
UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

A Pragmatic Verification Approach for Concurrent Programs

by

Truc Lam Nguyen

Thesis for the degree of Doctor of Philosophy

May 2017

tnl2g10@soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

A PRAGMATIC VERIFICATION APPROACH FOR CONCURRENT PROGRAMS

by Truc Lam Nguyen

Developing correct concurrent software is a difficult task, due to the inherently non-

deterministic nature of thread interactions. Traditional testing techniques typically per-

form an explicit exploration of the possible program executions, and are thus inadequate

for concurrent software. Symbolic verification techniques for concurrent programs are

therefore desirable.

Sequentialization has become one of the most promising symbolic approach for the ver-

ification of concurrent programs in recent years. However, current efficient implementa-

tions still struggle with concurrent programs that contain rare bugs, and their purposes

is restricted to bug-finding. In this thesis, we advance sequentialization to provide prag-

matic and scalable verification approaches for concurrent programs, aiming at finding

bugs and proving correctness.

Concerning finding rare bugs in concurrent programs, we present our work on optimising

Lazy-CSeq sequentialization using abstract interpretation. We empirically demonstrate

that this procedure, which is implemented in the tool called Lazy-CSeq+ABS, can lead

to significant performance gain for very hard verification problem.

Furthermore, we propose a “swarm” verification approach that can enable existing tools

to find rare concurrency bugs which were previously out of reach. We implement the

approach in VeriSmart, as a extension of Lazy-CSeq, and empirically demonstrate

that VeriSmart can spot rare bugs considerably faster than Lazy-CSeq tool can.

With regard to proving correctness, we develop a novel lazy sequentialization for un-

bounded concurrent programs and implement the corresponding schema in a tool named

UL-CSeq based on the CSeq framework. Empirical experiments show that our new

schema is efficient in both proving correctness and finding bugs on concurrency bench-

marks in comparison with state-of-the-art approaches.

tnl2g10@soton.ac.uk




Contents

Declaration of Authorship xi

Acknowledgements xiii

1 Introduction 1

2 Backgrounds 9

2.1 Shared-memory Multi-threaded Programs . . . . . . . . . . . . . . . . . . 9

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Sequential Verification Techniques . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Bounded Model Checking . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Predicate Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Concurrent Verification via Sequentialization . . . . . . . . . . . . . . . . 18

2.4 CSeq Sequentialization Framework . . . . . . . . . . . . . . . . . . . . . . 24

3 Lazy Sequentialization and Interval Analysis 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Verification approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 The general schema . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Value analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

safestack benchmark. . . . . . . . . . . . . . . . . . . . . . 35

eliminationstack benchmark. . . . . . . . . . . . . . . . . 36

DCAS benchmark. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 A Pragmatic Verification Approach for Concurrent Programs 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Splitting Computations with Tilings . . . . . . . . . . . . . . . . . 44

4.2.2 Tile Selection versus Random Selection . . . . . . . . . . . . . . . 45

4.2.3 Overall approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Programming and Execution Models . . . . . . . . . . . . . . . . . . . . . 49

v



vi CONTENTS

4.4 Code-to-code translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.2 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Parallel verification . . . . . . . . . . . . . . . . . . . . . . . 60

Sequentialization . . . . . . . . . . . . . . . . . . . . . . . . 61

Concolic testing . . . . . . . . . . . . . . . . . . . . . . . . . 61

Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Lazy Sequentialization of Unbounded Concurrent Programs 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Unlimited Lazy Sequentialization Schema . . . . . . . . . . . . . . . . . . 65

5.3 Implementation and Experiments . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions 77

6.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



List of Figures

2.1 Syntax of multi-threaded programs. . . . . . . . . . . . . . . . . . . . . . 10

2.2 TSO architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 A multi-threaded program example. . . . . . . . . . . . . . . . . . . . . . 14

2.4 A Producer/Consumer program. . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Sequentialized code of the Consumer/Producer program. . . . . . . . . . . 22

2.6 Configuration sequence of Lazy-CSeq. . . . . . . . . . . . . . . . . . . . . 24

3.1 Sequentialized code of the Consumer/Producer program modified accord-
ing to the value analysis by Frama-C. . . . . . . . . . . . . . . . . . . . . 30

3.2 Lazy-CSeq+ABS architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Experiment on safestack benchmark. . . . . . . . . . . . . . . . . . . . . 35

3.4 Experiment on eliminationstack benchmark. . . . . . . . . . . . . . . . 36

3.5 Experiment on DCAS benchmark. . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Tiling example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Verification approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Revised syntax of multi-threaded programs. . . . . . . . . . . . . . . . . . 49

4.4 Formal description of the code-to-code translation by module Instrument. 51

4.5 VeriSMART experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Expected bug-finding time varying over the number of cores. . . . . . . . 59

5.1 Sequentialization rewriting rules. . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 The main function of P seq . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Translation of thread P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1 safestack counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2 safestack benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii





List of Tables

3.1 Experiments on SV-COMP’16 unsafe benchmarks . . . . . . . . . . . . . . 34

3.2 Experiments on SV-COMP’16 safe benchmarks . . . . . . . . . . . . . . . 34

5.1 Performance comparison of different tools on safe benchmarks . . . . . . . 73

5.2 Performance comparison of different tools on unsafe benchmarks . . . . . 75

ix





Declaration of Authorship

I, Truc Lam Nguyen , declare that the thesis entitled A Pragmatic Verification Approach

for Concurrent Programs and the work presented in the thesis are both my own, and

have been generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: [NFLP15], [NFLP16a], [TNI+16b],

[INF+15], [TNI+16a], [NIF+17], [NFLP17], [TNF+17]

Signed:.......................................................................................................................

Date:..........................................................................................................................

xi

tnl2g10@soton.ac.uk




Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dr Gennaro Parlato

for the continuous support, guidance, and encouragement throughout the course of my

studies. His guidance helped me throughout the research and writing of this thesis. I

could not have imagined having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank Omar Inverso and Ermenegildo Tomasco for

their friendship and collaboration. I thank all my fellow doctoral candidates and friends

in ECS, with whom I had the pleasure of spending some time during the past few years.

Thanks to Dr Corina Cirstea and Dr Constantin Enea for having agreed to examine my

work. Thanks to ECS for funding my doctoral studies.

Last but not least, I would like to thank my family and friends for supporting me

spiritually throughout the course of my studies and my life in general.

xiii





Chapter 1

Introduction

Concurrent software has become an essential component in modern computing technol-

ogy. Nowadays, the applications of concurrent software have been deployed everywhere;

for example, in embedded automotive hardware in modern cars, or in personal com-

puters with multi-core hardware architecture, or in web servers that are subjected to

millions of requests from multiple users in various locations simultaneously. These soft-

ware applications can exploit the power of multiple processing units efficiently. As a

result, concurrent software development becomes more and more important for now and

for the foreseeable future.

Developing correct and efficient concurrent software is a difficult task. The source of

complexity is not primarily the non-determinism of thread interactions; there are also

additional sources in different levels: (1) the level of multi-threaded applications using

high-level synchronisation primitives, (2) the level of the software layer that implements

the concurrency libraries and synchronisation mechanisms, and (3) the level of the mem-

ory models adopted by compilers and modern multi-core architectures in order to opti-

mise performance. Consequently, implementing concurrent software requires developers

to take into account all the complexities and ensure the correctness of each individual

thread at the same time. As a result, concurrent programs often contain bugs that are

difficult to find, reproduce, and fix [BBdH+09].

Several approaches have been proposed to mitigate the above problem, one of them is

the development of concurrent data structure libraries. In particular, these libraries

encapsulate all complex reasoning about low-level concurrency, and provide only a set

of simple operations (API) on the data structures so that these operations are expected

to perform correctly under concurrent settings. Moreover, the data structures are often

designed with non-blocking (e.g., lock-free) features to be more efficient and allow high-

throughput concurrent accesses. Therefore, such libraries can simplify the reasoning

about concurrency for developers and thus facilitate the implementation of concurrent

software. However, this also moves the difficult task of developing reliable concurrent

1



2 Chapter 1 Introduction

software from developers to library designers. Unfortunately, designing correct concur-

rent data structures is also very hard, due to the high level of concurrent interactions

in these structures. In fact, concurrent programs using these libraries may contain

concurrency bugs which are rarer and more subtle than those in other concurrent pro-

grams so that even expert designers overlook them. For instance, the two most resis-

tant known bugs occur in lock-free data structure benchmarks: safestack [Vyu10] and

eliminationstack [HSY04]. Therefore, automatic techniques and tools for the analysis

of concurrent software, in general, are essential.

In this thesis, we investigate automatic verification approaches for concurrent programs,

aiming at both finding bugs and proving the absence of errors.

Concerning finding bugs in software, a traditional approach is testing. It is very useful

and remains the most used paradigm in the software industry as it is scalable on large

programs. Testing takes place by in executing a program under its intended environment

with the purpose of finding bugs (i.e., errors or other defects). Therefore, it is often

effective on concurrent software containing shallow bugs (i.e., bugs that occur frequently

in different invocations of programs), as the interleavings containing bugs can be explored

explicitly. However, testing is not efficient on concurrent programs that contain rare bugs

as these bugs have very low probabilities of occurrence [BBdH+09, McK17]. Moreover, it

is well known that even recent testing developments for concurrent software do not work

well in practice, as all possible executions in the programs have to be explored explicitly.

Hence, techniques that analyse all thread executions collectively using symbolic methods

are highly desirable, and, thus, can complement testing.

One of the most promising symbolic approaches for finding bugs in software is bounded

model checking (BMC) [BCCZ99]. BMC involves unrolling loops and inlining functions

in programs to obtain bounded programs, and encoding the resulted programs into

formulas which are ultimately fed into a SAT/SMT solver. The high performance of

modern SAT/SMT solvers has made BMC effective in finding bugs in sequential pro-

grams with many mature high-performance tools [CKL04, CF11, LQ13, LQL12, MFS12].

Moreover, there have been several efficient approaches to make BMC work on concur-

rent programs, and even allow for finding rare concurrency bugs which testing fails to

spot, evidenced, for instance, in the two aforementioned lock-free data structure bench-

marks [Vyu10, HSY04]. However, these approaches still have scaling-up difficulties when

it comes to large concurrent programs with rare bugs. Below, we briefly outline the two

prominent approaches and how we address scaling-up problems.

One approach is to model executions of concurrent programs using partial orders [SW11].

The idea is to build a formula for each thread following the standard approach in se-

quential programs but leaving global variables unconstrained; after that, the individual

formulas are put in conjunction with an additional formula that encodes the compu-

tations as a partial order. The separation of threads and global shared memory also



Chapter 1 Introduction 3

allows for encoding complex weak memory models (WMMs) [AKT13, AKNP14]. Nev-

ertheless, the large amount of non-determinism in concurrent programs can result in

huge formulas, which can cause scaling-up difficulty for this approach.

Another approach is to use lazy sequentialization [LR09, LMP09a] targeting BMC back-

ends. Sequentialization is an approach to translate concurrent programs into equivalent

non-deterministic sequential programs so that off-the-shelf sequential techniques and

tools can be reused without any alteration. Sequentialization has several advantages:

(1) a code-to-code translation is typically much easier to implement than a full-fledged

analysis tool; (2) it allows designers to focus only on the concurrency aspects of pro-

grams, delegating all sequential reasoning to an existing target analysis tool; and (3)

sequentialization can be designed to target multiple backends for sequential program

analysis.

In fact, Lazy-CSeq [INF+15, ITF+14b, ITF+14a], a well-tuned implementation of lazy

sequentialization [LMP09a, LMP10] specifically designed for BMC backends, has proven

itself as one of the most effective symbolic techniques for finding bugs in concurrent

programs. The translation schema in the tool is carefully designed to introduce very

small memory overheads and very few sources of non-determinism to produce simple

formulas. It also aggressively exploits the structure of bounded programs and works

well with BMC backends. As a result, Lazy-CSeq sequentialization is more efficient

than the aforementioned partial order encoding approach for BMC. It is also extended

to handle weak memory models [TNI+16a]. To the best of our knowledge, Lazy-CSeq

is the only tool that is able to detect bugs in the two hardest lock-free data structure

benchmarks mentioned above.

Although Lazy-CSeq is very effective in practice, it still struggles on large concurrent

programs with rare concurrency bugs, i.e., programs with a large number of interleavings

where only few of those interleavings lead to a violation of the program specification.

For example, even though the tool can find bugs in the two hardest lock-free benchmarks

mentioned above, the produced SAT formulas are too complex and require huge amount

of computational resources. In fact, Lazy-CSeq spends many hours to analyse them on

a normal machine. Nevertheless, Lazy-CSeq sequentialization remains one of the most

promising approach for finding bugs in concurrent programs, and it is worth investigating

the sources of complexity in the schema for further improvement.

The complexity of concurrent programs, in general, consists of two elements: sequential

and concurrent. Typically, the source of sequential complexity includes programs’ states,

e.g., shared global and individual thread-local variables, while concurrent complexity

involves the non-deterministic thread interleavings. The produced formulas from Lazy-

CSeq, therefore, inherit the complexities from both, where each of them can severely

affect the overall performance of the tool. Therefore, it is essential to reduce at least

one of the elements to achieve more scalable analysis.



4 Chapter 1 Introduction

With regard to reducing the sequential complexity, we first carry out detailed analyses

on the SAT formulas generated by Lazy-CSeq’s BMC backend on some hard bench-

marks. The analyses indicate that a large fraction of the overall effort is not spent on

finding the right interleavings that expose the bugs but on finding the right values of

the original concurrent programs’ shared global and individual thread-local variables.

Further investigation also reveals that there are unnecessarily large number of proposi-

tional variables resulted from the default bit-widths of the variables in C language, for

example, an int variable can be represented with 32 bits on x86 64 platform. Moreover,

in an experiment, we manually reduced this to the minimum required to find the bug

(three bits in the case of safestack), which leads to an order of magnitude speed-up

[TNI+16a]. Therefore, safely reducing the domains of the concurrent programs’ state

variables can lead to more effective and scalable analysis. A suitable approach for this

reduction is abstract interpretation [CC77b, CC79], which has been known to be very

effective in determining the domains of programs’ variables.

Therefore, we apply an automated method based on abstract interpretation in Frama-

C [CCM09] over the sequentialized programs constructed by Lazy-CSeq to compute over-

approximating intervals for these variables. Then we use the intervals to minimise the

representation of the (original) state variables, exploiting the BMC backend’s bitvector

support to reduce the number of bits required to represent these in the sequentialized

program, and, hence ultimately in the formula fed into the SAT solver.

We implement this approach in a tool called Lazy-CSeq+ABS, on top of Lazy-CSeq,

which supports C99 programs with POSIX thread library. Detailed empirical experi-

ments show that the effort required for the abstract interpretation phase is relatively

low, and that the inferred intervals are tight enough to be useful in practice and lead to

large performance gains for very hard verification problems.

Concerning reducing the concurrent complexity in concurrent programs, our initial so-

lution is to use partial order reduction (POR) [DHRR04, God97, VHB+03]. POR is

a technique for reducing the search space of programs by partitioning the programs’

executions into equivalent classes, such that only one representative execution for each

equivalent class is considered during the analysis. We speculate that applying POR to

the sequentialization schema in Lazy-CSeq may reduce redundant executions in concur-

rent programs. This can lead to smaller formulas fed into the SAT solver, and ulti-

mately generate better performance. However, preliminary experiments have suggested

that adding POR instrumentation to the sequentialized programs does not lead to large

performance gain, while the additional code brings considerable overheads, which dimin-

ishes the overall analysis. An explanation is that the Lazy-CSeq schema is sufficiently

optimised so that it can capture virtually minimal number of thread interleavings con-

taining bugs, thereby making further reduction redundant.



Chapter 1 Introduction 5

Therefore, we need a more efficient approach to reduce the source of non-determinism

in thread interleavings. Fortunately, concurrency can offer this opportunity. Inspired by

the idea of swarm verification [HJG08, HJG11], we design an approach that is based on

the divide-and-conquer paradigm, and can make full use of the available multi-core hard-

ware. The approach is called task competition: we run the same algorithm on multiple

processing units, without information exchange, on different tasks derived from the orig-

inal problem. The first variant that produces a definitive answer (i.e., counterexample

or proof) “wins” and aborts the others.

More specifically, we generate several program variants that each captures a subset of

the original program’s interleavings, in a way that each of the original program’s in-

terleavings is captured by at least one of these variants. The interleavings are evenly

distributed across all generated variants, which means that for programs with rare con-

currency bugs, most of these variants do not contain a bug. However, in variants that

do contain such bugs, the bugs are generally more frequent (i.e., manifest in a higher

fraction of the interleavings) than in the original program. Consequently, while the over-

all effort can still be considerable, bugs can be found faster and with fewer resources,

because the individual variants are simpler and can be analysed in parallel, each with a

shorter time-out and smaller memory consumption. Therefore, this approach can inherit

the strengths of both testing and symbolic techniques, and mitigate the weaknesses of

the two approaches.

We implement the above “swarm” approach in a tool named VeriSmart based on the

CSeq framework [INF+15], where we use the code-to-code translation of Lazy-CSeq to

derive the tasks. In general, the approach can also be used with other symbolic analysis

techniques, explicit-state space exploration techniques, or even testing. We evaluate

VeriSmart on the two hardest known concurrency benchmarks, safestack [Vyu10]

and eliminationstack [HSY04] for three different memory models1: SC, TSO, PSO.

The experiments are conducted in concurrent settings2, where we launch multiple tasks

in parallel and examine each task with different parameters. Detailed experimental

results show that (i) although the number of instances to generate can be extremely high,

we only have to consider a few instances (selected randomly out of millions or billions)

of the original benchmarks to find bugs with high probability; and (ii) the approach is

particularly effective for symbolic methods: it reduces the memory consumption and

runtime of each individual verification task and also leads to a considerable reduction

in wall-clock time for the global verification. In other words, our approach can enable

existing tools to find rare bugs that were previously out of reach.

While finding bugs in concurrent programs is essential, proving the absence of errors

also plays an important role, apparently when programs do not contain bugs. We

1see Section 2.1.2
2Iridis cluster, http://cmg.soton.ac.uk/iridis

http://cmg.soton.ac.uk/iridis


6 Chapter 1 Introduction

have observed that although efficient implementations are restricted to bug-finding pur-

pose [INF+15, ITF+14b, ITF+14a], lazy sequentialization [LMP10, LMP12] has the

potential to be extended for correctness proofs because it can maintain the concurrent

program’s invariants and discover only feasible computations. Therefore, we develop a

new lazy sequentialization that can handle programs with unbounded loops and an un-

bounded number of context switches, and is therefore suitable for program verification

(both for correctness and bug-finding). The novelty of the translation is the simulation of

the thread resumption mechanism in a way that does not require that each statement is

executed at most once and does not rely on unconditional jumps (i.e., goto) to reposition

the execution, as opposed to Lazy-CSeq sequentialization [INF+15, ITF+14b, ITF+14a].

Instead, a single scalar variable is maintained to determine whether the simulation needs

to skip over a statement or execute it.

We implement the corresponding schema in a tool named UL-CSeq for C99 programs

with POSIX thread library, based on the CSeq framework [INF+15]. We also evalu-

ate UL-CSeq on a large set of benchmarks from the literature, including the concur-

rency category of the Software Verification Competition (SV-COMP)3, using different

sequential verification backends on the sequentialized programs. Empirical evaluation

demonstrates that our lazy sequentialization is efficient in proving the correctness of the

safe benchmarks and improves on existing techniques that are specifically developed for

concurrent programs. Furthermore, our solution is also competitive with state-of-the-art

approaches for finding bugs in the unsafe benchmarks.

To summarise, in this thesis, we make the following contributions4:

• we amplify Lazy-CSeq sequentialization using abstract interpretation to provide a

more scalable tool for finding bugs in hard concurrency benchmarks (Chapter 3);

• we propose a novel “swarm” verification approach for finding rare concurrency

bugs; this approach can leverage sequential verification engines on parallel envi-

ronments (Chapter 4);

• we develop, implement and evaluate a novel sequentialization aiming at proving

the correctness of concurrent programs; this schema is also suitable for bug-finding

purposes (Chapter 5).

3https://sv-comp.sosy-lab.org/
4 During my PhD studies, I have also been the main developer of VAC (verifier of access control),

a state-of-the-art tool for security analysis of administrative RBAC systems [FMNP14], http://users.
ecs.soton.ac.uk/gp4/VAC.html. VAC implements the algorithms described in [FMP12, FMP13].
Moreover, VAC can be effectively adapted for reasoning about administrative models with temporal
constraints [UAS+12, UAV+14] and group-based user-attribute administrative policies in Azure-like
access control systems [FSLN17].

https://sv-comp.sosy-lab.org/
http://users.ecs.soton.ac.uk/gp4/VAC.html
http://users.ecs.soton.ac.uk/gp4/VAC.html


Chapter 1 Introduction 7

Structure of the Thesis

This thesis is organised as follows. In Chapter 2, we provide the formal definition

of concurrent programs we used throughout this thesis; we also give a short overview

of sequential verification techniques, sequentialization, and our CSeq sequentialization

framework. Our first contribution of optimising Lazy-CSeq sequentialization using ab-

stract interpretation is illustrated in Chapter 3. In Chapter 4, we present our second

and main contribution, a novel “swarm” verification approach for finding rare bugs in

concurrent programs. Chapter 5 demonstrates our first contribution, a lazy sequential-

ization schema for safety verification of concurrent programs. Finally, we conclude in

Chapter 6 with our considerations and possible directions for future work.





Chapter 2

Backgrounds

In this chapter we outline the context and main concepts developed in this thesis. Sec-

tion 2.1 gives the overview of the target language that we use. In Section 2.2, we

introduce current techniques for the verification of sequential programs. Section 2.3

briefly describes sequentialization, including eager and lazy schemas, and the Lazy-CSeq

sequentialization schema. Finally, in Section 2.4, we present our CSeq sequentialization

framework, which is the basis upon which we develop all the prototypes in this thesis.

The contents of Section 2.1 and Section 2.4 are largely based on our published work [TNI+16a,

INF+15].

2.1 Shared-memory Multi-threaded Programs

We use a simple imperative language to describe multi-threaded programs. It includes

dynamic thread creation and join, and mutex locking and unlocking operations for thread

synchronisation. Thread communication is implemented via shared memory and mod-

elled by global variables. In this section and throughout this thesis, we use the terms

multi-threaded program and concurrent program interchangeably.

2.1.1 Syntax

The syntax of multi-threaded programs is defined by the grammar shown in Figure 2.1.

x denotes a local variable, y a shared variable, m a mutex, t a thread variable and p a

procedure name. All variables involved in a sequential statement are local. We assume

expressions e to be local variables, constants, that can be combined using mathematical

operators. Boolean expressions b can be true or false, or Boolean variables, which can

be combined using standard Boolean operations.

9



10 Chapter 2 Backgrounds

P ::= (dec;)∗ (typ p (〈dec,〉∗) {(dec;)∗stm})∗

dec ::= typ z

typ ::= bool | int | mutex | thread | void

stm ::= seq | con | {〈stm;〉∗}

seq ::= assume(b) | assert(b) | rx=e | p(〈e,〉∗) | return e

| if(b) stm [else stm ] | while(b) do stm | l : seq | goto l

con ::= x=y | y=x | t=create p(〈e,〉∗) | join t

| init m | lock m | unlock m | destroy m | l : con

Figure 2.1: Syntax of multi-threaded programs.

A multi-threaded program P consists of a list of global variable declarations (i.e., shared

variables), followed by a list of procedures. Each procedure has a list of zero or more

typed parameters, and its body has a declaration of local variables followed by a state-

ment. A statement stm is either a sequential statement or a concurrent one, or a sequence

of statements (compound statement) enclosed in braces.

A sequential statement seq can be an assume- or assert-statement, an assignment, a call

to a procedure that takes multiple parameters (with an implicit call-by-reference param-

eter passing semantics), a return-statement, a conditional—or branching—statement,

a while-loop, a labelled sequential statement, or a jump to a label. Local variables are

considered uninitialised right after their declaration, which means that they can take any

value from their respective domains. Therefore, until not explicitly set by an appropri-

ate assignment statement, they can non-deterministically assume any value allowed by

their type. We also use the symbol * to denote the expression that non-deterministically

evaluates to any possible value; for example, with x = * we mean that x is assigned any

possible value of its type domain.

A concurrent statement con can be a concurrent assignment, a call to a thread rou-

tine, such as a thread creation, a join, or a mutex operation (i.e., init, lock, unlock,

and destroy), or a labelled concurrent statement. A concurrent assignment assigns a

shared (resp. local) variable to a local (resp. shared) one. Unlike local variables, global

variables are always assumed to be initialised to a default value. A thread creation state-

ment t= create p(e1, . . . , en) spawns a new thread from procedure p with expressions

e1, . . . , en as arguments. A thread join statement, join t, pauses the current thread

until the thread identified by t terminates its execution. Lock and unlock statements

respectively acquire and release a mutex. If the mutex is already acquired, the lock

operation is blocking for the thread, i.e., the thread is suspended until the mutex is

released and can then be acquired.



Chapter 2 Backgrounds 11

We assume that a valid program P satisfies the usual well-formedness and type-correctness

conditions. We also assume that P does not contain direct or indirect recursive function

calls but contains a procedure main, which is the starting procedure of the only thread

that exists in the beginning. We call this the main thread. We further assume that

there are no calls to main in P and no other thread can be created that uses main as its

starting procedure. Finally, our programs are not parameterised, in the sense that we

only allow for a bounded number of thread creations.

2.1.2 Semantics

A thread configuration is a triple 〈locals, pc, stack〉, where locals is a valuation of the local

variables, pc is the program counter that tracks the current statement being executed,

and stack is a stack of procedure calls that works as follows. At a procedure call, the

program counter of the caller and the current valuation of its local variables are pushed

onto the stack, and the control moves to the initial location of the callee. At a procedure

return, the top element of the stack is popped, and the local variables and the program

counter are restored. Any other statement follows the standard C-like semantics.

A thread identifier is a positive integer. Amulti-threaded program configuration c consist-

ing of n threads with identifiers {i1, . . . , in}, is a tuple of the form 〈sh, en, thi1 , . . . , thin〉,

where: (1) sh is a valuation of the shared variables, (2) en ∈ {i1, . . . , in} is the identifier

of the only thread that is enabled to make a transition, or en ∈ {−1, 0}, and (3) thij is

the configuration of the thread with identifier ij . A configuration c is initial if sh is the

default evaluation of the shared variables, n = i1 = 1 and th1 is the initial configuration

of main. An error configuration c is such that en = −1.

A transition of a multi-threaded program P from a configuration c to a configuration

c′, denoted by c
j
→
P

c′, corresponds to the execution of a statement by the thread with

identifier j = en (no transitions can be taken from configurations where en ∈ {−1, 0}).

