
\

Alhaizaey, Y., Singer, J. and Michala, A. L. (2021) Optimizing Task

Allocation for Edge Micro-Clusters in Smart Cities. 2nd IEEE International

Workshop on Smart Computing for Smart Cities (SC2), 07 Jun 2021. pp.

341-347. ISBN 9781665446525

(doi:10.1109/WoWMoM51794.2021.00062)

The material cannot be used for any other purpose without further

permission of the publisher and is for private use only.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/242846/

 Deposited on 01 June 2021

Enlighten – Research publications by members of the University of

 Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/WoWMoM51794.2021.00062
http://eprints.gla.ac.uk/242846/
http://eprints.gla.ac.uk/

Optimizing Task Allocation for Edge
Micro-Clusters in Smart Cities

Yousef Alhaizaey
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

y.alhaizaey.1@research.gla.ac.uk

Jeremy Singer
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

jeremy.singer@glasgow.ac.uk

Anna Lito Michala
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

annalito.michala@glasgow.ac.uk

It is not evident that datacenter management techniques are
directly transferable to edge scenarios. Section II-A explores
the concept of HEµCs in greater detail, along with deployment
motivation.

Why are Edge Micro-Clusters deployed in Smart Cities?
There is a wide range of smart city use cases for edge
computing. Generally, such applications are presented as high-
level abstract scenarios such as self-driving cars, augmented
reality tourism, or smart healthcare [3]–[5]. With respect to
understanding concrete compute resource requirements, it is
more practical to consider specific usage scenarios at a task
processing level.

The DeFog [6] and Edge Bench [7] suites consist of
idealized example tasks relating to smart city applications that
may be executed by edge devices. In this paper, we argue that
a HEµC is likely to receive a set of related compute requests as
a batch of jobs, with a low-latency requirement for completion
of all jobs in the batch. This might be object detection in a
set of still photo images, for instance. Section II-B explores
the batch job concept in greater detail, and outlines how edge
benchmark suites can be adapted to model such workloads.

Do Edge Micro-Clusters require new management tech-
niques? Existing research highlights the complexity and diffi-
culty of resource management at the edge in comparison to the
centralized cloud environments. This is due to heterogeneity,
dynamicity and uncertainty at the network edge [8]–[10]. It is
important to characterize and obtain deep insight of various
edge resource management approaches.

For practical applicability, we advocate representing and
studying resource management in physical, realistic edge
environments, rather than using simulation-based tools. Simu-
lations provide an abstraction of the computing environment,
which may not be representative of the full scope of un-
certainties [11], [12]. In this paper, we describe a testbed
which represents a concrete instantiation of the HEµC concept.
We provide a lightweight resource management layer which
executes at the edge, implementing task allocation among
the various nodes. We study several allocation strategies,
from randomized allocation, through heuristic approaches, to
mathematical optimization by integer programming. We show
that, in a HEµC, effective task allocation is important and can
cause significant improvements in overall performance. We

Abstract—Current urban technology trends like Internet-of-
Things and 5G require ultra low latency compute resource to
be distributed liberally at the network edge. We characterize
and advocate the need for heterogeneous edge micro-clusters;
these are pragmatic, low-power, low-cost, minimal footprint units
that can provide sufficient r esource f or t ypical e dge compute
applications in smart cities. However, to make best use of het-
erogeneous edge micro-clusters, we require resource management
techniques that are both efficient and effective. In this paper, we
report on an empirical study to demonstrate that mathematical
optimization (in particular, mixed integer programming) for
resource management is appropriate in terms of overhead, also
highly effective for executing batch-arrival workloads in smart
city use cases.

Index Terms—Resource Management, Task Allocation, Inter-
net of Things, Edge Computing, Edge Cluster

I. INTRODUCTION

Edge compute is becoming mainstream, driven by growth
in consumer adoption of 5G [1] and Internet-of-Things (IoT)
technology [2] for smart city systems. Many end-user ap-
plications require low-latency data processing and interactive
responses, motivating the provision of highly available edge
compute capability. In this paper, we argue that the heteroge-
neous edge micro-cluster (HEµC) is a pragmatic instantiation
of computing resource at the network edge. Further, we
show that mathematical optimization techniques like integer
programming are most appropriate for edge resource allocation
scenarios in contrast to the high performance computing
domain, given the relatively small scale of the solution space.

