Encrypted Blockchain Databases

Daniel Adkins* Archita Agarwall Seny Kamarat Tarik Moataz §
Brown University Brown University Brown University Aroki Systems
Abstract

Blockchain databases are storage systems that combine properties of blockchains and databases
like decentralization, tamper-proofness, low query latency and support for complex queries.
Blockchain databases are an emerging and important class of blockchain technology that is crit-
ical to the development of non-trivial smart contracts, distributed applications and decentralized
marketplaces.

In this work, we consider the problem of designing end-to-end encrypted blockchain databases
to support the development of decentralized applications that need to store and query sensitive
data. In particular, we show how to design what we call blockchain encrypted multi-maps
(EMM) which can be used to instantiate various kinds of NoSQL blockchain databases like
key-value stores or document databases. We propose three blockchain EMM constructions,
each of which achieves different tradeoffs between query, add and delete efficiency. All of our
constructions are legacy-friendly in the sense that they can be implemented on top of any existing
blockchain. This is particularly challenging since blockchains do not support data deletion.

We implemented our schemes on the Algorand blockchain and evaluated their concrete effi-
ciency empirically. Our experiments show that they are practical.

1 Introduction

Blockchains are decentralized tamper-proof append-only data stores. Since their introduction by
Nakamoto in the context of crypto-currencies [37], blockchains have received a lot of attention
from research and industry due to their potential use tamper-proof distributed storage platforms.
An emerging and important class of blockchain technologies are blockchain databases. These are
blockchain-like in the sense that they are decentralized and tamper-proof but database-like in the
sense that they store complex data types, provide (relatively) low latency, and support complex
queries. Blockchain databases are a crucial technology for the development of non-trivial smart con-
tracts, distributed applications and marketplaces. Examples of commercial and research blockchain
databases include Bigchain DB [35], Bluzelle [4] and [38].

As blockchain databases gain wider adoption, concerns over the confidentiality of the data they
manage will increase. Already, several projects aim to use blockchains to store sensitive data like
electronic healthcare and financial records, legal documents (e.g., wills) and customer data. But
the decentralized nature of blockchains—where data is highly replicated and stored on untrusted
nodes—makes it a particularly poor solution for storing sensitive data.

*daniel_adkins@brown.edu
Tarchita_agarwal@brown. edu
j;seny@brown. edu
$tarik@aroki.com

Encrypted blockchain DBs. In this work, we consider the problem of end-to-end encrypted
blockchain databases. With such a system, a client can encrypt its database before storing it on
the blockchain. To query it, the client uses its secret key and executes a query protocol with
the blockchain. Encrypted blockchain DBs are a form of encrypted database as studied in the
encrypted search literature. In theory they could be designed using various cryptographic primitives
each of which achieve different tradeoffs between query efficiency, storage overhead, communication
complexity, leakage and query expressiveness.

Encrypted multi-maps. A multi-map (MM) is a data structure that stores label/tuple pairs
and supports get and put operations. Gets take as input a label and return the associated tuple and
puts take as input a label/tuple pair and stores it. Multi-maps are generalization of dictionaries
which only store label/value pairs. MMs capture the functionalities of important data structures
like inverted indices but can also be used to represent NoSQL databases like key-value stores
(e.g., DynamoDB) and document stores (e.g., MongoDB). An encrypted multi-map (EMM) is an
end-to-end encrypted multi-map data structure that supports puts and gets over encrypted data.
EMMs have have received a lot of attention in the encrypted search literature because they enable
sub-linear search on encrypted data [24], encrypted graph databases [23] and encrypted relational
databases [29]. We note that an encrypted NoSQL blockchain database can be trivially constructed
from a decentralized /blockchain EMM since both key-value stores and document databases can be
represented as dictionaries. Because of this, in this work, we focus on the problem of designing of
blockchain EMMs.

Custom vs. legacy-friendly designs. There are two approaches one could take to design a
blockchain EMM. The first is to build a custom system from the ground up. The advantage of this
approach is that the blockchain and the encrypted search techniques can be co-designed to optimize
performance. Another approach is to design a solution that is legacy-friendly in the sense that it
can be used on top of pre-existing blockchains. The advantage of this approach is that the resulting
system can benefit from the underlying blockchain’s network in terms of size and adoption. The
disadvantage of this approach is that it introduces several technical challenges.

