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Abstract. We present a blockchain scaling solution called Intmax2,
which is a Zero-Knowledge rollup (ZK-rollup) protocol with stateless
and permissionless block production, while minimizing the usage of
data and computation on the underlying blockchain. Our architecture
distinctly diverges from existing ZK-rollups since essentially all of the
data and computational costs are shifted to the client-side as opposed
to imposing heavy requirements on the block producers or the under-
lying Layer 1 blockchain. The only job for block producers is to pe-
riodically generate a commitment to a set of transactions, distribute
inclusion proofs to each sender, and collect and aggregate signatures
by the senders. This design allows permissionless and stateless block
production, and is highly scalable with the number of users.
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1 Introduction

As the blockchain ecosystem continually evolves, so does the urgency for blockchain
scaling solutions that preserve security, reduce transaction costs, and improve
overall throughput. Layer 2 (L2) technologies, particularly rollups, have emerged
as pivotal tools to overcome these challenges, and have thus gathered sub-
stantial attention. Among these, Zero-Knowledge rollups (or ZK-rollups) have
shown great promise due to their unique capability to bundle numerous trans-
actions into a single proof that can be verified quickly and cheaply onchain.
Existing ZK-rollups, while managing to move computation costs away from
the underlying Layer 1 (L1) blockchain, are still limited by the fact that all
necessary data for verifying users’ balances have to be posted on L1. This
data, in a typical scenario, includes the transaction sender, the index of the
token, the amount, and the recipient for each transaction, thus limiting the
number of transactions per second that can be supported by the rollup.
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1.1 Data Availability

A fundamental bottleneck for blockchains is what is known as data availabil-
ity. Data availability means that transaction data needs to be available in
order to be able to prove the current state, such as account balances, of the
blockchain. This is a problem for both Layer 1 blockchains and rollups. Layer
1 blockchains usually achieve data availability by requiring that all transaction
data is publicly available for a node to consider the blockchain valid. Rollups
achieve data availability by leveraging the data availability of the underly-
ing blockchain and require that all transaction data is posted to L1 (e.g. us-
ing calldata or blob data on Ethereum). Because this data needs to be repli-
cated among a large set of nodes, there is a limit on how much data can be
made available, which limits the number of transactions per second that the
blockchain or the rollup can support. While for smart contract blockchains
it might be necessary to provide the complete transaction data, it turns out
that for simple payment transactions it is only necessary to make available a
commitment to the set of transactions in a block (such as a Merkle tree root),
together with the set of senders who have signed the commitment, confirming
that they have received inclusion proofs of their transactions. Users can then
generate Zero-Knowledge proofs (ZK-proofs) of their own balances by com-
bining the inclusion proofs of their sent transactions with the inclusion proofs
and ZK-proofs of sufficient balance of each received transaction, which is pro-
vided by the transaction sender offchain. Our rollup design uses this method
to achieve increased throughput compared to existing alternatives. In addi-
tion, the design allows permissionless block building that can happen in paral-
lel, without needing any leader election or any coordination between the block
builders. Since the block builders do not verify the validity of the transactions,
they can be fully stateless, allowing a very simple and censorship resistant
rollup design.

1.2 Our Contributions

Intmax2 is an efficient and stateless rollup design that:

– Uses less onchain data than any existing rollup, giving an upper limit of
7500 transaction batches per second on Ethereum, where each transaction
batch can transfer an unlimited number of tokens to an unlimited number
of recipients.

– Offers permissionless block production.

– Provides stronger privacy properties than traditional ZK-rollups.

2 Simplified design description

In this section we describe a simplified version of the design which doesn’t use
ZK-proofs. The simplified design achieves low onchain data consumption (4-
5 bytes per transaction sender), but is otherwise inefficient and not private.
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In Section 4 we add ZK-proofs to the design in order to achieve efficiency and
privacy.

2.1 Overview

The simplified design works roughly as follows. At the heart of the design is a
rollup contract deployed on a programmable blockchain (such as Ethereum).
To deposit funds to the rollup, a user simply sends the funds, together with
the L2 address of the recipient, to the rollup contract which then records the
deposit in its contract storage. To transfer funds on the rollup, a subset of L2
accounts will first send their transactions to a single aggregator, which then
inserts the transactions at the leaves of a merkle tree. Then the aggregator
sends to each sender the merkle root and the merkle proof for that sender’s
transaction. Each sender then signs the merkle root with their public BLS key
and sends this signature back to the aggregator. The aggregator then aggre-
gates the signatures into a single aggregated signature, and sends the merkle
root, the aggregated signature and the list of public keys of the senders that
was included in the aggregated signature to the rollup contract. The rollup
contract then verifies the signature and adds the root, signature and sender
list to its storage. Each sender is then responsible for sending the merkle proof
of the transaction to each transaction recipient offchain, together with earlier
merkle proofs that together prove that the sender had sufficient balance for
the transaction. To prove their own balance, each user needs to keep track of
all merkle proofs they have received from aggregators and other users. This
collection of merkle proofs, called a balance proof, is sent to the rollup con-
tract when a user wants to withdraw their funds to L1.
We now describe the simplified design in more details.

2.2 Notation

If X and Y are sets, we will write Y X for the set of all functions from X to
Y . We will often call a function f ∈ Y X a mapping from (elements of) X to
(elements of) Y .

2.3 Setup

The design depends on an authenticated dictionary scheme3 AD, a signature
aggregation scheme4 SA, and a collision-resistant hash function H : {0, 1}∗ →
{0, 1}n. Given a security parameter λ ∈ N we set up the authenticated dictio-
nary scheme

AD.(K,M, C, Π,Commit,Verify)

and the signature aggregation scheme

SA.(Kp,Ks, Σ,KeyGen,Sign,Aggregate,Verify).

3See Appendix A.2.
4See Appendix A.3.
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We use the alias K2 := SA.Kp and call this the set of L2 accounts. We also de-
pend on a set K1 of L1 accounts5, and a lattice-ordered abelian group V which
is used as the set of transaction values and account balances.6 We denote by
V+ ⊂ V the subset of non-negative values.

2.4 Rollup contract

The rollup contract is a smart contract deployed on a programmable blockchain
(e.g. Ethereum), which is responsible for keeping track of the rollup state and
for managing deposits, transfers, and withdrawals. The internal state of the
rollup contract consists of the list of all blocks that have been added to the
rollup so far. There are three types of blocks in our design, namely deposit
blocks, transfer blocks and withdrawal blocks, denoted by Bdeposit, Btransfer
and Bwithdrawal respectively. We formally define these sets below where we de-
scribe the respective protocols. Letting B := Bdeposit ⨿ Btransfer ⨿ Bwithdrawal

be the set of all blocks, the contract state is formally defined as

Scontract := B∗.

When the rollup contract is deployed to the blockchain, it is initialized with
the state () consisting of the empty list.

2.5 Depositing

To deposit funds from L1 to L2, a L1 user will simply send the funds to the
rollup contract along with the L2 address of the recipient. The rollup contract
then constructs a deposit block which consists of the specified recipient and the
deposited amount. Formally, we define the set of deposit blocks as

Bdeposit := K2 × V+.

The contract then adds this deposit block to the list of blocks in its storage.

