loss in tropical Africa and Asia were continuous dur-
ing the study period (Supplementary Fig. 2). In tropical Africa, 
the expansion of small-scale agriculture contributes to 34% of the 
doubling of tropical forest carbon loss worldwide. The increasing 
annual forest carbon loss in the Congo rainforest (Fig. 3f) relates 
to forests replaced by non-mechanized, small-scale, shifting agri-
culture, for example, in D. R. Congo, in neighbouring Angola 
and, to a lesser extent, in Cameroon28,29. Often, these systems have 
evolved from traditional agriculture systems to hybrid forms using 
fire, shortened fallows, extended cultivation cycles and increas-
ingly commercial crops30. In tropical Asia, agricultural expansion 
also dominates (62%) the increase in forest carbon loss, contribut-
ing an 18% to the doubling of tropical carbon loss worldwide (Fig. 
3d). However, losses in montane mainland and peninsular/mari-
time SEA are dissimilar (Fig. 3g,h). In the north of mainland SEA, 
commodity-driven forest carbon loss exhibits continuous increases 
that involve plantation rubber and vast expanses of maize grown 
for livestock feed31. Forestry activities associated with selective log-
ging and smallholder farming are also responsible for considerable 
and increasing forest carbon loss27. In peninsular/maritime SEA, 
forest conversion to oil-palm and rubber plantations32 makes up 
most forest carbon loss, which increased in magnitude in the region  

during 2001–2011 before decreasing thereafter. Annual forest car-
bon loss in maritime SEA has not increased since 2010, in contrast 
to the increases occurring in the montane mainland SEA. This sta-
bilization in maritime SEA may reflect the depletion of accessible 
forest following very long histories of exploitation25. Despite stabi-
lization in forest loss, Indonesia leads tropical Asia in annual for-
est carbon loss at 203.6 TgC yr−1, and Malaysia is the second, with 
74.4 TgC yr−1 (Table 1).

The fate of cleared lands
To further provide insights into the fate of converted lands, we 
visually interpret additional very-high-resolution (3–5 m) satellite 
imagery from Planet’s Constellation to examine post-forest-loss 
land cover in 2020 from 1,000 randomly sampled GFC loss pixels 
where forests were replaced by agricultural lands (Methods and 
Supplementary Fig. 4a). This analysis shows that, across the tropics, 
~30% of the lands transitioning to agriculture (either commodity 
or small-scale) began to regenerate as shrubland or forest by 2020 
(Supplementary Fig. 4b). This level of agricultural ‘abandonment’, 
detectable as shrubland/forest in 2020, could result from land aban-
donment by farmers or from policies promoting restoration of 
forest land. It might also be, in part, associated with fallows and, 
therefore, a false signal of abandonment.

For tropical America, where commodity agriculture is the key 
driver of forest loss, more than 79% of the forest lands transition-
ing to agriculture in 2001–2019 remained agricultural lands in 2020 
(Supplementary Fig. 4b). This finding suggests the possibility that 
the forests cleared were first logged, with farmers or ranchers later 
beginning agricultural activities and subsequently allowing some 
land to revert back to forest. In the Amazon, land speculation has 
been shown to leave the cleared lands unattended; poor planning, 