What is an Edge Micro-Cluster? Why is it heteroge-
neous? In a smart city, a HEµC might be a road-side unit in
an autonomous vehicular system, a collection of smart home
devices on a shared local area network, or an ad-hoc cluster of
portable devices owned by a group of co-located individuals.
Heterogeneity emerges naturally through partial infrastructure
upgrades over time, installed device diversity and opportunistic
clustering techniques. In our experiments, we model a typical
HEµC using a single-board computer cluster, such as a stack
of Raspberry Pi nodes.

Because of differences in infrastructure, architecture, re-
source distribution, connectivity and capacity at the edge,
classical resource management methods must be reexamined.

also demonstrate that, for the scale of scheduling we perform,
it is entirely feasible to run integer programming at the edge
with minimal overhead (worst case less than 2% of the overall
makespan time in our experiments).

This paper makes the following key contributions:

• We characterize and motivate the concept of heteroge-
neous edge micro-clusters (HEµCs).

• We describe and demonstrate typical workloads for
HEµC compute platforms.

• We present an empirical study which shows that mathe-
matical optimization is an appropriate and highly effec-
tive technique for batched task allocation in HEµCs.

The reminder of this paper is organized as follows. Section II
outlines the notion of HEµCs and presents relevant use cases.
Section III describes our experimental framework. Section IV
presents the implemented resource allocation approaches with
results analysed in Section V. The related work is reviewed
in Section VI. Finally Section VII concludes the paper and
considers future work.

II. MOTIVATION

A. Heterogeneous Edge Micro-Clusters

In this section we outline the concept of a heterogeneous
edge micro-cluster (HEµC). We argue this is a compelling
demonstrator for a typical edge compute platform at present
and for the short-term future.

A HEµC is heterogeneous. It will consist of multiple
compute devices that have differing capabilities. This might
be in terms of CPU core count and clock speed, or in terms of
available RAM. Further, some devices might feature special-
ized accelerator nodes, such as the Movidius Neural Compute
Stick. Since a HEµC is likely to be deployed for a long time,
it is possible that upgraded nodes with higher specifications
may be added at a later date, increasing heterogeneity in the
cluster.

A HEµC is located at the network edge. For this reason,
it is end-user facing, required to provide compute resource
and serve content directly to consumers. This addresses the
expectation of minimal latency. In terms of connectivity, nodes
in the cluster will have a regular, non-exotic network topology,
typically peers on a single LAN.

A HEµC is micro-scale. This has implications for its
power-draw; it is likely to run off renewable energy and a
battery pack. In terms of cost, the electronic equipment must
be commodity, cheap components since they are so widely
deployed. Further, in terms of physical footprint the HEµC
should be small, perhaps occupying a road-side cabinet or
embedded in the fabric of a building.

A HEµC is a compute cluster, consisting of a small number
of nodes (perhaps up to 10) with a small number of total cores
(perhaps up to 100). The multiplicity of nodes is important for
(a) redundancy, given the commodity nature of the devices;
and (b) parallel throughput, given the nature of the workloads
that we consider in more detail below.

B. Edge Processing Workloads

In general, research literature in the field of edge computing
describes high-level application use cases. Popular examples
include:

1) Surveillance cameras in smart cities [13]
2) Smart home sensors [14]
3) Support for autonomous vehicles [15]
4) Voice-based smart services [7]
For our pragmatic empirical characterization approach, we

prefer to identify realistic benchmark-based compute work-
loads that we can execute directly on HEµC nodes and report
meaningful performance metrics. The DeFog benchmark suite
[6] is ideally suited to our purpose. It features:

1) a representative set of pre-configured, containerized
workloads with a straightforward script-based deploy-
ment model.

2) benchmarks that take common file formats (e.g. JPEGs,
WAVs) as input.

3) realistic small-scale tasks that could be aggregated to
produce large-scale use cases such as the edge applica-
tions outlined above.