2.6 Transferring

We now describe the protocol for transferring funds on the rollup (illustrated
in Figure 1). To transfer funds from an L2 account, the account owner will
first construct a transaction batch, which is a mapping that maps each trans-
action recipient to the amount the sender wants to send to that recipient. A

5For instance, in Ethereum, accounts are represented by 20 bytes, so in this case
we have K1 := {0, 1}20·8.

6See Appendix A.5 for the definition of a lattice-ordered abelian group. This
generality allows us to easily support transfers of multiple value types (e.g. NFTs,
ERC20 tokens, etc.) by letting V be the set of mappings from a set of token names
to the set Z of integers, which naturally gets the structure of a lattice-ordered
abelian group.
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transaction recipient is either an L2 account or an L1 account (used when
withdrawing to L1, as described in Section 2.7). Formally, letting K := K1 ⨿
K2, a transaction batch is an element of VK

+ , i.e. a mapping from K to V+.
Suppose we have a set of senders S ⊂ K2 where each sender s ∈ S has a se-
cret key sks and a transaction batch ts ∈ VK

+ they want to send. The transfer
protocol consists of two phases. In the first phase, the senders collaborate with
a single aggregator to produce a transfer block which is added to the rollup
contract. In the second phase, after the transfer block has been added to the
rollup contract, each transaction sender s will send (offchain) to each recipi-
ent (i.e. accounts r ∈ K where ts(r) ̸= 0) the data needed to prove that the
sender sent the specified amount to the recipient in the transfer block. We now
describe the two phases of the transfer protocol in more details.

Phase 1: Constructing and adding a transfer block To send the trans-
action batches, the senders will first select a single aggregator7 and agree upon
a common bitstring extradata ∈ {0, 1}∗. This bitstring can be used to im-
plement protections against replay attacks and delayed block publication (see
Section 2.8). Then the senders and aggregator interacts in the following proto-
col.

1. First, each sender s chooses a random salt salts, hashes their transaction
batch with the salt

hs ← H(ts, salts),

and sends hs to the aggregator.8

2. The aggregator collects all the transaction batch hashes from the senders.
Let S′ ⊂ S be the subset of senders who sent a transaction batch hash
to the aggregator. The aggregator then constructs the dictionary9 (S′, h)
where hs is the transaction batch hash by s for all s ∈ S′, and constructs a
dictionary commitment and lookup proofs:

(C, (S′, π))← AD.Commit(S′, h).

The aggregator sends to each user s ∈ S′ the dictionary commitment C
and the lookup proof πs for the user’s transaction batch hash.

3. Upon receiving the dictionary commitment and lookup proof, each user s
checks if the lookup proof is valid with the commitment:

AD.Verify(πs, s, hs, C)
?
= True.

If the lookup proof is valid, the user generates the signature

σs ← SA.Sign(sks, (C, aggregator, extradata))

7The protocol allows anyone to be an aggregator for a transfer block, enabling
maximum censorship resistance.

8Sending the transaction hash instead of the transaction itself gives privacy from
the aggregator.

9See Appendix A.1 for the definition of a dictionary.
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and sends this signature to the aggregator.
4. The aggregator collects the signatures from the users and verifies them.

Let S′′ ⊂ S′ be the subset of senders who sent a valid signature. The ag-
gregator then constructs the aggregated signature

σ ← SA.Aggregate((s, σs)s∈S′′),

and constructs the tuple (aggregator, extradata, C, S′′, σ), called a transfer
block. Formally, we define the set of transfer blocks as

Btransfer = K1 × {0, 1}∗ × AD.C × P(K)× SA.Σ.

The aggregator sends this transfer block to the rollup contract using their
L1 account.

5. Upon receiving the transfer block, the rollup contract verifies the aggre-
gated signature:

SA.Verify(S′′, (C, aggregator, extradata), σ)
?
= True

and also verifies that the transaction is indeed coming from the account
aggregator. If these checks are valid, the contract adds the transfer block
to the list of blocks in its storage. If not, the transaction is reverted.

Phase 2: Maintaining and distributing balance proofs To be able
to prove the balance of their account, each user needs to maintain a balance
proof, which is the collection of transaction batches with corresponding salts
and lookup proofs that they have received from an aggregator (when sending
transactions) and from other users (when receiving transactions). We formally
define the set of balance proofs as

Π = Dict(AD.C × K2, (AD.Π × {0, 1}∗)× VK
+ ).

A balance proof is valid if the following algorithm returns True.

Verify : Π → {True, False}

(K,D) 7→
∧

(C,s)∈K
((π,salt),t)=D(C,s)

AD.Verify(π, s,H(t, salt), C)

In other words, a valid balance proof is a dictionary which maps commitment-
sender pairs (C, s) to tuples ((π, salt), t) where t ∈ VK

+ is a transaction batch,
salt is a random salt and π ∈ AD.Π is a valid lookup proof that H(t, salt) is
the value at index s in an authenticated dictionary with commitment C.
Each user will maintain a balance proof, which is initialized as the empty dic-
tionary. In the second phase of the transfer protocol, each transaction sender
will add their transaction batch with the corresponding lookup proof they re-
ceived from the aggregator (if they did receive one) to their own balance proof.
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Fig. 1. The transfer protocol. In this example, Alice wants to send 5 coins to Bob. a)
Alice starts by sending the hash of the the transaction batch, consisting of a single
transaction of 5 coins to Bob, and a random salt to an aggregator. b) The aggrega-
tor then constructs a merkle tree consisting of Alice’s transaction batch hash and
the transaction batch hashes of other senders. c) The aggregator sends the merkle
proof of Alice’s transaction batch to Alice. d) Alice verifies the merkle proof and
signs the merkle root together with the pre-determined extradata e. This signature is
sent back to the aggregator. e) The aggregator collects the signatures from all users,
constructs the transfer block, and sends it to the rollup contract. f) Alice watches
the blocks that are added to the rollup contract until the block containing her trans-
action is published. g) Alice updates her balance proof by adding her transaction
batch, the salt and the merkle proof. h) Alice sends to Bob her updated balance
proof. h) Bob updates his view of the rollup blocks. i) Bob updates his balance proof
by merging it with the balance proof he received from Alice.
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Then, they will send this new balance proof to each recipient of the transac-
tion batch. Upon receiving the balance proof, each recipient will then merge it
with their own. In details, if πb ∈ Π is the current balance proof of a recipi-
ent named Bob and πa ∈ Π is the balance proof they received from a sender
named Alice, then Bob performs the following algorithm:

– Verify the received balance proof:

Verify(πa)
?
= True.

If valid, continue to the next step, otherwise terminate.
– Update their balance proof πb by merging it with πa:

πb ← Merge(πa, πb),

where Merge is the dictionary merging algorithm defined in Appendix A.1.

To compute the balance of their accounts, users will use the balance function

Bal : Π × B∗ → VK+ ,

defined in Appendix B. Here K+ := K1 ⨿ K2 ⨿ {Source}, and Source is a
special account used to represent deposits and withdrawals. The balance func-
tion takes a balance proof π ∈ Π and the current state of the rollup contract
(B∗) ∈ B∗, and returns the balance of each account in the rollup that can be
proven by the balance proof.