MgC ha–1 yr–1

a

0 0.6

2001–2005

2015–2019

Changes

1.2 1.8 2.4 >3.0

MgC ha–1 yr–1

b

0 0.6 1.2 1.8 2.4 >3.0

MgC ha–1 yr–1

c

<–3 –2 –1 0 1 2 >3

Fig. 2 | Spatial pattern of forest carbon loss across the tropics. a,b, Mean annual carbon loss during 2001–2005 (a) and 2015–2019 (b). c, Changes 
in mean annual carbon loss during 2015–2019 relative to the period 2001–2005. Black dots indicate mountain regions defined by Global Mountain 
Biodiversity Assessment (GMBA) inventory data; 1 MgC = 10−9 PgC. Forest carbon loss includes aboveground and (committed) belowground biomass 
carbon loss and (committed) soil organic carbon loss.
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shifting cultivation practices) is the dominant activity on formerly 
forested lands, the proportion remaining as agriculture in 2020 is 
smaller for areas where forest loss occurred between 2001–2005 
(34%) compared with those where the loss occurred in 2015–2019 
(57%). This difference suggests either an intensification of agricul-
ture or a reduction in fallow length within shifting agriculture in 
this region. In tropical Asia, half of the cleared lands between 2001 
and 2005 were not in agricultural use in 2020, but only ~20% of the 
lands cleared between 2015 and 2019 regenerated. The lower rate of 
abandonment of the more recently converted patches may possibly 
reflect an increasing percentage of clearing to support commodity 
agriculture34. Overall, the high rate of abandonment of converted 
agricultural lands to regenerate suggests a waste of agricultural con-
version, a situation that should be considered in land-use modelling.

Discussion
This study provides high-spatiotemporal-resolution quantification 
and attribution of forest carbon loss across the tropics, allowing new 
insights on the role of land-cover change35,36. High-resolution sat-
ellite images help identify small-scale forest loss events and avoid 
some offsetting of forest losses by gains at a coarser pixel level12,14. In 
coarse-resolution assessments, small-scale and/or partial forest loss 
is usually considered to be degradation12 and, therefore, could be 
mapped inaccurately for carbon loss assessments. High-resolution 
satellite data also highlight the role of roads in providing access 
and, consequentially, exploitation of formerly undisturbed for-
est resources, as documented in the Amazon for several years37. 
Increasingly, forest carbon loss has occurred along road corridors 
in the Congo basin and SEA countries, including Laos38,39. Rivers 
also provide access to forests and allow transport of forest and agri-
culture products downstream40. The pervasive presence and accel-
eration of forest losses along roads and rivers in Amazon basin, the 
Congo basin and SEA (Supplementary Fig. 3) indicate that the fron-
tier of forest loss has been carved deep into previously intact forests.

Our aboveground carbon loss estimate is comparable to pre-
vious assessments (Supplementary Table 1), yet with differences 
that originate, in part, from differences in methodology and input 
data, in the study period, and in the extent of tropical regions 
included. While other studies7,9,12,20,22 did not report carbon losses 
from belowground biomass and soils, our inclusion of these two 
components as committed loss terms increases the average forest 
carbon loss by 38% in our assessment. Further, our estimates of 
forest carbon loss should be more robust as we use an unbiased 
stratified random-sample approach and correct the mismatches 
of spatial resolution between forest loss (30 m) and carbon den-
sity maps (500–1,000 m) (ref. 41), reducing uncertainties in quan-
tifying forest carbon loss. The stratified random-sample approach 
is independent of the change detection method in the GFC data, 
thereby reducing the likelihood of producing erroneous results 
during mapping16,17. Importantly, our assessment identifies more 
forest loss in the mountains than have previous assessments, where 
land-clearing tends to occur in smaller patches that are not fully 
detectable by coarse-resolution images6,31,42.

Further, the estimated trend in carbon loss from forest conver-
sion to agriculture is positive (Supplementary Fig. 5), which differs 
from the flat or decreasing trend of gross sources calculated by three 
bookkeeping models used in the assessments of the global carbon 
budget1. These bookkeeping models are forced by statistical data 
of national forest area or a model of agricultural area expansion43 
and may not capture spatial patterns of deforestation and impacted 
biomass carbon stocks. However, the gross carbon source of book-
keeping models1 has a higher absolute value than our satellite-based 
results, probably because bookkeeping models include a simple 
account of forest degradation losses (based on harvest) whereas this 
carbon loss/recovery process is not included in our study. Further, 
bookkeeping models assume areas of shifting agriculture and a  

financial shortage and illegal settlement have also forced farmers 
to abandon cultivated lands, leading to vegetation regrowth33. For 
tropical Africa, where small-scale agriculture (often in the form of 

Table 1 | Countries with the greatest forest carbon loss  
and associated drivers across the tropics between 2001 and 
2019 (top 20)

Country Trend (TgC yr−1 decade–1)