There is a key difference in how we use the DeFog
benchmarks. The original developers compare execution of
each individual task across three deployment platforms: cloud,
edge or fog. We propose to focus on edge deployment and
use the benchmarks to study batched execution of multiple
concurrent tasks on multiple nodes in a heterogeneous edge
environment.

Others have identified this trend of heterogeneity at the edge
[10]. We therefore aim to tackle the lack of a real testbed for
HEµC and characterise its deployment features and utility by
modeling and experimenting with a real configured testbed
instead of using simulation.

III. EXPERIMENTAL INFRASTRUCTURE

A. Philosophy

The majority of studies in edge resource management rely
on simulation-based tools such as CloudSim [16] and iFogSim
[17]. We prefer an empirico-realist approach to evaluation,
which requires the use of physical testbed hardware, represen-
tative benchmark applications software, and wall-clock timing
metrics for performance reporting.

While we acknowledge the scale of our work is necessarily
limited by these realism constraints, we feel our findings will
be more tangible and translatable to near-term, pragmatic edge
deployment scenarios.

B. System Testbed

Our testbed is a minimal instantiation of a HEµC, featuring
heterogeneous resources that are capable of processing typical
edge computation and storing relevant data.

As this framework is a distributed system, we anticipate that
there is an intelligent resource management component that
maintains a profile of each node (CPU load, memory, network

Fig. 1. Prototype heterogeneous edge micro-cluster with Raspberry Pi nodes

TABLE I
RASPBERRY PI DEVICES SPECIFICATIONS: OUR 4-NODE CLUSTER

COMPRISES ONE OF EACH MODEL, OUR 8-NODE CLUSTER
COMPRISES THREE 2BS, THREE 3BS AND ONE OF EACH OTHER

MODEL

model max GHz core count RAM GB
2B 0.9 4 1
3B 1.2 4 1

3B+ 1.4 4 1
4B 1.5 4 4

bandwidth, etc.), and creates appropriate allocation plans to
meet QoS requirements in each application scenario.

Our edge cluster comprises eight single-board computers
(SBC) that represent heterogeneous edge nodes, with 32 avail-
able compute cores. SBCs are drawn from different genera-
tions of the Raspberry Pi device. Our edge testbeds are limited
to Raspberry Pi devices; however, in the principle, we could
include comparable SBCs such as Odroid or BeagleBone.
Table I presents the specific Raspberry Pi devices used in this
paper.

While the devices share the same Arm architecture, they are
heterogeneous in that they have different chipsets with differ-
ing cache sizes and clock speeds. The nodes are connected in
a flat topology with a gigabit ethernet switch. Each node is
running the latest instance of the Raspbian Linux OS. Figure
1 shows the testbed setup.

This HEµC is characteristically reconfigurable since it is:
1) expandable, to accommodate a variety of devices.
2) portable, to move the testbed to another location.
3) distributable, to split the testbed across several locations.

C. Benchmarks

Blackburn et al. [18] emphasize the importance of using
benchmarks that are realistic, representative and reflective of
real-world scenarios. This is to enable researchers to reach
valid conclusions. Therefore, based on existing work [6],
we adapt the DeFog benchmark suite to generate HEµC
workload scenarios. As mentioned above, DeFog originally
compared the performance of cloud and edge platforms by

executing independent application runs. We have extended
the benchmark harness to run concurrent workloads across
multiple edge nodes. Three DeFog application scenarios were
re-targeted in this paper:

1) Object detection (YOLO): This application deploys deep
learning to provide a real-time object classification for
image processing. The application receives image files
in .jpg format, runs a pre-trained neural network model
to provide an estimation of the objects inside the image,
and then returns the result files as image files with over-
laid object classifications and corresponding confidence
level.

2) Speech-to-text conversion (PocketSphinx): This applica-
tion converts audio files to text files. The application
receives audio files in .wav format and uses a pre-trained
model to generate .txt files that contain the recognized
text.

3) Text-audio synchronization (Aeneas): This forced align-
ment application works to automatically generate a
synchronization map between text fragments and audio
clips. This application takes paired audio files and text
files as input (.wav and.txt) and generates textual output
files with embedded timing metadata, e.g. for closed
captioning.