If the statement being executed is sequential, only ten’s configuration is updated as

usual. In particular, the execution of an assert statement on a condition that does

not hold causes the whole program to terminate immediately into an error configura-

tion. In contrast, an assume statement will take to a configuration with en = 0 and

the computation will abort but without entering an error configuration. Concerning

concurrent statements, a thread creation statement adds a new thread configuration to

the configuration of the multi-threaded program with a fresh identifier i > 0. A thread

join operation on a thread identifier t will not allow any further transition for the in-

voking thread ten until the thread identified by t terminates its execution. A thread

lock statement on a free mutex m (i.e., a mutex not held by any thread) will lead to

a new configuration where the value of m is set to ten. If the mutex is not free, an

attempt to lock it will prevent ten from making any further transitions. The execution

of a thread unlock statement on a mutex m, held by ten, allows it to be freed. When a



12 Chapter 2 Backgrounds

ten terminates, its configuration is removed from the pool of active threads. The enabled

thread in c′ is non-deterministically selected from the pool of active threads of c′. We

define →
P

to be the union of all relations
j
→
P

.

Let P be a multi-threaded program with configurations c and c′. A run or execu-

tion of P from c to c′, denoted c  
P

c′, is any sequence of zero or more transitions

c0 →
P

c1 →
P

· · · →
P

cn where c = c0 and c′ = cn. A configuration c′ is reachable in P ,

if c  
P

c′ and c is the initial configuration of P .

A context of thread t from c to c′, denoted c
t
 

P
c′, is any run c0

t
→
P

c1
t
→
P

· · ·
t
→
P

cn for

some n, where c = c0, c
′ = cn. A run c  

P
c′ is k-context bounded if it can be obtained

by concatenating at most k contexts of P , i.e., there exists c0, c1, . . . , ck′ with k′ ≤ k,

such that ci−1  
P

ci is a context (of some thread) for any i ∈ {1, . . . , k′}.

For any fixed sequence ρ of thread indices (called schedule), a run of P is a round w.r.t.

ρ, also known as round-robin execution, if there exists a run c0
t1
 

P
c1

t2
 

P
· · ·

tn
 

P
cn for

some n such that t1, t2, . . . , tn is a subsequence of ρ. A run is k round-robin if it can be

obtained by concatenating at most k round-robin executions of P .

Memory Models. A shared memory is a sequence of memory locations of fixed size.

The content of each location can be read or written using an explicit memory operation.

The semantics of read and write operations depend on the adopted memory model.

A typical statement that is used in programs that are meant to run under weak memory

models is fence. A fence-statement essentially enforces that all the read and write

operations that precede it in the thread code are executed before all those that follow

it. Thus we add the following production to the syntax given in Figure 2.1:

conc ::= fence.

Sequential consistency (SC). SC is the “standard model”, where a write into the shared

memory is performed directly on the memory location. This has the effect that the

newly written value is instantaneously visible to all the other threads [Lam79].

Write-to-read program order relaxation. The total store ordering model (TSO) [SSO+10,

ABP11, ABP14] is a relaxed-consistency memory model where write and read operations

of the same location but by different threads can be reordered. The behaviour of TSO

can be described using the simplified architecture shown in Figure 2.2. Each thread t is

equipped with a local store buffer that is used to cache the write operations performed by

t according to a FIFO policy. Updates to the shared memory occur non-deterministically

along the computation, by selecting a thread, removing the oldest write operation from

its store buffer, and then updating the shared memory valuation accordingly. Before

updating, the effect of a cached write is visible only to the thread that has performed

it. A read by t of a variable y retrieves the value from the shared memory unless there



Chapter 2 Backgrounds 13

ThreadnThread1

SHARED MEMORY

S
T
O
R
E

B
U
F
F
E
R

1

B
U
F
F
E
R

n

S
T
O
R
E

Write

Read

Figure 2.2: TSO architecture.

is a cached write to y pending in its store buffer; in that case, the value of the most

recent write in t’s store buffer is returned. A thread can also execute a fence-statement

to block its execution until its store buffer has been emptied.

Write-to-write program order relaxation. The partial store ordering model (PSO) is

similar to TSO except that the write operations to different locations by the same

thread can also be reordered. Its semantics is thus the same as for TSO except that

each thread is endowed with a store buffer for each shared memory location.

More general program order relaxation. Other relaxed memory models such as ARM and

POWER relax program order for all memory operations (reads and writes) to different

locations. The reordering is only constrained by fulfilling some dependency relations

that aim to preserve the correct semantics of the sequential parts, such as standard

data-flow, address, and control relations (see [SSA+11]). In these models, reordering

can be constrained by using fence-statements to enforce the commitment of pending

writes.

2.1.3 Reachability

Let P be a multi-threaded program and k be a positive integer. The reachability problem

asks whether there is a reachable error configuration of P . Similarly, the k-context

(respectively, k round-robin) reachability problem asks whether there exists an error

configuration of P which is reachable through a k-context (respectively, k round-robin)

execution.

The reachability problem for concurrent programs asks whether a particular statement

in the program marked using a special label goal is reachable. The reachability problem

for concurrent programs under a context-switch bound k, for k ≥ 1, asks whether goal

is reachable within k context-switches.



14 Chapter 2 Backgrounds

mutex m1,m2; int c;

void P(int b) {
int l=b;

lock m1;

if(c>0) c=c+1

else {
c=0;

while(l>0) do {
c=c+1;

l=l-1;

}
}
unlock m1;

}

void C() {
L: lock m2;

if(c<1) {
unlock m2;

goto L;

}
c=c-1;

assert(c>=0);

unlock m2;

}

void main() {
c=0;

init m1;

init m2;

thread p0,p1,c0,c1;

p0=create P(5);

p1=create P(1);

c0=create C();

c1=create C();

}

Figure 2.3: A multi-threaded program containing a reachable assertion failure.
In the main thread, functions P and C are both used twice to spawn a thread.

Example. The program shown in Figure 2.3 models a producer-consumer system, with

two shared variables, two mutexes m1 and m2, and an integer c that stores the number

of items that have been produced but not yet consumed.

The main function initialises the mutex and spawns two threads executing P (producer)

and two threads executing C (consumer). Each producer acquires m1, increments c if it

is positive or copies over the initial value “one-by-one”, and terminates by releasing m1.

Each consumer first acquires m2, then checks whether all the elements have been con-

sumed; if so, it releases m2 and restarts from the beginning (goto-statement); otherwise,

it decrements c, checks the assertion c ≥ 0, releases m2, and terminates.

At any point of the computation, mutex m1 ensures that, at most, one producer is

operating and mutex m2 ensures that only one consumer is attempting to decrement

c. Therefore the assertion cannot be violated (safe instance of the Producer-Consumer

program). However, by removing the consumers’ synchronisation on mutex m2, the

assertion could be violated since the behaviour of the two consumer threads now can

be freely interleaved: with c = 1, both consumers can decrement c and one of them

will write the value −1 back to c, and thus violate the assertion (unsafe instance of the

Producer-Consumer program).

2.2 Sequential Verification Techniques

In this section, we give an overview of verification techniques for sequential programs,

including bounded model checking, abstract interpretation and predicate abstraction.



Chapter 2 Backgrounds 15

2.2.1 Bounded Model Checking

Bounded model checking (BMC) [BCCZ99] is a symbolic technique in program verifica-

tion where only subsets of feasible program behaviours are explored. It checks, given a

program, a property, and a bound k, if the property can be violated within k execution

steps.

More specifically, BMC efficiently reduces program analysis to propositional satisfia-

bility, often SAT problem [Coo71], to check the negation of a given property (or a

counterexample) up to a given execution depth k (or bound). The input program is first

transformed into a bounded program, then it is simplified into an intermediate represen-

tation (IR); after that, the IR is compiled into a propositional formula, or verification

condition; finally, the verification condition is analysed by a SAT solver. The formula

is satisfiable if and only if there exists an execution of the program that violates the

property within, at most, k steps. The satisfiability of the formula implies the existence

of an error in the initial program; however, the absence of detected errors is indecisive,

because an error might still occur beyond the given execution bound.

The transformation from sequential programs into bounded programs requires the re-

moval of loops and function calls. Conceptually, any loop structure, including recursive

calls, can be removed by replicating its body k times. A function call can also be re-

moved by inlining its code in the calling function, transforming the return statements

into assignments to a newly introduced variable that stores the return value (if any) fol-

lowed by a jump to the end of the inlined function. In practice, BMC-based tools may

not simplify the programs as outlined above; however, the bounded programs all share

one important feature: all jumps are forward and each statement is executed, at most,

for one run. Additionally, the static single assignment (SSA) form [CFR+89, LA04]

is often used in the IR for bounded programs as SSA typically enables more efficient

translation into propositional formulas.

BMC has several advantages. One is that BMC can exploit the considerable perfor-

mance gains achieved by modern SAT solvers; another lies in its ability to provide a

counterexample, or error trace1; third, BMC is also fully automatic. The considered

strengths of BMC has made it attractive for industrial applications. However, as stated

above, there is one major drawback of BMC; it cannot prove correctness.

Therefore, extending BMC to a complete analysis method is also of fundamental im-

portance [BCCZ99, CES09]. One approach is to pre-compute a completeness thresh-

old [Bie09] before the actual analysis, in order to determine a bound k that is sufficient

to cover the entire program’s state space. However, this approach is not effective as

searching for the exact completeness threshold can be as hard as the model-checking

1A satisfying assignment of variables in the verification condition can be converted into the exact
sequence of steps to follow in the input program to reproduce any detected error.



16 Chapter 2 Backgrounds

problem itself [CKOS05]. Alternatively, one can use specific characteristics of the pro-

gram’s transition system, such as the diameter or the recurrence diameter (the longest

shortest path and the longest simple path between any two states, respectively) to

establish the threshold; this is implemented in several methods [BKA02, KS03, MS03,

CKOS04, BK04, Kro06, KOS+11, BOW12]. However, these methods still depend on the

program and the kind of property to prove; therefore, determining reasonably accurate

completeness thresholds in the general case remains challenging.

Another approach is k-induction, where the idea is to use invariants to construct a k-step

inductive proof [SSS00, ES03, Bra11]. This technique is theoretically an induction. Sev-

eral variations have been proposed [DKR10, DHKR11] and in general require auxiliary

invariants to be provided externally, usually through manual source-code annotations.

Nevertheless, techniques to automatically generate invariants [AS06, BHMR07, BM08]

often require additional effort and are not guaranteed to provide invariants powerful

enough to imply the correctness of the property.

2.2.2 Abstract Interpretation

Abstract interpretation is a theory that defines the abstraction or constructive approx-

imation, or over-approximation, of the formal description of programs, which can be

complex or infinite, in order to infer or verify the properties of the programs [CC77a].

Invented in the late seventies, abstract interpretation has seen many advancements and

become widespread in many aspects of computer science, such as type inference, abstrac-

tion/refinement, termination inference, model checking, and, specifically, static analy-

sis [CC77b, CC79]. Production-quality verification tools based on abstract interpretation

are available and used in advanced software, hardware, transportation, communication,

and medical industries [CC14]. Among those, Frama-C [CKK+12] and Astree [CCF+05]

are the exemplary tools, as they can scale on complex programs with millions of lines of

code [CCF+09].

Informally, abstract interpretation is to give several semantics of a program (i.e., concrete

semantics) by relations of abstraction. Typically, collecting semantics is used to define

the concrete semantics of a program—it is also the strongest semantics of a program.

For example, the collecting semantics of an imperative program associates the set of

execution traces it may produce to the program concerned, where an execution trace is

the sequence of possible states of the execution of the program, and a state typically

consists of the values of the program counter and the memory locations. Abstract

interpretation derives the concrete semantics to more abstract ones which allows for

computing the semantics interpretation at some point of the program’s actual execution.

For instance, one can choose to represent the states of a program manipulating integer

variables by forgetting the actual values and only retaining their signs. We can conclude

the sign of the result from some operations on variables such as multiplication if we



Chapter 2 Backgrounds 17

know the signs of the operands. However, as the results of abstraction, precision on

other operations such as subtraction or addition may be lost. In general, there is always

a trade-off between the precision of the analysis and its computability. The more precise

the abstract semantics, the harder it is for the analysis on the program.

Sign abstraction, in the above example, is only a simple form of interpretation; there is

a whole range of abstract domains suitable for many levels of precision of abstraction.

A simple abstract domain is the box domain (or interval domain). It consists of a set of

intervals assigned to each variable at a given point of programs. For instance, an abstract

state assigns the value v(x) to variable x an interval [L,H] where L ≤ v(x) ≤ H.

The octagon domain [Min01] constraints any pair of variables with an upper bound

and a lower bound. For example, given any two variables x, y, octagon abstraction

provides this set of constraints L ≤ ±x ± y ≤ H. Octagon abstraction is more precise

than interval abstraction due to the relation between any pair of variables; however,

its complexity is quadratic compared to linear of box abstraction. At a higher level of

precision, convex polyhedral approximation [CH78] uses a finite set of linear inequalities

(with no restriction on their coefficients) of all variables which are satisfied by their

concrete values in the program. This domain can capture a closed interpretation of

the concrete semantics of a program but requires polynomial time to compute. Abstract

domains can also be refined or combined to form hybrid domains where the new domains

are able to express some of the concrete properties which are hard to strictly specify in

the original domains.

In general, any techniques based on abstract interpretation are sound, which means

no conclusion derived from the abstract semantics is wrong relative to the program’s

concrete semantics. However, they may discover false positive, i.e., a violation of abstract

semantics on abstracted model may not be a violation in the concrete semantics of the

actual program. For this reason, abstract interpretation is often useful for proving

correctness of programs rather than finding bugs.

There is also a hybrid approach of abstract interpretation and explicit-state model-

checking, called explicit-value analysis [BL13]. Roughly speaking, in the analysis, a state

in a program execution is tracked in two levels: (1) one group of variables is computed

precisely on precise domain, e.g., Binary Decision Diagram (BDD) [Bry86]; and (2) while

the other group is associated with abstract domains. Therefore, this approach has the

ability to balance the level of precision and computability for abstraction.

2.2.3 Predicate Abstraction

Predicate Abstraction [CU98, GS97] is another technique based on abstraction. How-

ever, as opposed to abstract interpretation, predicate abstraction abstracts programs’

states by only keeping track of certain predicates on the state, instead of using abstract



18 Chapter 2 Backgrounds

domains. By this mechanism, the original data variables are replaced by Boolean vari-

ables to represent predicates in the abstract program. According to the construction, the

abstract program is guaranteed an over-approximation of the original program. There-

fore, predicate abstraction may produce considerable reductions in the state space, and

can prove correctness. Nonetheless, when the analysis of the abstract program issues a

counterexample, it may not be a concrete (genuine) counterexample. Here, refinement

needs to be performed in order to adjust the set of predicates in a way that eliminates

this spurious counterexample.

The abstraction refinement process is automated in a paradigm called Counterexample-

guide Abstraction Refinement (CEGAR) [CGJ+03, CGJ+00, DD01]. More specifically,

CEGAR starts with an abstract model and checks if an error path can be found on the

program by using that model. If no error path is found, the analysis terminates, and

reports that the program is correct. Otherwise, the error path is checked for feasibility,

which means whether the path is executable according to the concrete semantics of the

program. If the path is feasible, the analysis also terminates, reporting the violation of

the property, together with the feasible error path as witness. In the negative case, which

means that the path is found infeasible, this path is then used to automatically refine

the current abstraction model. This process keeps iterating until no more error path

is found (i.e., program is correct) or a feasible path is reported (i.e., program contains

bugs).

Predicate abstraction, therefore, is a sound and complete technique (i.e., prove absence

of error or give genuine counterexample). There are several verification tools devel-

oped based on predicate abstraction [BR02, BHJM07, BK11, CKSY05, PR11, GPR11].

Nevertheless, one drawback of predicate abstraction lies in the abstraction refinement

process. The predicate refinement, while discarding spurious counterexample, may not

eventually converge; or in other words, this process may run indefinitely long and can

be intractable.

2.3 Concurrent Verification via Sequentialization

Sequentialization is basically a context bound technique for the verification of concurrent

programs. It translates a multi-threaded program into a non-deterministic sequential

program that simulates all possible schedules up to a given context switch bound. The

goal is to reuse verification tools originally developed for sequential programs to analyse

concurrent programs.

Sequentialization was originally proposed by Qadeer and Wu [QW04]. They transformed

a concurrent program into a sequential one that simulates all executions of the original

program with at most two context switches. More specifically, the first schema simply

schedules the threads in a way whereby all threads share a unique call stack. The call



Chapter 2 Backgrounds 19

stack, at each step, can be split into contiguous parts, where each part corresponds

to the whole stack of an executed thread. This schema, however, only allows a small

number of maximum context switches that can be considered (e.g., for two threads only

two context switches can be simulated).

Eager Sequentialization. Lal and Reps (LR) generalised the above concept to arbi-

trary context bounds [LR09]. In their paper, LR schema defines a transformation from

concurrent Boolean programs into sequential Boolean programs with a fixed number of

threads and a parameterised number of round-robin schedules. In LR sequentialization,

the sequential program simulates the threads in the concurrent program in a fixed order,

according to round-robin schedules. Moreover, all threads are simulated until completion

in each round; and each round holds its own copy of the shared global memory.

The sequential program starts with the simulation of the first thread in the first round.

This thread begins its execution by “eagerly” guessing (non-deterministically) the ini-

tial values of all memory copies as well as the context-switch points. At each guessed

context-switch point, the thread switches over to the memory copy for the next round,

and it will be simulated in this manner until its terminate point. The subsequent threads

in the round are simulated similarly, except that they work with the values of the shared

memory copies left by their respective predecessors in the current round. Once the simu-

lation of the last thread finishes, an auxiliary checker is injected to prune away all initial

guesses that do not correspond to feasible computations (i.e., a feasible computation is

where all the values guessed for one round match the values computed at the end of

the previous round). This checker thus requires a second set of memory copies (note

that the local variables of each thread can be safely discarded as each thread runs to

completion); and the global memory copies serve as interfaces between the threads. LR

schema is often regarded as eager sequentialization, because the non-determinism of data

which induce the exploration of unreachable states are pruned away only at the end of

simulation.

The first LR schema was only designed for programs where threads are only created at

the beginning of the execution. This problem was then overcome in delay bounded se-

quentialization [EQR11], where thread creation can be handled by transforming threads

into function calls; and these function calls are simulated right at the point their corre-

sponding threads are spawned. Similarly, LR sequentialization was further extended to

allow modelling of unbounded, dynamic thread creation [BEP11, LMP12], or complex

dynamically linked data structures allocated on the heap [ABQ11]. Moreover, LR has

been also applied in several tools [CGS11, LQR09, Qad11, LQL12, FIP13a, FIP13b],

due to its relative ease of implementation.

LR can also be extended alternatively by looking at the number of memory accesses (i.e.,

read and write operations on global/shared variables) done by threads. The idea is to use



20 Chapter 2 Backgrounds

an explicit representation of the write operations in a sequence that, for each write, con-

tains the identification of writing thread, the variable or synchronisation primitive, and

the written value; in other words, this schema models an unwound (bounded) memory,

or memory unwinding (MU) representation of concurrent programs on the correspond-

ing sequential programs. Each thread is also translated in a function where write/read

accesses over the global shared variables are replaced by operations over the unwound

memory. The simulation starts with “eagerly” guesses of the MU; after that, each thread

is simulated similarly to LR where all context switches are implicitly simulated on the

MU in rely-guarantee manner [Jon83]. MU sequentialization schema is implemented in

MU-CSeq tool [TIF+14], and later augmented with “grained” tuning feature [TIF+15a],

and “individual memory location” [TNI+16b]. Recently, MU schema has been extended

further to handle weak memory models in modern CPU architectures [TNF+17].

Lazy Sequentialization. Even though eager sequentialization can provide a neat way

to reason about concurrent programs, an eagerly grasp of the whole state space from

the beginning of the simulation can impose a huge burden on the checkers who have

to prune away spurious computations in the end. Indeed, the set of reachable states

of a concurrent program may be much smaller than the whole state space; therefore,

techniques that explore only feasible paths, or lazy exploration, are thus more desir-

able [LR09]. Lazy sequentialization was first applied in the verification of concurrent

Boolean programs [LMP09a] as an alternative approach to a fixed-point algorithm in La

Torre et al. [LMP09b]. The schema was later extended to concurrent Boolean programs

with unbounded threads [LMP10, LMP12].

The lazy sequentialization schema in [LMP09a] (LMP) also simulates the original con-

current program in bounded round-robin schedule and keeps the copies of the shared

memory, similar to LR. However, instead of guessing the memory like LR, the copies are

computed on-the-fly for each thread as the simulation proceeds round-by-round. LMP,

in this way, explores only the reachable states of the concurrent programs. Nonetheless,

this schema requires the recomputation of thread-local states when a thread resumes

its computation from the previous context, as the call-stack and the program counter

of a thread are not stored at context-switches. Fortunately, this recomputation is not

an actual problem for tools that can compute function summaries, in particular, LMP

for concurrent Boolean programs, which reuses the summaries computed in the previous

iterations. However, the recomputation may be a serious drawback for the application

of LMP in Bounded Model Checking [GHR10].

Lazy Sequentialization schema for BMC. Recently, the above problem of re-

computation has been addressed in a fine-tuning LMP schema for BMC [ITF+14a]. The

corresponding schema is implemented in Lazy-CSeq tool [ITF+14b, INF+15, ITF+14a],

which is an effective and scalable tool for finding bugs in concurrent C programs with

POSIX thread library. We briefly outline the lazy sequentialization encoding as follows.



Chapter 2 Backgrounds 21

mutex m; int c=0;

void P(void *b) {
int tmp=(*b);

lock m;

if(c>0)

c++;

else {
c=0;

while(tmp>0) {
c++;

tmp--;

}
}
unlock m;

}

void C() {
assume(c>0);

c--;

assert(c>=0);

}

int main(void) {
int x=1,y=5;

thread p0,p1,c0,c1;

init m;

p0=create P(&x);

p1=create P(&y);

c0=create C(0);

c1=create C(0);

return 0;

}

Figure 2.4: A Producer/Consumer program.

Assume that a concurrent program P consists of n + 1 functions f0, . . . , fn, where f0

denotes the main function, and that P creates at most n threads respectively with start

functions f1, . . . , fn. Moreover, each function fi does not contain loops. Note that these

assumptions can easily be enforced by bounding the programs in BMC fashion and

cloning the start functions, if necessary (bounded multi-threaded program). Since each

start function is thus associated with at most one thread, we can identify threads and

(start) functions.

Consider a bounded multi-threaded program P as described above. In the analysis of

bounded round-robin computations, A number of rounds K and an arbitrary schedule ρ

is fixed by permuting the functions f0, . . . , fn that form the starting program. Thus, the

lazy sequentialization of P yields a sequential program P ′ such that P fails an assertion in

K rounds if and only if P ′ fails the same assertion. P ′ is composed of a new function main

and a thread simulation function Ti for each thread fi in P . The lazy sequentialization

of the Producer/Consumer program given in Figure 2.4 generated by Lazy-CSeq (with

two loop unwindings) is the code shown in Figure 2.5. In the figure, the code injected

by Lazy-CSeq is shown in gray while the original code is shown in black.

It is observable that the sequential verification of P ′ relies on stubs provided by Lazy-

CSeq. P ′ thus uses a slightly modified version of the POSIX thread library. For example,

the thread create stub takes an additional argument (in gray) for the (statically known)

id of the calling thread; see Inverso et al. [ITF+14a] for details.

The new main of P ′ is a driver that calls, in the order given by ρ, the functions Ti for

K complete rounds. For each thread it maintains the label at which the context switch



22 Chapter 2 Backgrounds

bool active[T]={1,0,0,0,0};
int cs,ct,pc[T],size[T]={5,8,8,2,2};
#define G(L) assume(cs>=L);

#define J(A,B) if(pc[ct]>A||A>=cs) goto B;

mutex m; int c=0;

void P1(void *b) {
0:J(0,1) static int tmp;

tmp=(*b);

1:J(1,2) mutex lock(&m);

2:J(2,3) if(c>0)

3:J(3,4) c++;

else { G(4)

4:J(4,5) c=0;

if(!(tmp>0)) goto l1;

5:J(5,6) c++; tmp--;

if(!(tmp>0)) goto l1;

6:J(6,7) c++; tmp--;

assume(!(tmp>0));

l1: G(7);

} G(7)

7:J(7,8) mutex unlock(&m);

goto P0; P0: G(8)

8: return;

}

void P2(void *b) {...}

void C1() {
0:J(0,1) assume(c>0);

1:J(1,2) c--;

assert(c>=0);

goto C0; C0: G(2)

2: return;

}

void C2() {...}

int Tmain() {
static int x=1;

static int y=5;

static thread p0,p1,c0,c1;

0:J(0,1) mutex init(&m);

1:J(1,2) thread create(&p0,P0,&x,1);

1:J(2,3) thread create(&p1,P1,&y,2);

2:J(3,4) thread create(&c0,C0,0,3);

3:J(4,5) thread create(&c1,C1,0,4);

goto main; main: G(4)

5: return 0;

}

int main() {
for(r=1; r<=K; r++) {
ct=0;

if(active[ct]) { // only active threads

cs=pc[ct]+nd uint(); // next context switch

assume(cs<=size[ct]); // appropriate value?

Tmain(); // thread simulation

pc[ct]=cs; // store context switch

}
. . . . . . . . .

ct=2;

if(active[ct]) {
. . . . . . . . .

}
}

}

Figure 2.5: Lazy-CSeq sequentialized code of the Consumer/Producer program
in Figure 2.4.

was simulated in the previous round and where the computation must thus resume in

the current round. Moreover, before each call to Ti, the label at which the control will

context-switch out is non-deterministically guessed.

Each Ti is essentially fi with few lines of injected control code and with labels to denote

the relevant context-switch points in the original code. When executed, each Ti jumps

(in multiple hops) to the saved position in the code and then restarts its execution until

the label of the next context switch is reached. This is achieved by the J-macro. Context-

switching at branching statements requires some extra care; see Inverso et al. [ITF+14a]

for details. The local variables are also made persistent (i.e., static) such that there is

no need to recompute them when resuming suspended executions.



Chapter 2 Backgrounds 23

Some additional data structures and variables are also used to control the context-

switching in and out of threads as described above. The data structures are parame-

terised over T ≤ n which denotes the maximal number of threads activated in P exe-

cutions. Auxiliary variables are also used to keep track of the active threads (active),

the arguments passed in each thread creation (we omitted it in our example since the

considered thread functions have no arguments), the largest label used in each Ti (size),

the current label of each Ti (pc), and, for the currently executed thread, its index (ct)

and the context-switch point guessed in the main driver before calling the thread (cs).

Note that the control code that is injected in the translation is designed such that

each Ti reads but does not write any of the additional data structures. This data is

updated only in the main driver and in the portions of code simulating the API functions

concerning thread creation and termination. This has the advantage of introducing fewer

dependencies between the injected code and the original code, which typically leads to

a better performance of the backend tool (e.g., for BMC backends this results in smaller

formulas).

Lazy Sequentialization for WMMs. Lazy sequentialization can be extended to

handle complex weak memory models on modern computer architectures. The first lazy

sequentialization for multi-threaded programs for the TSO and PSO memory models is

proposed by Tomasco et al. [TNI+16a]. More specifically, this schema, while following

precisely the lazy sequentialization schema [ITF+14a], replaces all access to shared mem-

ory items (i.e., reads from and writes to shared memory locations, and synchronisation

primitives like lock and unlock) by explicit calls to API operations over a shared memory

abstraction (SMA). For example, if x and y are two shared scalar variables, then the

statement x = y+ x+ 3 is translated into write(x, read(y) + read(x) + 3).