Commodity 
agriculture

Small-scale 
agriculture

Forestry Others Total

D. R. Congo 2.6* 92.2* 0.3* 3.3* 98.4*

Indonesia 82.8* 10.8* 4.5* 2.2 95.2
Brazil −2.4 24.3* 4.8* 5.6* 46.9
Laos 11.4* 5.1* 16.4* 0.2* 33.1*

Malaysia 19.3* 1.0* 5.7* 0.2* 28.2*

Madagascar 0.8* 21.6* 0.1* 0.1 23.0*

Bolivia 15.1* 4.6* −0.1* 1.1* 22.8*

Vietnam 10.6* 2.5* 7.6* 0.3* 21.2*

Myanmar 6.2* 5.2* 8.8* 0.2* 20.9*

Peru 3.8* 15.5* 0.0* 1.3* 20.5*

Liberia 0.9* 13.0* 0.0* 0.1* 14.0*

Cambodia 12.8* 0.7* 0.3* 0.1* 13.7*

Côte d’Ivoire 0.4* 13.1* 0.0* 0.0* 13.4*

Guinea 1.0* 12.6* 0.0* 0.1* 13.3*

Angola 0.2* 12.5* 0.0* 0.2* 12.8*

Cameroon 0.7* 10.6* 0.1* 0.7* 12.0*

China 0.8* 0.2* 10. 2* 0.3* 11.6*

Thailand 3.8* 1.6* 5.8* 0.1* 11.2*

Mozambique 0.0* 10.4* 0.1* 0.1* 10.6*

Mexico 0.9* 6.9* 0.4* 0.7* 9.6*

Amount (TgC yr–1)
Brazil 260.4 78.5 25.6 8.5 373.0
Indonesia 171.0 20.2 9.3 3.0 203.6
D. R. Congo 3.7 112.5 0.4 3.6 120.2
Malaysia 64.2 1.3 8.4 0.3 74.4
Bolivia 25.8 11.6 0.4 2.7 40.5
Colombia 8.5 24.2 0.9 1.4 35.0
Peru 6.4 24.5 0.1 1.5 32.5
Laos 12.4 4.6 14.4 0.1 31.5
Madagascar 0.8 23.2 0.1 0.2 24.3
Vietnam 13.0 3.1 7.2 0.3 23.5
Mexico 2.2 17.1 1.1 1.1 21.5
Myanmar 7.3 5.1 8.5 0.3 21.1
Cambodia 19.0 0.7 0.6 0.2 20.5
China 0.7 0.2 18.6 0.4 20.0
Thailand 6.1 2.4 8.0 0.2 16.7
Côte d’Ivoire 0.9 15.6 0.1 0.0 16.6
Mozambique 0.0 15.0 0.1 0.2 15.3
Angola 0.2 14.5 0.0 0.5 15.2
Paraguay 14.1 0.5 0.1 0.2 14.8

Venezuela 1.5 9.9 0.6 1.2 13.2

Gross forest carbon loss in these 20 countries accounts for 78% of the increase in tropical forest 
carbon loss and 83% of the total amount of the loss; 1 TgC is equivalent to 10−3 PgC. Forest carbon 
loss includes aboveground and (committed) belowground biomass carbon loss and (committed) 
soil organic carbon loss. *Statistically significant trend at P < 0.05.
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are unlikely to impact our finding of the doubling of tropical car-
bon loss based on vegetative biomass and SOC changes immediately 
after forest removal.

The doubling of tropical forest carbon loss in the second decade 
of the twenty-first century demonstrates a failure to halve tropi-
cal deforestation rates by 2020 as committed under the 2014 New 
York Declaration on Forests20. Our work demonstrates the immense 
challenge posed by the Glasgow Leaders’ Declaration on Forests and 
Land Use, which pledges to halt forest loss in less than a decade46. 
Acceleration in tropical forest loss also casts doubt on the likelihood 
of achieving the carbon emission reduction target by 203047, making 
it more challenging to limit global warming to below 2 °C by the end 
of this century. Our findings highlight the importance of monitor-
ing deforestation trends and imply an urgent need to reduce forest 
loss. We advocate that tropical nations put forward sustainable land 
management strategies and policies to effectively reduce forest car-
bon loss for climate change mitigation, which must include efficient 
and legal strategies to produce commodities and food without com-
promising tropical forests.