2.7 Withdrawing

When a user wants to withdraw funds from their L2 account to an L1 account,
they must first transfer the funds to the L1 account using the transfer protocol
described above. When the transfer block is added to the rollup contract, the
contract does not automatically withdraw the funds to L1. Instead, to initiate
the withdrawal, the owner of the L1 account must send a withdrawal request
to the rollup contract which consists of the user’s current balance proof π ∈ Π.
Upon receiving the balance proof, the rollup contract performs the following
steps:

– First, the balance proof is verified:

Verify(π)
?
= True.

– If the balance proof is valid, the rollup contract constructs a withdrawal
block, which is simply the in-rollup balance of each L1 account computed
from the balance proof and the current rollup state:

B ← Bal(π,B∗)K1
,

where B∗ is the current list of blocks in the rollup contract. Formally, the
set of withdrawal blocks is defined as

Bwithdrawal = VK1
+ .
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– The contract adds the withdrawal block B to the list of blocks in its stor-
age:

B∗ ← (B∗||(B))

– For each L1 account k ∈ K1, the contract withdraws the amount Bk to the
L1 account.

2.8 Protection against replay attacks and delayed block publication

There are a couple of attacks that a malicious aggregator can do that we need
to protect against. One kind of attack is delayed block publication, where a
malicious aggregator waits a long time before publishing the transfer block,
causing a liveness issue. A second attack is replay attacks, where a malicious
aggregator publishes the same transfer block multiple times, thereby draining
the balances of the senders. Instead of adding protections against these attacks
in-protocol, it can be done out-of-protocol as follows.
In order to make users trust them, an aggregator can self-impose restrictions
that prohibits them from performing these attacks by deploying a relayer con-
tract on L1. When a subset of users wants to create a transfer block with this
aggregator, the aggregator will first pick a deadline for the transfer block not
far into the future. The users who accepts the deadline enters the transfer pro-
tocol using this deadline as extradata, and the relayer contract address as
aggregator. After constructing the transfer block, the aggregator will send it
to the relayer contract from an L1 address which is whitelisted by the con-
tract (for front-running protection). Upon receiving the transfer block, the re-
layer contract verifies the sender and checks if the deadline in the extradata
field is no later than the current time, before forwarding the transfer block to
the rollup contract. This protects against delayed block publication. In addi-
tion, the relayer contract stores the timestamp of the last block that it has
forwarded to the rollup contract, and verifies that each new transfer block has
a timestamp strictly greater than the last forwarded block before forwarding
it. This protects against replay attacks.

3 Data usage and compression

In this section we analyze the scalability of our design and describe how to
add compression to achieve even more scalability. The main bottleneck for the
scalability is the size of the transfer blocks, which is decomposed as follows:

– The aggregator’s L1 address (20 bytes in Ethereum)
– A extradata string (32 bytes)
– An authenticated dictionary commitment (32 bytes if it is a merkle tree

root)
– The subset of senders S ⊂ K2 in the block (|S| × 96 bytes if encoded as a

list of BLS public keys)
– An aggregated signature (48 bytes for BLS signatures)
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This gives a transfer block size of |S| × 96 + 132 bytes, where |S| is the num-
ber of senders in the block. This is smaller than for traditional rollups where
all transaction details (such as sender, recipient and transaction amount) are
included in the blocks. Also, unlike traditional rollups, our block size only de-
pends on the number of senders, and not the number of transactions. This
means that a sender can send a transaction batch with an arbitrary number
of recipients without affecting the size of the transfer block.
To further increase scalability, we can add block compression out-of-protocol
using the relay contracts we introduced in Section 2.8, where an aggregator
sends compressed transfer blocks to their relay contract, which will decompress
the blocks before relaying them to the rollup contract. A simple compression
algorithm works as follows. Users can register their public BLS key with the
relay contract of an aggregator and receive a short incremental ID. The relay
contract stores in its storage a dictionary which maps IDs to BLS public keys.
Then, when the aggregator sends transfer blocks to the relay contract, they
will send the short IDs of the senders instead of their public keys. The relay
contract looks up each ID in its dictionary and reconstructs the transfer block
with the public keys before sending it to the rollup contract. The size of the
IDs depends on the total number of IDs in the dictionary. As an example, in
order to support 10 billion addresses (more than the current world popula-
tion), each ID must be

log2(10
9) ≈ 33 bits ≈ 4.15 bytes,

which gives a block size of about |S| × 4.15 + 132 bytes. When implemented on
Ethereum, which provides 0.375 MB of data per block[18], with blocks coming
every 12 seconds[1], we get a theoretical limit of about

0.375× 106 − 132

4.15
≈ 90000

senders per L1 block, or 7500 senders per second. This number will increase
when Ethereum adds more scaling. According to [18], the goal is to achieve
≈ 16 MB per block, which would allow ≈ 320000 senders per second.

4 Adding privacy and efficiency

The simplified design described in Section 2 lacks privacy, because transac-
tion recipients will gain information about other transactions not intended for
them, and it lacks efficiency because the balance proofs are large and expen-
sive to verify (especially onchain during withdrawals). In this section, we add
privacy and efficiency using recursive ZK-proofs.

4.1 Changes to rollup contract state and the procedure of adding
blocks

First, the rollup contract is modified so that instead of storing the list of all
blocks added to the rollup, it stores a list of history roots, where each root is
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a hash digest in {0, 1}n, as well as a mapping which maps each L1 account to
the total amount that has been withdrawn to the L1 account:

Scontract := ({0, 1}n)∗ × VK1
+ .

If ((rooti)i∈[N ], withdrawn) is the current state of the contract, and B ∈ B
is a new block to be added to the rollup, the contract adds the new block as
follows. If the block is a deposit block or a transfer block, the contract com-
putes a new history root by taking the hash H(rootN , B) of the most recent
history root and the new block, and adds this new history root to its list of
history roots. If the new block is a withdrawal block, the withdrawn amounts
are added to the current map of withdrawn amounts:

withdrawn← withdrawn+B.

4.2 Changes to the transfer protocol

Phase 1 of the transfer protocol regarding how to construct and add trans-
fer blocks remains exactly as described in Section 2.6, but Phase 2 regarding
how to maintain and distribute balance proofs is changed as follows. When
a transaction sender s sends funds to a recipient r, instead of providing the
recipient with the complete transaction history of the sender and recursively
those of other users (as in the simplified design), they will only send the tuple
(root, s, r, v, π) where

– root ∈ {0, 1}n is the history root of the rollup block containing the trans-
action,

– s ∈ K2 is the sender’s L2 address,
– r ∈ K is the recipient’s address,
– v ∈ V+ is the transaction amount,
– π is a transaction validity proof, which is a ZK-proof proving that the

sender s did send a transaction with value v to the recipient r in the rollup
block with history hash root, and that the sender had a sufficient balance
for sending it.

This means that the recipient only learns about this transaction, and gets
zero knowledge about anything else, such as the balance of the sender or other
transactions.
To be able to construct transaction validity proofs, each user needs to main-
tain the data consisting of

– All transaction batches they have sent (that have been included in a trans-
fer block onchain) together with their corresponding salts and lookup proofs

– All verified transactions (hash, s, r, v, π) they have received from other
users

Given this data, as well as the list of blocks added to the rollup10, each user
can generate validity proofs for their transactions.