These particular tasks are likely to become increasingly
popular for end-users given the growing need for environment
awareness and digital accessibility.

Since the original DeFog framework only supplied limited
input data for each benchmark, we have added supplementary
input data sets. This allows us to observe batch mode execution
of multiple concurrent instances of an application with differ-
ent inputs. Effectively, we are modeling task-level parallelism
for these applications across a cluster of heterogeneous nodes.

IV. RESOURCE ALLOCATION APPROACHES

As resources in edge micro-clusters are limited, they need
to be utilized effectively and efficiently. Such edge clusters
should be configured to be ‘self-managed’, since human in-
tervention is rarely available. Workloads are expected to be
heterogeneous and highly dynamic. Thus, edge clusters should
be able to self-adapt to deal with workload variations.

Our lightweight HEµC management monitors resources
at each node in the cluster. This simply polls the Linux
OS in each node for appropriate metric values like
/proc/loadavg. In principle, this monitoring could run
on a democratically elected head node of the cluster. For our
profiling experiments, the monitoring was done on a Macbook
connected to the HEµC LAN. This section discusses the
resource allocation strategies we considered in our study.

We want to place the compute tasks on the most eligible
node according to some criteria, by generating a deployment
plan based on the current condition of the cluster. The main
objective is to minimize the total makespan of the tasks, by
efficiently using the resources of the HEµC. We implemented
and evaluated four resource allocation approaches, as outlined
below.

A. Cluster Election-based

The cluster-election method periodically monitors nodes’
CPU load averages and nominates a potential node to perform
any incoming task. We only considered nodes’ CPU load
average as a node nomination criteria. This method could
be further enhanced by integrating other criteria, such as the
nodes’ power level or nodes connections. Algorithm-1 presents
pseudocode of cluster-election resource allocation algorithm.

B. Best-Node Selection

In this resource allocation approach, the incoming tasks are
always allocated to the node that has the best static resource
specification, which is Raspberry Pi-4 in our micro-cluster.

C. Randomized allocation

The incoming tasks are placed randomly on an arbitrary
node without any resource or capacity consideration. All nodes
are equally likely to be targeted.

D. Mixed-Integer Programming (MIP) allocation

The above two greedy heuristic methods show that when
nodes become overloaded, processing powers decrease and
tasks’ execution times increase. In this method, we consider
balancing the workloads between the cluster’s nodes, tak-
ing into account both nodes’ processing capacities and the
workloads’ requirements. The problem is formulated as a
combinatorial assignment problem and solved using mixed-
integer programming. MIP allocates tasks based on a pre-
estimated cost matrix that estimates the amount of time each
task might need on each node and considers nodes’ process-
ing capacities, how many tasks that each node can process
simultaneously without consuming its resources. The resource
manager in this approach forwards the incoming tasks based
on the mapping plan produced by the MIP allocation solver.
Section IV-D1 presents the problem formulation and defines
related constraints. We implemented this approach using OR-
Tools provided by Google [19].

Algorithm 1: Greedy Cluster Election
Input: T (set of offloaded tasks);
N (set of nodes in edge cluster)
for task t in T do

for node n in N do
measure current CPU load of n;
let n′ be the node in N with lowest CPU load;

end
Assign t to n′;
Commence immediate execution of t;

end

1) Problem Formulation: Based on the introduced specifi-
cations of our HEµC in section III-B, and the specifications
of the workloads defined in section III-C, we formulate the
problem as an assignment problem of a set of independent
tasks in a heterogeneous edge micro-cluster. The aim is to

TABLE II
PROBLEM NOTATIONS

Notation Meaning
T set of tasks to be allocated
N set of cluster nodes
t individual task
n individual node
xij decision variable (indicating whether node i executes task j)
capn processing capacity of node n
cost[i][j] cost matrix (indicating cost of node i executing task j)

make a decision plan that maps each task t on a suitable
processing node n in our HEµC.