Methods
Global map of forest cover change and its validation. We use a high-resolution 
map of global forest cover change15 (annual intervals at 30 m spatial resolution; 
version 1.7) to quantify forest loss across the tropics. The GFC dataset maps where 
and when forests were converted (naturally and anthropogenically) from 2001 
to 2019. Trees are defined as all vegetation taller than 5 m in height, and forests 
are defined with a tree canopy threshold of at least 30%. The definition of forests 
includes plantations and tree crops such as oil palm. Forest loss is the mortality or 
removal of all tree cover within a pixel.

residence time for this cultivation practice, whereas shifting agri-
culture is explicitly included in the satellite data that we analysed.

Concerning the uncertainties in our study, we estimated com-
mitted losses of belowground biomass carbon and SOC that do not 
fully represent the immediate emissions. Here, ‘committed’ means 
that we estimated the equilibrium value of carbon pools long after 
conversion, although some belowground vegetative biomass carbon 
and SOC would not be immediately lost (or emitted to the atmo-
sphere) after forest removal. Dead aboveground biomass may be 
transferred to other carbon pools (for example, retaining in wood 
products12 or decaying as slash), and belowground biomass may be 
retained in the soil and decay over time. The dynamics of these pools 
could be calculated in future studies using bookkeeping models and 
decay functions. Yet, our assumption of committed loss does not 
affect the long-term trend in annual forest carbon loss12. Further, 
we used static biomass maps, which assume that the forest biomass 
does not change over time. Although earlier work tried to quantify 
forest biomass changes using annual biomass maps (that are not 
publicly available, to our knowledge)12, these maps have uncertain-
ties and give a biomass change inconsistent with higher-resolution 
GFC data in some regions41. Thus, we used four biomass maps 
(Methods) to quantify the uncertainty of forest carbon stocks44. 
Considering the marginally small annual changes relative to total 
forest carbon stocks across the tropics45, this assumption of static 
forest biomass does not question the doubling of the forest carbon 
loss. Further studies are required to map and quantify annual forest 
biomass change using more in situ biomass and lidar observations, 
as well as high-resolution satellite data. Overall, these uncertainties 
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maps, shows AGB at 1 km resolution across the tropics. The Zarin map, derived 
from Landsat data, presents AGB across the globe at 30 m resolution.

Belowground root biomass (BGB) data are sparse because measurements 
of BGB are time consuming, laborious and technically challenging50. Thus, we 
calculate BGB (in Mg ha−1 biomass) from AGB maps (Baccini, Avitabile and Zarin) 
using an empirical model at the pixel level51:

BGB = 0.489 × AGB0.89 (5)

Total forest biomass is calculated as the sum of AGB and BGB. Finally, total 
forest carbon stocks (MgC ha−1) in live woody forest are estimated as 50% of 
total biomass20,50. The Saatchi map provides total forest carbon stocks rather than 
AGB. The total forest carbon stocks are calculated from AGB using the same 
method mentioned in the preceding50. Thus, we estimate AGB and BGB from total 
forest carbon stocks in the Saatchi map using the preceding method to separate 
aboveground and belowground parts of forest carbon stocks.

There are inconsistencies in the MODIS-derived biomass maps (Baccini, 
Saatchi and Avitabile) and Landsat-derived GFC data41, which may underestimate 
forest carbon loss by the three coarse forest biomass maps (Supplementary Fig. 
7). The Zarin map is derived from Landsat data and considers tree cover using 
GFC data, and tree loss can be co-located with the corresponding biomass20, 
indicating the consistencies of the Zarin map and GFC. Therefore, to correct the 
three biomass maps with coarse resolution and reduce the inconsistencies, we 
resample the Zarin map from 30 m to 500 m (the resolution of the Baccini map) 
and 1 km (the resolutions of the Avitabile and Baccini maps) and calculate forest 
carbon loss using the two resampled biomass maps. We then estimate the ratios 
of forest carbon loss derived from the 30 m biomass map to the forest carbon loss 
derived from resampled biomass maps in each GFC tile (10° × 10°). The ratios are 
then used as a scale factor to correct the three biomass maps (Baccini, Saatchi and 
Avitabile). For the resampling, forest carbon density at 500 m or 1 km is averaged 
from all 30 m pixels in the corresponding locations.