The SMA can be seen as an abstract data type (ADT) that encapsulates the semantics

of the underlying WMM and allows it to be implemented under the simpler SC model.

This abstract data type also isolates the (weak) memory model from the remaining con-

currency aspects, and allows the reuse of existing (lazy) sequentialization techniques and

tools for SC. The approach shares some similarities with the axiomatic representation

of memory models [SW11, AKT13] but the fundamental difference is that it works at

the code level—in effect, the very idea of sequentialization to WMMs themselves.

The efficiency of the sequentialization depends on how to implement the SMA to lever-

age the backend verification tool. In the work by Tomasco et al. [TNI+16a], efficient

TSO and PSO implementations of the SMA targeting BMC tools are also given. These

implementations are carefully designed to optimise some parameters that lead, in com-

bination with a lazy sequentialization targeting CBMC [CKL04], to efficient SAT en-

codings, thanks to the introduction of the Temporal Circular Doubly Linked List data

structure.



24 Chapter 2 Backgrounds

2.4 CSeq Sequentialization Framework

The CSeq framework is built on ideas from CSeq tool [FIP13a]; and later improved

and fully re-engineered [INF+15]. It now provides support for quickly prototyping

new sequentialization-based verification tools. To date, the framework has been used

to implement Lazy-CSeq [INF+15, ITF+14b, ITF+14a], MU-CSeq [TIF+14, TIF+15a,

TNI+16b] and UL-CSeq [NFLP15, NFLP16a] tools. Moreover, all the tools presented

in Chapters 3, 4, and 5 are built or extended on this framework.

LAZY-CSEQ INSTRUM FEEDER CEX
source �le(s)

merged simpli
ed

source

bounded

program

sequentialized
program

instrumented

program

backend

output

outcome

thre�ds
unwind

rounds

BOUND
PROGRAM

MERGE
SIMPLIFY

b�ckend

Figure 2.6: Configuration sequence of Lazy-CSeq. Double-framed boxes denote
modules composed of multiple submodules.

The framework comprises several modules that are either translators that implement

source-to-source transformations of C programs, or wrappers that work on generic strings

and are used for general-purpose tasks that do not produce source code. Each tool

within CSeq is identified by a configuration that corresponds to a sequence of translators

followed by a sequence of wrappers; for example, Figure 2.6 sketches the configuration

for Lazy-CSeq.

A verification tool takes as input the file containing the source code of the concurrent C

program to analyse and the list of verification parameters. For Lazy-CSeq, the verifica-

tion parameters are the number of rounds, the unwinding depth and the acronym of the

backend tool. The input parameters are passed to the appropriate modules; additionally

the first module takes as input also the input source file and then the output of each

module is fetched as input to the following module. The output of the last module in

the sequence is the analysis outcome.

The first translator is always a merger : the input source code is merged with external

sources pulled in by the #include directives2. The last translator is typically an in-

strumenter, which instruments the output according to the backend tool (as explained

below). The purpose of the wrappers is to interact with the backend tool and interpret

its answer at the end of the analysis; in particular, there is a cex module that is respon-

sible for tracking back the counterexample generated by the backend tool on the input

source code, and thus output the counterexample.

2Include directive, https://en.wikipedia.org/wiki/Include_directive

https://en.wikipedia.org/wiki/Include_directive


Chapter 2 Backgrounds 25

Translators run in two steps: (1) the input code is parsed in order to build the abstract

syntax tree (AST)3, the symbol table, and other data structures; (2) the AST is re-

cursively traversed and unparsed back into a string that corresponds to the output C

code. This mechanism is built on top of pycparser4, a parser for C99 that uses PLY5,

an implementation of Lex-Yacc [AJ74, LS90] for Python; and it is implemented by con-

veniently overriding pycparser’s AST-based pretty-printer, so that the output code is

transformed while visiting the AST. In particular, the transformation is made on-the-fly

by directly changing the output generated by AST subtree visits rather than altering

the structure of the AST itself. Other source-to-source translation tool [BPM04] uses

rewrite rules instead. String-based source transformations are in contrast more intuitive

and require a less steep learning curve, and combined with Python’s flexibility, it is rel-

atively easy to implement complex code transformations quickly. String-based rewriting

is also used in the ROSE framework [QSPK01].

The CSeq framework also provides a line-mapping functionality that is independent

from the specific translation performed and is a useful support for the counterexample

generation. The idea is to keep track of the location in the source code where each

line of the output was translated from. During the generation of the output, transla-

tors automatically create maps from output to input, in a similar way to how the C

Preprocessor (CPP) uses line control information when merging multiple source files, to

keep track of which line comes from which source file. However, rather than inserting

explicit #line directives in the source code (like C preprocessor does6) the information

is stored as a table which maps output lines back to input lines (note that each input

line may generate several output lines, for instance after unfolding a loop). At the end

of the last translation, it is possible to track line numbers back to the output of the

first module. For the first module (merger), since there might be multiple input files

(due to the #include directives), output line numbers are mapped to pairs of the form

(linenumber, filename).

Instrumenting the code for a specific backend is in itself a quite simple standalone

transformation undertaken by the instrumentation module. It consists in replacing the

primitives for handling non-determinism (that are backend-independent and potentially

injected at any point by any module) with backend-specific statements. This involves

three kinds of statements: (1) variable assignment statements to non-deterministic values

using nondet int, nondet long, etc., (2) restrictions of non-determinism using assume,

and (3) explicit condition checks (e.g., for reachability) using assert. This requires a

simple renaming of the function calls, or inserting ad-hoc functions definition, depending

on whether or not the desired verification backend intrinsic models all of the above. The

size of a backend integration is therefore usually short (e.g., less than 10 lines); however,

3Abstract syntax tree, https://en.wikipedia.org/wiki/Abstract_syntax_tree
4pycparser, https://github.com/eliben/pycparser
5PLY, http://www.dabeaz.com/ply/
6Preprocessor output, https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://github.com/eliben/pycparser
http://www.dabeaz.com/ply/
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html


26 Chapter 2 Backgrounds

the CBMC default backend exploits its bitvector feature to optimise the representation

of the program counters and is thus more complicated (please refer to Chapter 3 for

other uses of the bitvector feature).



Chapter 3

Lazy Sequentialization and

Interval Analysis

In this chapter, we present how we use abstract interpretation to minimise the repre-

sentation of the concurrent program’s state (shared global and thread-local) variables.

More specifically, we run the Frama-C abstract interpretation tool over the programs

constructed by Lazy-CSeq to compute over-approximating intervals for all (original)

state variables and then exploit CBMC’s bitvector support to reduce the number of bits

required to represent these in the sequentialized program. We have implemented this

approach in the tool named Lazy-CSeq+ABS and demonstrate the effectiveness of this

approach. In particular, we show that it leads to large performance gains for very hard

verification problems.

The content of this chapter is largely based on our published work [NIF+17, NFLP17].

3.1 Introduction

Sequentialization has proven itself as one of the most effective symbolic techniques for

concurrent program verification, evidenced for example by the fact that most concur-

rency medals in the recent SV-COMP program verification competitions were won by

various sequentialization-based tools [TIF+14, ITF+14b, TIF+15a, TNI+16b]. It is

based on the idea of translating concurrent programs into non-deterministic sequential

programs that (under certain assumptions) behave equivalently, so that the different in-

terleavings do not need to be treated explicitly during verification and, consequently, se-

quential program verification methods can be reused. Eager sequentialization approaches

[LR09, FIP13b, TIF+15b] guess the different values of the shared memory before the ver-

ification and then simulate (under this guess) each thread in turn. They can thus explore

infeasible computations that need to be pruned away afterwards, which requires a second

27



28 Chapter 3 Lazy Sequentialization and Interval Analysis

copy of the shared memory, and so increases the state space. Lazy sequentialization ap-

proaches [LMP09a] instead guess the context switch points and recompute the memory

contents, and thus explore only feasible computations. They also preserve the sequential

ordering of the interleaved thread executions and thus the local invariants of the original

program. Lazy approaches, such as Lazy-CSeq [INF+15, ITF+14b, ITF+14a], are thus

typically more efficient than eager approaches.

Lazy-CSeq is implemented as a source-to-source transformation in the CSeq frame-

work [FIP13a, INF+15] (see Section 2.4): it reads a multi-threaded C99 program that

uses the POSIX thread library [ISO09], applies the translation sketched in Section 3.2

and described in more detail by Inverso et al. [ITF+14a] and outputs the resulting non-

deterministic sequential C program. This allows us to use any off-the-shelf sequential

verification tool for C as backend, although we have achieved the best results with CBMC

[CKL04].

Lazy-CSeq’s translation is carefully designed to introduce very small memory over-

heads and very few sources of non-determinism, so that it produces simple formulas.

It also aggressively exploits the structure of bounded programs and works well with

backends based on bounded model checking. It is very effective in practice, and scales

well to larger and harder problems. Currently, Lazy-CSeq is the only tool able to

find bugs in the two hardest known concurrency benchmarks, safestack [Vyu10] and

eliminationstack [HSY04]. However, for such hard benchmarks the computational

effort remains high; in particular, the analysis requires several hours on a standard

machine.

A detailed analysis of these benchmarks shows that a large fraction of the overall effort

is not spent on finding the right interleavings that expose the bugs, but on finding

the right values of the original (concurrent) programs’ shared global and individual

thread-local variables. We found that this is caused by the unnecessarily large number

of propositional variables (reflecting the default bit-widths of the variables in C) that

CBMC uses. In an experiment, we manually reduced this to the minimum required

to find the bug (three bits in the case of safestack), which leads to a 20x speed-up

[TNI+16a]. This clearly indicates the potential benefits of such a reduction.

Contributions In this chapter, we describe an automated method based on abstract

interpretation to reduce the size of the concurrent programs’ shared global and thread-

local state variables. More specifically, we run the Frama-C abstract interpretation

tool [CCM09] over the sequentialized programs constructed by Lazy-CSeq to compute

over-approximating intervals for these variables. We use the intervals to minimise the

representation of the (original) state variables, exploiting CBMC’s bitvector support to

reduce the number of bits required to represent these in the sequentialized program,

and, hence, ultimately in the formula fed into the SAT solver. Note that this approach

relies on two crucial aspects of Lazy-CSeq’s design. On the theoretical side, we rely on



Chapter 3 Lazy Sequentialization and Interval Analysis 29

the fact that lazy sequentializations only explore feasible computations to infer “useful”

invariants that actually speed up the verification; our approach would not work with

eager sequentializations because they leave the original state variables unconstrained,

leading to invariants that are too weak. On the practical side, we rely on the source-

to-source approach implemented in Lazy-CSeq, in order to re-use an existing abstract

interpretation tool.

We have implemented this approach in the last release of Lazy-CSeq and demonstrate its

effectiveness. We show that the effort for the abstract interpretation phase is relatively

small, and that the inferred intervals are tight enough to be useful in practice and

lead to large performance gains for very hard verification problems. In particular, we

demonstrate a 5x speed-up for eliminationstack.

Organisation of the chapter. In the next section, we give a description of our

approach. Section 3.3 gives details on our implementation and Section 3.4 presents the

results of our experimental evaluation. Section 3.5 draws comparisons with related work,

and Section 3.6 concludes.

3.2 Verification approach

In this section we illustrate the verification approach we propose in this chapter. We

refer to multi-threaded programs (see Section 2.1) and recall context-bounded analysis

before we give some details on the two pillars of our approach: the lazy sequentialization

performed by the tool Lazy-CSeq [ITF+14a] and the value analysis performed by the

tool Frama-C [CCM09].

3.2.1 The general schema

Verification by sequentialization is based on a translation of the input multi-threaded

program into a corresponding sequential program which is then analysed by an off-the-

shelf backend verification tool for sequential programs. We improve on this by applying

value analysis to the sequentialized program to derive over-approximating intervals for

the original program variables and using these intervals to reduce the number of bits used

to represent each variable in the backend verification tool. In particular, our approach

works in four steps:

1. We compute a sequential program that preserves the reachable states of the input

program up to a given number of thread context-switches (sequentialization).

2. We compute the bounds on the values that the variables can store along any

computation of the sequential program (value analysis).



30 Chapter 3 Lazy Sequentialization and Interval Analysis

bool active[T]={1,0,0,0,0};
int cs,ct,pc[T],size[T]={5,8,8,2,2};
#define G(L) assume(cs>=L);

#define J(A,B) if(pc[ct]>A||A>=cs) goto B;

mutex m; bitvector[4] c=0;

void P1(void *b) {
0:J(0,1) static bitvector[4] tmp;

tmp=(*b);

1:J(1,2) mutex lock(&m);

2:J(2,3) if(c>0)

3:J(3,4) c++;

else { G(4)

4:J(4,5) c=0;

if(!(tmp>0)) goto l1;

5:J(5,6) c++; tmp--;

if(!(tmp>0)) goto l1;

6:J(6,7) c++; tmp--;

assume(!(tmp>0));

l1: G(7);

} G(7)

7:J(7,8) mutex unlock(&m);

goto P0; P0: G(8)

8: return;

}

void P2(void *b) {...}

void C1() {
0:J(0,1) assume(c>0);

1:J(1,2) c--;

assert(c>=0);

goto C0; C0: G(2)

2: return;

}

void C2() {...}

int Tmain() {
static bitvector[2] x=1;

static bitvector[4] y=5;

static thread p0,p1,c0,c1;

0:J(0,1) mutex init(&m);

1:J(1,2) thread create(&p0,P0,&x,1);

1:J(2,3) thread create(&p1,P1,&y,2);

2:J(3,4) thread create(&c0,C0,0,3);

3:J(4,5) thread create(&c1,C1,0,4);

goto main; main: G(4)

5: return 0;

}

int main() {
for(r=1; r<=K; r++) {
ct=0;

if(active[ct]) { // only active threads

cs=pc[ct]+nd uint(); // next context switch

assume(cs<=size[ct]); // appropriate value?

Tmain(); // thread simulation

pc[ct]=cs; // store context switch

}
. . . . . . . . .

ct=2;

if(active[ct]) {
. . . . . . . . .

}
}

}

Figure 3.1: Lazy-CSeq sequentialized code of the Consumer/Producer program
modified according to the value analysis by Frama-C.

3. We transform the sequentialized program by changing the program variables of

numerical type (i.e., integer and double) to bitvector types of sizes determined

by the results of the value analysis (model refinement).

4. We verify the resulting sequential program (verification).

In sequentializations the control non-determinism of the original program is replaced

by data non-determinism and thread invocations are replaced by function calls. Lazy

sequentialization methods also preserve the sequential ordering of the interleaved thread

executions, and thus also the local invariants of the original program. This property

ensures that the value analysis can produce good over-approximations of the variable

ranges (i.e., tight intervals). We instantiate our approach with the lazy sequentialization

implemented in Lazy-CSeq (see Section 2.3), and the value analysis given by Frama-C.



Chapter 3 Lazy Sequentialization and Interval Analysis 31

3.2.2 Value analysis

The value analysis of programs aims at computing supersets of possible values for all the

variables at each statement of the analysed program. All executions of the instruction

that are possible starting from the function chosen as the entry-point of the analysis are

taken into account.

The value analysis of Frama-C [CCM09] is a plug-in based on abstract interpretation

and is capable of handling C programs with pointers, arrays, structs, and type casts.

Abstract interpretation links the set of all possible executions of a program (concrete

semantics) to a more coarse-grained semantics (abstract semantics). Frama-C explores

symbolic execution of the program, translating all operations into the abstract seman-

tics. For the soundness of the approach, any transformation in the concrete semantics

must have an abstract counterpart that captures all possible outcomes of the concrete

operation. Thus, when several execution paths are possible, e.g., when analysing an

if-statement, all branches need to be explored and then at the point where the branches

join together, e.g., after the if statement, the union of the results along each branch is

taken. For-loops require additional care, since value analysis is not guaranteed to ter-

minate. However, this feature is not used in our approach as the output of Lazy-CSeq

does not contain loops (bounded program).

As an example, consider the sequentializazion of the Producer/Consumer program in

Figure 2.4 generated by Lazy-CSeq in the sequentialized code shown in Figure 3.1 (see

Section 2.3 for more details). On this program, Frama-C computes for the integer shared

variable c and the integer local variable tmp of producer threads the interval of values

[−2, 5]. Thus, in the verification analysis we can safely reduce the size of these integer

variables to 4 bits (one bit is for the sign) instead of the standard 32 bits used for

the type int. Therefore, we can transform the sequentialized program accordingly by

replacing the type int in the declaration of these variables with the bitvector type.

3.3 Implementation

We have implemented our approach in a relatively straightforward way within the CSeq

framework, as an extension (Lazy-CSeq+ABS) to the existing Lazy-CSeq implementa-

tion. CSeq consists of a number of independent Python modules that provide different

program transformations (e.g., function inlining, loop unrolling) as well as parsing and

unparsing [INF+15]. These modules can be configured and composed easily to imple-

ment different sequentializations as source-to-source transformation tools.

The architecture of Lazy-CSeq+ABS is shown in Figure 3.2. We now briefly illustrate

the architecture of Lazy-CSeq (shown in Figure 3.2 in blue, see Section 2.4), and then

incrementally describe how we have extended it.



32 Chapter 3 Lazy Sequentialization and Interval Analysis

LAZY-CSEQ
INSTRUM FEEDER CEXsource �le(s)

merged simpli
ed

source

bounded

program

sequentialized
program

instrumented

program

backend

output

outcome

thre�ds
unwind

rounds

BOUND
PROGRAM

MERGE
SIMPLIFY

INSTRUM FEEDER INSTRUM

TYPES

Lazy-CSeq
ABS

Lazy-CSeq

FRAMA-C

CBMC

FRAMA-C

CBMC CBMC

Figure 3.2: Lazy-CSeq+ABS architecture.

Lazy-CSeq consists of a chain of modules:

• a module that preprocesses the source files merging them into a single file;

• a module that simplifies the syntax;

• a module for unrolling loops and inlining functions to produce a bounded program;

• a module that implements the Lazy-CSeq sequentialization [ITF+14a] which pro-

duces a backend-independent sequentialized file;

• a module to instrument the sequentialized file for a specific backend (in our case,

CBMC);

• two wrappers, one for backend invocation (FEEDER), and another one that gen-

erates counterexamples (CEX).

We reuse all these module as follows. The output of the LAZY-CSEQ module, which

produces a backend-independent sequentialized file, is now instrumented for Frama-C by

replacing the non-deterministic choice, assert, and assume statements with the equivalent

Frama-C primitives. The next module consists of a wrapper that invokes Frama-C on

the instrumented code. The result of this analysis, which reports for each variable a

lower and upper bound on the value that the variable can take along any execution

of the bounded program, is used by the INSTRUM TYPES module to compute the

minimal number of bits required for each program variable. This module then replaces

the original scalar type of each variable, say x, in the backend-independent sequentialized

file (produced by LAZY-CSEQ module) with the CBMC type CPROVER bitvector[i]

where i is the number of bits computed for x. The resulting program is then passed

to the INSTRUM module and the remaining process is the same as Lazy-CSeq. The

additional modules of Lazy-CSeq+ABS are implemented in Python as well.

Lazy-CSeq+ABS is publicly available at: http://users.ecs.soton.ac.uk/gp4/cseq/

cseq.html.

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html


Chapter 3 Lazy Sequentialization and Interval Analysis 33

3.4 Experiments

In this section we report on a large number of experiments where we compare Lazy-

CSeq v1.0 and Lazy-CSeq+ABS with the aim of demonstrating the effectiveness of the

approach proposed in this chapter. The results of this empirical study show that Lazy-

CSeq+ABS is substantially more efficient on complex benchmarks, i.e., larger programs

that contain rare bugs. Furthermore, for simple benchmarks, which Lazy-CSeq v1.0

already solves quickly, the overhead of running Frama-C is often negligible.

In our experiments we use CBMC v5.6 as sequential backend for both Lazy-CSeq v1.0

and Lazy-CSeq+ABS. CBMC symbolically encodes the executions of the bounded pro-

gram into a CNF formula that is then checked by the SAT solver MiniSat v2.2.1.

Furthermore, we use Frama-C1 v13-Aluminium for Lazy-CSeq+ABS. In the remainder

of the chapter we denote Lazy-CSeq v1.0 simply as Lazy-CSeq.

We have performed the experiments on an otherwise idle machine with a Xeon W3520

2.6GHz processor and 12GB of memory, running a Linux operating system with 64-bit

kernel 2.6.32.

Since we use a BMC tool as a backend, we individually set the parameters for the

analysis (i.e., loop unwinding, function inlining and rounds of computations) for each

unsafe benchmark (i.e., program with a reachable error location) to the minimum values

required to expose the corresponding error.

SV-COMP’16 benchmarks

The first set of experiments is conducted on the set of benchmarks from the Concurrency

category of the Software Verification Competition (SV-COMP’16) held at TACAS. This

set consists of 1005 concurrent C files using the POSIX thread library, with a total

size of about 277,000 lines of code and where 784 of the files contain a reachable error

location. We use this set of benchmarks because it is widely used and many state-of-

the-art analysis tools have been trained on it. Moreover, it offers a good coverage of

the core features of the C programming language as well as of the basic concurrency

mechanisms.

For these benchmarks the experiments are split in two parts: Table 3.1 reports on

the experiments for the unsafe benchmarks and Table 3.2 on those for the safe ones.

Each row of these two tables summarises the experiments by grouping them into sub-

categories. For each sub-category, we report the number of files and the total number of

lines of code in that sub-category. The tables also gather the results of the experiments

performed using Lazy-CSeq v1.0 and Lazy-CSeq+ABS on these benchmarks. For the

1Frama-C: http://frama-c.com



34 Chapter 3 Lazy Sequentialization and Interval Analysis

CBMC backend analysis, we indicate with time the average time in seconds, mem the

average memory peak usage expressed in MB, and with #vars and #clauses the average

number of variables and clauses of the CNF formula produced by CBMC. Furthermore,

only for Lazy-CSeq+ABS, the column Frama-C denotes the average time in seconds

taken by Frama-C for the value analysis.

Lazy-CSeq Lazy-CSeq+Abs
CBMC CBMC Frama-C Total

Subcategory #files LOC time memory #vars #clauses time memory #vars #clauses time time
pthread 17 4085 34.69 84.91 89317 336250 18.04 66.79 47961 184287 5.47 23.51
pthread-atomic 2 204 1.66 33.29 9131 29186 1.80 46.22 6259 17936 0.89 2.69
pthread-ext 8 780 6.54 358.42 647840 2654905 4.46 83.12 89718 423391 1.05 5.50
pthread-lit 3 123 1.93 38.33 9993 31206 1.94 49.29 5882 16421 1.20 3.14
pthread-wmm 754 236496 2.01 31.38 2427 5668 2.19 46.08 2402 5578 0.92 3.12

Table 3.1: Experiments on SV-COMP’16 unsafe benchmarks

Lazy-CSeq Lazy-CSeq+Abs
CBMC CBMC Frama-C Total

Subcategory #files LOC time memory #vars #clauses time memory #vars #clauses time time
pthread 15 1285 172.44 1124.41 1732068 7270420 98.59 945.27 1424912 6004425 8.43 107.02
pthread-atomic 9 1136 2.73 37.92 18947 67709 2.91 47.66 16611 58334 2.01 4.92
pthread-ext 45 3683 71.69 876.75 1660452 6949976 49.35 552.60 937204 4036919 2.19 51.55
pthread-lit 8 432 5.81 43.70 15207 57356 4.87 51.58 11094 42161 0.98 5.86
pthread-wmm 144 29282 1.62 31.45 3154 9420 1.62 45.72 3065 9084 0.89 2.52

Table 3.2: Experiments on SV-COMP’16 safe benchmarks

The two tables paint a relatively clear picture in terms of runtimes. For the larger

and more complex benchmark categories pthread (both safe and unsafe instances) and

pthread-ext (only safe instances), where Lazy-CSeq takes on average more than 30 sec-

onds, the effort for the abstract interpretation is relatively small (approximately 5%-20%

of the original CBMC runtimes) and is easily recouped, so that we see overall perfor-

mance gains of approximately 25%-40%. For the simpler benchmarks, Frama-C takes

almost as much time as Lazy-CSeq on its own, without substantially reducing the size or

complexity of the problems. In most cases we thus see some slow-downs, but in absolute

terms these are small (approximately 2 seconds) and outweighed by the larger gains on

the more complex benchmarks.

A very similar picture emerges for peak memory consumption—reductions of approxi-

mately 15%-75% for the larger benchmarks that outweigh the relatively large but abso-

lutely small increases for the smaller benchmarks.

If we look at the number of variables and clauses, we can see how effective our approach

is in reducing the size of the induced SAT problems. In most cases we see a reduction of

approximately 30% to 50%. These reductions are not necessarily correlated to reductions

in either the SAT solver’s runtime or peak memory consumption, but this is expected, as

the size of a SAT problem is generally not a reliable predictor for its difficulty. However,

there are two notable exceptions. For the unsafe pthread-ext benchmarks we see a

much larger reduction of approximately 85%, but this is skewed by two benchmarks



Chapter 3 Lazy Sequentialization and Interval Analysis 35

that involve large arrays that allow these large reductions. Conversely, for the pthread-

wmm benchmarks we see almost no reduction in size. This is a consequence of the very

simple structure of these benchmarks—they are typically loop-free, which means that

the unwound programs only contain a (relatively) small number of assignments. Hence,

there is little scope to optimise the representation of the program variables.

Complex benchmarks

We now report on the experiments for the three unsafe benchmarks that present a

non-trivial challenge for bug-finding tools. These benchmarks consist of non-blocking

algorithms for shared data-structures. It is hardly surprising that lock-free programming

is an important source of truly concurrently complex benchmarks. In fact, the focus

there is to minimise the amount of synchronisation for performance optimisation thus

generating a large amount of non-determinism due to interleaving. Here we demonstrate

that Lazy-CSeq is very effective in spotting these rare bugs and that Lazy-CSeq+Abs

allows us to amplify its effectiveness both in terms of verification time and memory peak

usage.

Time Memory Variables Clauses

9038772

2230134

2181.14M
B

3628.5s
7
7
9
.8
4
s

Time Memory Variables Clauses

2801774

712197

1188.4M
B7
8
3
.8
6
s

1850.66s

17.0s

Figure 3.3: Experiment on safestack benchmark.

safestack benchmark. This is a real-world benchmark implementing a lock-free

stack designed for weak-memory models. It was posted to the CHESS forum by Dmitry



36 Chapter 3 Lazy Sequentialization and Interval Analysis

Vyukov2. It is unique in the sense that it contains a very rare bug that requires at

least three threads and five context-switches to be exposed when running under the SC

semantics. In the verification literature, it was shown that real-world bugs require at

most three context-switches to manifest themselves [23]. safestack, for this reason,

presents a non-trivial challenge for concurrency testing and symbolic tools. Lazy-CSeq

is the only tool we are aware of that can automatically find these bugs: it requires

about 1h:13m:28s to find one of them and has a memory peak of 2.18 GB (by setting

the minimal parameters to expose the bug to 4 rounds of computation and 3 loop-

unwinding). Lazy-CSeq+ABS, with the same parameters, requires 44m:11s time, where

17s is the time required for the value analysis by Frama-C, which leads to a 1.7x speed-

up. Also, it uses only 1.19 GB of memory, i.e., roughly half of the memory required by

Lazy-CSeq. All this is illustrated in Figure 3.3 where we also report on the number of

variables and clauses of the produced CNF formulas.