Challenges. The first challenge is simply to find a way to store the encrypted database on a
blockchain. Most existing blockchains were designed to store financial transactions or the state of
smart contracts but not databases and the data structures that support them. The second challenge
is in achieving dynamism; that is, adding, deleting and editing data. One of the core properties of
blockchains is that they are tamper-proof which makes database deletion operations particularly
difficult. The third challenge is to achieve efficiency both with respect to queries and updates.

1.1 Owur Contributions

In this work, we show how to design practical legacy-friendly encrypted blockchain databases. We
make several contributions.

Append-only data stores. Our blockchain EMM constructions can work on any blockchain. To
achieve this level of generality, we use a simple abstraction called an append-only data store (ADS)
that captures the properties and functionality of blockchains that we need. At a high level, an
ADS stores address/entry pairs but where the address is determined by the structure—as opposed
to a dictionary where the label is chosen. ADSs are append-only so they only support get and

put operations. By designing EMMSs based on ADSs we ensure that our constructions can be
implemented and used on any blockchain. An alternative approach would be to store an entire
EMM as the state of a smart contract and to implement the query and update operations as a
smart contract. There are two limitations to this approach. First, it is not general-purpose since:
(1) many blockchains do not support smart contracts; and (2) many smart contract platforms do
not maintain state across transactions. The second limitation is that it is expensive since smart
contract platforms require payment not only for storing data and code but also for executing code
(and the more complex the code is, the higher the cost). Our approach, on the other hand, is general
and lower cost since we can store ADS entries in transactions as opposed to smart contracts ' and
don’t need to execute any code on the blockchain.

A list-based construction. Our first construction, LSX, stores every element of a multi-map in
the ADS but super-imposes a virtual linked list for each tuple. Given a tuple (v1, ..., v,) associated
to a label ¢, the values are first stored in blocks (B(l), . ,B(m)). Block B® is then concatenated
with the address of BG—Y encrypted and stored in the ADS. The address of B(™ is then stored
locally by the client. To query the EMM on a label ¢, the client recovers the address of the tail
block and queries the ADS for it. This results in the client learning B and the address of B("~1)
which can now be queried; and so on and so forth. To achieve dynamism, the scheme uses lazy
deletion: all the added and deleted values are marked as added or deleted and deletion is only
performed at query time by removing the values marked as deleted from the output. This scheme
has several shortcomings including query complexity that is linear in the number of deleted items
and a put operation that requires a linear number of rounds (in the size of the tuple). The latter is
particularly costly when the ADS is instantiated with a blockchain because the latency of a round
is equivalent to the time it takes for a transaction to stabilize, which can be very high.

Like any encrypted search solution, our schemes achieve tradeoffs between efficiency and leakage.
We formally analyze the security of our constructions and prove that they achieve standard leakage
profiles. More precisely, LSX’s query leakage reveals if and when the queried label has been edited
in the past. Its add and delete leakages, on the other hand, reveal only the size of the tuple, which
implies that LSX is forward-private [46, 19].

A tree-based construction. Our second construction, TRX, improves on LSX’s round complex-
ity for puts. It does this by super-imposing a binary tree instead of a list. Roughly speaking,
given blocks (B(l), cee B(m)), each block is concatenated with the addresses of a left and a right
block. These blocks can be any two blocks that have been previously stored but not linked to. For
dynamism, the scheme also uses lazy deletes. The advantage of this scheme is that put operations
now require only a logarithmic number of rounds since all the blocks at a given tree depth can be
inserted into the ADS in parallel (since their children have already been inserted and their addresses
are now known). TRX achieves the same leakage profile as LSX.

A patched construction. Our third construction, PAX, improves on the asymptotic query com-
plexity of LSX. It does this by super-imposing additional (virtual) structures on the ADS. The first
are what we refer to as patches. These are address pairs that allow the query algorithm to skip
values that are deleted. To guarantee correctness and to achieve optimal query complexity, these
patches have to be used and managed very carefully. We achieve this by super-imposing a binary

! On Ethereum, it costs around 2,200 gas to store a 32 bytes in a transaction whereas it costs around 20,000 gas
to store it in a smart contract.

search tree on the patches themselves that allows us to find patches quickly and introduce a set of
techniques to manage this patch tree.