Soil organic carbon stocks. Deforestation not only causes forest biomass carbon 
loss, but also results in loss of SOC10. We calculate SOC loss at 0–30 cm soil depth as:

SOCloss = OCS × θ (6)

where SOCloss is SOC loss resulting from forest loss measured in MgC ha−1, OCS is 
SOC stocks at 0–30 cm depth measured in MgC ha−1 and θ is the SOC loss rate.

We obtain SOC stocks at 0–30 cm depth from SoilGrids (version 2.0), 
created by the International Soil Reference and Information Centre52. SOC 
stocks are calculated using a calibrated quantile random forest model at a spatial 
resolution of 250 m. We further resample the data from 250 m to 30 m using the 
nearest-neighbour method to match the scale of forest cover loss data.

SOC loss rate is affected predominantly by land-use types following forest loss 
and tree species53. The loss rate data are compiled from a previous meta-analysis, 
which summarizes the rate of SOC loss resulting from forest loss over the tropics50. 
SOC losses resulting from primary and secondary forest loss differ (Supplementary 
Table 3). We use a map of primary humid tropical forests in 2001 developed by 
ref. 54 to classify primary and secondary forests. The land covers following forest 
loss are determined according to the driver of forest loss (see Drivers of forest 
carbon loss). The spatial resolution of the SOC data is coarse compared with GFC 
data, which may result in inconsistencies in the calculation. However, as SOC loss 
resulting from forest loss accounts for a small proportion of total forest carbon loss 
(8%), we ignore the potential inconsistencies.

Drivers of forest carbon loss. We determine drivers of tree-cover loss using the 
dataset generated by ref. 27. This dataset shows the dominant driver of tree-cover 
loss at each 10 km grid cell for 2001–2019. There are five categories of drivers of 
tree-cover loss: commodity-driven deforestation, defined as permanent and/or 
long-term clearing of trees to other land uses (for example, commodity croplands), 
shifting agriculture, forestry, wildfire and urbanization. Commodity-driven 
deforestation, shifting agriculture and forestry dominate tropical forest loss27. 
Thus, wildfire and urbanization are combined and categorized as ‘others’. In 
tropical Africa, spatial patterns of commodity-driven deforestation are almost 
similar to that of shifting agriculture, as pointed out by ref. 27, resulting in large 
uncertainties in separating commodity agriculture from shifting agriculture. Since 
commodity-driven deforestation is usually for large-scale agricultural plantations, 
we treat commodity-driven deforestation as loss for large-scale agriculture. Because 
shifting agriculture is usually smallholder and/or patchy farming systems, we term 
shifting agriculture as small-scale agriculture, which may include commodity 
agriculture with similar spatial patterns to shifting agriculture in some regions such 
as tropical Africa. The driver data are created using decision-tree models trained 
by ~5,000 high-resolution Google Earth imagery cells, showing overall accuracy 
of 89 ± 3% from a separate validation of more than 1,500 randomly selected cells. 
We resample the data from 10 km resolution to 30 m using the nearest-neighbour 
method to match the scale of forest cover loss data.

Interpretation of post-forest-loss land covers in 2020. We collect cloudless and 
very-high-resolution satellite imagery in 2020 from Planet to determine the fate of 