Time Memory Variables Clauses

7907404

1951352

2395.43M
B

20113.3s

42.32s

Time Memory Variables Clauses

6367042

1579939

1175.14M
B

89.8s

4
0
4
9
.2
6
s

4.91s

Figure 3.4: Experiment on eliminationstack benchmark.

eliminationstack benchmark. This is a C implementation of Hendler et al.’s

Elimination Stack [HSY04] that follows the original pseudocode presentation. It aug-

ments Treiber’s stack with a “collision array”, used when an optimistic push or pop

detects a conflicting operation; the collision array pairs together concurrent push and

pop operations to “eliminate” them without affecting the underlying data structure.

2https://social.msdn.microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/

bug-with-a-context-switch-bound-5?forum=chess

https://social.msdn.microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/bug-with-a-context-switch-bound-5?forum=chess
https://social.msdn.microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/bug-with-a-context-switch-bound-5?forum=chess


Chapter 3 Lazy Sequentialization and Interval Analysis 37

This implementation is incorrect if memory is freed in pop operations. In particular,

if memory is freed only during the “elimination” phase, then exhibiting a violation (an

instance of the infamous ABA problem) requires a seven thread client where three push

operations are concurrently executed with four pops. To witness the violation, the im-

plementation is annotated with several assertions that manipulate counters as described

by Bouajjani et al. [BEEH15]. Lazy-CSeq is the only tool we are aware of that can

automatically find bugs in this benchmark and requires almost 5h:35m:13s time and

2.39 GB of memory to find a bug. Lazy-CSeq+ABS, with the same parameters, requires

1h:07m:29s time, where 4.9s is the time required for the value analysis by Frama-C,

which leads to a 5x speed-up. As for the memory usage, it uses only half of the memory

required by Lazy-CSeq—namely 1.17 GB. All this is illustrated in Figure 3.4 where we

also report on the number of variables and clauses of the produced CNF formulas.

Time Memory Variables Clauses

19273695

4756586

3112.27M
B

104.1s

1972.69s

Time Memory Variables Clauses

19251710

4749364

3090.01M
B

5.25s

1234.01s

89.81s

Figure 3.5: Experiment on DCAS benchmark.

DCAS benchmark. This is a non-blocking algorithm for two-sided queues presented

by Agesen et al. [ADF+00]. This algorithm has a subtle bug that was discovered in an

attempt to prove its correctness with the help of the PVS theorem prover. The discovery

of the bug took several months of human effort. Although the bug has been automati-

cally discovered using the model checker SPIN (see [Hol14] and http://spinroot.com/

dcas/), a generalised version of the benchmark remains a challenge for explicit explo-

ration approach. In fact, after 138h of CPU-time (using 1000 cores) and an exploration

http://spinroot.com/dcas/
http://spinroot.com/dcas/


38 Chapter 3 Lazy Sequentialization and Interval Analysis

of 1011 states the error was still undetected3 [Hol16]. Here, we have translated this

benchmark from Promela to C99 with POSIX thread library considering a more com-

plex version that has 10 threads while the version proposed by Holzmann [Hol16] only

considers 8 threads. Lazy-CSeq can detect the bug within 1972.69 seconds and with a

memory peak usage of 3112.27MB. Instead, Lazy-CSeq+Abs takes only 1234.01 seconds

with a memory peak of 3090.01MB. All this is illustrated in Figure 3.5 where we also

report on the number of variables and clauses of the produced CNF formulas.

3.5 Related Work

The idea of sequentialization was originally proposed by Qadeer and Wu [QW04]. The

first schema for an arbitrary but bounded number of context switches was given by

Lal and Reps [LR09]. Since then, several algorithms and implementations have been

developed (see [FIP13a, LQL12, CGS11, LMP09a, LMP09b, TIF+15b]). Lazy sequen-

tialization schemas have played an important role in the development of efficient tools.

The first such sequentialization was given by La Torre et al. [LMP09a] for bounded

context switching and extended to unboundedly many threads in the works of the same

authors [LMP10, LMP12]. These schemas require frequent recomputations and are

not suitable to be used in combination with bounded model checking (see [GHR10]).

Lazy-CSeq [ITF+14a] avoids such recomputations and achieves efficiency by handling

context-switches with a very lightweight and decentralised control code. Lazy-CSeq

has been recently extended to handle relaxed memory models [TNI+16a] and to prove

correctness [NFLP16a].

Abstract interpretation [CC77a] is a widely used static analysis technique which has

been scaled up to large industrial systems [CCF+09]. However, since the abstraction

functions typically over-approximate the values a program variable can take on, ab-

stract interpretation is prone to false alarms, and considerable effort went into designing

suitable abstractions (e.g., [OV15, Ven12]).

An alternative approach combines abstract interpretation with a post-processing phase

based on a more precise analysis to either confirm or filter out warnings. Post et al.

[PSKG08] describe a semi-automatic process in which they use CBMC repeatedly on

larger and larger code slices around potential error locations identified by Polyspace.4

They report a reduction of false alarms by 25% to 75%, depending on the amount of

manual intervention. Chebaro et al. [CKGJ11, CCK+14] describe the SANTE tool,

which uses dynamic symbolic execution or concolic testing to try and construct concrete

test inputs that confirm the warnings. The main difference to our work is that such

approaches use abstract interpretation only to “guide” the more precise post-processing

3http://spinroot.com/dcas/
4https://www.mathworks.com/products/polyspace.html

http://spinroot.com/dcas/
https://www.mathworks.com/products/polyspace.html


Chapter 3 Lazy Sequentialization and Interval Analysis 39

phase towards possible error locations but do not inject information from the abstrac-

tions into the post-processing in the same way as we have done in our work.

Wu et al. [WCM+15] also combine sequentialization and abstract interpretation, but in

a different context and with different goals. More specifically, they consider interrupt-

driven programs (IPDs) for which they devise a specific lazy sequentialization schema;

they then run a specialised abstract interpretation, which takes into account some prop-

erties of the IPDs such as schedulability, in order to prove the absence of some numeri-

cal run-time errors. In contrast, we consider general C programs over the more general

POSIX thread library, and use a generic sequentialization schema but a simpler abstract

interpretation. However, the main difference is that we use the abstract interpretation

only to produce hints for a more precise analysis (i.e., BMC), and not to produce the

ultimate analysis result.

3.6 Conclusions

Concurrent program verification remains a stubbornly hard problem, but lazy sequential-

ization has proven itself as one of the most effective techniques, and has, in combination

with a SAT-based BMC tool as sequential verification backend, been used successfully

to find errors in hard benchmarks on which all other tools failed. However, the sizes

of the individual states (which are determined by concurrent programs’ shared global

and thread-local variables) still pose problems for further scaling. We have therefore

proposed an approach where we use abstract interpretation to minimise the represen-

tation of these variables. More specifically, we run the Frama-C abstract interpretation

tool over the programs constructed by Lazy-CSeq to compute over-approximating in-

tervals for all (original) program variables and then exploit CBMC’s bitvector support

to reduce the number of bits required to represent these in the sequentialized program.

We have implemented this approach on top of Lazy-CSeq and have demonstrated the

effectiveness of this approach; in particular, we show that it leads to large performance

gains for very hard verification problems.

Our approach is easy to implement and effective because of the confluence of four dif-

ferent strands. First, we use a source-to-source transformation tool for the sequential-

ization. This makes it easy to re-use an off-the-shelf tool (i.e., Frama-C) for the interval

analysis. Second, we use a backend verification tool (i.e., CBMC) that can effectively

exploit the information provided by Frama-C, by means of a specialised bitvector type.

Third, we are using a lazy sequentialization, which ensures that the interval analysis can

compute tight intervals; our approach would not work with an eager sequentialization

where the state variables remain unconstrained. Fourth, the interval analysis strikes the

right balance between analysis efforts and results—that is, it runs fast enough, and the

computed intervals are tight enough, so that the overheads are easily recouped, and we



40 Chapter 3 Lazy Sequentialization and Interval Analysis

actually increase the overall performance. Other, more elaborate, abstract interpreta-

tions have in fact proven to be counter-productive.



Chapter 4

A Pragmatic Verification

Approach for Concurrent

Programs

Concurrency poses a major challenge for program verification, but it can also offer an

opportunity to scale when subproblems can be analysed in parallel. In this chapter, we

exploit this opportunity and use a parametrisable code-to-code translation to generate a

set of simpler program instances, each capturing a reduced set of the original program’s

interleavings. These instances can then be checked independently in parallel. Our

approach does not depend on the tool that is chosen for the final analysis, is compatible

with weak memory models, and amplifies the effectiveness of existing tools, making them

find bugs faster and with fewer resources. We use Lazy-CSeq as an off-the-shelf final

verifier to experimentally demonstrate that our approach is able to find bugs in the

hardest known concurrency benchmarks in a matter of minutes where other dynamic

and static tools fail to conclude.

The content of this chapter is largely based on our technical report [NFLP16b].

4.1 Introduction

Developing correct, scalable, and efficient concurrent programs is a complex and difficult

task, due to the large number of possible concurrent executions that must be considered.

Modern multi-core processors and weak memory models make this task even harder, as

they introduce additional executions that confound the developers’ reasoning. Due to

these complex interactions, concurrent programs often contain bugs that are difficult to

find, reproduce, and fix.

41



42 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

Existing automatic bug-finding techniques and tools are not effective when facing concur-

rent programs. They struggle particularly with programs that contain rare concurrency

bugs, i.e., programs where only a few, specific interleavings violate the specification. For

techniques that analyse executions explicitly, finding rare bugs is like looking for a nee-

dle in a haystack. For techniques that analyse all executions collectively using symbolic

representations, finding rare bugs is also challenging due to the large amount of memory

required for the analysis. As a result, we currently do not have techniques and tools

that can reliably find such rare bugs.

Although concurrency is clearly a problem for reasoning about programs, it also offers

a chance to scale up verification, as suggested by Holzmann et al. [HJG11]: “. . . to

scale applications of logic model checking to larger problem sizes then, we must be able

to leverage the availability of potentially large numbers of processors that run at [...]

relatively low speed.”

Different approaches have been tried out to achieve this leveraging, with varying degrees

of success. In (truly) distributed algorithms, multiple processors are running the same

algorithm jointly on the same problem and periodically exchange information. How-

ever, verification using distributed model checking techniques (e.g., [SD97, OU09]) has

had limited success because they need to share too much information, leading to high

communication overheads and contention.

In strategy competition, multiple processors are running different variants of the same

underlying algorithm independently (i.e., without exchanging information) on the same

problem; the first variant that produces a definitive answer (i.e., counter-example or

proof) “wins” and aborts the others. This exploits the fact that complex search pro-

cedures such as model checkers [HJG08, HJG11], SAT solvers [XHHL08], or first-order

theorem provers [Sch96, WL99, SS99] have many control parameters and strategies that

can be used to explore different parts of the search space. Holzmann et al. have applied

this idea in swarm verification [HJG08, HJG11] to scale up model checking based on

explicit state space exploration. More specifically, their approach is to spawn a large

number of instances (the “swarm”) of the SPIN model checker, each with different pa-

rameters and search strategies; each instance runs an incomplete search, but in aggregate

the swarm substantially outperforms an exhaustive search.

Contributions. In this chapter, we propose a different approach called task competi-

tion: we run the same algorithm on multiple processors, again in competition without

information exchange, but now on different and easier verification tasks derived from the

original problem. Specifically, each task captures a subset of the program’s interleavings

under analysis, in a way that each of such interleavings is captured by at least one of

these tasks. Thus, for programs with rare concurrency bugs, most tasks do not contain a

bug. However, in tasks that do contain such bugs, the bugs are generally more frequent

(i.e., manifest in a higher fraction of the interleavings) than in the original program.



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 43

Consequently, bugs can be found faster and with fewer resources, because the individual

tasks are simpler and can be analysed in parallel, each with a shorter time-out and a

smaller memory.

We develop and evaluate this approach under a bounded context-switch analysis where

only interleavings with up to k context-switches (for a given k) are explored. This choice

is justified by an empirical study which shows that most of the concurrency bugs manifest

themselves within a small number of context-switches [MQ07]. We use a code-to-code

translation to derive the tasks as variants of the original program by splitting the code

of each thread into fragments (tiles) and allowing context-switches only in some of them.

By selecting k tiles in all possible ways, we thus ensure the coverage of all interleavings

up to k context-switches.

Our approach offers a number of advantages. First, since it is using code-to-code trans-

lations, it is “agnostic” of the underlying verification techniques and tools: existing

bug-finding tools can be reused as is, and while we have achieved very good results

using bounded model checking (BMC) techniques (in particular Lazy-CSeq [INF+15,

ITF+14b, ITF+14a]), it can also be used with other symbolic analysis techniques, ex-

plicit state space exploration techniques, or even testing.

Second, our approach amplifies the effectiveness of existing bug-finding tools. We empir-

ically demonstrate that it is particularly effective for symbolic methods: it reduces the

memory consumption and runtime of each individual verification task, and also leads to

a considerable reduction in time for the global verification. More specifically, we demon-

strate a substantial reduction in the wall-clock times required to find the bug in some

very difficult problems: from 8-12 hours using a single instance of Lazy-CSeq, the only

tool capable of finding the underlying bugs, down to 15-30 minutes using Lazy-CSeq on

a modest number (5-50) of processors. Looking at this from an opposite perspective,

our approach enables existing tools to find rare bugs that were previously out of their

reach.

Third, our approach is also oblivious of the assumed memory model and therefore works

for WMMs, as long as the underlying analysis tool supports their semantics. More-

over, our experiments demonstrate that the approach is also effective for reducing the

additional verification complexity introduced by relaxed semantics.

Finally, our approach is tuneable. The verification complexity of each of the instances

generally depends on the underlying analysis tool and number of interleavings captured

by each instance. Our technique allows us to control the number of interleavings. From

our experience, instances with roughly the same number of interleavings have similar

verification times. We empirically learn the number of interleavings per instance that the

underlying tool can handle and then generate all the instances to capture all interleavings

according to a fixed schema. However, it can happen that the number of instances to

generate can be extremely high. In that case we have shown empirically that, even when



44 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

accounting for only a few randomly selected ones, we are still able to find rare bugs. In

our experiments we demonstrate that we only have to consider a few instances (out of

millions or billions) to find bugs with high probability.

In summary, in this chapter we make three main contributions. First, we propose a

new swarm verification approach for the analysis of concurrent programs that is based

on a code-to-code translation and leverages the power of sequential verification engines.

Second, we implement the approach as an extension to Lazy-CSeq. Third, we report

the results of an evaluation of our approach on the two hardest known concurrency

benchmarks, safestack [Vyu10] and eliminationstack [HSY04] for three different

memory models (SC, TSO, PSO).

Organisation of the chapter. In the next section, we give a high-level overview of our

approach. Sections 4.3 and 4.4 describe our code-to-code translation. Section 4.5 gives

details on our implementation and Section 4.6 presents the results of our experimental

evaluation. Section 4.7 compares with related work, and Section 4.8 concludes.

4.2 Approach

We consider a multi-threaded program where threads communicate through shared mem-

ory, for example, a C program that uses the POSIX threads library for concurrency (see

Section 2.1). As in bounded model checking, we first flatten the program by inlining

functions and unrolling loops up to a given bound. The resulting bounded program, say

P , consists of a finite number of threads; the control in each thread can only move down

in the code. The goal of the analysis is to find an assertion violation of P that may occur

through an execution that involves at most k context-switches (for a given k). Let k be

a small natural number denoting the maximum number of context-switches to consider

along an execution and T be the set of P ’s threads. We denote with Ik(P ) the set of all

executions that P can exhibit with at most k context-switches.

4.2.1 Splitting Computations with Tilings

Our goal is to define a code-to-code translation for P , parameterised over k, that gen-

erates a set of simpler program variants, each capturing a subset of P ’s executions, and

such that each of P ’s executions involving at most k context-switches is captured by at

least one of them. The resulting variants can then be checked independently in parallel.

We construct these variants by building on the notion of tiling. A tiling of a thread

t ∈ T is a partition of t’s statements. Each element of a tiling is called tile. For example,

consider Figure 4.1. The program has two threads with respectively seven (A, . . . , G)



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 45

thread 0{

#1

{

A;
B ;

#2







C ;
D ;
E ;

#3

{

F ;
G ;

}

thread 1{
H ;
I ;

}

#4

J ;
}

#5

K ;
L;

}

#6

}

Figure 4.1: Tiling example

and five (H, . . . , L) statements, and the tilings of each thread are marked with the

braces. A tiling of a program P is a set of threads’ tilings, one for each thread of P .

Let ΘP = {Θt}t∈T be a tiling of P . A z-selection over ΘP is a set {θt}t∈T where θt ⊆ Θt

contains exactly z tiles for each thread t ∈ T .

We build the variants as follows. For a given tiling ΘP of P and any of its z-selections

ϑ = {θt}t∈T , we construct a program variant Pϑ obtained from P by instrumenting it

in a way that each thread t can only be pre-empted at statements belonging to the

tiles of θt and at any other blocking statement of t (this last is to allow an execution

to continue when a statement is blocked and there are other threads that can execute).

For example, consider again Figure 4.1. If we take the 1-selection ϑ corresponding to

selecting tiles #1 and #4, the executions of the corresponding variant Pϑ are of the

form uvw where: (1) u is any interleaving of A-B and H-I ; (2) if u ends with B, then

v = C-. . . -G and w = J-K-L; (3) if u ends with I, then v = J-K-L and w = C-. . . -G. For

example, A-B-H-. . . -L-C-. . . -G and A-H-I-B-C-. . . -G-J-K-L denote possible executions

of Pϑ.

We observe that the set of executions over all the variants Pϑ, for ϑ being a ⌈k2⌉-selection

over ΘP , that contain at most k context-switches is exactly the set Ik(P ). In fact, every

execution of a variant Pϑ of P is also an execution of P since Pϑ, by construction, is the

same as P , except that we forbid context-switches to occur at some points. Vice-versa,

along any execution π ∈ Ik(P ) clearly we context-switch out of each thread at most

⌈k2⌉ times, thus it suffices to select ⌈k2⌉ tiles per thread to capture π. Therefore, π is an

execution of some variant Pϑ, for a ⌈k2⌉-selection ϑ.

4.2.2 Tile Selection versus Random Selection

We compare the splitting strategy based on the notion of tiles and a splitting strategy

based on a direct random selection of the points where threads can be pre-empted. In



46 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

the following, we refer to the first strategy as TS (tiling selection) and the second one

as IS (individual program-counter selection). We compare the two strategies on the

number of instances that they need to generate in order to ensure the coverage of all the

runs where, in each thread, a pre-emption may occur at most r times (bounded context-

switching analysis). We show that the number of possible instances generated with IS

is larger than the one with TS, by an exponential factor in the number of the selected

points.

For the ease of presentation we adopt some simplifications. We assume that all threads

have the same number of statements (we recall that the splitting is applied to bounded

programs; thus each statement of the considered program is executed at most once in

a run). Further, we assume that the points where a pre-emption is allowed are evenly

split among all threads.

Therefore, we make use of the following parameters in our analysis:

• n is the number of threads;

• k is the number of statements per each thread;

• r is the maximal number of pre-emptions allowed in each thread;

• m is the number of points (program counters) for each thread that are selected to

allow pre-emption; thus, r ≤ m ≤ k;

• s is the size of tiles, i.e., the number of statements in each tile.

Since in TS, for covering all runs that pre-empt each thread at least r time, we need to

pick at most r tiles per thread; we also assume that m = r · s. We finally assume that

k is a multiple of m and thus s.

We denote with χTS the number of all instances that are generated by TS under the

above assumptions and with χIS the one by IS. By a simple counting, it can be easily

verified that:

χTS = (TTS)
n, where TTS =

k
s
!

r!
(

k
s
− r

)

!
(4.1)

χIS = (TIS)
n, where TIS =

k!

m! (k −m)!
(4.2)

Denote with Γ = TIS

TTS
, from equations 4.1 and 4.2, we get:

Γ =
k! r!

(

k
s
− r

)

!

m! (k −m)! k
s
!

(4.3)

From
k!

(k −m)!
= k (k − 1) . . . (k −m+ 1) (4.4)



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 47

Split
unwind
Inline/

Bug

No bug
Instance generator Veri
cation cluster

Program
Inst �

Inst n

Analyser 1

Analyser n

Numerical
labels

Instrument

tiling �tiles

Figure 4.2: Verification approach.

(

k
s
− r

)

!
k
s
!

=
1

k
s

(

k
s
− 1

)

. . .
(

k
s
− r + 1

) (4.5)

m! =
1

m (m− 1) . . . (r + 1) r!
(recall m ≥ r) (4.6)

we get

Γ =
k (k − 1) . . . (k −m+ 1) r!

m (m− 1) . . . (r + 1) r! k
s

(

k
s
− 1

)

. . .
(

k
s
− r + 1

) (4.7)

By simplifying the r! factor and splitting the fraction as the product of fractions taking

a term from the numerator and a term from the denominator in the order they appear

in the above formula, we get:

Γ =
k

m
·
(k − 1)

(m− 1)
· . . . ·

(k −m+ r + 1)

(r + 1)
·
(k −m+ r)

k
s

· . . . ·
(k −m+ 1)
(

k
s
− r + 1

) (4.8)

Now denote αi =
(k−i)
(m−i) for i = 0, . . . ,m−r−1 and βi =

(k−m+r−i)
k
s
−i

for i = 0, . . . , r−1. Let

α(x) = (k−x)
(m−x) and β(x) = (k−m+r−x)

k
s
−s

be the corresponding functions over a continuous

domain.

We observe that d
dx
α(x) = k−m

(m−x)2
and d

dx
α(x) > 0 for x 6= m. Therefore, k

m
= α0 <

α1 < . . . < αm−r−1.

Also, d
dx
β(x) = s (s−1) (k−m)

(k−s x)2
and d

dx
β(x) > 0 for x 6= k

s
. Moreover, (k−m+r)

k
s

= s (k−m+r)
k

.

Therefore, s (k−m+r)
k

= β0 < β1 < . . . < βr−1.

Since k
m

> 1, we get that αi > 1 for i = 0, . . . ,m−r−1. From s (k−m+r)
k

= s− m
k
(s−1),

assuming s > 1 (non trivial tiles), also βi > 1 for i = 0, . . . , r − 1. Thus, a constant

c ≥ min{ k
m
, s− m

k
(s− 1)} > 1 exists such that Γ = cm, and hence χIS = cmn ·χTS that

shows our claim.

4.2.3 Overall approach

Our verification approach works in two phases. We first generate P ’s variants according

to any selection of an input tiling. We then search for bugs in each of the resulting



48 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

program variants (typically in parallel) using an analyser such as a testing tool or a

model checker. The analysis phase can be stopped as soon as we find a bug in any of the

generated program variants. The overall scheme of our approach is shown in Figure 4.2;

in the following, we sketch the two phases in turn.

Instance Generation. The first phase is composed of a chain of code-to-code trans-

formations of the input multi-threaded program.

The first module transforms this program into a bounded multi-threaded program P

that is syntactically guaranteed to terminate after a bounded number of transitions, by

applying standard BMC program transformations [CKY03] such as inlining the functions

and unwinding the loops (up to a given bound). P thus has a different function associated

with each thread; we refer to these as thread functions.

The second module injects into P numerical labels at each visible statement of the thread

functions (i.e., at the beginning and end of the function, before each access to the shared

memory, and before each call to a thread synchronisation primitive). The labels start at

zero in each thread function and increase consecutively in statement order; we assume

that any other label of the program is non-numerical. This labelling simplifies the code

injected by the third module for the tile selection.

The third module instruments the code with guarded commands that at each numerical

label enable/disable context-switch points and statement reordering. This control-flow

code is used by the next module to capture the tile selection in the code. The detailed

description of the translation by this module will be given in Section 4.4.

The fourth and last module generates the variants of P according to any z-selection of

the input tiling ΘP (where z is the value of the input parameter #tiles). This is done

by triggering the guards injected by the previous module.

Note that the number of different program variants that we can generate this way is

finite, but can be large. Therefore, we consider a randomised version of this module

along with a new input parameter, the number n of instances to be generated. The n

instances are generated by randomly choosing the z-selections. This, also introduces a

loop in our verification approach: we repeat the random generation of n new variants

until either we find a bug or we have already generated all the variants.

Verification Cluster. Since the generated problem instances can be solved indepen-

dently, we can achieve in our scheme a high diversification and parallelism of the analysis.

In fact, we can solve each instance on a separate core and possibly using a different tool

for concurrent program verification.



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 49

P ::= (dec;)∗ (type p (〈dec,〉∗) {(dec;)∗stm})∗

dec ::= type z

type ::= bool | int | void

stm ::= sstm | {〈stm;〉∗}

sstm ::= seq | conc | l : sstm

seq ::= assume(b) | assert(b) | x := e | p(〈e,〉∗)
| return e | if(b) then stm else stm
| while(b) do stm | goto l

conc ::= x := y | y := x | t := create p(〈e,〉∗)
| join t | init m | lock m

| unlock m | destroy m

Figure 4.3: Revised syntax of multi-threaded programs.

4.3 Programming and Execution Models

Our implementation can handle the full C language (see Section 4.5), but we describe

our approach for multi-threaded programs in a simple imperative language (see Sec-

tion 2.1). This features dynamic thread creation, thread join, and mutex locking and

unlocking operations for thread synchronisation. Thread communication is implemented

via shared memory and modelled by global variables. All threads share the same ad-

dress space: they can write to or read from global (shared) variables of the program to

communicate with each other. We assume that each statement is atomic. This is not a

severe restriction, as it is always possible to decompose a statement into a sequence of

statements, each involving at most one shared variable [Mül06].

Syntax. The syntax of multi-threaded programs is defined by the grammar shown in

Figure 4.3. Terminal symbols are set in typewriter font. Notation 〈n t〉∗ represents

a possibly empty list of non-terminals n that are separated by terminals t; x denotes

a local variable, y a shared variable, t a thread variable and p a procedure name. All

variables involved in a sequential statement are local. We assume expressions e to be

local variables, integer constants, which can be combined using mathematical operators.

Boolean expressions b can be true or false, or Boolean variables, which can be combined

using standard Boolean operations.

A multi-threaded program consists of a list of global variable declarations (i.e., shared

variables), followed by a list of procedures. Each procedure has a list of zero or more



50 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

typed parameters, and its body has a declaration of local variables followed by a state-

ment. A statement is either a simple statement or a compound statement, i.e., a se-

quence of statements enclosed in braces. A simple statement is either a labelled simple

statement, or a sequential statement, or a concurrent statement.

A sequential statement can be an assume- or assert-statement, an assignment, a call to a

procedure that takes multiple parameters (with an implicit call-by-reference parameter

passing semantics), a return-statement, a conditional statement, a while-loop, or a

jump to a label. Local variables are considered uninitialised right after their declaration,

which means that they can take any value from their domains. Therefore, until not

explicitly set by an assignment statement, they can non-deterministically assume any

value allowed by their type. We also use the symbol * to denote the expression that

non-deterministically evaluates to any possible value, for example, with x:=* we mean

that x is assigned with any possible value of its type domain.

A concurrent statement can be a concurrent assignment, a call to a thread routine, such

as a thread creation, a join, or a mutex operation (i.e., init, lock, unlock, and destroy).