10This can be obtained by monitoring all L1 transactions sent to the rollup con-
tract.
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4.3 Changes to the withdrawal protocol

When the owner of an L1 account wants to withdraw their in-rollup balance to
L1, they will send a withdrawal request to the rollup contract which consists
of an L1 address address ∈ K1, a value v ∈ V+, a history root root ∈ {0, 1}n
and a ZK-proof that address has received at least v in the rollup at history
root root. Upon receiving the withdrawal request, the rollup contract will ver-
ify that the ZK-proof is valid and that root is in the list of history roots in its
storage. If these checks are valid, the contract will compute the in-rollup bal-
ance of the L1 account by subtracting the previously withdrawn amount of the
address from v. Then, the contract withdraws the computed balance to L1 and
updates the total amount withdrawn in its storage.

5 Conclusion

We presented Intmax2, a novel ZK-rollup approach that completely shifts
away from traditional ZK-rollup approaches. In contrast with previous ap-
proaches, our solution does not require the posting of all transaction data on
the underlying L1, which enables unprecedented scalability. By leveraging
the fact that aggregators do not need to perform computationally intensive
zero-knowledge proofs, and instead moving the computation on the side of the
users in the system, our design provides a novel, practical, and resilient solu-
tion to L2 scaling. On a final note, by making the aggregator role completely
permissionless, our design allows for a much more censorship-resistant solu-
tion, thus addressing one of the main existing problems in the rollup space.
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A Background

A.1 Dictionaries

Definition 1 Given a set of keys K and a set of values V, a dictionary over
(K,V) is a tuple (K,x) where K is a subset of K and x ∈ VK . We write
Dict(K,V) for the set of all dictionaries over (K,V).

Dictionaries can be combined with the following algorithm.

Definition 2 Let K and V be sets. We define

Merge : Dict(K,V)×Dict(K,V)→Dict(K,V)
((K1, D1), (K2, D2)) 7→(K1 ∪K2, D),

where D(k) =

{
D1(k), if k ∈ K1

D2(k), otherwise.

A.2 Authenticated dictionaries

Definition 3 (Authenticated dictionary scheme) An authenticated dic-
tionary scheme over a key set K and value setM consists of sets

– C of commitments
– Π of lookup proofs

and algorithms

– Commit : Dict(K,M)→ C ×Dict(K, Π)
– Verify : Π ×K ×M× C → {True, False}

parameterized over a security parameter λ ∈ N.

An authenticated dictionary scheme should satisfy correctness and binding,
defined as follows.

Definition 4 (Correctness) An authenticated dictionary scheme is correct
if for all dictionaries (K,M) ∈ Dict(K,M) we get

(C, (K ′, π))← Commit(K,M)

such that

K ′ = K

∧Verify(πk, k,Mk, C) = True, ∀k ∈ K.

Definition 5 (Binding) An authenticated dictionary scheme is binding if it
is computationally infeasible to find a commitment C ∈ C, a key k ∈ K, values
m1,m2 ∈M and lookup proofs π1, π2 ∈ Π such that

Verify(π1, k,m1, C) = True

∧Verify(π2, k,m2, C) = True

∧m1 ̸= m2.
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Implementation A common implementation of an authenticated dictionary
scheme is sparse merkle trees [7], where the binding property is achieved by
using a collision-resistant hash function.

A.3 Signature aggregation

A signature aggregation scheme consists of sets

– Kp of public keys
– Ks of secret keys
– Σ of signatures

and algorithms

– KeyGen : 1→ Kp ×Ks

– Sign : Ks ×M→ Σ
– Aggregate : (Kp ×Σ)∗ → Σ
– Verify : K∗

p ×M×Σ → {True, False}

parameterized over a security parameter λ ∈ N.
A signature aggregation scheme should satisfy correctness and unforgeability,
defined as follows.

Definition 6 A signature aggregation scheme is correct if whenever we have
a list of key-pairs (pki, ski)i∈[n] generated by the KeyGen algorithm, and a mes-
sage m ∈M, we have

Verify((pki)i∈[n],m,Aggregate((pki,Sign(ski,m))i∈[n])) = True.

Definition 7 A signature aggregation scheme is unforgeable if it is computa-
tionally infeasible for an adversary to output a list (pki)i∈[n] of public keys, a
message m ∈M and a signature σ ∈ Σ such that

Verify((pki)i∈[n],m, σ) = True,

and where one of the public keys (pki)i∈[n] belongs to an honest user who didn’t
sign the message m with their secret key.

Implementation We will use the modified BLS signature scheme introduced
in [3], which is defined as follows.
Given a security parameter λ ∈ N, we setup a bilinear pairing e : G0 × G1 →
GT of groups of prime order q, and two hash functions H0 : M → G0 and
H1 :M→ Zq. We then let

– Kp := G1

– Ks := Zq

– Σ := G0
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and

– KeyGen() → (sk, pk), where the secret key is a random value sk
R←− Zq and

the public key is pk ← gsk1 ∈ G1

– Sign(sk,m)→ σ, where σ ← H0(m)sk ∈ G0.

– Aggregate((pk1, σ1), . . . , (pkn, σn))→ σ, where

σ ←
∏
i∈[n]

σti
i ,

and where ti ← H1(pki, {pk1, . . . , pkn}) for all i ∈ [n].

– Verify((pk1, . . . , pkn),m, σ) is computed by first computing the aggregated
public key as

pk ←
∏
i∈[n]

pktii ,

where ti ← H1(pki, (pkj)j∈[n]) for all i ∈ [n]. Then, output True if

e(g1, σ) = e(pk,H0(m))

and output False otherwise.

A.4 Zero-knowledge proofs

Zero-knowledge proofs, introduced in [11], allow a prover P to prove to a ver-
ifier V a relation between a statement x and a witness w. A non-interactive
zero-knowledge (NIZK) proof is a trio of algorithms:

– ZK.Setup(λ) → pp. For a certain security parameter λ, the setup algorithm
outputs pp, the public parameters of the system.

– ZK.Prove(pp, x, w) → P . Given the system’s public parameters pp, a state-
ment x, and a witness w, issue a proof P .

– ZK.Verify(pp, x, P ) → {True, False}. Upon receiving the public parame-
ters pp, the public statement x and the proof P , the verifier V either ac-
cepts (returns True) or rejects (returns False) the proof depending on
whether or not P is well-formed. In this case well-formed implies the suc-
cessful proof of the relation between the statement x and the witness w.

Properties. A zero-knowledge proof scheme is considered sound if an adver-
sary A attempting to prove the statement without knowing the secret witness
w cannot produce a valid proof with probability greater than 2−k for knowl-
edge error k. A zero knowledge proof scheme is considered complete if there is
a guarantee that if the prover and verifier are honest, then the verifier success-
fully accepts a proof that shows that the prover P knows the witness w. Ad-
ditionally, a proof P is considered a proof-of-knowledge if the prover P must
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know the witness w to compute the proof for the pair (x,w), and such proof-
of-knowledge is considered zero knowledge if the proof P reveals nothing about
the witness w. Additionally, if the scheme produces succinct arguments, then
it is a (zk)SNARK [4,5,9,12,15]. Quantum-secure similar constructions exist, as
in [2,6].