Our study uses the v.1.7 product that spans the period 2001–2019 for the 
analysis. Different methods are used for detecting forest cover loss in two 
periods (2001–2010 and 2011–2019). This change in detection method as well 
as in satellite data (Landsat 7 and Landsat 8) might result in inconsistencies of 
data during the two periods. Therefore, we perform an independent assessment 
of the v.1.7 product throughout the study period (2001–2019) using stratified 
random-sample reference data. We randomly sample 18,000 pixels, a much larger 
sample population than the assessment of the original product (v.1.0, 628 pixels 
across the tropics; ref. 15), and visually interpret forest loss using Landsat imagery. 
Specifically, we randomly select 50 path/row locations (World Reference System II) 
of Landsat imagery in each tropical continent (150 path/row locations in total in 
the three tropical continents; Supplementary Fig. 6). For each path/row location, 
we randomly select 20 loss pixels and 10 non-loss pixels in each period of 2001–
2005, 2006–2010, 2011–2014 and 2015–2019, with total sampling pixels of ~18,000 
((20 loss + 10 non-loss) × 50 path/row locations × 4 periods × 3 continents). Our 
study compares the increase in forest carbon loss from the start (~2001) to the end 
(~2019) of the study period. Thus, we divided the whole 19 yr study period into 
four subperiods (2001–2005, 2006–2010, 2011–2014 and 2015–2019), with the 
first five years considered as the start period and the last five years considered as 
the end period for the comparison. Some path/row locations do not have 20 loss 
pixels in a specific period; for example, there is no loss detected in some locations 
of the Sahara. Therefore, we sample 11,198 loss pixels and 6,000 non-loss pixels 
(Supplementary Data). Finally, we download time-series Landsat imagery covering 
1999–2020 to visually interpret these pixels as reference data.

Following the suggestion of Global Forest Watch19 and per best practice 
guidance of ref. 18, we use a stratified random-sample approach for area estimation, 
which is independent of the method and satellite changes in the GFC data. The 
sampling reference data (Supplementary Data) are used to estimate loss area:

phi = wh

150∑
j=1

nhij × Ahi

150∑
j=1

nhj × Ai

(1)

where phi is the stratified random-sample estimated area for GFC map class h that 
is classified as reference class i; wh is the proportion of the total area GFC map class 
h; nhij is the number of pixels in GFC map class h that is classified as reference class 
i in jth Landsat path/row location; nhj is the total number of pixels in GFC map 
class h in jth Landsat path/row location; Ahj is the total area in GFC map class h in 
jth Landsat path/row location; and Aj is the total land area of jth Landsat path/row 
location.

We then calculate the error matrix, which includes overall accuracy (OA), 
user’s accuracy (UA) and producer’s accuracy (PA), as follows:

OA =

H∑

h=1

phh (2)

UAh =

phh
ph

(3)

PAj =
pjj
pj

(4)

where UAh is the UA for stratum h; ph and pj are the total area in stratum h and j, 
respectively; and PAj is the PA in stratum j.

Using the preceding equations, we estimate OA, UA and PA in the four 
periods (Supplementary Table 2). In general, OAs are >99%, UAs are >88% 
and PAs are >72% in each period. The stratified random-sample approach for 
area estimation is considered the most robust method to investigate loss trends 
in GFC product and can avoid inconsistencies of the dataset due to changes in 
detection model and satellite sensors19. Our results show that the forest loss from 
the stratified random-sample approach is similar to GFC mapped loss, both of 
which show a consistent increase during the four periods of 2001–2019 (Fig. 1a), 
confirming the increasing forest carbon loss across the tropics during the early 
twenty-first century.

Forest carbon stocks. We estimate forest (aboveground and belowground) biomass 
carbon losses by co-locating GFC loss data with corresponding biomass data. 
Forest biomass maps are not universally reliable, owing to uncertainties and some 
degree of bias. We use four biomass maps to quantify forest carbon stocks, which 
helps reduce the uncertainties and bias44. The four maps were developed by refs. 
9,48,49,20 and are hereafter referred to as ‘Baccini’, ‘Saatchi’, ‘Avitabile’ and ‘Zarin’ 
maps, respectively. The Baccini map, derived from Moderate Resolution Imaging 
Spectroradiometer (MODIS) data, presents aboveground live woody biomass 
(AGB) across the tropics at 500 m spatial resolution. The Saatchi map, also derived 
from MODIS data, presents total forest carbon stocks at 1 km spatial resolution 
across the tropics. The Avitabile map, integrated from the Baccini and Saatchi 
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the agriculture-driven forest loss during 2001–2019. Planet provides two products, 
RapidEye (at a spatial resolution of 5 m) and Doves (at a spatial resolution of 3 m; 
4-band PlanetScope Scene). We randomly sample 500 pixels that show forest 
loss owing to agriculture expansion during 2001–2005 and 500 pixels that show 
forest loss owing to agriculture expansion during 2015–2019, then check cloudless 
satellite imagery in 2020 to visually interpret the land cover of each sampled pixel 
in 2020. We classify three types of land cover: agricultural land, forest/shrubland 
and others (Supplementary Fig. 4). Rubber and oil-palm plantations are classified 
as agricultural lands.