The overall objective is to find an efficient assignment
plan that efficiently utilizes the cluster’s nodes such that all
tasks are assigned to at least one cluster’s node (constraint-1)
and to maintain the upper bound capacity of each cluster’s
node (constraint-2). Meanwhile, the total makespan time to
complete all tasks is minimized. Table II outlines the notations
used in the problem.

Given: a set of independent tasks T in which each task
has an estimated cost that represents how much time a task
t requires on each processing node n; and a set of cluster’s
processing nodes N with varying size capacities and each node
has an upper bound. The objective is to produce an efficient
mapping plan of tasks on cluster nodes in HEµC such that the
total makespan time is minimized.

Decision variables: we consider a decision variable xnt as a
binary integer variable 0 or 1, which denotes whether a cluster
node n is assigned to a task t or not.

xnt =

{
1, if node n allocated to task t
0, otherwise

(1)

Constraints: we consider two main constraints respecting
our edge micro-cluster’s heterogeneity and resource con-
straints:

1) constraint-1: we introduced a node capacity constraint
capn, in which each cluster node has a maximum
capacity. The total number of tasks allocated to each
node should not exceed the upper bound capacity of
the node. Otherwise the node’s compute resources will
become saturated, and the task execution time will be
prolonged.(∑

t∈T
xnt

)
<= capn , ∀ n ∈ N (2)

2) constraint-2: each task t must be allocated to at least one
node. This is to make sure that all tasks are assigned.∑

n∈N
xnt >= 1 , ∀ t ∈ T (3)

Objective: the objective is to minimize the overall makespan
time of a set of tasks while considering resource constraints
of our HEµC. Thus, the decision is where to place a task t to
a node n such that we minimize the overall makespan time of
a set of tasks and respect upper limit of the capacity nodes.

Minimize
∑
n∈N

∑
t∈T

cost[n][t] ∗ xnt (4)

V. PERFORMANCE EVALUATION

A. Minimizing Makespan

The empirical evaluation considers the makespan time to
complete a batch of benchmark invocations based on the
different allocation approaches.

The makespan in our study is defined to be the wallclock
time for the edge micro-cluster to complete processing a set of
tasks, defined from the time when the first request is generated
to the time that all cluster’s nodes complete processing their
assigned tasks. In particular, the makespan time includes: (1)
the communication time C, which is the time to offload assets
to the cluster’s nodes and to receive final results back, (2) the
decision time D, which is the time to compute the assignment
decision in the MIP-allocation approach or the time to decide
a node in the greedy approaches, the cluster election and best
node selection, and (3) the execution time E, which is the
actual time each node takes to process the assigned tasks.

We run the experiments on two edge micro-cluster con-
figurations. Each cluster comprises of a set of heterogeneous
nodes. The first cluster contains four nodes, and we expand
the nodes to eight in the second cluster. Table I shows the
specifications and the quantity of the devices deployed in each
cluster.

As mentioned above, the overall objective is to minimize
the batch execution makespan time, measured as wallclock-
time, while efficiently utilizing the resources in our HEµCs.
We examined the performance of the resource allocation
methods, explained in section IV, on three DeFog benchmarks,
the image-detection, audio-to-text converting, and audio-text
synchronisation, respectively. We measure the makespan time
to process 32 concurrent tasks for each benchmarks.

Figures 2 and 3 show the makespan time for the 4-nodes
cluster and 8-nodes cluster, respectively. The graphs show
results based on the mean of 15 runs. It is clear that the
MIP-based approach efficiently utilizes clusters’ resources and
optimises the benchmark batch execution for computation-
intensive applications, while it achieves a comparable per-
formance to other greedy approaches for the audio-text syn-
chronisation benchmark. The two greedy heuristics methods,
cluster-election and the best-node selection, achieve compa-
rable performance in all benchmarks. The cluster-election
method successfully reflects the nodes CPU load averages and
efficiently elect nodes. The random-based allocation clearly
incurs high execution times for all benchmarks.