A.5 Order theory

We here restate some common definitions and results from order theory, which
are used in our protocol description and security proof.

Preorders and posets

Definition 8 A preorder is a tuple (X,≤) where X is a set and ≤ is a binary
relation on X satisfying

– (transitivity) For all a, b, c ∈ X we have a ≤ b ∧ b ≤ c⇒ a ≤ c
– (reflexivity) For all a ∈ X we have a ≤ a.

We write ≥ for the opposite relation on X:

a ≤ b⇔ b ≥ a.

Definition 9 Let (X,≤) be a preorder. We say that two elements x, y ∈ X are
isomorphic, written x ≃ y if x ≤ y and y ≤ x.

Definition 10 A partially ordered set (poset) is a preorder (X,≤) where we
also have antisymmetry, which means that for all a, b ∈ X we have

a ≃ a⇒ a = b.

Monotone functions

Definition 11 Let (X,≤X) and (Y,≤Y ) be preorders, and let f : X → Y be a
function. We say that f is monotone (also often called order-preserving) if for
all a, b ∈ X we have

a ≤X b⇒ f(a) ≤Y f(b).

Proposition 1 If (X,≤X), (Y,≤Y ) and (Z,≤Z) are preorders, and if f :
X → Y and g : Y → Z are monotone functions, then the composite func-
tion

g ◦ f : X → Y

x 7→ g(f(x))

is also monotone.
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Joins and meets

Definition 12 Let (X,≤) be a preorder, let (xi)i∈I be an indexed family of el-
ements of X and let x ∈ X. We say that x is a join of (xi)i∈I if the following
two properties hold:

– xi ≤ x for all i ∈ I (x is an upper bound of (xi)i∈I)
– The element x is the least upper bound, i.e. if x′ ∈ X is another element

such that xi ≤ x for all i ∈ I, then we have x ≤ x′.

Dually, we say that x is a meet of (xi)i∈I if the following two properties hold:

– xi ≥ x for all i ∈ I (x is a lower bound of (xi)i∈I)
– The element x is the greatest lower bound, i.e. if x′ ∈ X is another ele-

ment such that xi ≥ x for all i ∈ I, then we have x ≥ x′.

We have that meets and joins are unique up to isomorphism, stated as follows.

Proposition 2 Let (X,≤) be a preorder, let (xi)i∈I be an indexed family of
elements of X and let x, y ∈ X. If x and y are both joins (or both meets) of
(xi)i∈I , then we have x ≃ y (or equality if (X,≤) is a poset).

Definition 13 A lattice is a poset (X,≤) where every finite indexed family
(xi)i∈I of elements of X has both a join and a meet. Since meets and joins are
unique in a poset (Proposition 2), we can write the join as∨

i∈I

xi

and the meet as ∧
i∈I

xi.

Lattice-ordered abelian groups We now define lattice-ordered abelian
groups, which is the structure we require from the set V of transaction values
(and account balances) in our design.

Definition 14 A lattice-ordered abelian group is a tuple (X,≤,+) where X
is a set, ≤ is a binary relation on X and + is a binary operator on X such
that

– (X,+) is an abelian group
– (X,≤) is a lattice
– For all a, b, x ∈ X we have

a ≤ b⇒ a+ x ≤ b+ x.
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B Computing balances

In this section we define the function

Bal : Π × B∗ → VK+

which is used in the simplified design to compute account balances from a bal-
ance proof and rollup contract state. This function is used by users to compute
their own balance, as well as by the rollup contract when processing a with-
drawal request. Given a balance proof π ∈ Π and the current rollup state
B∗ ∈ B∗, the account balances are computed in two steps. First, we extract
a list of partial transactions from π and B∗, where a partial transaction con-
sists of a sender, a recipient and a (possibly unknown) transaction amount.
Then, we compute the balances of every account by applying a state transition
function on the list of partial transactions. We now describe the steps in more
details.

B.1 Step 1: Extracting a list of partial transactions

The first step of calculating balances is to extract a list of partial transactions
from a balance proof π and the current list of blocks in the rollup B∗. The set
of partial transactions, denoted T , is defined as the subset of

K2
+ × (V+ ⨿ {⊥})

consisting of the tuples ((s, r), v) where s ̸= r and where s = Source implies
v ̸= ⊥. The process of extracting the list of partial transactions is described by
a function

TransactionsInBlocks : Π ×B∗ → T ∗

which we will now define. Given a deposit block (r, v) ∈ Bdeposit, we extract
the one-element list consisting of the partial transaction ((Source, r), v):

TransactionsInBlockdeposit : Bdeposit → T ∗

(r, v) 7→ (((Source, r), v)).

We then define the function

TransactionsInBlocktransfer : Π × Bdeposit → T ∗

for extracting a list of partial transactions from a balance proof and a trans-
fer block as follows. Given a balance proof (K,D) ∈ Π and a transfer block
(aggregator, extradata, C, S, σ) ∈ Btransfer, we take, for each sender-recipient
pair (s, r) ∈ K2 ×K where s ̸= r, in lexicographic order, the partial transaction
((s, r), v) where

v =


t(r), where ((π, salt), t) = D(C, s), if s ∈ S and (C, s) ∈ K

⊥, if s ∈ S and (C, s) /∈ K

0, otherwise.
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Given a withdrawal block, the list of transactions extracted from it consists of
a transaction from each L1 account to the source account in order:

TransactionsInBlockwithdrawal : Bwithdrawal → T ∗

B 7→ ((s,Source), Bs)s∈K1 .

We combine these functions into one function for extracting partial transac-
tions from a balance proof and a block:

TransactionsInBlock : Π × B → T ∗

(π,B) 7→


TransactionsInBlockdeposit(B), if B ∈ Bdeposit
TransactionsInBlocktransfer(π,B), if B ∈ Btransfer
TransactionsInBlockwithdrawal(B), if B ∈ Bwithdrawal

.

Finally, to extract a list of partial transactions from a balance proof and a list
of blocks, we extract the transactions from each block and concatenate the
lists of partial transactions:

TransactionsInBlocks : Π ×B∗ → T ∗

(π, (Bi)i∈[n]) 7→ Concatenate((TransactionsInBlock(π,Bi))i∈[n]).

B.2 Step 2: Computing balances from a list of partial transactions

The second step in computing balances is to apply a transition function to the
list of partial transactions obtained in step 1, starting from the state where all
account balances are zero.

Definition 15 A transition function11 is a function on the form f : T × S →
S, where T is called the set of transactions and S is called the set of states.

In our case, a state is an assignment of a balance to each account:

S := VK+ ,

and the set of transactions is the set T of partial transactions defined in Step
1 above. In order to define the transition function f , we will first define a dif-
ferent transition function fc : Tc × S → S, where the set of transactions is the
subset Tc ⊂ T , called the complete transactions, consisting of the transactions
((s, r), v) ∈ T where v ̸= ⊥. For all i ∈ K+, let ei ∈ VK+ be the map where

(ei)j =

{
1, if i = j

0, otherwise.