A concurrent assignment assigns a shared (resp. local) variable to a local (resp. shared)

one. Unlike local variables, global variables are always assumed to be initialised to a

default value. For the sake of simplicity, we assume that the default value always 0

regardless of the variable type. A thread creation statement t := create p(e1, . . . , en)

spawns a new thread from procedure p with expressions e1, . . . , en as arguments. A

thread join statement, join t, pauses the current thread until the thread identified by

t terminates its execution, i.e., after the thread has executed its last statement. Lock

and unlock statements respectively acquire and release a mutex. If the mutex is already

acquired, the lock operation is blocking for the thread, i.e., the thread is suspended until

the mutex is released and can then be acquired.

We assume that a valid program P satisfies the usual well-formedness and type-correctness

conditions. We also assume that P contains a procedure main, which is the starting pro-

cedure of the only thread that exists in the beginning. We call this the main thread.

We further assume that there are no calls to main in P and that no other thread can be

created that uses main as starting procedure.

Semantics. As common, a program configuration is a tuple of configurations of each

thread that has been created and has not yet terminated, along with a valuation of the

global variables. A thread configuration consists of a stack which stores the history of

positions at which calls were made, along with valuations for local variables, and the

top of the stack contains the local and global valuations, and a pointer to the current

statement being executed.

The behavioural semantics of a program P is obtained by interleaving the behaviours

of its threads. At the beginning of any computation only the main thread is ready and

running. At any point of a computation, only one of the ready threads is running. A



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 51

s
(dec;)∗ (type pi (〈dec,〉

∗)

{(dec;)∗stm})i=0,...,n−1

{
def
=

bool yields[n][h] = {{a00, a
0
1, ..., a

0
h−1}, . . . ,

{an−1
0 , an−1

1 , ..., an−1
h−1}};

(dec;)∗ (type pi (〈dec,〉
∗)

{(dec;)∗JstmKi})i=0,...,n−1

JstmKi def
= JsstmKi | {〈JstmKi;〉∗}

JsstmKi def
= seq | conc | Jl : sstmKi

Jl : sstmKi def
=























l: if(yields[i][l] && *) yield;

JsstmKi; if l is numerical

l : JsstmKi otherwise

Figure 4.4: Formal description of the code-to-code translation by module In-
strument.

step is either the execution of a step of the running thread or a context-switch that

non-deterministically replaces the running thread with one of the ready ones that thus

becomes the running thread at the next step. A thread will no longer be available when

its execution is terminated, i.e., there are no more steps that it can take.

4.4 Code-to-code translation

In this section, we give a formal description of the code instrumentation done by module

Instrument in Figure 4.2.

In order to enable/disable context-switches in the code, for the class of programs that

form the output of this module we assume a semantics in the style of pre-emptive asyn-

chronous programs with non-deterministic scheduler. In particular, we augment the

concurrent statements of the syntax from Figure 4.3 with a yield-statement, i.e., we

add the rule conc ::= yield, and restrict the context-switches to occur only if explic-

itly requested via a yield-statement (which thus causes the control to return to the

non-deterministic scheduler). Moreover, we modify the semantics of lock- and join-

statements such that a thread terminates (instead of pausing) when attempting to ac-

quire a mutex already taken or waiting for the termination of another thread. In the

following, we will refer to this class of programs as extended pre-emptive asynchronous

programs (EPA programs, for short).

It is simple to show that given a multi-threaded program P under the syntax and

semantics of Section 4.3 we can easily obtain an equivalent program P ′ under syntax



52 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

and semantics sketched above by simply inserting a yield-statement guarded by a non-

deterministic guess in front of each statement of P . Moreover, as we are interested only

in reachability of program counters or assertion failure checking, such as in standard bug-

finding analysis, it is sufficient to account only for context-switches that occur at visible

statements (i.e., the concurrent statements and each thread’s first and last statements).

We recall that we assume that all the labels of the original multi-threaded program must

be non-numerical and that after the code-to-code translation by modules Inline/unwind

and Numerical labels, we get that: (1) the code of each thread is all contained within

the same procedure, i.e., there are no procedure calls, and there are no loops; and (2)

the visible statements are all labelled with a numerical label such that in each thread

code labels start from 0 and increase by 1 according to the statement order.

In module Instrument, we thus rewrite the code by inserting a guarded yield-statement

after each numerical label. Guards are triggered by input Boolean parameters. In

particular, we use ail to activate the yield-statement at the numerical label l of thread

i. These parameters are assigned to a Boolean array yields.

After the instrumentation, the portion of code l:sstm of thread i, where l is a numerical

label, is thus:

if( yields[i][l] && *) yield; sstm;

The rest of the code stays unchanged.

We formally give our code-to-code translation in Figure 4.4 as rewrite rules over the

syntax of programs. In the figure, we have denoted with n the number of threads and

with h the maximum number of numerical labels over all threads.

We observe that whenever yields[i][l] holds, by the choice operator *, the yield-

statement is non-deterministically executed or not. This can be used to select in the

code the points where context-switches can happen. Thus, the following module Split

(see Figure 4.2) will assign the array yields accordingly to a valid selection for the

input tiling.

4.5 Implementation

We have implemented the verification approach illustrated in Figure 4.2 to analyse con-

current C programs that use the concurrency library POSIX threads. We optimise

the tilings by taking into account only statements at which context-switches can occur

which correspond to numerical labels. For the instance generation we use uniform win-

dow tilings, i.e., tilings where all tiles have the same number of numerical labels except

for the last one that can have fewer, and all tiles correspond to contiguous portions of a

thread code. For example, the tiling from Figure 4.1 is not uniform though tiles cover

contiguous portions of code.



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 53

The Instance generator is written as an independent piece of software that takes as input:

(1) a multi-threaded program P with assertions, (2) the unwinding bound, (3) the size

t of each tile (i.e., the number of numerical labels), (4) the number s of tiles to select

from each thread, and (5) the number n of randomly chosen instances to generate. The

pool of (bounded) EPA programs generated by the Instance generator is then verified

on a cluster of computers with a modified version of the symbolic verification tool Lazy-

CSeq [INF+15].

Below we provide more details on our implementation of the Instance generator, the

verification tool, and the cluster.

Instance generator

Our tool, named VeriSmart (“Verification-Smart”), builds upon the CSeq frame-

work [INF+15], and is composed of a chain of software modules that matches the chain

of modules of the Instance generator from Figure 4.2. We recall that CSeq is a frame-

work that comprises several software modules implementing standard source-to-source

transformations of C programs. We re-use CSeq modules to implement the modules

Inline/unwind and Numerical labels. For module Instrument, we have realised a new

software module that implements the code-to-code translation detailed in Section 4.4.

It is written in Python and uses the AST built by pycparser on the fetched program

to implement the rewriting rules of Figure 4.4. The last module Split is also written in

Python. It generates each instance by randomly selecting s tiles per thread by setting to

true the corresponding entries of the array yields. This module also takes an additional

parameter that allows to bound the number of generated instances. In our setting we

manually allocate the resulting instances to several verification units that are analysed

independently.

The code of VeriSmart is publicly available at http://users.ecs.soton.ac.uk/gp4/

cseq/cseq.html and can be used, in combination with different bug-finding analysis

tools, for experimenting with the verification approach proposed in this chapter.

Backend verification tool

Lazy-CSeq [INF+15] is a symbolic bug-finding tool for multi-threaded programs based

on sequentialization and bounded model checking. The multi-threaded input program

is translated into a corresponding sequential program up to a given number of rounds of

execution, where in each round each thread is executed exactly once according to a fixed

ordering. The resulting sequential program is then verified using existing verification

tools for sequential programs.

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html


54 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

We modify Lazy-CSeq to account for the syntax and the semantics of EPA programs.

Essentially, we extend the parsing for handling also the yield-statement and then adjust

the code-to-code translation such that in the resulting sequential C program the context-

switches are now simulated only at the yield-statements according to the semantics of

the EPA programs. In the following, we refer to this modified version of Lazy-CSeq as

EPA-Lazy-CSeq.

In our experiments we use the C bounded model checker CBMC [AKT13] as sequential

backend for Lazy-CSeq and EPA-Lazy-CSeq. CBMC encodes symbolically the multiple

execution paths of the input program, which is then checked by a SAT/SMT solver. If

the formula is satisfiable there is a definite execution path that leads to an assertion

violation. In this case the SAT/SMT solver returns the values of the variables along

this execution path. From these values, which in particular include the input values,

a test can be constructed and executed in order to debug the reason for the assertion

violation. If the formula is unsatisfiable then there is no execution that violates any

of the assertions (up to the considered depth). The formula is generated by symboli-

cally executing the program while encoding the control flow structure into additional

Boolean variables. The formula is linear in the size of the program, but implicitly en-

codes a potentially exponential number of execution paths. Hence, unlike path-wise

enumeration approaches [GKS05, CDE08] this approach avoids explicitly enumerating

a potentially exponential number of execution paths and maximises the exploitation of

today’s optimised SAT solvers.

Lazy-CSeq was initially developed for C program running under the SC semantics. It has

been recently extended to handle WMM semantics such as TSO and PSO [TNI+16a].

Our modification are also compatible with these extensions. In our experiments we

only use EPA-Lazy-CSeq for the analysis carried out on the cluster. Our choice has

been motivated by the effectiveness of Lazy-CSeq to cope with complex benchmarks

containing rare bugs.

4.6 Experiments

Here we report on a large number of experiments that we have conducted to demonstrate

the effectiveness of the VeriSmart approach.

4.6.1 Benchmarks

Our first effort was to identify suitable benchmarks that present a non-trivial challenge

for concurrency bug-finding tools. We discarded all concurrency benchmarks used in

the 2016 Software Verification Competition because all of them are easy to verify (at



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 55

SV-COMP’16 three tools, including an explicit state model checker, were able to find

with a timeout of 900 seconds bugs in all benchmarks deemed to be buggy).

We have instead considered several concurrency benchmarks from the literature, includ-

ing the SCT Benchmarks [TDB16]1. From these, we have discarded all benchmarks

that Lazy-CSeq can solve in less than 900 seconds and are thus “too simple” to bene-

fit substantially from the VeriSmart approach; this includes several benchmarks that

are traditionally considered to be hard, e.g., DCAS [DFG+00] or the work stealing

queue [TDB16]. We have further discarded all parametric benchmarks whose complex-

ity comes simply from increasing the number of threads (e.g., CS.reorder n bad and

CS.twostage n bad [TDB16], where n is the number of threads), or the size of the data

structures (e.g., the work stealing queue), since their bugs can already be exposed with

smaller instances, and they do thus not reflect realistic bug-finding scenarios2. This

leaves us with two benchmarks that both come from the domain of concurrent data

structures3.

eliminationstack is a C implementation of Hendler et al.’s Elimination Stack [HSY04]

that follows the original pseudocode presentation. It augments Treiber’s stack with a

“collision array”, used when an optimistic push or pop detects a conflicting operation;

the collision array pairs together concurrent push and pop operations to “eliminate”

them without affecting the underlying data structure. This implementation is incorrect

if memory is freed in pop operations. In particular, if memory is freed only during

the “elimination” phase, then exhibiting a violation (an instance of the infamous ABA

problem) requires a seven thread client with three push operations concurrent with four

pops. To witness the violation, the implementation is annotated with several assertions

that manipulate counters as described in [BEEH15]. Lazy-CSeq is the only tool we are

aware of that can automatically find bugs in this benchmark and requires almost 13

hours and 4GB of memory to find a bug.

safestack is a real world benchmark implementing a lock-free stack designed for weak-

memory models. It was posted to the CHESS forum by Dmitry Vyukov [Vyu10]. This

benchmark is unique in the sense that it contains a very rare bug that requires at

least three threads and five context-switches to get exposed when running under the

SC semantics, whereas it requires only four context-switches when running either under

TSO or PSO. In the verification literature, it was shown that real-world bugs require at

most three context-switches to manifest themselves [MQ07]. safestack, for this reason,

1https://sites.google.com/site/sctbenchmarks/
2Note that Lazy-CSeq can generally handle these benchmarks quite well. For example, for

CS.reorder n bad and CS.twostage n bad, Lazy-CSeq finds bugs in both benchmarks for n = 400
in 15 minutes, whereas testing struggles to find a bug for n = 20 and n = 100, respectively [TDB16].
For the work stealing queue, Lazy-CSeq finds the bug for queue size 16 and 9 threads in less than 3000
seconds, whereas the method in [TDB16] can only handle a queue size of 4 and 3 threads.

3It is hardly surprising that lock-free programming is an important source of truly concurrently

complex benchmarks since the focus there is to minimise the amount of synchronisation for performance
optimisation thus generating a large amount of non-determinism due to interleaving.

https://sites.google.com/site/sctbenchmarks/


56 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

eliminationstack-SC (unwind=1, rounds=2, thread=8, visible point=52)
Comprehensive Verification

Time Memory
One schedule 80.8 661.1
All schedules 46764 4203.9

VeriSMART: 2 tiles per thread

#1: tile size 12, t max 1.5hrs #2: tile size 14, t max 2hrs #3: tile size 18, t max 3hrs
Verification Time Memory Verification Time Memory Verification Time Memory
Min 34.9 945.2 Min 39.7 979.84 Min 37.1 999.8
Max 4753.6 1199.1 Max 7195.2 1281.3 Max 10762.0 1785.5
Average 1116.3 1017.8 Average 2169.5 1096.3 Average 3162.41 1156.91

instances with bug: 38.33% instances with bug: 61.38% instances with bug: 69.01%

safestack-SC (unwind=3, rounds=4, thread=4, visible point=152)
Comprehensive Verification

Time Memory
One schedule 55.4 700.1
All schedules 24139 6632.4

VeriSMART: 4 tiles per thread

#1: tile size 11, t max 1hr #2: tile size 14, t max 1hr #3: tile size 20, t max 4hrs
Verification Time Memory Verification Time Memory Verification Time Memory
Min 195.6 774.5 Min 574.8 846.6 Min 313.0 850.3
Max 2662.6 1265.7 Max 3521.8 1450.4 Max 10315.8 3830.8
Average 1172.2 928.8 Average 1851.1 1147.3 Average 2167.5 1230.1

instances with bug: 1.26% instances with bug: 2.14% instances with bug: 10.20%

safestack-PSO (unwind=3, rounds=3, thread=4, visible point=152)
Comprehensive Verification

Time Memory
One schedule 272.5 2651.8
All schedules 4777 3708.4

VeriSMART: 3 tiles per thread

#1: tile size 12, t max 1.5hrs #2: tile size 16, t max 2.25hrs #3: tile size 20, t max 3hrs
Verification Time Memory Verification Time Memory Verification Time Memory
Min 898.1 2795.9 Min 593.5 2862.6 Min 1083.8 2910.1
Max 5348.0 3280.7 Max 8083.1 3942.2 Max 10771.7 3784.1
Average 2929.8 2872.9 Average 4607.1 3015.4 Average 5176.9 3073.8

instances with bug: 7.63% instances with bug: 16.73% instances with bug: 26.85%

Figure 4.5: VeriSMART experiments: each experiment is carried out using
8,000 instances chosen randomly. The verification is done using Lazy-CSeq 1.0
for all schedules, and EPA-Lazy-CSeq for the program variants. Time is given
in seconds and memory in MB. Data refers only to tasks where a bug was found.

presents a non-trivial challenge for concurrency testing and symbolic tools. Lazy-CSeq

is the only tool we are aware of that can automatically find these bugs: it requires almost

7 hours to find these bugs and consumes more than 6GB of memory4. We give the code

of safestack and the shortest counterexample that we found in Appendix 6.2.

4The tool Relacy [TDB16] can find a bug in a modified version of safestack where an explicit
pthread yield call has been added to help the search. In our experiments, on the plain safestack

benchmark used here, Relacy was not able to detect a bug within one million iterations.



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 57

4.6.2 Experimental Set-Up

In our experimental evaluation we compare VeriSmart against Lazy-CSeq v1.05. For

VeriSmart, we use EPA-Lazy-CSeq for solving the individual generated tasks. Lazy-

CSeq v1.0 instead is used to solve the original problem comprehensively (i.e., analysing

all interleavings in one attempt).

In both cases, we use the minimum number of unwindings and rounds of computation

that are required to expose the bug in the original program; the exact values for these

parameters are reported in Figure 4.5 for each considered benchmark.

For VeriSmart, we use a uniform window tiling with two different tile sizes (see Fig-

ure 4.5 again) to evaluate the effect of tiling. For each benchmark, we select as many

tiles per thread as the number of rounds required to expose the bug, that as argued in

Section 4.2 ensures that the bug can (in principle) be found. We then generate 8,000

tasks by randomly selecting the tiles. This allows us to estimate the probability p of

picking a buggy program variant with a confidence level of 0.99, that in turn gives the

expected number of variants we need to select randomly in order to discover a bug.

We use this to determine the probability of finding a buggy instance when randomly

selecting n of them, that is 1− (1− p)n.

We also estimate for each considered benchmark and setting, how the expected bug-

finding time varies as the number of cores increases. For a pull of n tasks, the verification

time is taken as the minimum time to find a bug over all of them. We plot the expected

verification time for values of n up to 2,000 cores (see Figure 4.6).

We carried out our experiments on a cluster with 750 compute nodes equipped with

dual 2.6 GHz Intel Sandybridge processors. Each compute node has 16 CPUs with 64

GB of physical shared memory running 64-bit linux 3.0.6. On each CPU of a node we

run EPA-Lazy-CSeq over a single verification task produced by the instance generator,

with the timeout given in Figure 4.5.

4.6.3 Experimental Results

Figure 4.5 and 4.6 summarise the results of our experiments except for safestack-TSO

that will be reported in the text.

The results for the comprehensive verification using Lazy-CSeq are given in the upper

smaller tables of Figure 4.5 (under “All schedules”) and for safestack-TSO finding a

bug requires 11,005 seconds and 4.3 GB of memory. As expected, the results confirm that

both benchmarks are very hard; less expectedly, they also show that WMMs actually

make it easier to find bugs, as both runtime and memory requirements go down. This

5CSeq framework, http://users.ecs.soton.ac.uk/gp4/cseq

http://users.ecs.soton.ac.uk/gp4/cseq


58 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

is a consequence of both the lower number of rounds required to expose the bug, and

the higher number of buggy executions that the WMMs allow.

We also tried to measure the “sequential complexity” of the benchmarks (i.e., the dif-

ficulty to expose the bug given one fixed buggy schedule) because this gives us an

estimated lower bound for the analysis of each of the independent tasks generated by

VeriSmart. We therefore ran Lazy-CSeq with the schedule representation accordingly

pre-set, rather then letting it search for a buggy schedule. The results are shown in Fig-

ure 4.5 under “One schedule” and for safestack-TSO we get time 243.5 seconds and

memory 2.6 GB. Overall they show that for SC most of the complexity indeed comes

from the huge number of schedules that need to be considered. The analysis of a single

schedule is approximately 500x faster and requires an order of magnitude less memory.

This indicates the potentially huge benefits of the VeriSmart approach. For WMMs,

the analysis of a single schedule is still faster (20x–50x) and still requires less memory

(30% reduction), but the effects are much less pronounced. This reflects the fact that

WMMs introduce a lot of non-determinism even if the thread schedule is fixed.

The main part of Figure 4.5 shows the VeriSmart results for the different tile sizes.

We focus on the SC benchmarks first, and defer the discussion of WMM benchmarks to

below.

For SC, we see the best-case resource consumption required to expose a bug in any of the

generated instances drops roughly in line with the estimates from the “One schedule”

experiment discussed above. In other words, if we were able to pick the right instances,

we could expose the bugs 100x to 1000x faster, with only 10% to 25% of the mem-

ory. Obviously, a similar argument could be made in the case of an explicit schedule

exploration, but in our case the relative numbers of buggy instances are much more

favourable. Moreover, they can be improved even further, by increasing the tile sizes.

These increased odds come at modest costs: average times to expose the bugs increase

2x–3x, while average memory consumption remains roughly stable.

Taken together, this means that we only need to analyse a small number (less than

100, and in many cases less than 10) of relatively simple (average times to find the bugs

between 20 minutes and one hour) problems to find a bug with probability approximating

1 (see also Figure 4.6).

For safestack-PSO the results appear at first less impressive. While the best-case

bug-finding times still represent a roughly 5x speed-up, the average times are closer to

(and in some times even exceed) the comprehensive analysis times. However, the high

fraction of buggy instances (roughly 5%–25%) allows us to play the numbers game to

achieve a good overall performance. If we run a moderate number (say 50) of tasks in

parallel, we will with high probability (since the distribution of the bug-finding times

exhibits a log-normal shape) also come across one of the “faster” tasks, which will abort



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 59

All schedules:
Time: 46764s
Memory: 4203.9MB

1 400 800 1,200 1,600 2,000
34.9

500

1,000

1,500

2,000

2,500

3,000

Number of cores

E
x
p
ec
te
d
b
u
g-
fi
n
d
in
g
ti
m
e
(s
ec
on

d
)

eliminationstack-SC (unwind=1, rounds=2, thread=8, visible point=52)

Tile size 12
Tile size 18

Minimum time

All schedules:
Time: 24139s
Memory: 6632.4MB

1 400 800 1,200 1,600 2,000

195.6

500

1,000

1,500

2,000

(1135, 409)

Number of cores

E
x
p
ec
te
d
b
u
g-
fi
n
d
in
g
ti
m
e
(s
ec
on

d
)

safestack-SC (unwind=3, rounds=4, thread=4, visible point=152)

Tile size 11
Tile size 20

Minimum time

All schedules:
Time: 4777s
Memory: 3708.4MB

1 400 800 1,200 1,600 2,000

593.5

1,000

2,000

3,000

4,000

5,000

Number of cores

E
x
p
ec
te
d
b
u
g-
fi
n
d
in
g
ti
m
e
(s
ec
on

d
)

safestack-PSO (unwind=3, rounds=3, thread=4, visible point=152)

Tile size 12
Tile size 20

Minimum time

Figure 4.6: Expected bug-finding time varying over the number of cores. A
round (resp. square) point marks the expected time corresponding to the num-
ber of cores that are needed to find a bug with probability 0.95 (resp. 0.99).



60 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

the remaining “slower” tasks, giving us wall-clock speed-ups roughly similar to the best

cases.

Finally, for safestack-TSO none of the 24,000 tasks generated with three selected tiles

exposes a bug within the given timeouts (despite the fact that this already represents

52,000 hours CPU-time). Since the experimental set-up means we are only looking for

bugs that occur only under TSO but not under SC, we can clearly see that the TSO-only

bug is extremely rare. In such cases, VeriSmart is unable to leverage the effectiveness

of the underlying analysis tool, and suffers from the same explosion of the search spaces

as other sampling-based methods such as testing or explicit state model checking. Here,

symbolic methods that analyse all behaviours simultaneously have the upper hand, as

demonstrated by Lazy-CSeq’s ability to expose the TSO-only bug.

Since the generated problem instances are completely independent and can be analysed

in parallel, VeriSmart is indeed a very effective verification approach. Figure 4.6

shows that with moderate resources (5–50 cores) we can get a noticeable speed-up on

the expected bug-finding time. In particular, for eliminationstack-SC the expected

time is roughly the same as the minimum time already for few cores and reaches a more

than 1000x speed-up compared to the all-schedule comprehensive verification time.

In general, Figure 4.6 shows that the expected bug-finding time converges faster to the

minimum time when the probability of finding a buggy program variant is higher. Since

larger tiles would ensure higher probability of finding a buggy variant but at the same

time could affect the verification time, determining the right tile size seems to be a

crucial aspect for maximizing the benefits of our approach.

4.7 Related work

There is a wide range of approaches proposed in the literature on automatic analysis of

concurrent programs. Here we briefly describe the related work and compare it to the

work presented in this chapter.

Parallel verification Attempts to parallelise verification by partitioning the prob-

lem and distributing the workload have been implemented in explicit-state model check-

ing [SD97, BBC05] and SAT solving [OU09]. With the rise of multi-core processors,

techniques that exploit shared memory for communication have been proposed [BBR07,

HB07]. However, these approaches suffer from the overhead introduced by exchang-

ing information between the instances. Approaches that run several tools with differ-

ent strategies and heuristics in parallel on the unpartitioned problem have been more

successful. Such portfolio approaches have been implemented in automated theorem

provers [Sch96, WL99, SS99] and SAT/SMT solvers [XHHL08, WHdM09].



Chapter 4 A Pragmatic Verification Approach for Concurrent Programs 61

Our approach leverages so-called swarm verification (SV), as promoted by Holzmann et

al for explicit-state model checking [HJG08, HJG11, Hol16]. In SV computing instances

do not collaborate directly in finding a solution, but solve independent subproblems

that cover the original problem. We lift this idea to symbolic model checking through

sequentialization.

Sequentialization Reducing the analysis of a concurrent program to the analysis

of sequential programs was first proposed by Qadeer and Wu [QW04]. They trans-

form a concurrent program into a sequential one that simulates all executions of the

original program with at most two context-switches. Lal and Reps [LR09] gener-

alised the concept to arbitrary context bounds. In our experiments, we used Lazy-

CSeq [INF+15, ITF+14b, ITF+14a], which implements a sequentialization as a code-

to-code translation that is efficiently analysable by sequential bounded model checking

tools such as CBMC [CKL04]. Musuvathi and Qadeer [MQ07] propose an algorithm for

iteratively relaxing the context bound. This is orthogonal to our approach: in our exper-

iments we fixed the maximum number of context-switches and analysed tilings of three

different sizes. We could consider their algorithm as a starting point to automatically

find good parameter values for our tilings.

Concolic testing Concolic testing [GKS05] combines symbolic aspects with concrete

inputs. Namely, it runs the program over an input vector with both concrete and sym-

bolic values, and uses SMT solvers to compute new input vectors that systematically

explore the branches of the program. Farzan et al [FHRV13] extend this idea to concur-

rent programs and call it (con)2colic testing. They use the notion of thread interference

scenario, which is a representation of a set of bounded interferences [RFH12] among the

threads, which define the scheduling constraints for a concurrent program run. These

interference scenarios are then explored in a systematic way by generating a schedule and

input vectors that conform with the scenario. (con)2colic testing analyses the program

sequentially and accumulates information about explored scenarios in a data structure,

whereas our approach is capable of analysing tilings independently and can thus be par-

allelised at large scale. Moreover, (con)2colic testing requires to modify the core of a

concolic testing tool in order to handle concurrent programs and thus it cannot flexibly

leverage the increasing power of existing sequential checkers.

Testing Automated testing tools such as CHESS [MQB+08] have been highly success-

ful for finding concurrency bugs in large code bases because of their ability to handle code

independently of its sequential complexity. CHESS controls the scheduler and explores

all possible interleavings giving priority to schedules with few context-switches. Nonethe-

less, the success of testing depends on the proportion of schedules that lead to a bug w.r.t.

the total number of schedules, as shown by a recent empirical study [TDB14, TDB16] on



62 Chapter 4 A Pragmatic Verification Approach for Concurrent Programs

testing of concurrent programs. Preemption sealing [BBC+10] consists of inhibiting pre-

emptions in some program modules which corresponds in our approach to choose a tiling

where tiles exactly correspond to program modules. This strategy was aimed to tolerat-

ing errors for finding more ones and compositional testing of layered concurrent systems.