PAX’s leakage profile is slightly worse than LSX’s and TRX’s. Its query leakage reveals if and
when an addition was made to the label and its add leakage reveals only the size of the tuple. In
particular, this means PAX’s adds are forward private. Its deletions, however, are not and they
reveal if and when the label was added to, and if and when the tuple values were added in the
past. Another limitation of PAX is that it does not support packing so, even though its asymptotic
query complexity is optimal, its concrete efficiency is only moderate (as our experiments reveal).
Nonetheless, we believe that PAX is an interesting construction due to the techniques it introduces
and its asymptotic optimality. Furthermore, if it can be extended to handle packing it would be
very efficient in practice.

Blockchain instantiations of ADSs. We show how to use the Ethereum and Algorand blockchains
to instantiate an ADS. At a high-level, we store a value v by creating a transaction that stores v
and sending it to the blockchain so that it gets mined into a block. In the context of blockchains,
the address of a value can be instantiated in one of two ways: (1) as a transaction hash, which the
client can compute before the block is mined; or (2) as the block number (along with a transaction
hash) which the client can only use after the transaction has been mined and the block is stable.
Using transaction hashes as addresses is more efficient but, in some cases, infeasible because some
nodes might not support transaction lookups by hash. Because of this, we also study how choosing
one instantiation over the other effects the efficiency of our schemes.

Empirical evaluation. We implemented our schemes on the Algorand testnet and evaluated
them under a variety of different settings. We varied the sizes of the multi-maps and the querying
and deletion patterns. We instantiated the ADS addresses using transaction hashes and block
numbers. At a high level, we found that TRX performs better than LSX when addresses are
instantiated with block numbers. However, if transaction hashes are used, we found no difference
between the two. We also found that, as expected, for workloads with a lot of delete operations,
PAX outperforms the other schemes. For other workloads, however, PAX performs worse than the
other schemes due to its inability to pack multiple values in a single transaction. 2

2 Related Work

Blockchain databases. Recently, database and blockchain technologies have mutually influ-
enced each other. Some databases have adopted blockchain features such as decentralization,
tamper-resistance and auditability [39, 8, 5, 35, 9, 44], while some blockchains have adopted
database features like low latency and expressive queries [27, 13, 25, 48, 47, 16, 32]. The latter,
(i.e., blockchain DBs) work by either storing data in traditional database and using blockchains for
book-keeping purposes [48, 47, 16, 32]; or by introducing an additional database layer on top of an
existing blockchain [27, 13, 25].

Privacy in blockchains. Blockchains are being designed for a variety of uses and domains such
as government, health and IoT [18, 14, 49, 43]. Since many blockchains are public and store sensitive
data, privacy has always been a concern. This has led to the adoption of various cryptographic

2We implemented our schemes for the Ethereum testnet as well but could not run any experiments due to what
we believe is an DDoS or anti-spam mechanism. We contacted the Ethereum foundation about it but never heard
back. We expect, however, to see similar trends as our results from the Algorand testnet.

techniques like zero-knowledge proofs, [36, 45], secure multi-party computation [47, 30, 2], secret
sharing [15, 2], encryption [33, 13, 31], commitment schemes [20, 1, 34] and access controls [13, 40,
41] to blockchains. We refer the readers to [42, 50] for a comprehensive survey.

Recently, Benhamouda et al. [17] considered the problem of storing and using a secret on
blockchain. We note the goal of our work is different from theirs but complimentary. In this work,
we are concerned with storing and querying a database of sensitive information whereas in [17] the
goal is to store and use a secret like an encryption or a signing key. The two approaches could be
combined as follows. Suppose we had two blockchains bcy and bcy. Our blockchain EMMs could
be used to store and manage a database on bcy while the techniques from [17] could be used to
store the blockchain EMM’s secret key on bcy and to execute the query, add and delete operations.