Uncertainty and methods for analysis. We use committed emissions of forest 
carbon, even though some of this carbon will be lost only in later years or 
transited to other carbon pools or stored as wood products12. Forest carbon loss is 
defined as gross carbon loss due to forest removal (as indicated by GFC product), 
including (aboveground and belowground) forest biomass carbon and SOC losses. 
We calculate only the gross loss of forest carbon stocks while gain of carbon via 
reforestation and afforestation is not considered.

We first estimate reference sample-based forest loss area using sample data:

ASj = AMj

H∑

h=1

phj (7)

where ASj and AMj are reference sample-based forest loss areas and mapped forest 
loss areas in stratum j, respectively.

To estimate forest carbon loss (aboveground, belowground and soil carbon) 
using sample-based forest loss area, we apply a ‘stratify and multiply’ approach21,22 
by assigning mean forest carbon density for each stratum. Aboveground and 
belowground forest carbon losses are estimated using four biomass maps (Baccini, 
Saatchi, Avitabile and Zarin), and we report ensemble mean ± s.d. from the four 
maps as our best estimate.

Mountain forest carbon loss at different elevations is calculated by overlaying 
mountain polygon from the Global Mountain Biodiversity Assessment inventory55 
(version 1.2) and the 30 m ASTER Global Digital Elevation Model56 (version 3).

Although our validation shows that the GFC (v.1.7) product could accurately 
map forest loss, we cannot reduce the omission and commission errors. In 
addition, the accuracy of the disturbance year is 75.2%, with 96.7% of the 
disturbance occurring within one year before or after the estimated disturbance 
year in GFC product15. Therefore, we calculate 3 yr moving averages of annual 
forest and related carbon losses for time-series analysis, following the suggestion 
of the Global Forest Watch19 and refs. 28,38. We use a non-parametric Theil–Sen 
estimator regression method53 to detect trends in time-series results and test the 
significance of the trend by Mann–Kendall test57.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The global map of forest cover loss is available at https://earthenginepartners. 
appspot.com/science-2013-global-forest/download_v1.7.html. The ASTER 
elevation data are available at https://earthdata.nasa.gov/. The GMBA inventory is 
available at https://ilias.unibe.ch/goto_ilias3_unibe_cat_1000515.html. The map 
describing the drivers of forest loss is available at https://data.globalforestwatch. 
org/datasets/tree-cover-loss-by-dominant-driver. The four biomass maps 
(Avitabile, Baccini, Saatchi and Zarin) are available at http://lucid.wur.nl/ 
datasets/high-carbon-ecosystems, https://developers.google.com/earth-engine/ 
datasets/catalog/WHRC_biomass_tropical, https://gfw2-data.s3.amazonaws. 
com/forest_cover/zip/tropical_forest_carbon_stocks.tif.aux.zip and https://data. 
globalforestwatch.org/datasets/3e8736c8866b458687e00d40c9f00bce_0/about, 
respectively. Soil carbon stocks are available at https://www.isric.org/explore/ 
soilgrids. The primary humid tropical forest map is available at https://glad.umd. 
edu/dataset/primary-forest-humid-tropics. The Planet very-high-resolution  
satellite imagery is available at www.planet.com. Time-series Landsat imagery is 
available at https://earthexplorer.usgs.gov/. All datasets are also available upon 
request from Z. Zeng.

Code availability
The scripts used to generate all the results are MATLAB (R2020a). Analysis scripts 
are available on request from Z. Zeng.
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