The uniform tiling we implement in this chapter is irrespective of the structure of the

program and looks more appropriate for an exhaustive bug-finding search up to a given

number of context-switches. There are also differences in the implementation of the two

techniques, we do not seal portions of code with scope functions but rather we imple-

ment tiles statically, that in general makes the underlying BMC analysis simpler. Other

testing tools try to mutate observed interleavings to find bugs (e.g., [ZLO+11, RIKG12]).

Our approach can be seen as a way to tune concurrency verification between concrete

testing and fully symbolic verification.

4.8 Conclusions

We present a swarm verification approach to finding bugs in concurrent programs. We

perform a code-to-code translation that constructs program variants by placing tiles over

the threads, and thus reducing non-determinism by allowing context-switches to occur

only in a selected subset of tiles and inhibiting statement reordering in other selected

ones. The set of possible program variants defined by a tiling covers all possible inter-

leavings of the concurrent programs. We can analyse these program variants in parallel

on a cluster using any off-the-shelf backend tool. We implement the approach building

on the CSeq framework and use Lazy-CSeq with CBMC backend for the final analysis.

We experimentally show that we can find bugs in very hard concurrency benchmarks,

eliminationstack and safestack, under three different memory models (SC, TSO,

PSO) by analysing only a modest number of randomly picked program variants. In

comparison with analysing the original program, our approach reduces time and mem-

ory footprint of the backend analysis tool when launched on a program variant. In

summary, we are able to reduce the wall clock time to find “Heisenbugs” by at least two

orders of magnitude on the hardest known concurrency benchmarks.



Chapter 5

Lazy Sequentialization of

Unbounded Concurrent Programs

In this chapter, we describe and evaluate a new lazy sequentialization translation that

does not unwind loops and thus allows us to analyse unbounded computations, even

with an unbounded number of context switches. In connection with an appropriate

sequential backend verification tool, it can thus also be used for the safety verification

of concurrent programs, rather than just for bug-finding. The main technical novelty

of our translation is the simulation of the thread resumption in a way that does not

use gotos and thus does not require that each statement is executed at most once. We

have implemented this translation in the UL-CSeq tool for C99 programs that use the

POSIX thread library. We evaluate UL-CSeq on several benchmarks, using different

sequential verification backends on the sequentialized program, and show that it is more

effective than previous approaches in proving the correctness of the safe benchmarks,

and still remains competitive with state-of-the-art approaches for finding bugs in the

unsafe benchmarks.

The content of this chapter is largely based on our published work [NFLP15, NFLP16a].

5.1 Introduction

Concurrent programming is becoming more important as concurrent computer archi-

tectures such as multi-core processors are becoming more common. However, the auto-

mated verification of concurrent programs remains a difficult problem. The main cause

of the difficulties is the large number of possible ways in which the different elements of

a concurrent program can interact with each other, e.g., the number of different thread

63



64 Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs

schedules. This in turn makes it difficult and time-consuming to build effective concur-

rent program verification tools, either from scratch or by extending existing sequential

program verification tools.

An alternative approach is to translate the concurrent program into a non-deterministic

sequential program that simulates the original program, and then to reuse an existing

sequential program verification tool as a black-box backend to verify this simulation

program. This approach is also known as sequentialization [QW04, LR09, LMP09a]. It

has been used successfully both for bug-finding purposes [CGS11, ITF+14a, TIF+15b]

and for the verification of reachability properties [GM11, LMP10, LMP12]. Its main

advantage is that it separates the concurrency aspects from the rest of the verifica-

tion tool design and implementation. This has several benefits. First, it simplifies the

concurrency handling, which can be reduced to one (usually simple) source-to-source

translation. Second, it also makes it thus also easier to experiment with different con-

currency handling techniques; for example, we have already implemented a number of

different translations (such as [FIP13a, ITF+14a, TIF+15b]) within our CSeq framework

[INF+15]. Third, it makes it easier to integrate different sequential backends. Finally,

it reduces the overall development effort, because the sequential program aspects and

tools can be reused.

The most widely used sequentialization (implemented in Corral [LQL12], SMACK [RE14],

and LR-CSeq [FIP13a]) by Lal and Reps [LR09] uses additional copies of the shared

variables for the simulation and guesses their values (eager sequentialization). This

makes the schema unsuitable to be extended for proof finding: it can handle only a

bounded number of context switches, and the unconstrained variable guesses lead to over-

approximations that are too coarse and make proofs infeasible in practice. Lazy sequen-

tializations [LMP09a], on the other hand, do not over-approximate the data; thus they

maintain the concurrent program’s invariants and simulate only feasible computations.

They are therefore, in principle, more amenable to be extended for correctness proofs

although efficient implementations exist only for bounded programs [LMP10, LMP12].

Contributions. We develop and implement a lazy sequentialization that can handle

programs with unbounded loops and an unbounded number of context switches, and is

therefore suitable for program verification (both for correctness and bug-finding). The

main technical novelty of our translation is the simulation of the thread resumption in a

way that does not require that each statement is executed at most once and (unlike Lazy-

CSeq [ITF+14a, INF+15, ITF+14b]) does not rely on gotos to reposition the execution.

Instead, we maintain a single scalar variable that determines whether the simulation

needs to skip over a statement or needs to execute it.

Our first contribution in this chapter is the description of the corresponding source-to-

source translation in Section 5.2. As a second contribution, we have implemented this

sequentialization in the UL-CSeq tool (within our CSeq framework) for C99 programs



Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs 65

that use the POSIX thread library (see Section 5.3). We have evaluated, as a third

contribution, UL-CSeq on a large set of benchmarks from the literature and the con-

currency category of the Software Verification Competition, using different sequential

verification backends on the sequentialized program. We empirically demonstrate, also

in Section 5.3, that our approach is surprisingly efficient in proving the correctness of

the safe benchmarks and improves on existing techniques that are specifically devel-

oped for concurrent programs. Furthermore, we show that our solution is competitive

with state-of-the-art approaches for finding bugs in the unsafe benchmarks. We present

related work in Section 5.4 and conclude in Section 5.5.

5.2 Unlimited Lazy Sequentialization Schema

In this section we present a code-to-code translation from a multi-threaded program P

(see Section 2.1) to a sequential program P seq that simulates all executions of P .

We assume that P consists of n+1 functions f0, . . . , fn, where f0 is the main function, and

that there are no function calls and each create statement (1) is executed at most once

in any execution and (2) is associated with a distinct start function fi. Consequently,

the number of threads is bounded, and threads and functions can be identified. For ease

of presentation, we also assume that thread functions have no arguments. We adopt

the convention that each statement in P is annotated with a (unique) numerical label:

the first statement of each function is labelled by 0, while its following statements are

labelled with consecutive numbers increasing in the text order. This ordering on the

numerical labels is used by our translation for controlling the simulation of the starting

program in the resulting sequential program. These restrictions are used only to simplify

the presentation.

P seq simulates P in a round-robin fashion. Each computation of P is split into rounds.

Each round is an execution of zero or more statements from each thread in the order

f0, . . . , fn. Note that this suffices to capture any possible execution since we allow for

unboundedly many rounds and we can arbitrarily skip the execution of a thread in any

round (i.e., execute zero statements). The main of P seq is a driver formed by an infinite

while-loop that simulates one round of P in each iteration, by repeatedly calling the

thread simulation function f
seq
i of each thread fi.

Each simulation function f
seq
i can non-deterministically exit at any statement to simulate

a context switch. Thus, for each thread fi, P
seq maintains in a global variable pci the

numerical label at which the context switch was simulated in the previous round and

where the computation must thus resume from in the next round. The local variables

of fi are made persistent in f
seq
i (i.e., changed to static) such that we do not need to

recompute them on resuming suspended executions. Each f
seq
i is essentially fi with a

few lines of injected control code for each statement that guard its execution, and the



66 Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs

thread routines (i.e., create, join, init, lock, unlock, destroy) are replaced with

calls to corresponding simulation functions. The execution of each call to a function

f
seq
i goes through the following modes:

RESUME: the control is stepping through the lines of code without executing any actual

statements of fi until the label stored in pci is reached; this mode is entered every

time the function f
seq
i is called.

EXECUTE: the execution of fi has been resumed (i.e., the label stored in pci has been

reached) and the actual statements of fi are now executing.

SUSPEND: the execution has been blocked and the control returns to the main function;

hence, no actual statements of fi are executed in this mode. It is entered non-

deterministically from the EXECUTE mode; on entering it, the numerical label of

the current fi statement (the one to be executed next) is stored in pci.

Code-to-code translation

We now describe our translation in a top-down fashion and convey an informal cor-

rectness argument as we go along. The entire translation is formally described by the

recursive code-to-code translation function J·K defined by the rewrite rules given in Fig-

ure 5.1. Rule 1 gives the outer structure of P seq : it adds the declarations of the global

auxiliary variables, replaces each thread function fi with the corresponding simulation

function f
seq
i , adds the code stubs for the thread routines, and then adds the main

function. The remaining rules give the transformation for all statement types in our

grammar; we return to this in the description of the translation of each thread function

fi into the corresponding simulation function f
seq
i .

We start by describing the global auxiliary variables used in the translation. Then, we

give the details of function main of P seq , and illustrate the translation from fi into f
seq
i .

Finally, we discuss how the thread routines are simulated.

Auxiliary variables. Let N denote the maximal number of threads in the program other

than the main thread. We statically assign a distinct identifier to each thread of P from

the interval [0, N]; the identifier assigned to main is 0. During the simulation of P , P seq

maintains the following auxiliary variables, for i ∈ [0, N]:

– bool createdi tracks whether the thread with identifier i has ever been created.

Initially, only created0 is set to true since f
seq
0 simulates the main function of P .

– int pci stores the numerical label of the last context switch point for thread i.

All the variables pci are initialised to 0, which is the numerical label of the first

statement of all thread functions.



Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs 67

1.

u
wwwv

(dec;)∗

(
void fi ( )

{(dec;)∗stm}

)i=0,...,n

}
���~

def
=

bool created0=1,created1,. . .,createdn;

int s, pc0,. . .,pcn;

(dec;)∗
(

void f
seq

i ( ){(static dec;)∗JstmKi}
)

i=0,...,n

seq create(int t, int arg){...}
seq join(int t){...}
seq init(int m){...} seq destroy(int m){...}
seq lock(int m){...} seq unlock(int m){...}
main(){...}

2. JstmKi
def
= CONTR(l) l : JseqKi | CONTR(l) l : EXEC(JconKi) | {〈JstmKi;〉∗}

3. JseqKi
def
=

EXEC(assume(b)) | EXEC(assert(b)) | EXEC(x=e) |
EXEC(return e)| Jif(b) stm [else stm]Ki |
Jwhile(b) do stmKi | EXEC(goto l)

4. JconKi def
=

x=y | y=x | Jt := create fj()Ki | Jjoin tKi
|Jinit mKi | Jlock mKi | Junlock mKi | Jdestroy mKi

5.

s
if (b) { . . . l1 :stm1 }
[ else { . . . l2 :stm2 } ]

{

i

def
=

if ( (s == RESUME && pci <= l1) || (s == EXECUTE && b) )

J{. . . l1 : stm}Ki
else if ( (s == RESUME && pci <= l2) || (s == EXECUTE))

J{. . . l2 : stm}Ki;

6.
q
while (b) do { . . . l1 :stm}

y
i

def
=

while( (s == RESUME && pci <= l1)

|| (s == EXECUTE && b)) do

J{. . . l1 : stm}Ki;

7. Jt := create fj()Ki def
= { t := j; seq create(e, j)}

8. Jjoin tKi def
= seq join(t)

9. Jinit mKi def
= seq init(m)

10. Jlock mKi def
= seq lock(m)

11. Junlock mKi def
= seq unlock(m)

12. Jdestroy mKi def
= seq destroy(m)

CONTR(l)
def
=

if(s == RESUME && pci == l) s = EXECUTE;

if(s == EXECUTE && *) { pci = l; s = SUSPEND;}

EXEC(x)
def
= if(s == EXECUTE ) {x; };

Figure 5.1: Rewriting rules for the lazy sequentialization.

– int s tracks the simulation mode as described above. It can only assume the

values RESUME, EXECUTE, or SUSPEND.

Main driver. The new main of P seq (see Figure 5.2) consists of an infinite loop that calls

at each iteration the thread functions of the active threads.

Thread simulation functions. Each function fi representing a thread in P is translated

into the thread simulation function f
seq
i in P seq as follows. First, the local variables of fi

are declared as static in f
seq
i to make them persistent between consecutive invocations

of f seq
i . Then, J·Ki is applied recursively to the statements in the body of f seq

i (see Rule 1

of Figure 5.1).

For each statement we inject a few lines of code that implement the control of the

simulation, i.e., make decisions on mode transitions in the simulation and, depending



68 Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs

int main(void){
while(true)do {

s = RESUME; /* set mode to RESUME before thread simulation */

f0(); /* main thread simulation */

s = RESUME;

if (created1) f1(); /* simulation of thread with id 1 */

. . .

s = RESUME;

if (createdn) fn(); /* simulation of thread with id n */

}
}

Figure 5.2: The main function of P seq .

on the current mode, execute or skip the guarded statement. Specifically, every original

statement is preceded by the code of the macro CONTR defined in Figure 5.1 that takes

as input the label l of the statement (see Rule 2). The injected code allows us to set the

mode to EXECUTE if the simulation is in RESUME mode and the old context switch point

is reached. After that, if the simulation is in EXECUTE mode, it can non-deterministically

transit into SUSPEND, and if so the label l is stored into pci. Note that, to skip the

execution of a thread in a round, we need first to switch from RESUME to EXECUTE

and then to SUSPEND before the simulation of the original statement. Furthermore,

except for if- and while-statements, all the other statements are guarded by an if-

statement injected by the macro EXEC that prevents their simulation unless the mode of

the simulation is EXECUTE.

We need to (partially) simulate the if- and while-statements even if we are in RESUME

mode, in order to position the execution back to the resumption point stored in pci.

We achieve this by modifying their respective control flow guards. For the if-statement

(see Rule 3), we check whether pci is in either of the then-branch or else-branch (note

that if pci was less then the label of the current if-statement, we must already be in the

EXECUTE mode and so we need to compare only against l1 and l2 which are respectively

the labels of the last statements in the then- and else-branches). If so, we go into the

corresponding branch, independent of the current valuation of the condition b; we do

this because we are only repositioning, and our resumption point reflects the previous

valuation of the condition that held when the context switch occurred. Of course, if we

are in EXECUTE mode, we need to check the condition. We follow a similar approach for

while-statements. Note that here we only need one iteration over the loop’s body to

find the resumption point, so we do not need to check the condition in the RESUME mode.

Finally, each call to a thread routine is also translated into a call to the corresponding

simulation function (Rules 7–12).



Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs 69

void P (int b){
static int l;

if (s == RESUME && pc == 0) s = EXECUTE;

if (s == EXECUTE && *) {pc = 0; s = SUSPEND;}
if (s == EXECUTE) { l = b; }
if (s == RESUME && pc == 1) s = EXECUTE;

if (s == EXECUTE && *) {pc = 1; s = SUSPEND;}
if (s == EXECUTE) { seq lock(m1); }
if (s == RESUME && pc == 2) s = EXECUTE;

if (s == EXECUTE && *) {pc = 2; s = SUSPEND;}
if ((s == RESUME && pc <= 3)

|| (s == EXECUTE && (c > 0))){
if (s == RESUME && pc == 3) s = EXECUTE;

if (s == EXECUTE && *) {pc = 3; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = c + 1; }

}
else if ((s == RESUME && pc <= 6)

|| (s == EXECUTE)) {
if (s == RESUME && pc == 4) s = EXECUTE;

if (s == EXECUTE && *) {pc = 4; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = 0; }
if (s == RESUME && pc == 5) s = EXECUTE;

if (s == EXECUTE && *) {pc = 5; s = SUSPEND;}
while ((s == RESUME && pc <= 6)

|| ((s == EXECUTE) && (l > 0))) do {
if (s == RESUME && pc == 6) s = EXECUTE;

if (s == EXECUTE && *) {pc = 6; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = c + 1; }
if (s == EXECUTE && LOCKED(m1)) { l = l - 1; }

}
}
if (s == RESUME && pc == 7) s = EXECUTE;

if (s == EXECUTE && *) {pc = 7; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { seq unlock(m1); }
if (s == EXECUTE || (s == RESUME && pc == 8)){

pc = 8; s = SUSPEND;

}
}

Figure 5.3: Translation of thread P from Figure 2.3.

Figure 5.3 shows the thread simulation function resulting from sequentializing the thread

P shown in Figure 2.3 (see Section 2.1).

Simulation of the thread routines. For each thread routine we provide a verification

stub, i.e., a simple standard C function that replaces the original implementation for

verification purposes. The verification stubs are identical to those used by Lazy-CSeq.



70 Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs

Below, we informally describe how they work; full details are given in Inverso et al.’s

work [ITF+14a]. In seq create we simply set the thread’s created flag. Note that

we do not need to store the thread start function, as the main driver calls all thread

simulation functions explicitly and seq create uses an additional integer argument that

serves as thread identifier that is statically determined in the call.

According to the semantics of the join-statement, a thread executing join t should

be blocked until thread t is terminated (i.e., the corresponding pc variable is set to

LAST LABEL that is a statically defined constant larger than any other label in P ). We

choose to not implement in P seq any notion of blocking or unblocking a thread; instead

seq join uses an assume-statement with the condition pc t == LAST LABEL to prune

away any simulation that corresponds to a blocking join. We can then see that this

pruning does not alter the thread reachability properties of the original program. Assume

that the joining thread t terminates after the execution of join t. The invoking thread

should be unblocked then but the simulation has already been pruned. However, this

execution can be captured by another simulation in which a context switch is simulated

right before the execution of this join-statement, and the invoking thread is scheduled

to run only after t has terminated, hence avoiding the pruning as above.

For mutexes we need to know whether they are free or already destroyed, or which thread

holds them otherwise. For this, in the corresponding functions, we use two constants,

FREE and DESTROY. On initialising or destroying a mutex we assign it the appropriate

constant. In seq lock, we assert that the mutex is not destroyed and then check whether

it is free before assigning it the index of the thread that has invoked the function. As

in the case of the join-statement we block the simulation if the lock is held by another

thread. In seq unlock, we first assert that the lock is held by the invoking thread and

then set it to FREE. We also support reentrant mutexes1.

Correctness. The correctness of our construction is quite straightforward.

For the completeness, assume any non-empty execution ρ of P that creates at most

N threads. Let ρ = ρ0 . . . ρk be split into maximal execution contexts (i.e., each ρi is

non-empty and has statements only from one thread and ρi and ρi+1 are from different

threads). Clearly, ρ0 is a context of the main thread of P that is the only one existing in

the beginning. P seq starts the execution from the driver main and then calls f
seq
0 (i.e.,

the simulation function of the main thread of P ). At the first injected control code,

since s evaluates to RESUME and pc0 evaluates to 0 (since s is always set to RESUME in

the driver before calling a simulation function and all the pcis are initialised to 0), and

since we do not context-switch yet, s is updated to EXECUTE and the original statement

of P is executed (see Figure 5.1). The simulation of the remaining statements in ρ0 is

done similarly. On context-switching from ρ0 to ρ1, at the second if-statement of the

macro CONTR injected to control the first statement in ρ1, since we are in the EXECUTE

1https://en.wikipedia.org/wiki/Reentrant_mutex

https://en.wikipedia.org/wiki/Reentrant_mutex


Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs 71

mode, we can select to context-switch and thus pc0 is updated with the label of this

statement (that is the next to execute when the thread will be resumed) and change the

simulation mode to SUSPEND. From this point to the end of f seq
0 the control code will

skip the execution of all the remaining statements of f0, and thus the control returns

to the main function of P seq after the call to f
seq
0 . Now, assume that ρ1 is a context of

a thread fj, j 6= 0. Clearly, the thread must have been created in ρ0, thus createdj

must hold true. Thus, in the main driver, we skip all calls to fi for i < j, either because

createdi is false (i.e., the thread has not been created yet) or because we context-switch

out immediately when calling f
seq
i . Then, we call f seq

j and repeat the same argument as

for ρ0. To complete this part we just need to handle the case when we execute a context

ρj of thread fi that is not its first context. In this case, since the simulation mode is

set to RESUME in the main driver, the control code forces to skip all the statements of

P until we reach the label stored in pci. Since all the local variables are declared static

and there are no function calls besides the call to the thread routine stubs, the local

state of fi is exactly as it was when the thread was pre-empted last time. Therefore, we

can simulate ρj as observed above and we are done.

The soundness argument is a direct consequence of the fact that P seq executes statements

of P and the injected control code just positions the control for the simulation of context-

switching. Thus, from each execution ρ of P seq , we can extract an execution of P by

simply projecting out the auxiliary variables and the control code statements.

Therefore, we get that P seq violates an assertion if and only if P does and the following

theorem holds:

Theorem 5.1. A concurrent program P violates an assertion in at least one of its

executions with at most N thread creations if and only if P seq violates the same assertion.

5.3 Implementation and Experiments

Implementation

We have implemented in UL-CSeq v0.22 the schema discussed in Section 5.2 as a code-

to-code transformation for sequentially-consistent concurrent C99 programs with POSIX

thread library. This implementation is slightly optimised compared to the version that

participated (using the CPAchecker backend) in SV-COMP’16 (v0.1) [NFLP15].

UL-CSeq is implemented as a chain of modules within the CSeq framework [FIP13a,

FIP13b] (see Section 2.4). The sequentialized program is obtained from the original

program through transformations, which (1) insert boilerplate code for simulating the

POSIX thread library; (2) unwind any loops that create threads; (3) create multiple

2http://users.ecs.soton.ac.uk/gp4/cseq/files/ul-cseq-0.2_64bit.tar.gz

http://users.ecs.soton.ac.uk/gp4/cseq/files/ul-cseq-0.2_64bit.tar.gz


72 Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs

copies of the thread start functions, and inline all other function calls; (4) implement

the translation rules, as shown in Figure 5.1; and (5) insert code for the main driver,

and finalise the translation by adding backend-specific instrumentation.

Experiments

We experimentally evaluated the capabilities and performance of our UL-CSeq imple-

mentation (as sketched above) for both verification and bug-finding purposes. We mainly

used the benchmark set from the Concurrency category of SV-COMP’16 [Bey16]. These

are widespread benchmarks, and many state-of-the-art analysis tools have been trained

on them. They offer a good coverage of the core features of the C programming lan-

guage as well as of the basic concurrency mechanisms. In addition, we also used two

smaller benchmark collections from the literature [WKO13, GM11]. For all benchmarks

we unwound thread-creating loops twice. Since we executed the verification and the

bug-finding experiments on different machines and benchmark subsets, we report on

them separately.

Verification. Here, we used UL-CSeq in combination with four different sequential

backends (SeaHorn, Ultimate Automizer, CPAchecker, and VVT), and compared it

with four different verification tools with built-in concurrency handling (Impara, Satabs,

Threader, and VVT). These were chosen to cover a range of different sequential and

concurrent verification techniques. Please note that we cannot compare these to the top

tools of the SV-COMP because all medal winners are based on bounded model checking

and do not produce proofs but simply claim benchmarks to be safe if they do not find

a bug with their chosen settings.

Experimental Setup. For the verification experiments, we used the 221 safe benchmarks

from the SV-COMP collection as well as the 13 safe benchmarks proposed by Watcher

et al. [WKO13] and Garg and Madhusudan [GM11]. The total size of the benchmarks

was approximately 37K lines of code. We ran the experiments on a large compute clus-

ter of Xeon E5-2670 2.6GHz processors with 16GB of memory each, running a Linux

operating system with 64-bit kernel 2.6.32. We set a 15GB memory limit and a 900s

timeout for the analysis of each benchmark. We used SeaHorn [GKKN15] (v0.1.0),3

an LLVM-based [LA04] framework for verification of safety properties of programs us-

ing Horn Clause solvers; Ultimate Automizer [HCD+13] (version SV-COMP’16),4 an

automata-based software model checker that is implemented in the Ultimate software

analysis framework; CPAchecker (v1.4 with predicate abstraction),5 a tool for config-

urable software verification that supports a wide range of techniques, including predicate

3https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linux-x86_

64.tar.gz
4http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutomizer.

zip
5http://cpachecker.sosy-lab.org/CPAchecker-1.4-unix.tar.bz2

https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linux-x86_64.tar.gz
https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linux-x86_64.tar.gz
http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutomizer.zip
http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutomizer.zip
http://cpachecker.sosy-lab.org/CPAchecker-1.4-unix.tar.bz2


Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs 73

UL-CSeq +
SeaHorn Automizer CPAchecker VVT

sub-category files l.o.c. pass fail t.o. time pass fail t.o. time pass fail t.o. time pass fail t.o. time
pthread 15 1285 3 2 10 67.3 3 2 10 390.8 2 3 10 204.9 5 3 7 247.3
pthread-atomic 9 1136 6 1 2 167.9 3 1 5 456.7 5 0 4 352.6 5 0 4 171.8
pthread-ext 45 3679 27 0 18 199.1 12 2 31 226.5 15 0 30 214.6 16 5 24 179.7
pthread-lit 8 427 3 0 5 23.3 1 0 7 544.9 3 0 5 164.1 3 2 3 79.8
pthread-wmm 144 29426 144 0 0 32.5 60 0 84 421.6 26 0 118 271.3 141 0 3 275.3
[WKO13] 7 542 5 0 2 51.1 3 1 3 238.6 4 0 3 244.7 4 1 2 133.1
[GM11] 6 290 6 0 0 5.7 5 0 1 181.8 5 0 1 44.9 6 0 0 17.2
Totals 234 36785 194 3 37 59.9 87 6 141 376.2 60 3 171 235.7 180 11 43 248.2

Impara Satabs Threader VVT
sub-category files l.o.c. pass fail t.o. time pass fail t.o. time pass fail t.o. time pass fail t.o. time
pthread 15 1285 5 2 8 12.2 3 8 4 308.7 6 8 1 128.4 5 1 9 7.3
pthread-atomic 9 1136 5 0 4 61.8 4 3 2 1.3 7 0 2 24.4 7 1 1 143.7
pthread-ext 45 3679 30 0 15 8.7 15 13 17 34.6 36 1 8 104.8 38 1 6 66.2
pthread-lit 8 427 2 0 6 0.4 2 5 1 8.1 0 7 1 N/A 5 1 2 7.3
pthread-wmm 144 29426 24 0 120 9.0 100 22 22 312.2 0 144 0 N/A 130 0 14 222.2
[WKO13] 7 542 6 0 1 0.5 4 1 2 1.0 5 1 1 27.5 4 3 0 154.7
[GM11] 6 290 5 1 0 2.7 6 0 0 0.8 3 3 0 58.2 3 3 0 8.8
Totals 234 36785 77 3 154 11.2 134 52 48 244.0 57 164 13 88.2 192 10 30 172.6

Table 5.1: Performance comparison of different verification tools on safe bench-
marks: UL-CSeq with different sequential backends (top); other tools with built-
in concurrency handling (bottom). Each row corresponds to a sub-category of
the SV-COMP’16 benchmarks, or to one of the benchmark sets from the liter-
ature; we report the number of files and the total number of lines of code. pass
denotes the number of correctly verified safe benchmarks (i.e., proofs found), fail
is the number of benchmarks where the tool found a spurious error or crashed
(including running out of memory), t.o. is the number of benchmarks on which
the tool exceeded the given time limit, and time is the average proof time (i.e.,
excluding failed attempts).

abstraction, and shape and value analysis; Impara (v0.2),6 a tool that implements an

algorithm that combines a symbolic form of partial-order reduction and lazy abstraction

with interpolants for concurrent programs; Satabs (v3.2),7 a verification tool based on

predicate abstraction; and Threader (version SV-COMP’14),8 a tool that uses compo-

sitional reasoning with regards to the thread structure of concurrent programs based

on abstraction refinement. VVT (version SV-COMP’16),9 a tool that can both verify

programs using IC3 and predicate abstraction, also can find bugs using bounded model

checking. We ran each tool with its default configuration.