Then, for all complete transactions ((s, r), v) ∈ Tc and for all b ∈ S we define

11Sometimes called a semiautomation in the literature.
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fc(((s, r), v), b) := b+ v′(er − es),

where v′ :=

{
v ∨ bs, if s ̸= Source

v, if s = Source.

Remark 1 To apply a transaction where a non-source sender s sends the
amount v to a recipient r, we first reduce the transacted amount v to the amount
v′, which is the greatest amount that is both less than the original value v (the
sender shouldn’t send more than in the original transaction) and less than the
balance of the sender bs (to avoid overspending). The reduced value v′ is then
subtracted from the sender and added to the recipient. The source account is
considered to have sufficient balance for all of its transactions, so if the sender
is the source account, the transaction value is not reduced.

We will now define the transition function f : T × S → S. First, let ≤p

be the preorder on the set T of partial transactions induced by the relations
((s, r),⊥) ≤p ((s, r), v) for all ((s, r), v) ∈ T . Then, for all T ∈ T and b ∈ S, we
define

f(T, b) :=
∧

T ′∈Tc

T≤pT
′

b≤b′

fc(T
′, b′).

Remark 2 The way we defined the transition function f may seem somewhat
abstract, but the idea is this. If we have a sequence of complete transactions
(as in any traditional blockchain), we can compute the balance of each account
by applying the transition function fc defined above. If some of the transac-
tions are unknown, however, we cannot know for sure what the balance of each
account is. Instead, we will compute a lower bound on the balance of each ac-
count. When we apply the transition function f to a partial transaction T ∈ T
and a state b ∈ S, we interpret b as the current lower bound on the true, but
unknown state b′ ∈ S where b ≤ b′, and we interpret the partial transaction T
as the lower bound of the true (but unknown if v = ⊥) transaction T ′ ∈ Tc,
where T ≤p T ′. Since the true transaction T ′ and the true state b′ are un-
known to us, we need to consider the result of applying the transition function
fc to all possible values of T ′ and b′, and take their meet to get the updated
lower bound. We note that the construction where we extend the function fc to
f is a well-known construction in category theory called a Kan extension (see
eg. [14]).

The transition function f : T × S → S induces the function f∗ : T ∗ × S → S
which takes a list of transactions T∗ ∈ T ∗ and an initial state s0 ∈ S and
returns the state obtained by applying the transition function f , in order, to
every transaction in T∗, starting with the initial state s0. In our case, given
the list of partial transactions T∗ obtained in Step 1, we compute the balances
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as f∗(T∗, 0), where 0 ∈ S is the initial state where every account has a zero
balance. Combining the two steps, we define the balance function as follows:

Bal : Π ×B∗ → VK+

(π,B∗) 7→ f∗(TransactionsInBlocks(π,B∗), 0).

B.3 Explicit description of the transition function

We can describe the transition function f explicitly as follows.

Proposition 3 For all partial transactions T = ((s, r), v) ∈ T and states
b ∈ S we have

f(T, b) =

{
fc(T, b), if v ̸= ⊥
b− bses, if v = ⊥.

In other words, if the transaction is complete, the transition function f be-
haves exactly as the transition function fc for complete transactions. If the
transaction is incomplete, the transition function sets the balance of the sender
to 0.

Proof. We first prove that the transition function fc : Tc × S → S for complete
transactions is monotone in its second argument. Let T = ((s, r), v) ∈ Tc be
a complete transaction. We have two cases to consider, either s = Source or
s ̸= Source. Suppose s = Source. Then, for all b ≤ b′ ∈ VK+ we have

fc(T, b) = b+ v(er − es)

≤ b′ + v(er − es)

= fc(T, b
′),

So fc is monotone in its second argument in this case. Now, suppose s ̸=
Source. Then, for all b ∈ VK+ and k ∈ K+, we get

fc(T, b)k =


bs − v ∨ bs = (bs − v) ∧ 0, if k = s

br + v ∨ bs, if k = r

bk, otherwise.

We observe that the transition function is monotone in b in all three cases. We
conclude that fc is monotone in its second argument. It follows that for all
complete transactions T ∈ Tc and all states b ∈ S, we have

f(T, b) =
∧

T ′∈Tc

T≤pT
′

b≤b′

fc(T
′, b′) (By definition)

=
∧

T=T ′

b≤b′

fc(T
′, b′) (By definition of ≤p)

= fc(T, b) (Since fc is monotone in its second argument)
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It remains to show that for all partial transactions T = ((s, r),⊥) ∈ T and for
all states b ∈ S we have f(T, b) = b− bses. Indeed, for all k ∈ K+ we have

f(T, b)k =
∧

T ′∈Tc

T≤pT
′

b≤b′

fc(T
′, b′)k (By definition)

=
∧

v∈V+

b≤b′

fc(((s, r), v), b
′)k (By definition of ≤p)

=
∧

v∈V+

fc(((s, r), v), b)k (Since fc is monotone in its second argument)

=


∧

v∈V+
((bs − v) ∧ 0), if k = s∧

v∈V+
(br + v ∨ bs), if k = r∧

v∈V+
bk, otherwise.

(By definition of fc)

=


0, if k = s (letting v = bs)

br, if k = r (letting v = 0)

bk, otherwise.

= (b− bses)k



Intmax2 25

C Security

In this section we define and prove the security of the rollup contract. Infor-
mally speaking, we say that the rollup contract is secure if every withdrawal
request succeeds, i.e. the rollup contract has sufficient balance for every with-
drawal. This means that if a user has a balance proof which proves the in-
rollup balance of one or more of their L1 accounts, they will be able to with-
draw these balances to L1.

C.1 Security definition

We formally define the security of the rollup contract with the following attack
game.

Attack game 1 The attack game is played between a PPT adversary and a
challenger, where the challenger plays the role of the rollup contract. First, the
challenger initializes the rollup contract with the empty list of blocks () ∈ B∗.
The challenger also stores a value contractBalance ∈ V which keeps track of
the balance of the rollup contract. This value is initialized as 0. Then, the ad-
versary sends a sequence of contract transactions to the rollup contract, where
a contract transaction is either a deposit, a transfer block or a withdrawal re-
quest. For each contract transaction, the challenger updates the rollup contract
storage as defined by the protocols in Sections 2.5 to 2.7 and updates the cur-
rent contract balance according to how much value is being deposited and with-
drawn. The adversary wins the attack game if at the end of the interaction, the
rollup contract does not have a positive balance:

contractBalance ≱ 0.

Definition 16 The rollup contract is secure if winning Attack game 1 is at
least as hard as breaking either the binding property of the authenticated dictio-
nary scheme, or finding a collision of the hash function H.

C.2 Security proof

Before we can prove the security of the rollup contract is secure, we will first
prove some properties of the balance function.

Lemma 1. For all balance proofs π ∈ Π and block lists B∗ ∈ B∗ we have

Bal(π,B∗)Source ≤ 0.

Proof. We start by noticing some basic facts about the transition function for
complete transactions fc, which are easily verified by using the definition of fc.
First, we have that fc preserves the sum of balances, i.e.∑

k∈K+

fc(T, b)k =
∑

k∈K+

bk, ∀T ∈ Tc, b ∈ VK+ .
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Second, we have that if the balance of a non-source account is positive before
a complete transaction is applied, it is again positive after applying the trans-
action:

bk ≥ 0⇒ fc(T, b)k ≥ 0 ∀T ∈ Tc, b ∈ VK+ , k ∈ K+\{Source}.