Overall, the MIP approach effectively represents the tasks’
computation times and the nodes’ capacities. It successfully
optimises the makespan processing time and outperforms other
approaches for computation-intensive applications, i.e., image-
detection and audio-to-text converting. In addition, the MIP
approach shows a stable performance when cluster nodes

increase. The cluster-election approach demonstrates a good
performance to reflect the clusters’ conditions and nominates
potentially capable nodes. The cluster-election achieves a bet-
ter performance than the best-node selection for computation-
intensive benchmarks. However, this approach could be further
enhanced by integrating other nomination criteria (e.g., nodes
connections, power level for clusters that run on renewable
energy, etc). The selection of the best node is not always
an intelligent choice for the edge-micro clusters, as nodes
processing time increase when overloaded. Finally, for light-
computation applications (i.e., audio-text synchronisation), the
MIP-allocation approach performs as well as the best node
selection.

Image-Detection Audio-To-Text Converting Audio-Text-Syncronization
0

50

100

150

200

250

Ti
m

e
 (s

ec
)

4-nodes edge micro-cluster
Cluster-Election
Best Node
Random-based
MIP

Fig. 2. Makespan of 32 batched concurrent tasks based on different allocation
approaches running on 4-nodes edge micro-cluster (confidence intervals
indicate one standard deviation)

Image-Detection Audio-To-Text Converting Audio-Text-Syncronization
0

25

50

75

100

125

150

175

200

Ti
m

e
 (s

ec
)

8-nodes edge micro-cluster
Cluster-Election
Best Node
Random-based
MIP

Fig. 3. Makespan of 32 batched concurrent tasks based on different allocation
approaches running on 8-nodes edge micro-cluster (confidence intervals
indicate one standard deviation)

B. Allocation Overhead
Allocation overhead is a critical metric in edge computing.

Allocation techniques should be light, not adding excessive

overhead as most IoT-based applications and management
techniques are being deployed in resource-constrained devices
and require lightweight management techniques. If the alloca-
tion techniques require expensive resources in terms of CPU,
memory or energy, it would not be applicable in the context of
edge computing [11]. Therefore, it is imperative to consider the
lightness and the overhead of the technique when designing
resource allocation for edge context scenarios.

All makespan times reported above include the time taken
for task allocation calculations, i.e. solution time for the MIP
approach, live metric query time for the greedy heuristics,
pseudo-random function evaluation time for the random ap-
proach. We deliberately added 3 sec networking delay between
sending tasks to the allocated nodes. There were two main
reasons to add this delay: first, to avoid any networking
bottleneck or task failures that might occur when sending
several concurrent tasks to the same node, and secondly, to
allow the cluster-election to update the elected node. This 3
sec delay was added to all resource allocation approaches to
ensure a fair comparison.

For the MIP approach, the allocation overhead never ex-
ceeds 1 second, which in the worst case is still below 2%
of overall makespan time. We observe that for our HEµC
setup with these workloads, there is limited complexity for the
MIP constraints meaning solution times are very short. In a
limits study experiment, we discovered that MIP allocation for
typical edge workloads and clusters remains below 1 second,
for up to 1000 tasks (see Figure 4).

10
0

50
0

10
00

15
00

20
00

30
00

40
00

50
00

10
00

0

Number of Tasks

10 2

10 1

100

101

102

Al
lo

ca
tio

n
Ti

m
e

(s
ec

)

4-Nodes Heterogeneous Cluster
8-Nodes Heterogeneous Cluster
16-Nodes Heterogeneous Cluster
20-Nodes Heterogeneous Cluster

Fig. 4. Allocation Overhead for MIP Approach

C. Reflection

Overall, the experiments demonstrate that HEµCs are able
to handle heterogeneous workloads in real-world edge ap-
plication scenarios. This requires light and efficient resource
management to orchestrate the edge nodes. The deployment
of lightweight but effective resource management approaches
for batched task execution is straightforward, and can yield
mathematically optimal solutions. The work presents a basic

comparison between a set of lightweight resource allocation
methods that are capable of improving resource allocations in
micro-clusters. The evaluations reveal that the mixed-integer
programming resource allocation with the respect of the
nodes capacities outperforms other greedy-heuristic resource
allocation and efficiently utilise the cluster resources. The
experimental infrastructure (the benchmarks and the cluster
testbed) could be used to extend this work and to implement
further research. The need for investigating other complex
resource allocation approaches for edge computing will be
considered in future work.