Results. Table 5.1 summarises the results. It demonstrates that our approach is (with

suitable backends) surprisingly effective: using SeaHorn, we can prove 194 out of the 234

benchmarks, and just edge out victory over VVT, the best-performing tool with built-in

concurrency handling. However, note that UL-CSeq’s performance varies widely with

the applied backend, and using Automizer or CPAchecker produces noticeably worse

results. Proof times are difficult to compare in aggregate but, overall, UL-CSeq’s proof

times are within the range of the other tools, indicating that the sequentialization does

6http://www.cprover.org/concurrent-impact/impara-linux64-0.2.tgz
7http://www.cprover.org/satabs/download/satabs-3-2-linux-32.tgz
8https://www7.in.tum.de/tools/threader/threader.tgz
9http://vvt.forsyte.at/releases/vvt-svcomp.tar.xz

http://www.cprover.org/concurrent-impact/impara-linux64-0.2.tgz
http://www.cprover.org/satabs/download/satabs-3-2-linux-32.tgz
https://www7.in.tum.de/tools/threader/threader.tgz
http://vvt.forsyte.at/releases/vvt-svcomp.tar.xz


74 Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs

not introduce too much complexity. This is further corroborated by the fact that the

combination of UL-CSeq and VVT (which finds 180 proofs) is only slightly weaker than

VVT relying on its built-in concurrency handling (which finds 192 proofs).

Bug-finding. Here, we used UL-CSeq in combination with CBMC as the sequential

backend, and compared it with four different bug-finding tools, Lazy-CSeq, CBMC,

CIVL, and SMACK. All four are (ultimately) based on bounded model checking, and

have performed very well in the recent SV-COMP verification competitions: both Lazy-

CSeq and CIVL scored full marks. Note that the verifiers we used in the experiments

described in the previous section performed noticeably worse.

Experimental Setup. For the bug-finding experiments, we used the 784 unsafe bench-

marks from the SV-COMP collection. The total size of the benchmarks was approxi-

mately 240K lines of code. We ran the experiments on an otherwise idle machine with

an Intel i7-3770 CPU 3.4GHz and 16GB of memory, running a Linux operating system

with 64-bit kernel 4.4.0. We also set a 15GB memory limit and a 900s timeout for the

analysis of each benchmark.

We used CBMC [CKL04] (v5.4)10 both as sequential backend (for UL-CSeq and Lazy-

CSeq) and stand-alone bug-finding tool. It is a mature SAT-based bounded software

model checker that uses a partial-order approach [AKT13] to handle concurrent pro-

grams. We further used Lazy-CSeq [ITF+14a] (v1.0),11 a lazy sequentialization for

bounded programs; CIVL [ZEL+16] (v1.5),12 a framework that uses a combination of

explicit model checking and symbolic execution for verification; and SMACK [RE14]

(v1.5.2),13 a bounded software model checker that verifies programs up to a given bound

on loop iterations and recursion depth. For all tools we used as loop unwinding and round

bounds the (same) minimum values necessary to find all bugs in the given sub-category.

Results. Table 5.2 summarises the results. We can see that our proof -oriented sequen-

tialization does not actually impact negatively on our tool’s bug-finding performance.

UL-CSeq solves 781 of the 784 benchmarks, only three fewer than Lazy-CSeq (whose

sequentialization specifically exploits the structure of bounded programs) or CIVL, and

more than SMACK. Analysis times are comparable across all tools, with the excep-

tion of the noticeably slower SMACK. These results indicate that unwinding and lazy

sequentialization can effectively be applied in either order.

The UL-CSeq source code, static Linux binaries, benchmarks and experiments are avail-

able at http://users.ecs.soton.ac.uk/gp4/cseq/atva16.zip.

10http://www.cprover.org/cbmc/download/cbmc-5-4-linux-64.tgz
11http://users.ecs.soton.ac.uk/gp4/cseq/files/lazy-cseq-cav14-1.0.tar.gz
12http://vsl.cis.udel.edu/lib/sw/civl/1.5/svcomp16/CIVL-1.5_2739_svcomp16.tgz
13http://soarlab.org/smack/smack-1.5.2-64.tgz

http://users.ecs.soton.ac.uk/gp4/cseq/atva16.zip
http://www.cprover.org/cbmc/download/cbmc-5-4-linux-64.tgz
http://users.ecs.soton.ac.uk/gp4/cseq/files/lazy-cseq-cav14-1.0.tar.gz
http://vsl.cis.udel.edu/lib/sw/civl/1.5/svcomp16/CIVL-1.5_2739_svcomp16.tgz
http://soarlab.org/smack/smack-1.5.2-64.tgz


Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs 75

UL-CSeq Lazy-CSeq CBMC CIVL SMACK
+ CBMC + CBMC

sub-category files l.o.c. pass t.o. time pass t.o. time pass t.o. time pass t.o. time pass t.o. time
pthread 17 4085 14 3 12.2 17 0 19.4 16 1 63.1 17 0 14.9 8 9 84.2
pthread-atomic 2 204 2 0 1.4 2 0 1.0 2 0 0.4 2 0 3.4 2 0 15.0
pthread-ext 8 780 8 0 1.0 8 0 0.3 7 1 12.0 8 0 0.3 8 0 47.2
pthread-lit 3 148 3 0 1.4 3 0 1.3 2 1 0.2 3 0 2.7 1 2 11.1
pthread-wmm 754 237700 754 0 1.1 754 0 1.2 754 0 0.5 754 0 6.1 753 1 78.1
Total 784 242917 781 3 1.4 784 0 1.6 781 3 2.9 784 0 6.2 772 12 77.6

Table 5.2: Performance comparison of different tools on the unsafe instances
of the SV-COMP’16 Concurrency category. Each row corresponds to a sub-
category of the SV-COMP’16 benchmarks; we report the number of files and
the total number of lines of code. pass now denotes the number of correctly
identified unsafe benchmarks (i.e., counterexamples found), t.o. is the num-
ber of benchmarks on which the tool exceeded the given time limit, and time
is the average time to find a bug. None of the tools reported any spurious
counterexample.

5.4 Related Work

There is a wide range of approaches to verify concurrent programs. However, here we

focus on more closely related sequentialization approaches. The idea of sequentialization

was originally proposed by Qadeer and Wu [QW04]. The first schema for an arbitrary

but bounded number of context switches was given by Lal and Reps [LR09]. Since

then, several algorithms and implementations have been developed (see [FIP13a, LQL12,

CGS11, LMP09a, LMP09b]).

Lazy sequentialization schemas have played an important role in the development of

efficient tools. Their main feature is that they do not guess the original program’s data

but just its schedules and so induce less non-determinism and often simpler verifica-

tion conditions. They also only explore reachable states of the original program, thus

preserving the local invariants. This last property makes them suitable for static anal-

ysis [LR09]. The first such sequentialization was given by La Torre et al. [LMP09a] for

bounded context switching and extended to unboundedly many threads in the works of

the same authors [LMP10, LMP12]. These schemas avoid the cross-product of the local

states (since only one thread is tracked at any time of a computation) but require their

recomputation at each context-switch. This is a major drawback when such a sequen-

tialization is used in combination with bounded model checking (see [GHR10]). The

schema Lazy-CSeq [ITF+14a] avoids such recomputations by flattening the programs

and making the locals persistent, and achieves efficiency by handling context-switches

with a very lightweight and decentralised control code.

All sequentializations mentioned above yield under-approximations of the multi-threaded

programs and thus (except for [LMP10] that gives a sufficient condition to test com-

pleteness of the reached state space) are designed mainly for bug-finding. The new lazy

sequentialization that we have designed in this chapter is similar in spirit to Lazy-CSeq



76 Chapter 5 Lazy Sequentialization of Unbounded Concurrent Programs

in that it injects lightweight control code to reposition the program counter on simu-

lating a thread resumption but the injected control code itself is completely different.

The main limitation of Lazy-CSeq’s approach is that it assumes that each thread pro-

gram counter uniquely identifies its local state (which can be guaranteed for loop-free

bounded programs), whereas our approach can handle a wider class of programs. First,

we do not unwind loops and thus we allow for an exact simulation of unbounded loops.

Second, we do not bound the number of context-switches in any explored computation.

Our experiments show that the new control code is almost as effective as the goto-based

control code used in Lazy-CSeq when using UL-CSeq with a bounded model checking

backend, and performs very well when used to prove correctness of programs.

The only sequentialization that can be used to prove correctness of multi-threaded pro-

grams is that proposed by Garg and Madhusudan [GM11], but its approach is quite

different from ours. It is closely related to the rely-guarantee style proofs and its aim

is to avoid the cross-product of the thread-local states. Only the valuation of some

local variables of the other threads (forming the abstraction for the assume-guarantee

relation) is retained when simulating a thread. For this, frequent recomputations of

the thread local states are required (in particular, whenever a context switch needs to

be simulated in the construction of the rely-guarantee relations) which introduces con-

trol non-determinism and recursive function calls even if the original program does not

contain any recursive calls. Moreover, the resulting sequentialization yields an over-

approximation of the original program and thus cannot be used for bug-finding.

5.5 Conclusions

We have presented a new sequentialization of concurrent programs that does not need

to bound the number of context-switches or to unwind the loops. We only bound the

number of threads and do not allow unbounded function call recursion. Noticeably, the

resulting sequential program preserves all local invariants of the original program. In

combination with suitable sequential verification tools it can thus be used both to find

bugs (i.e., prove assertion violations) and prove concurrent programs safe.

We have implemented this sequentialization in the tool UL-CSeq within our framework

CSeq and provided support for several backends. We have conducted a large set of

experiments which have shown that UL-CSeq performs almost as efficiently as the best-

performing tools for bug-finding, and is very competitive for proving correctness. To the

best of our knowledge this is the first approach that works well both as bug finder and

to prove correctness for concurrent programs.



Chapter 6

Conclusions

6.1 Summary of Work

In this thesis, we have presented our comprehensive work for the analysis of real-world

concurrent software in both finding bugs and proving absence of errors, by targeting

the largely representative category of multi-threaded C programs with POSIX thread

library.

We have shown that Lazy-CSeq sequentialization can be augmented by minimising the

sizes of the individual states (which are determined by the concurrent program’s shared

global and thread-local variables) using abstract interpretation. We have used inter-

val analysis in Frama-C on the produced sequentialized programs from Lazy-CSeq to

determine the domains of each variable. Then, these intervals are used to minimise

the representation of programs’ variables, exploiting the backend’s bitvector support,

to ultimately reduce the formula fed into the SAT solver. We have implemented this

approach on top of the CSeq framework in Lazy-CSeq+ABS tool, and demonstrated

the effectiveness of this approach; that it leads to large performance gains compared to

Lazy-CSeq for very hard verification problems.

We have demonstrated a swarm verification approach, called “task competition”, for

finding rare concurrency bugs in concurrent programs. We use code-to-code transla-

tion that constructs program variants by placing tiles over the threads, thus reducing

non-determinism by allowing context switches to occur only within a selected subset of

tiles and inhibiting statement reordering in other selected ones. These program variants

can be analysed in parallel on any multi-core platform using any off-the-shelf backend

tool. We have implemented the approach in VeriSmart tool via the CSeq framework.

Empirical evaluation has shown that VeriSmart can find rare bugs in very hard con-

currency benchmarks, by analysing only a modest number of randomly picked program

variants, with considerably less resource for the backend analysis tool for each program

77



78 Chapter 6 Conclusions

variant when compared to analysing the original program. Moreover, the wall-clock time

to find “Heisenbugs” on those benchmarks is also considerably reduced.

We have presented a novel sequentialization for multi-threaded programs that does not

need to bound the number of context-switches or to unwind the loops, i.e., unbounded

concurrent programs. In combination with suitable sequential verification tools, this

schema can be used both to prove concurrent programs safe or to find bugs. We have

implemented this sequentialization in UL-CSeq, on top of the CSeq framework, and

provided support for several backends. We have also conducted a large set of experiments

which show that UL-CSeq is very competitive for proving correctness, and performs

almost as efficiently as the best-performing tools for bug-finding.

6.2 Future Directions

In our experiments on the swarm verification approach, we use a BMC backend, which

is very efficient in instances that actually contain an interleaving that exposes the bug,

but which may be very slow on the other bug-free instances. We postulate that abstract

interpretation has the potential for quickly discharging bug-free instances. This is indeed

corroborated by our preliminary experiments where we have used standard abstractions

available in abstract interpreters such as ConcurInterProc [Jea09]. The experiments

have shown that, with abstract interpretation, we can deem bug-free a significant number

of instances several times faster than BMC. Therefore, as the next step in this direction,

it is worth investigating how to make sound approximation work effectively on proving

safe instances.

Effective analysis tools based on sound approximation can also play a significant role

in building verification approaches for finding bugs that are extremely rare. We intend

to tackle the problem of finding such extremely rare bugs by combining tools based on

sound approximations with a recursive verification approach in the style of a divide-and-

conquer algorithm. At each level of the recursion, we split the problem using the tiling

as shown in Chapter 4. Then, on each instance, we run two tools in parallel: a bug

finder and bug-free prover. We also give a timeout to halt them. Now, as soon as one of

the two tools succeeds, we either report the bug or discard the instance (bottom of the

recursion). The method recurs on all the instances where we reach the timeout. Thus,

this method has the potential to take advantage of the best available technologies for

finding bugs, such as those based on BMC and testing, and for proving absence of bugs,

such as abstract interpretation, enhanced with our swarm verification approach.

Other further possible directions could extend our existing implementations to handle

more verification properties, rather than reachability. It is desirable to study how to

design effective sequentialization schemas for various concurrency problems, such as



Chapter 6 Conclusions 79

deadlock, race condition, liveness, and, notably, linearizability1. Moreover, as the current

trend in concurrency is about lock-free data structure design, developing a fine-tuning

approach for the analysis of this class of programs is also worth exploring. Another

interesting direction is about the verification of concurrent programs on weak memory

models. Although work has been done for TSO and PSO, verification of more relaxed

models, such as ARM or POWER, remains open, due to the extreme level of concurrency

in these memory models. Effective verification of concurrent programs on these can also

bring a big impact, as POWER/ARM is the main memory model of ARM CPU, which

powers billion of mobile devices and Internet of things2 (IoT) systems.

1Linearizability,https://en.wikipedia.org/wiki/Linearizability
2Internet of things, https://en.wikipedia.org/wiki/Internet_of_things

Linearizability, https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Internet_of_things




References

[ABP11] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Getting

rid of store-buffers in TSO analysis. In Gopalakrishnan and Qadeer [GQ11],

pages 99–115.

[ABP14] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Context-

bounded analysis of TSO systems. In Saddek Bensalem, Yassine Lakhnech,

and Axel Legay, editors, From Programs to Systems. The Systems perspec-

tive in Computing - ETAPS Workshop, FPS 2014, in Honor of Joseph

Sifakis, Grenoble, France, April 6, 2014. Proceedings, volume 8415 of Lec-

ture Notes in Computer Science, pages 21–38. Springer, 2014.

[ABQ11] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-

Bounded Analysis For Concurrent Programs With Dynamic Creation of

Threads. Logical Methods in Computer Science, 7(4), 2011.

[ADF+00] Ole Agesen, David Detlefs, Christine H. Flood, Alex Garthwaite, Paul Alan

Martin, Nir Shavit, and Guy L. Steele Jr. Dcas-based concurrent deques.

In SPAA, pages 137–146, 2000.

[AJ74] Alfred V. Aho and Stephen C. Johnson. LR parsing. ACM Comput. Surv.,

6(2):99–124, 1974.

[AKNP14] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. Don’t

sit on the fence - A static analysis approach to automatic fence insertion.

In Armin Biere and Roderick Bloem, editors, Computer Aided Verification

- 26th International Conference, CAV 2014, Held as Part of the Vienna

Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-

ings, volume 8559 of Lecture Notes in Computer Science, pages 508–524.

Springer, 2014.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for

efficient bounded model checking of concurrent software. In CAV, pages

141–157, 2013.

81



82 REFERENCES

[AS06] Mohammad Awedh and Fabio Somenzi. Automatic invariant strengthening

to prove properties in bounded model checking. In Ellen Sentovich, editor,

Proceedings of the 43rd Design Automation Conference, DAC 2006, San

Francisco, CA, USA, July 24-28, 2006, pages 1073–1076. ACM, 2006.

[BB14] Armin Biere and Roderick Bloem, editors. Computer Aided Verification -

26th International Conference, CAV 2014, Held as Part of the Vienna Sum-

mer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings,

volume 8559 of Lecture Notes in Computer Science. Springer, 2014.

[BBC05] Jiri Barnat, Lubos Brim, and Ivana Cerná. Cluster-based LTL model check-

ing of large systems. In FMCO, pages 259–279, 2005.

[BBC+10] Thomas Ball, Sebastian Burckhardt, Katherine E. Coons, Madanlal Musu-

vathi, and Shaz Qadeer. Preemption sealing for efficient concurrency testing.

In TACAS, pages 420–434, 2010.

[BBdH+09] Thomas Ball, Sebastian Burckhardt, Jonathan de Halleux, Madanlal Musu-

vathi, and Shaz Qadeer. Deconstructing concurrency heisenbugs. In 31st

International Conference on Software Engineering, ICSE 2009, May 16-24,

2009, Vancouver, Canada, Companion Volume, pages 403–404. IEEE, 2009.

[BBR07] Jiri Barnat, Lubos Brim, and Petr Rockai. Scalable multi-core LTL model-

checking. In SPIN, pages 187–203, 2007.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.

Symbolic model checking without bdds. In Rance Cleaveland, editor,

TACAS, volume 1579 of Lecture Notes in Computer Science, pages 193–

207. Springer, 1999.

[BEEH15] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza.

Tractable refinement checking for concurrent objects. In POPL, pages 651–

662. ACM, 2015.

[BEP11] Ahmed Bouajjani, Michael Emmi, and Gennaro Parlato. On sequentializing

concurrent programs. In Eran Yahav, editor, SAS, volume 6887, pages 129–

145, 2011.

[Bey16] Dirk Beyer. Reliable and reproducible competition results with benchexec

and witnesses (report on SV-COMP 2016). In Chechik and Raskin [CR16],

pages 887–904.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.

The software model checker blast. STTT, 9(5-6):505–525, 2007.

[BHMR07] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Ry-

balchenko. Invariant synthesis for combined theories. In Byron Cook and



REFERENCES 83

Andreas Podelski, editors, Verification, Model Checking, and Abstract Inter-

pretation, 8th International Conference, VMCAI 2007, Nice, France, Jan-

uary 14-16, 2007, Proceedings, volume 4349 of Lecture Notes in Computer

Science, pages 378–394. Springer, 2007.

[Bie09] Armin Biere. Bounded Model Checking. In Armin Biere, Marijn Heule,

Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, vol-

ume 185 of Frontiers in Artificial Intelligence and Applications, pages 457–

481. IOS Press, 2009.

[BK04] Jason Baumgartner and Andreas Kuehlmann. Enhanced diameter bounding

via structural. In 2004 Design, Automation and Test in Europe Conference

and Exposition (DATE 2004), 16-20 February 2004, Paris, France, pages

36–41. IEEE Computer Society, 2004.

[BK11] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for configurable

software verification. In Gopalakrishnan and Qadeer [GQ11], pages 184–190.

[BKA02] Jason Baumgartner, Andreas Kuehlmann, and Jacob A. Abraham. Prop-

erty checking via structural analysis. In Ed Brinksma and Kim Guldstrand

Larsen, editors, Computer Aided Verification, 14th International Confer-

ence, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, vol-

ume 2404 of Lecture Notes in Computer Science, pages 151–165. Springer,

2002.

[BL13] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based

on CEGAR and interpolation. In Vittorio Cortellessa and Dániel Varró, edi-

tors, Fundamental Approaches to Software Engineering - 16th International

Conference, FASE 2013, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-

24, 2013. Proceedings, volume 7793 of Lecture Notes in Computer Science,

pages 146–162. Springer, 2013.

[BM08] Aaron R. Bradley and Zohar Manna. Property-directed incremental invari-

ant generation. Formal Asp. Comput., 20(4-5):379–405, 2008.

[BOW12] Daniel Bundala, Joël Ouaknine, and James Worrell. On the magnitude of

completeness thresholds in bounded model checking. In Proceedings of the

27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012,

Dubrovnik, Croatia, June 25-28, 2012, pages 155–164. IEEE Computer So-

ciety, 2012.

[BPM04] Ira D. Baxter, Christopher W. Pidgeon, and Michael Mehlich. Dms R©: Pro-

gram transformations for practical scalable software evolution. In Anthony

Finkelstein, Jacky Estublier, and David S. Rosenblum, editors, 26th In-

ternational Conference on Software Engineering (ICSE 2004), 23-28 May



84 REFERENCES

2004, Edinburgh, United Kingdom, pages 625–634. IEEE Computer Society,

2004.

[BR02] Thomas Ball and Sriram K. Rajamani. The slam project: debugging system

software via static analysis. SIGPLAN Not, page 2002, 2002.

[Bra11] Aaron R. Bradley. Sat-based model checking without unrolling. In Ranjit

Jhala and David A. Schmidt, editors, Verification, Model Checking, and Ab-

stract Interpretation - 12th International Conference, VMCAI 2011, Austin,

TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes

in Computer Science, pages 70–87. Springer, 2011.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[BT15] Christel Baier and Cesare Tinelli, editors. Tools and Algorithms for the Con-

struction and Analysis of Systems - 21st International Conference, TACAS

2015, Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,

volume 9035 of Lecture Notes in Computer Science. Springer, 2015.

[CC77a] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-

tice model for static analysis of programs by construction or approximation

of fixpoints. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi,

editors, POPL, pages 238–252. ACM, 1977.

[CC77b] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic Prop-

erties of Generalized Type Unions. In Language Design for Reliable Soft-

ware, pages 77–94, 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic Design of Program Analysis

Frameworks. In Alfred V Aho, Stephen N Zilles, and Barry K Rosen, editors,

Conference Record of the Sixth Annual {ACM} Symposium on Principles of

Programming Languages, San Antonio, Texas, USA, January 1979, pages

269–282. {ACM} Press, 1979.

[CC14] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present

and future. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting

of the Twenty-Third EACSL Annual Conference on Computer Science Logic

(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,

2014, page 2. ACM, 2014.

[CCF+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine

Miné, David Monniaux, and Xavier Rival. The astreé analyzer. In Shmuel



REFERENCES 85

Sagiv, editor, Programming Languages and Systems, 14th European Sym-

posium on Programming,ESOP 2005, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,

UK, April 4-8, 2005, Proceedings, volume 3444 of Lecture Notes in Com-

puter Science, pages 21–30. Springer, 2005.

[CCF+09] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine

Miné, and Xavier Rival. Why does astrée scale up? Formal Methods in

System Design, 35(3):229–264, 2009.

[CCK+14] Omar Chebaro, Pascal Cuoq, Nikolai Kosmatov, Bruno Marre, Anne

Pacalet, Nicky Williams, and Boris Yakobowski. Behind the scenes in

SANTE: a combination of static and dynamic analyses. Autom. Softw.

Eng., 21(1):107–143, 2014.

[CCM09] Géraud Canet, Pascal Cuoq, and Benjamin Monate. A value analysis for C

programs. In SPAA, pages 123–124. IEEE Computer Society, 2009.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted

and automatic generation of high-coverage tests for complex systems pro-

grams. In OSDI, pages 209–224. USENIX Association, 2008.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model check-

ing: algorithmic verification and debugging. Commun. ACM, 52(11):74–84,

2009.

[CF11] Lucas Cordeiro and Bernd Fischer. Verifying multi-threaded software using

smt-based context-bounded model checking. In Richard N. Taylor, Har-

ald C. Gall, and Nenad Medvidovic, editors, ICSE, pages 331–340. ACM,

2011.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. An efficient method of computing static single assign-

ment form. In Conference Record of the Sixteenth Annual ACM Symposium

on Principles of Programming Languages, Austin, Texas, USA, January

11-13, 1989, pages 25–35. ACM Press, 1989.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. Counterexample-guided abstraction refinement. In E Allen Emer-

son and A Prasad Sistla, editors, CAV, volume 1855 of Lecture Notes in

Computer Science, pages 154–169. Springer, 2000.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. Counterexample-guided abstraction refinement for symbolic model

checking. J. ACM, 50(5):752–794, 2003.



86 REFERENCES

[CGS11] Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. Time-bounded analysis of

real-time systems. In Per Bjesse and Anna Slobodová, editors, International

Conference on Formal Methods in Computer-Aided Design, FMCAD ’11,

Austin, TX, USA, October 30 - November 02, 2011, pages 72–80. FMCAD

Inc., 2011.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-

straints among variables of a program. In Alfred V Aho, Stephen N Zilles,

and Thomas G Szymanski, editors, Conference Record of the Fifth Annual

ACM Symposium on Principles of Programming Languages, Tucson, Ari-

zona, USA, January 1978, pages 84–96. {ACM} Press, 1978.

[CKGJ11] Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand.

The SANTE tool: Value analysis, program slicing and test generation for C

program debugging. In Martin Gogolla and Burkhart Wolff, editors, TAP,

volume 6706 of Lecture Notes in Computer Science, pages 78–83. Springer,

2011.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien

Signoles, and Boris Yakobowski. Frama-c - A software analysis perspective.

In George Eleftherakis, Mike Hinchey, and Mike Holcombe, editors, Software

Engineering and Formal Methods - 10th International Conference, SEFM

2012, Thessaloniki, Greece, October 1-5, 2012. Proceedings, volume 7504 of

Lecture Notes in Computer Science, pages 233–247. Springer, 2012.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In TACAS, volume 2988, pages 168–176, 2004.

[CKOS04] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.

Completeness and complexity of bounded model checking. In Bernhard Stef-

fen and Giorgio Levi, editors, Verification, Model Checking, and Abstract

Interpretation, 5th International Conference, VMCAI 2004, Venice, Jan-

uary 11-13, 2004, Proceedings, volume 2937 of Lecture Notes in Computer

Science, pages 85–96. Springer, 2004.

[CKOS05] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.

Computational challenges in bounded model checking. STTT, 7(2):174–183,

2005.

[CKSY05] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.

SATABS: sat-based predicate abstraction for ANSI-C. In Nicolas Halbwachs

and Lenore D. Zuck, editors, Tools and Algorithms for the Construction and

Analysis of Systems, 11th International Conference, TACAS 2005, Held as

Part of the Joint European Conferences on Theory and Practice of Software,



REFERENCES 87

ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3440

of Lecture Notes in Computer Science, pages 570–574. Springer, 2005.

[CKY03] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral consis-

tency of C and verilog programs using bounded model checking. In DAC,

pages 368–371. ACM, 2003.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In In

STOC, pages 151–158. ACM, 1971.