Verifiable SSE via blockchains. Blockchains have also been used in the context of encrypted
search. Several works [22, 21, 28, 51] propose to use blockchains to desgin verifiable searchable
symmetric encryption (VSSE) schemes. A VSSE scheme is a searchable encryption scheme where
the client can verify the correctness of the query results. Traditional VSSE constructions rely on
cryptographic primitives like message authentication codes (MAC) and digital signatures. These
works replace the server by a smart contract and rely on the consensus mechanism of the latter to
provide a guarantee of correctness.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0,1}", and the set of all finite
binary strings as {0,1}*. [n] is the set of integers {1,...,n}, and 2" is the corresponding power

set. We write < x to represent an element x being sampled from a distribution yx, and x & x
to represent an element x being sampled uniformly at random from a set X. The output z of an
algorithm A is denoted by z < A.

Dictionaries & multi-maps. A dictionary structure DX of capacity n holds a collection of n
label /value pairs {(¢;, v;) }i<n and supports get and put operations. We write v; := DX[¢;] to denote
getting the value associated with label ¢; and DX[¢;] := v; to denote the operation of associating
the value v; in DX with label ¢;. A multi-map structure MM with capacity n is a collection of n
label/tuple pairs {(¢;,v;)}i<n that supports get and put operations. Similar to dictionaries, we
write v; := MM[/;] to denote getting the tuple associated with label ¢; and MM[¢;] := v; to denote
operation of associating the tuple v; to label ¢;.

Append-only data stores. An append-only data store ADS is a special case of a dictionary
data structure in which every inserted label/value pair cannot be removed without impacting the
integrity of the entire structure. That is, the structure can insert new label/value pairs, but the
existing ones are immutable and cannot be modified. We provide below a formal description of this
data structure.

Definition 3.1 (Append-only data store). An append-only data store Xaps = (Init, Get, Put) con-
sists of three algorithms that work as follows:

e ADS <« Init(\) is an algorithm that takes as input a public parameter \, and outputs an empty
append-only data store ADS.

e v < Get(ADS,) is an algorithm that takes as input an append-only data store ADS and an
address r and outputs a response v that corresponds to the value stored at address r.

e (ADS',r) < Put(ADS,v) is an algorithm that takes as input an append-only data store ADS
and a value v, and outputs an address v and an updated append-only data store ADS'.

ADS[r] denotes the value stored at location r and addr(v) to denote the address at which v is
stored in ADS.

Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms SKE = (Gen, Enc,Dec) such that Gen is a probabilistic algorithm that takes a
security parameter k£ and returns a secret key K; Enc is a probabilistic algorithm takes a key K
and a message m and returns a ciphertext ¢; Dec is a deterministic algorithm that takes a key K
and a ciphertext ¢ and returns m if K was the key under which ¢ was produced. Informally, a
private-key encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts
it outputs do not reveal any partial information about the plaintext even to an adversary that
can adaptively query an encryption oracle. We say a scheme is random-ciphertext-secure against
chosen-plaintext attacks (RCPA) if the ciphertexts it outputs are computationally indistinguishable
from random even to an adversary that can adaptively query an encryption oracle.?

4 Structured Encryption

Structured encryption (STE) schemes [23] encrypt data structures in such a way that they can
support operations on encrypted data. STE schemes can be distinguished depending on the type of
operations they support. This includes non-interactive and interactive schemes where the former
require only a single message while the latter require several rounds for queries and updates. STE
schemes can also be static or dynamic where the former do not support update operations whereas
the latter do. STE schemes can also be response-revealing or response-hiding, where the former
reveal the response to queries whereas the latter do not. We formally define an interactive dynamic
response-hiding STE as follows:

Definition 4.1 (Dynamic response-hiding STE). A dynamic response hiding STE scheme Ygps =
(Init, Query, Resolve, Edit™, Edit™) consists of four protocols that work as follows:

e (st, K;EDS) « Initc s(1%; L) is a probabilistic protocol between the client C and the server S.
The client inputs the security parameter k while the server inputs nothing. The client receives
an empty state st, a key K, while the server receives an empty encrypted data structure EDS.

o (st',r; 1) < Queryc g(st, K, £ EDS) is a (probabilistic) protocol between the client C and the
server S. The client inputs the state st, the key K and the label £, while the server inputs
the encrypted data structure EDS. The client receives a response r and the server receives
nothing.

o (st’;EDS’) « Edit* ¢ s(st, K,¢,v; EDS): is a (probabilistic) protocol between the client C and
the server S. The client inputs its state st, the key K, a label ¢, and a value tuple v, while
the server inputs the encrypted data structure EDS. As output, the client receives an updated
state st' and the server receives an updated state EDS’.