These two facts imply the following facts about the transition function for par-
tial transactions f :∑

k∈K+

f(T, b) ≤
∑

k∈K+

bk, ∀T ∈ T , b ∈ VK+

and
bk ≥ 0⇒ f(T, b)k ≥ 0 ∀T ∈ T , b ∈ VK+ , k ∈ K+\{Source}.

Then, it follows by induction that we have∑
k∈K+

f∗(T∗, 0) ≤
∑

k∈K+

0k = 0, ∀T∗ ∈ T ∗ (1)

and
f∗(T∗, 0)k ≥ 0 ∀T∗ ∈ T ∗, k ∈ K+\{Source}. (2)

Finally, for all balance proofs π ∈ Π and block lists B∗ ∈ B∗, letting T∗ =
TransactionsInBlocks(B∗) we have

Bal(π,B∗)Source = f∗(T∗, 0)Source (by definition)

=
∑

k∈K+

f∗(T∗, 0)k −
∑

k∈K+\{Source}

f∗(T∗, 0)k

≤ −
∑

k∈K+\{Source}

f∗(T∗, 0)k (by Equation (1))

≤ 0 (by Equation (2))

which is the statement of the lemma.

In order to state the last two lemmas, we will first need to define a preorder
structure on the set Π of balance proofs. Under this preorder, a balance proof
is greater than another if it contains proofs for the same transactions as the
other, and possibly more.

Definition 17 We define the preorder ≤ on Π where for all (K,D), (K ′, D′) ∈
Π we have (K,D) ≤ (K ′, D′) if and only if the following holds:

– K ⊂ K ′

– For all k ∈ K, letting ((π, salt), t) = D(k) and ((π′, salt′), t′) = D′(k), we
have t = t′.

We now prove the following lemma.



Intmax2 27

Lemma 2. The balance function

Bal : Π ×B∗ → VK+

is monotone in its first argument.

Proof. Let B∗ ∈ B∗. We can then decompose the partial function Bal(−, B∗) :
Π → VK+ as follows:

Π
TransactionsInBlocks(−,B∗)−−−−−−−−−−−−−−−−→ T ∗ f∗(−,0)−−−−−→ VK+ .

Note that the function TransactionsInBlocks outputs a list of partial trans-
actions whose length is only dependent on the second argument (the list of
blocks). This means that since B∗ is fixed, we can replace T ∗ by T [n] above,
for some integer n:

Π
TransactionsInBlocks(−,B∗)−−−−−−−−−−−−−−−−→ T [n] f∗(−,0)−−−−−→ VK+ .

We give T [n] the preorder structure induced by the preorder ≤p on T . Then,
to prove that the balance function is monotone in its first argument, it suffices
to show (by Proposition 1) that the two functions in the above composition
are monotone.
We first show that the function TransactionsInBlocks(−, B∗) is monotone. Let
π, π′ ∈ Π be balance proofs where π ≤ π′, and let T∗ = TransactionsInBlocks(π,B∗)
and T ′

∗ = TransactionsInBlocks(π′, B∗). We need to show that Ti ≤p T ′
i for all

i ∈ [n]. Let i ∈ [n], and let ((s, r), v) = Ti and ((s′, r′), v′) = T ′
i . Notice first

that we have (s, r) = (s′, r′), since by construction, we have that the sender
and recipient of the transaction at a given index in the list of partial transac-
tions extracted from a balance proof and block list is only determined by the
block list (more specifically by the arrangement of the three block types in the
list). Then, we realize that the only way the two transactions T and T ′ can
differ, is if they are both extracted from the same transfer block B, and if π′

contains a proof of the transaction from s in B, and π doesn’t. In this case, we
have v = ⊥, so we get ((s, r), v) ≤p ((s′, r′), v′).
It remains to show that the function f∗(−, 0), considered as a function from
T [n] to VK+ is monotone. To show this, we first notice that the transition
function f is monotone in both arguments, since if T1 ≤p T2 ∈ T and b1 ≤
b2 ∈ S, we get

f(T1, b1) =
∧

T ′∈Tc

T1≤pT
′

b1≤b′

fc(T
′, b′) (By definition)

≤
∧

T ′∈Tc

T2≤pT
′

b2≤b′

fc(T
′, b′) (Since we take the meet of a smaller set of elements)

= f(T2, b2) (By definition).
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It then follows, by induction, that f∗ is also monotone in both arguments, and
in particular we conclude that f∗(−, 0) is monotone.

Finally, we have the following lemma.

Lemma 3. Let (K1, D1), (K2, D2) ∈ Π be two balance proofs. Then the follow-
ing statements are equivalent:

a) The merged balance proof Merge((K1, D1), (K2, D2)) is a join of (K1, D1)
and (K2, D2) in Π.

b) (K1, D1) and (K2, D2) have a join in Π.
c) For all k ∈ K1 ∩K2, letting ((π1, salt1), t1) = D1(k) and ((π2, salt2), t2) =

D2(k), we have t1 = t2.

Proof. We will prove equivalence by proving a)⇒ b), b)⇒ c) and c)⇒ a).

a)⇒ b) This is trivial.
b)⇒ c) Assume the balance proofs have a join (K,D) ∈ Π. Then we have

(K1, D1) ≤ (K,D) and (K2, D2) ≤ (K,D) by the definition of a join,
which implies that K1 ⊂ K and K2 ⊂ K. Now, if k is an element in the
intersection K1 ∩ K2, we have that k ∈ K. Let ((π1, salt1), t1) = D1(k),
((π2, salt2), t2) = D2(k) and ((π, salt), t) = D(k). Then we get t1 = t since
(K1, D1) ≤ (K,D), and we get t2 = t since (K2, D2) ≤ (K,D), implying
t1 = t2.

c)⇒ a) We assume that for all k ∈ K1 ∩ K2, letting ((π1, salt1), t1) = D1(k)
and ((π2, salt2), t2) = D2(k), we have t1 = t2. Let (K,D) = Merge((K1, D1), (K2, D2)) ∈
Π. We will show that (K,D) is a join of (K1, D1) and (K2, D2). We first
show that (K1, D1) ≤ (K,D) and (K2, D2) ≤ (K,D). Clearly, we have
K1 ⊂ K1∪K2 and K2 ⊂ K1∪K2. Also, if k ∈ K1, letting ((π1, salt1), t1) =
D1(k) and ((π, salt), t) = D(k) we have t1 = t because D1(k) = D(k)
by contruction. Finally, if k ∈ K2, letting ((π2, salt2), t2) = D2(k) and
((π, salt), t) = D(k) we have t2 = t because either k /∈ K1 which im-
plies D2(k) = D(k) by construction, or k ∈ K1, in which case, letting
((π1, salt1), t1) = D1(k) we get t2 = t1 (by assumption) and t1 = t (by an
earlier argument), which implies t2 = t.
We have now shown that the merged balance proof (K,D) is an upper
bound of (K1, D1) and (K2, D2). It remains to show that it is the least
upper bound. To do so, assume we have another upper bound (K ′, D′) of
(K1, D1) and (K2, D2). Then we have (K ′ = K1 ∪K2 ⊂ K ′. Now, pick an
element k ∈ K, and let ((π, salt), t) = D(k) and ((π′, salt′), t′) = D′(k).
Then we have, by construction, either k ∈ K1 or k ∈ K2\K1. In the former
case, letting ((π1, salt1), t1) = D1(k), we have t = t1 = t′. In the latter
case, letting ((π2, salt2), t2) = D2(k), we have t = t2 = t′. We conclude
that (K,D) ≤ (K ′, D′), which implies that (K,D) is the join of (K1, D1)
and (K2, D2).