[CR16] Marsha Chechik and Jean-François Raskin, editors. Tools and Algorithms

for the Construction and Analysis of Systems - 22nd International Confer-

ence, TACAS 2016, Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,

April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer

Science. Springer, 2016.

[CU98] Michael Colón and Tomás E. Uribe. Generating finite-state abstractions of

reactive systems using decision procedures. In Alan J. Hu and Moshe Y.

Vardi, editors, Computer Aided Verification, 10th International Conference,

CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings,

volume 1427 of Lecture Notes in Computer Science, pages 293–304. Springer,

1998.

[DD01] Satyaki Das and David L. Dill. Successive approximation of abstract tran-

sition relations. In 16th Annual IEEE Symposium on Logic in Computer

Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings, pages

51–58. IEEE Computer Society, 2001.

[DFG+00] David Detlefs, Christine H. Flood, Alex Garthwaite, Paul Alan Martin, Nir

Shavit, and Guy L. Steele Jr. Even better DCAS-based concurrent deques.

In DISC, volume 1914 of LNCS, pages 59–73. Springer, 2000.

[DHKR11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp

Rümmer. Software verification using k-induction. In Static Analysis - 18th

International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011.

Proceedings, pages 351–368, 2011.

[DHRR04] Matthew B. Dwyer, John Hatcliff, Robby, and Venkatesh Prasad Ran-

ganath. Exploiting object escape and locking information in partial-order

reductions for concurrent object-oriented programs. Formal Methods in

System Design, 25(2-3):199–240, 2004.

[DKR10] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic

analysis of scratch-pad memory code for heterogeneous multicore processors.

In Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for



88 REFERENCES

the Construction and Analysis of Systems, 16th International Conference,

TACAS 2010, Held as Part of the Joint European Conferences on The-

ory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,

2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages

280–295. Springer, 2010.

[EQR11] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded

Scheduling. In POPL, pages 411–422, 2011.

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT

solving. Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

[FHRV13] Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith.

Con2colic testing. In ESEC/FSE, pages 37–47. ACM, 2013.

[FIP13a] Bernd Fischer, Omar Inverso, and Gennaro Parlato. CSeq: A Concurrency

Pre-processor for Sequential C Verification Tools. In ASE, pages 710–713,

2013.

[FIP13b] Bernd Fischer, Omar Inverso, and Gennaro Parlato. Cseq: A sequential-

ization tool for C - (competition contribution). In TACAS, pages 616–618,

2013.

[FMNP14] Anna Lisa Ferrara, P. Madhusudan, Truc L. Nguyen, and Gennaro Parlato.

Vac - verifier of administrative role-based access control policies. In Biere

and Bloem [BB14], pages 184–191.

[FMP12] Anna Lisa Ferrara, P. Madhusudan, and Gennaro Parlato. Security analysis

of role-based access control through program verification. In Stephen Chong,

editor, 25th IEEE Computer Security Foundations Symposium, CSF 2012,

Cambridge, MA, USA, June 25-27, 2012, pages 113–125. IEEE Computer

Society, 2012.

[FMP13] Anna Lisa Ferrara, P. Madhusudan, and Gennaro Parlato. Policy analysis

for self-administrated role-based access control. In Piterman and Smolka

[PS13], pages 432–447.

[FSLN17] Anna Lisa Ferrara, Anna Squicciarini, Cong Liao, and Truc L. Nguyen.

Toward group-based user-attribute policies in azure-like access control sys-

tems. In Giovanni Livraga, editor, Data and Applications Security and Pri-

vacy XXX - 31th Annual IFIP WG 11.3 Conference, DBSec 2017, Philadel-

phia, PA, USA, July 19-21, 2017. Proceedings, Lecture Notes in Computer

Science. Springer, 2017.

[GHR10] Naghmeh Ghafari, Alan J. Hu, and Zvonimir Rakamaric. Context-bounded

translations for concurrent software: An empirical evaluation. In Model



REFERENCES 89

Checking Software - 17th International SPIN Workshop, Enschede, The

Netherlands, September 27-29, 2010. Proceedings, pages 227–244, 2010.

[GKKN15] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.

Navas. The SeaHorn verification framework. In CAV, pages 343–361, 2015.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-

mated random testing. In Vivek Sarkar and Mary W. Hall, editors, Proceed-

ings of the ACM SIGPLAN 2005 Conference on Programming Language

Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pages

213–223. ACM, 2005.

[GM11] Pranav Garg and P. Madhusudan. Compositionality entails sequentializ-

ability. In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, TACAS,

volume 6605 of Lecture Notes in Computer Science, pages 26–40. Springer,

2011.

[God97] Patrice Godefroid. Model checking for programming languages using

verisoft. In Conference Record of POPL’97: The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, Papers Pre-

sented at the Symposium, Paris, France, 15-17 January 1997, pages 174–

186, 1997.

[GPR11] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate ab-

straction and refinement for verifying multi-threaded programs. In Thomas

Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

2011, Austin, TX, USA, January 26-28, 2011, pages 331–344. ACM, 2011.

[GQ11] Ganesh Gopalakrishnan and Shaz Qadeer, editors. Computer Aided Veri-

fication - 23rd International Conference, CAV 2011, Snowbird, UT, USA,

July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer

Science. Springer, 2011.

[GS97] Susanne Graf and Hassen Säıdi. Construction of Abstract State Graphs

with PVS. In Orna Grumberg, editor, CAV, volume 1254 of Lecture Notes

in Computer Science, pages 72–83. Springer, 1997.

[HB07] Gerard J. Holzmann and Dragan Bosnacki. The design of a multicore exten-

sion of the SPIN model checker. IEEE Trans. Software Eng., 33(10):659–

674, 2007.

[HCD+13] Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen

Hoenicke, Markus Lindenmann, Alexander Nutz, Christian Schilling, and

Andreas Podelski. Ultimate Automizer with SMTInterpol - (competition

contribution). In Piterman and Smolka [PS13], pages 641–643.



90 REFERENCES

[HJG08] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification. In

ASE, pages 1–6, 2008.

[HJG11] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification

techniques. IEEE Trans. Software Eng., 37(6):845–857, 2011.

[Hol14] Gerard J. Holzmann. Mars code. Commun. ACM, 57(2):64–73, 2014.

[Hol16] Gerard J. Holzmann. Cloud-based verification of concurrent software. In

VMCAI, volume 9583 of LNCS, pages 311–327. Springer, 2016.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack

algorithm. In SPAA, pages 206–215. ACM, 2004.

[INF+15] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and

Gennaro Parlato. Lazy-cseq: A context-bounded model checking tool for

multi-threaded c-programs. In 30th IEEE/ACM International Conference

on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, Novem-

ber 9-13, 2015, pages 807–812, 2015.

[ISO09] ISO/IEC. Information technology—Portable Operating System Interface

(POSIX) Base Specifications, Issue 7, ISO/IEC/IEEE 9945:2009. ISO,

2009.

[ITF+14a] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Bounded model checking of multi-threaded C pro-

grams via lazy sequentialization. In Biere and Bloem [BB14], pages 585–602.

[ITF+14b] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Lazy-cseq: A lazy sequentialization tool for C -

(competition contribution). In TACAS, pages 398–401, 2014.

[Jea09] Bertrand Jeannet. Relational interprocedural verification of concurrent pro-

grams. In SEFM, pages 83–92. IEEE Computer Society, 2009.

[Jon83] Cliff B. Jones. Tentative steps toward a development method for interfering

programs. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[KOS+11] Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James

Worrell. Linear completeness thresholds for bounded model checking. In

Computer Aided Verification - 23rd International Conference, CAV 2011,

Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 557–572, 2011.

[Kro06] Daniel Kroening. Computing over-approximations with bounded model

checking. Electr. Notes Theor. Comput. Sci., 144(1):79–92, 2006.



REFERENCES 91

[KS03] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence

diameters. In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik

Mukhopadhyay, editors, Verification, Model Checking, and Abstract Inter-

pretation, 4th International Conference, VMCAI 2003, New York, NY,

USA, January 9-11, 2002, Proceedings, volume 2575 of Lecture Notes in

Computer Science, pages 298–309. Springer, 2003.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for

lifelong program analysis & transformation. In 2nd IEEE / ACM Inter-

national Symposium on Code Generation and Optimization (CGO 2004),

20-24 March 2004, San Jose, CA, USA, pages 75–88. IEEE Computer So-

ciety, 2004.

[Lam79] Leslie Lamport. On the proof of correctness of a calendar program. Com-

mun. ACM, 22(10):554–556, 1979.

[LMP09a] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing

context-bounded concurrent reachability to sequential reachability. In CAV,

pages 477–492, 2009.

[LMP09b] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. An-

alyzing Recursive Programs Using a Fixed-point Calculus. In PLDI, pages

211–222, 2009.

[LMP10] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Model-checking

parameterized concurrent programs using linear interfaces. In Tayssir Touili,

Byron Cook, and Paul B. Jackson, editors, CAV, volume 6174 of Lecture

Notes in Computer Science, pages 629–644. Springer, 2010.

[LMP12] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Sequentializing

parameterized programs. In Sebastian S. Bauer and Jean-Baptiste Raclet,

editors, FIT, volume 87, pages 34–47, 2012.

[LQ13] Akash Lal and Shaz Qadeer. Reachability modulo theories. In Parosh Aziz

Abdulla and Igor Potapov, editors, Reachability Problems - 7th Interna-

tional Workshop, RP 2013, Uppsala, Sweden, September 24-26, 2013 Pro-

ceedings, volume 8169 of Lecture Notes in Computer Science, pages 23–44.

Springer, 2013.

[LQL12] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. A solver for reachability

modulo theories. In Madhusudan and Seshia [MS12], pages 427–443.

[LQR09] Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. Static and

precise detection of concurrency errors in systems code using smt solvers.

In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643 of Lecture

Notes in Computer Science, pages 509–524. Springer, 2009.



92 REFERENCES

[LR09] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a

context bound to sequential analysis. Formal Methods in System Design,

35(1):73–97, 2009.

[LS90] M. E. Lesk and E. Schmidt. Unix vol. ii. chapter Lex&Mdash;a Lexical An-

alyzer Generator, pages 375–387. W. B. Saunders Company, Philadelphia,

PA, USA, 1990.

[McK17] Paul E. McKenney. Is parallel programming hard, and, if so, what can you

do about it? (v2017.01.02a). CoRR, abs/1701.00854, 2017.

[MFS12] Florian Merz, Stephan Falke, and Carsten Sinz. Llbmc: Bounded model

checking of c and c++ programs using a compiler ir. In VSTTE, volume

7152, pages 146–161, 2012.

[Min01] Antoine Miné. The octagon abstract domain. In WCRE, page 310, 2001.

[MQ07] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for

systematic testing of multithreaded programs. In Jeanne Ferrante and

Kathryn S. McKinley, editors, PLDI, pages 446–455, 2007.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproduc-

ing Heisenbugs in concurrent programs. In OSDI, pages 267–280. USENIX

Association, 2008.

[MS03] Maher N. Mneimneh and Karem A. Sakallah. Sat-based sequential depth

computation. In Hiroto Yasuura, editor, Proceedings of the 2003 Asia and

South Pacific Design Automation Conference, ASP-DAC ’03, Kitakyushu,

Japan, January 21-24, 2003, pages 87–92. ACM, 2003.

[MS12] P. Madhusudan and Sanjit A. Seshia, editors. Computer Aided Verification

- 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-

13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer Science.

Springer, 2012.

[Mül06] Markus Müller-Olm. Variations on Constants - Flow Analysis of Sequential

and Parallel Programs, volume 3800 of LNCS. Springer, 2006.

[NFLP15] Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato.

Unbounded Lazy-CSeq: A lazy sequentialization tool for C programs with

unbounded context switches - (competition contribution). In Baier and

Tinelli [BT15], pages 461–463.

[NFLP16a] Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato.

Lazy sequentialization for the safety verification of unbounded concurrent



REFERENCES 93

programs. In Cyrille Artho, Axel Legay, and Doron Peled, editors, ATVA,

volume 9938 of Lecture Notes in Computer Science, pages 174–191, 2016.

[NFLP16b] Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Par-

lato. Verismart: A pragmatic verification approach for concurrent programs.

November 2016. University of Southampton.

[NFLP17] Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato.

Concurrent program verification with lazy sequentialization and interval

analysis. In Amr El Abbadi and Benôıt Garbinato, editors, Networked

Systems - 5th International Conference, NETYS 2017, Marrakech, Morocco,

May 17-19, 2017, Proceedings, volume 10299 of Lecture Notes in Computer

Science, pages 255–271, 2017.

[NIF+17] Truc L. Nguyen, Omar Inverso, Bernd Fischer, Salvatore La Torre, and

Gennaro Parlato. Lazy-cseq 2.0: Combining lazy sequentialization with

abstract interpretation - (competition contribution). In Axel Legay and

Tiziana Margaria, editors, Tools and Algorithms for the Construction and

Analysis of Systems - 23rd International Conference, TACAS 2017, Held as

Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II,

volume 10206 of Lecture Notes in Computer Science, pages 375–379, 2017.

[OU09] Kei Ohmura and Kazunori Ueda. c-sat: A parallel SAT solver for clusters.

In SAT, volume 5584 of Lecture Notes in Computer Science, pages 524–537.

Springer, 2009.

[OV15] Mendes Oulamara and Arnaud J. Venet. Abstract interpretation with

higher-dimensional ellipsoids and conic extrapolation. In Daniel Kroen-

ing and Corina S. Pasareanu, editors, CAV, volume 9206 of Lecture Notes

in Computer Science, pages 415–430. Springer, 2015.

[PR11] Andreas Podelski and Andrey Rybalchenko. Transition invariants and tran-

sition predicate abstraction for program termination. In Parosh Aziz Ab-

dulla and K. Rustan M. Leino, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems - 17th International Conference, TACAS

2011, Held as Part of the Joint European Conferences on Theory and Prac-

tice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3,

2011. Proceedings, volume 6605 of Lecture Notes in Computer Science, pages

3–10. Springer, 2011.

[PS13] Nir Piterman and Scott A. Smolka, editors. Tools and Algorithms for

the Construction and Analysis of Systems - 19th International Conference,

TACAS 2013, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.



94 REFERENCES

Proceedings, volume 7795 of Lecture Notes in Computer Science. Springer,

2013.

[PSKG08] Hendrik Post, Carsten Sinz, Alexander Kaiser, and Thomas Gorges. Reduc-

ing false positives by combining abstract interpretation and bounded model

checking. In ASE, pages 188–197. IEEE Computer Society, 2008.

[Qad11] Shaz Qadeer. Poirot - a concurrency sleuth. In Shengchao Qin and Zongyan

Qiu, editors, ICFEM, volume 6991 of Lecture Notes in Computer Science,

page 15. Springer, 2011.

[QSPK01] Daniel J. Quinlan, Markus Schordan, Bobby Philip, and Markus

Kowarschik. The specification of source-to-source transformations for the

compile-time optimization of parallel object-oriented scientific applications.

In Henry G. Dietz, editor, Languages and Compilers for Parallel Computing,

14th International Workshop, LCPC 2001, Cumberland Falls, KY, USA,

August 1-3, 2001. Revised Papers, volume 2624 of Lecture Notes in Com-

puter Science, pages 383–394. Springer, 2001.

[QW04] Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. In

PLDI, pages 14–24, 2004.

[RE14] Zvonimir Rakamaric and Michael Emmi. SMACK: decoupling source lan-

guage details from verifier implementations. In CAV, pages 106–113, 2014.

[RFH12] Niloofar Razavi, Azadeh Farzan, and Andreas Holzer. Bounded-interference

sequentialization for testing concurrent programs. In ISoLA, volume 7609

of LNCS, pages 372–387. Springer, 2012.

[RIKG12] Niloofar Razavi, Franjo Ivancic, Vineet Kahlon, and Aarti Gupta. Concur-

rent test generation using concolic multi-trace analysis. In APLAS, volume

7705 of LNCS, pages 239–255. Springer, 2012.

[Sch96] Johann Schumann. Sicotheo: Simple competitive parallel theorem provers.

In CADE, volume 1104 of LNCS, pages 240–244. Springer, 1996.

[SD97] Ulrich Stern and David L. Dill. Parallelizing the murphi verifier. In CAV,

pages 256–278, 1997.

[SS99] Geoff Sutcliffe and Darryl Seyfang. Smart selective competition parallelism

ATP. In Proceedings of the Twelfth International Florida Artificial Intelli-

gence Research Society Conference, pages 341–345. AAAI Press, 1999.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek

Williams. Understanding POWER multiprocessors. In Mary W. Hall and

David A. Padua, editors, PLDI, pages 175–186. ACM, 2011.



REFERENCES 95

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and

Magnus O. Myreen. x86-tso: a rigorous and usable programmer’s model for

x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety prop-

erties using induction and a sat-solver. In Warren A Hunt Jr. and Steven D

Johnson, editors, FMCAD, volume 1954 of Lecture Notes in Computer Sci-

ence, pages 108–125. Springer, 2000.

[SW11] Nishant Sinha and Chao Wang. On interference abstractions. In POPL,

pages 423–434, 2011.

[TDB14] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency test-

ing using schedule bounding: an empirical study. In PPoPP, pages 15–28,

2014.

[TDB16] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency test-

ing using controlled schedulers: An empirical study. TOPC, 2(4):23, 2016.

[TIF+14] Ermenegildo Tomasco, Omar Inverso, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Mu-cseq: Sequentialization of C programs by shared

memory unwindings - (competition contribution). In Erika Ábrahám and

Klaus Havelund, editors, TACAS, volume 8413 of Lecture Notes in Com-

puter Science, pages 402–404. Springer, 2014.

[TIF+15a] Ermenegildo Tomasco, Omar Inverso, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Mu-cseq 0.3: Sequentialization by read-implicit and

coarse-grained memory unwindings - (competition contribution). In Baier

and Tinelli [BT15], pages 436–438.

[TIF+15b] Ermenegildo Tomasco, Omar Inverso, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Verifying concurrent programs by memory unwind-

ing. In Baier and Tinelli [BT15], pages 551–565.

[TNF+17] Ermenegildo Tomasco, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Using shared memory abstractions to design eager

sequentializations for weak memory models. In Proceedings of the 15th Inter-

national Conference on Software Engineering and Formal Methods, SEFM

2017, Trento, Italy, Sep 04-08, 2017.

[TNI+16a] Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, Bernd Fischer, Sal-

vatore La Torre, and Gennaro Parlato. Lazy sequentialization for TSO and

PSO via shared memory abstractions. In FMCAD, pages 193–200, 2016.

[TNI+16b] Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, Bernd Fischer, Sal-

vatore La Torre, and Gennaro Parlato. Mu-cseq 0.4: Individual memory



96 REFERENCES

location unwindings - (competition contribution). In Chechik and Raskin

[CR16], pages 938–941.

[UAS+12] Emre Uzun, Vijayalakshmi Atluri, Shamik Sural, Jaideep Vaidya, Gennaro

Parlato, Anna Lisa Ferrara, and Parthasarathy Madhusudan. Analyzing

temporal role based access control models. In Vijay Atluri, Jaideep Vaidya,

Axel Kern, and Murat Kantarcioglu, editors, 17th ACM Symposium on

Access Control Models and Technologies, SACMAT ’12, Newark, NJ, USA

- June 20 - 22, 2012, pages 177–186. ACM, 2012.

[UAV+14] Emre Uzun, Vijayalakshmi Atluri, Jaideep Vaidya, Shamik Sural, Anna Lisa

Ferrara, Gennaro Parlato, and P. Madhusudan. Security analysis for tempo-

ral role based access control. Journal of Computer Security, 22(6):961–996,

2014.

[Ven12] Arnaud Venet. The gauge domain: Scalable analysis of linear inequality

invariants. In Madhusudan and Seshia [MS12], pages 139–154.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and

Flavio Lerda. Model checking programs. Autom. Softw. Eng., 10(2):203–

232, 2003.

[Vyu10] Dmitry Vyukov. Bug with a context switch bound 5, 2010.

[WCM+15] Xueguang Wu, Liqian Chen, Antoine Miné, Wei Dong, and Ji Wang. Nu-

merical static analysis of interrupt-driven programs via sequentialization.

In EMSOFT, pages 55–64, 2015.

[WHdM09] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça

de Moura. A concurrent portfolio approach to SMT solving. In CAV,

pages 715–720, 2009.

[WKO13] Björn Wachter, Daniel Kroening, and Joël Ouaknine. Verifying multi-

threaded software with impact. In FMCAD, pages 210–217. IEEE, 2013.

[WL99] Andreas Wolf and Reinhold Letz. Strategy parallelism in automated theo-

rem proving. IJPRAI, 13(2):219–245, 1999.

[XHHL08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla:

Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (JAIR),

32:565–606, 2008.

[ZEL+16] Manchun Zheng, John G. Edenhofner, Ziqing Luo, Mitchell J. Gerrard,

Michael S. Rogers, Matthew B. Dwyer, and Stephen F. Siegel. CIVL: apply-

ing a general concurrency verification framework to C/pthreads programs

(competition contribution). In Chechik and Raskin [CR16], pages 908–911.



REFERENCES 97

[ZLO+11] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang

Jin, Shan Lu, and Thomas W. Reps. ConSeq: detecting concurrency bugs

through sequential errors. In ASPLOS, pages 251–264, 2011.





safestack benchmark

The code of safestack is shown in Figure 2, whereas Figure 1 shows the transformations

of the stack data structure performed by the counterexample reported by Lazy-CSeq

(using the SC semantics). The leftmost number is the number of elements stack.count

on the stack. The three elements of stack.array are visualised next. The value of

the element pointed by stack.head is in a circle whereas the other two elements are in

a rectangular box. next points to the element below on the stack. If there is nothing

below or an element is unused its value is -1 in the data structure. In this case no

arrow is displayed. We highlight the values that are written by the threads in bold

numbers. The three rightmost columns show the functions called by the three threads.

Context switches are indicated by horizontal lines. We denote functions (except thread)

by reactangular boxes. Pop(0), for instance, means that function Pop() is called and

element 0 is popped. Note that the executions of these functions, and hence the boxes,

are interrupted by context switches. The numbers indicate the line numbers in Figure 2

with read and write operations performed by the segment of the function executed. The

assertion failure finally occurs in line 60 in thread 2 because both thread 0 and 2 have

popped element 1 and then simultaneously try to write a value into element 1 and push

it. This faulty behaviour is enabled by thread 1 whose attempt to pop element 0 is

interrupted three times, which causes both other threads, 0 and 2, see element 1 on top

of the stack.

99



100 REFERENCES

count array[0..2] thread 0 thread 1 thread 2

0 0 03
thread main, Init(), 18–21

0 0 03 Pop(0)

25–26

0 0 02
Pop(0)

26–32

2 0 02 thread
59–60

2 0 02 Push(0)

43–45

2 0 01
Pop(1)

26–32

2 0 01 thread
59–60

2 0 01 Push(1)

43

2 0 01
27

2 0 02

45–48

2 0 02

47

2 0 02
30–35

2 0 01
Pop(1)

26–32

2 2 01 thread
59

2 2 02

45–48

2 2 01
Pop(1)

26–32

2 0 01 thread
59–60

2 0 01 Push(1)

43–47

2 0 00

31–32

1 0 00 thread
59–60

1 0 01
Push(0)

43–48

1 0 01 thread
60

Figure 1: safestack counterexample



REFERENCES 101

1 #define NUM THREADS 3
2

3 typedef struct SafeStackItem {
4 volatile int Value;
5 int Next;
6 } SafeStackItem;
7

8 typedef struct SafeStack {
9 SafeStackItem array[3];

10 int head;
11 int count;
12 } SafeStack;
13

14 pthread t threads[NUM THREADS];
15 SafeStack stack;
16

17 void Init(int pushCount) {
18 atomic store(&stack.count, pushCount);
19 atomic store(&stack.head, 0);
20 for (int i = 0; i < pushCount − 1; i++) atomic store(&stack.array[i].Next, i + 1);
21 atomic store(&stack.array[pushCount − 1].Next, −1);
22 }
23

24 int Pop(void) {
25 while (atomic load(&stack.count) > 1) {
26 int head1 = atomic load(&stack.head);
27 int next1 = atomic exchange(&stack.array[head1].Next, −1);
28 if (next1 >= 0) {
29 int head2 = head1;
30 if (atomic compare and exchange(&stack.head, &head2, next1)) {
31 atomic fetch sub(&stack.count, 1);
32 return head1;
33 }
34 else {
35 atomic exchange(&stack.array[head1].Next, next1);
36 }
37 }
38 }
39 return −1;
40 }
41

42 void Push(int index) {
43 int head1 = atomic load(&stack.head);
44 do {
45 atomic store(&stack.array[index ].Next, head1);
46 }
47 while (!(atomic compare and exchange(&stack.head, &head1, index)));
48 atomic fetch add(&stack.count, 1);
49 }
50

51 void∗ thread(void∗ arg) {
52 int idx = (int)( size t )arg;
53 for ( size t i = 0; i < 2; i++) {
54 int elem;
55 for (;;) {
56 elem = Pop();
57 if (elem >= 0) break;
58 }
59 stack.array[elem].Value = idx;
60 assert (stack.array[elem].Value == idx);
61 Push(elem);
62 }
63 return NULL;
64 }
65

66 int main(void) {
67 Init (NUM THREADS);
68 for (int i = 0; i < NUM THREADS; ++i) pthread create(&threads[i], NULL, thread, (void∗)i);
69 for (int i = 0; i < NUM THREADS; ++i) pthread join(threads[i], NULL);
70 return 0;
71 }

Figure 2: safestack benchmark




	Declaration of Authorship
	Acknowledgements
	1 Introduction
	2 Backgrounds
	2.1 Shared-memory Multi-threaded Programs
	2.1.1 Syntax
	2.1.2 Semantics
	2.1.3 Reachability

	2.2 Sequential Verification Techniques
	2.2.1 Bounded Model Checking
	2.2.2 Abstract Interpretation
	2.2.3 Predicate Abstraction

	2.3 Concurrent Verification via Sequentialization
	2.4 CSeq Sequentialization Framework

	3 Lazy Sequentialization and Interval Analysis
	3.1 Introduction
	3.2 Verification approach
	3.2.1 The general schema
	3.2.2 Value analysis

	3.3 Implementation
	3.4 Experiments
	safestack benchmark.
	eliminationstack benchmark.
	DCAS benchmark.



	3.5 Related Work
	3.6 Conclusions

	4 A Pragmatic Verification Approach for Concurrent Programs
	4.1 Introduction
	4.2 Approach
	4.2.1 Splitting Computations with Tilings
	4.2.2 Tile Selection versus Random Selection
	4.2.3 Overall approach

	4.3 Programming and Execution Models
	4.4 Code-to-code translation
	4.5 Implementation
	4.6 Experiments
	4.6.1 Benchmarks
	4.6.2 Experimental Set-Up
	4.6.3 Experimental Results

	4.7 Related work
	Parallel verification
	Sequentialization
	Concolic testing
	Testing



	4.8 Conclusions

	5 Lazy Sequentialization of Unbounded Concurrent Programs
	5.1 Introduction
	5.2 Unlimited Lazy Sequentialization Schema
	5.3 Implementation and Experiments
	5.4 Related Work
	5.5 Conclusions

	6 Conclusions
	6.1 Summary of Work
	6.2 Future Directions