D. Limitations

Our evaluation has been conducted on two small-scale
HEµC configurations and limited to the Raspberry Pi com-
modity, with a small set of benchmarks. The issue of generality
has not been addressed fully and will be the subject of future
work. The study was limited to optimise the makespan metric
while other performance metrics, e.g, operational cost and
power consumption, were reserved for future work. Finally,
the correlation between makespan time and the benefit of
expanding cluster’s nodes (scalability and elasticity) is an area
for future investigation.

VI. RELATED WORK

Resource management is a critical concern in edge comput-
ing [9], [10], [20]. The application placement concept covers
approaches and methodologies to find feasible solutions for
mapping between IoT-based application workloads and the
computational resources [9], [10], [21]–[25].

However, the majority of studies on edge resource manage-
ment are implemented and evaluated using simulators, such as
CloudSim [16], iFogSim [17], or Matlab [9]. We argue that it is
preferable to investigate resource management in real testbed
environments.

Recent studies demonstrate the feasibility and suitability of
using single-board computers (SBCs) to build edge clusters to
perform intensive computational tasks instead of cloud data
centers. Johnston et al. [26] consider SBC clusters to be “the
game-changer” in pushing computation from centralized cloud
data centers to decentralized edge data centers.

Integer programming seems to be an inappropriate tech-
nique for resource management in cloud, since there is
high complexity when the problem size increases [27]–
[30]. Therefore, most studies implement heuristics-based or
metaheuristics-based solutions for Cloud Computing scenarios
[12]. In this paper, we argue that integer programming is
an efficient and effective method to find the optimal task
allocation for HEµCs where the problem size is tractable.

VII. CONCLUSIONS AND FUTURE WORK

The HEµC design concept has the potential to make edge
computing more affordable and more accessible to everyday
end-users and smart citizens [31]. It is likely that such HEµCs
will comprise commodity compute devices similar to Rasp-
berry Pi nodes.

However, resource management is critical for effective edge
computing. In this study, we have presented and character-
ized an approach to resource management for HEµCs based
on batch arrival of containerized edge workloads. We have
demonstrated empirically that such an execution paradigm
is highly amenable to mathematically optimized resource
management using integer programming, with this approach
giving optimal or near-optimal makespan performance even
when the overhead of integer programming is included.

Our study was limited to task allocation in a small-scale
cluster. However, this work can be extended in future by:

1) expanding the testbed to include more nodes.
2) exploring other resource management aspects such as

load balancing and task migration.
3) evaluating more complex techniques such as multi-

heuristic-based or meta-heuristic optimization ap-
proaches.

4) considering other relative metrics such as power con-
sumption and operational cost.

ACKNOWLEDGMENTS

This work is partly supported and funded by King Khalid
University, Saudi Arabia and the Saudi Arabian Cultural
Bureau in the UK.

REFERENCES

[1] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie
Young. Mobile edge computing—a key technology towards 5g. ETSI
white paper, 11(11):1–16, 2015.

[2] Dave Evans. The internet of things: How the next evolution of the
internet is changing everything. CISCO white paper, 1(2011):1–11,
2011.

[3] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B
Letaief. A survey on mobile edge computing: The communication
perspective. IEEE Communications Surveys & Tutorials, 19(4):2322–
2358, 2017.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13–16, 2012.

[5] Justyna Winkowska, Danuta Szpilko, and Sonja Pejić. Smart city
concept in the light of the literature review. Engineering Management
in Production and Services, 11(2):70–86, 2019.

[6] Jonathan McChesney, Nan Wang, Ashish Tanwer, Eyal de Lara, and
Blesson Varghese. Defog: fog computing benchmarks. In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing, pages 47–58,
2019.

[7] Anirban Das, Stacy Patterson, and Mike Wittie. Edgebench: Bench-
marking edge computing platforms. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Com-
panion), pages 175–180. IEEE, 2018.