Theorem 1 The rollup contract is secure (by Definition 16).
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Proof. Suppose an adversary and a challenger have interacted in Attack game 1.
We will show that either the resulting contract balance is positive (the adver-
sary lost the game), or the adversary has been able to either break the bind-
ing property of the authenticated dictionary scheme or found a collision of the
hash function H. Let B∗ = (Bi)i∈[n] be the contract state after the attack
game, let I ⊂ [n] be the indices of the withdrawal blocks in B∗ and let (πi)i∈I

be the balance proofs used in the withdrawal requests. The resulting contract
balance can be computed by adding all deposited amounts and subtracting all
withdrawn amounts:

contractBalance = vdeposited − vwithdrawn,

where
vdeposited =

∑
i∈[n]

Bi∈Bdeposit

Bi=(r,v)

v

and
vwithdrawn =

∑
i∈I

k∈K1

Bal(πi, (Bj)j∈[i−1])k.

We now have two possibilities, either the balance proofs (πi)i∈I have a join in
Π or they don’t. Suppose they have a join π ∈ Π. Then we have

0 ≤ −Bal(π,B∗)Source (lemma 1)

= vdeposited −
∑
i∈I

k∈K1

Bal(πi, (Bj)j∈[i−1])k ∧ Bal(π, (Bj)j∈[i−1])k

= vdeposited −
∑
i∈I

k∈K1

Bal(π, (Bj)j∈[i])k (Follows from Lemma 2 since πi ≤ π )

= contractBalance

which shows that the contract balance is positive. Now, suppose the balance
proofs (πi)i∈I do not have a join in Π. Let ik be the k′th index in I (so that
I = {i1, i2, . . . , im}, where m = |I|). Then, let (π′

k)k∈{1,...,m} be the balance
proofs defined recursively as π′

1 = πi1 and π′
k = Merge(π′

k−1, πik). Clearly,
these merged balance proofs are valid, since each of the original balance proofs
are valid (otherwise they wouldn’t be accepted by the rollup contract), and
since the merge of two valid balance proofs is again valid. Now, we argue that
there must be an index k ∈ {1, . . . ,m} such that π′

k is not the join of π′
k−1

and πik in Π, since if not, the final merged balance proof π′
m would be a join

of (πi)i∈I (by Lemma 3), which we have assumed not to exist. Let (K,D) =
π′
k−1 and (K ′, D′) = πik . It then follows from Lemma 3 that there is a key

k ∈ K ∩K ′ such that, letting ((π, salt), t) = D(k) and ((π′, salt′), t′) = D′(k),
we have t ̸= t′. Also, since both balance proofs are valid, as remarked earlier,
we have

AD.Verify(π, s,H(t, salt), C)
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and
AD.Verify(π′, s,H(t, salt′), C),

where (C, s) = k. It follows that that either H(t, salt) = H(t′, salt′), meaning
that we have found a hash collision, or H(t, salt) ̸= H(t′, salt′), which means
we have broken the binding property of the authenticated dictionary scheme.
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D Discussion

D.1 Tracing the Path to Intmax2

Plasma Prime [17] is the starting point for the path that lead to Intmax2.
Plasma Prime incorporates RSA accumulators and is based on the UTXO
model, where each unspent output represents ownership of a specific segment.
The concept of range chunking is also introduced, and is used to compress
transaction history to simplify block verification. This design also features the
use of a SumMerkleTree for efficient overlap verification between transaction
segments and inclusion proof generation.

Springrollup [8] is a Layer 2 solution that introduces a new type of zk-rollup,
that aims to use less on-chain data and enhance privacy. The rollup state is
divided into on-chain and off-chain available states, with the design ensuring
users’ funds remain safe even if the off-chain state is withheld by the opera-
tor. The operator can modify the rollup state by posting a rollup block to the
L1 contract, which includes the new merkle state root, a diff between the old
and new on-chain states, and a zk-proof of valid operations. The system also
includes a frozen mode for situations where the operator doesn’t post a new
rollup block within 3 days.

Intmax [13] introduces a design where the aggregator maintains a global state
that is used when the aggregator makes new rollup blocks. This state is not
necessarily known by anyone other than the aggregator, and can be with-
held by the aggregator. This means that to allow multiple aggregators for the
rollup, each aggregator must be trusted to provide the updated rollup state
off-chain to the next aggregator in order to keep the rollup alive. This results
in two things: First, since each aggregator needs to build upon the previous
block, this method requires the complexity of a leader selection method to de-
termine which aggregator can create the next block. Second, and more impor-
tantly, the rollup will halt if one of the aggregators fails to provide the data to
the next aggregator, and all users would need to exit the rollup. This means
that all aggregators need to be trusted in order to guarantee liveliness.

Intmax2 (this work), solves these problems by modifying the protocol so that
block production becomes stateless, meaning that new blocks can be added to
the rollup without having to know the previous blocks at all, allowing aggre-
gating to become decentralized.

D.2 Liveness

We highlight that if a user receives a transaction and then remains offline for
an extended period of time, the user is still able to perform withdrawals at
a future point in time when they are online again. While it is recommended
that a user continuously performs the update of the recursive zero-knowledge
balance proof that allows for the withdrawal of funds, the user can remain of-
fline for a certain time period and then, when back online, can perform a syn-
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chronization process and calculate the corresponding recursive zero knowledge
proof (e.g., [16]).

D.3 Privacy of Intmax2

Our proposed solution does not post any transaction data on the underlying
layer 1. Also, since aggregators do not need to verify transactions, the transac-
tion data can also be hidden from the aggregators. As a result, the details of
user transactions are only revealed to the recipients. As the importance of pri-
vacy on blockchains continues to grow, our proposed solution offers a promis-
ing path towards a privacy-focused future.

D.4 Delegating Zero-Knowledge Proof Generation

The emergence of new research on delegating the generation of zero-knowledge
proofs [10], brings exciting prospects for the wider adoption of these technolo-
gies, particularly among light clients like mobile phones. This development
holds great promise in overcoming the computational limitations of resource-
constrained devices and enabling them to actively engage in zero-knowledge
proof protocols. By delegating the generation of zero-knowledge proofs to more
powerful devices or servers, the burden of computationally intensive tasks can
be alleviated, paving the way for enhanced participation and utilization of
zero-knowledge proofs.
As the research continues to evolve and mature, we anticipate a future where
zero-knowledge proofs become more accessible and seamlessly integrated into
various domains, empowering users with enhanced security and privacy guar-
antees. This development holds immense potential for bringing zero-knowledge
proofs to the masses and unlocking their benefits for various applications.
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