[8] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and
Dimitrios S Nikolopoulos. Challenges and opportunities in edge
computing. In 2016 IEEE International Conference on Smart Cloud
(SmartCloud), pages 20–26. IEEE, 2016.

[9] Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. Resource
management approaches in fog computing: a comprehensive review.
Journal of Grid Computing, pages 1–42, 2019.

[10] Cheol-Ho Hong and Blesson Varghese. Resource management in
fog/edge computing: a survey on architectures, infrastructure, and al-
gorithms. ACM Computing Surveys (CSUR), 52(5):1–37, 2019.

[11] Mohammad S Aslanpour, Sukhpal Singh Gill, and Adel N Toosi.
Performance evaluation metrics for cloud, fog and edge computing:
A review, taxonomy, benchmarks and standards for future research.
Internet of Things, page 100273, 2020.

[12] Yaser Mansouri and M Ali Babar. A review of edge computing:
Features and resource virtualization. Journal of Parallel and Distributed
Computing, 2021.

[13] N. Chen, Y. Chen, E. Blasch, H. Ling, Y. You, and X. Ye. Enabling smart
urban surveillance at the edge. In 2017 IEEE International Conference
on Smart Cloud (SmartCloud), pages 109–119, 2017.

[14] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE internet of things journal,
3(5):637–646, 2016.

[15] Thomas Rausch, Clemens Lachner, Pantelis A Frangoudis, Philipp
Raith, and Schahram Dustdar. Synthesizing plausible infrastructure
configurations for evaluating edge computing systems. In 3rd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 20), 2020.

[16] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1):23–
50, 2011.

[17] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296,
2017.

[18] Stephen M Blackburn, Kathryn S McKinley, Robin Garner, Chris Hoff-
mann, Asjad M Khan, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, et al. Wake up and smell the coffee:
evaluation methodology for the 21st century. Communications of the
ACM, 51(8):83–89, 2008.

[19] Laurent Perron and Vincent Furnon. OR-Tools.
[20] Sukhpal Singh and Inderveer Chana. A survey on resource scheduling

in cloud computing: Issues and challenges. Journal of grid computing,
14(2):217–264, 2016.

[21] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. Optimized iot service placement in the fog. Service
Oriented Computing and Applications, 11(4):427–443, 2017.

[22] Mohit Taneja and Alan Davy. Resource aware placement of iot appli-
cation modules in fog-cloud computing paradigm. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pages
1222–1228. IEEE, 2017.

[23] Salvatore Venticinque and Alba Amato. A methodology for deployment
of iot application in fog. Journal of Ambient Intelligence and Humanized
Computing, 10(5):1955–1976, 2019.

[24] Nan Wang and Blesson Varghese. Context-aware distribution of
fog applications using deep reinforcement learning. arXiv preprint
arXiv:2001.09228, 2020.

[25] Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer,
and Kin K Leung. Dynamic service placement for mobile micro-
clouds with predicted future costs. IEEE Transactions on Parallel and
Distributed Systems, 28(4):1002–1016, 2016.

[26] Steven J Johnston, Philip J Basford, Colin S Perkins, Herry Herry,
Fung Po Tso, Dimitrios Pezaros, Robert D Mullins, Eiko Yoneki,
Simon J Cox, and Jeremy Singer. Commodity single board computer
clusters and their applications. Future Generation Computer Systems,
89:201–212, 2018.

[27] Zhen Ye, Xiaofang Zhou, and Athman Bouguettaya. Genetic algorithm
based qos-aware service compositions in cloud computing. In Inter-
national Conference on Database Systems for Advanced Applications,
pages 321–334. Springer, 2011.

[28] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-
Hung Chung, and Yun Li. Cloud computing resource scheduling and a
survey of its evolutionary approaches. ACM Computing Surveys (CSUR),
47(4):1–33, 2015.

[29] Qiang Li and Yike Guo. Optimization of resource scheduling in cloud
computing. In 2010 12th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages 315–320. IEEE,
2010.

[30] Yi Wang, Ye Xia, and Shigang Chen. Using integer programming for
workflow scheduling in the cloud. In 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), pages 138–146. IEEE,
2017.

[31] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

	Cover Sheet (AFV)
	242846