3RCPA-secure encryption can be instantiated practically using either the standard PRF-based private-key encryp-
tion scheme or, e.g., AES in counter mode.

o (st’;EDS’) < Edit™ ¢ s(st, K,¢,v; EDS): is a (probabilistic) protocol between the client C and
the server S. The client inputs its state st, the key K, a label £ and a value tuple v, while
the server inputs the encrypted data structure EDS. As output, the client receives an updated
state st' and the server receives an updated state EDS’.

We say that a dynamic response hiding STE scheme Ygps is correct if for all k € N, for all
(sto, K,EDSq) output by Init(1%; 1), for all sequences of m = poly(k) operations opy,...,op,,, for
all i € [m], if op; is a query q;, Query(st;_1, K,¢;EDS;_1) returns the correct response with all but
negligible probability; where st;_1 is the output of the Edit™, Edit™ or Query protocols, while EDS;_4
is either the output of the last update p < i if it exists, or the output of the Init protocol otherwise.

4.1 Security

The standard notion of security for STE guarantees that: (1) an encrypted data structure reveals
no information about its underlying data structure beyond the init leakage £;; (2) that the query
protocol reveals no information about the data structure and the queries beyond the query leakage
Lq; and that (3) the Edit™ and Edit™ protocols reveal no information about the data structure and
the updates beyond the edit leakage Lg+ /Lg-. If this holds for adaptively chosen operations then
the scheme is said to be adaptively secure.

Definition 4.2 (Adaptive security of STE [24, 23]). Let Ygps = (Init, Query, Resolve, Edit™, Edit™)
be a dynamic STE scheme and consider the following probabilistic experiments where A is a stateful
adversary, S is a stateful simulator, Ly, Lq, Le+and Leg- are leakage profiles and z € {0,1}*:

Realy, 4(k): given z the adversary A receives an empty encrypted data structure EDS from the
challenger, where (st, K;EDS) « Init(lk; 1). The adversary then adaptively chooses a poly-
nomial number of operations opy,...,0p,, such that op; is either a query or an update. For
all i € [m], if op; is a query q; = £, the adversary and the challenger execute the protocol
Query, and the challenger receives an updated state st' and a response e while the adversary
receives nothing, where (st',e; L) + Query(st, K,¢;EDS). If op; is an update of the form
w; = (Edit*, £, v), the adversary and the challenger execute the protocol Edit*, and the chal-
lenger receives an updated state st’, while the adversary receives an updated encrypted data
structure EDS', where (st'; EDS') < Edit*(st, K,¢,v;EDS). On the other hand, if op; is an
update of the form w; = (Edit™,¢,v), the adversary and the challenger execute the protocol
Edit™, and the challenger receives an updated state st’, while the adversary receives an updated
encrypted data structure EDS', where (st';EDS') « Edit™(st, K, ¢; EDS). Finally, A outputs
a bit b that is output by the experiment.

Idealy, 4 s(k): given z and leakage L£,(DS) (where DS = L) from the challenger, the simulator S
returns an empty encrypted data structure EDS to A. The adversary then adaptively chooses
a polynomial number of operations opy,...,op,, such that op, is either a query or an update.
For all i € [m], if op; = £, the simulator receives the query leakage LqQ(DS,¥) and executes
Query with the adversary. The adversary receives nothing as output. If op; = (Edit™,¢,v),
the simulator receives the add leakage Lg+ (DS, 4, v) and executes Edit™ with the adversary.
The adversary receives an updated encrypted data structure EDS’ as output. If, on the other
hand, op; = (Edit™, ¢,v), the simulator receives the delete leakage Lg— (DS, ¢, v) and executes
Edit™ with the adversary. The adversary receives an updated encrypted data structure EDS'
as output. Finally, A outputs a bit b that is output by the experiment.

We say that Yeps is adaptively (L), Lq, Lg+, Lg-)-secure if there ezists a PPT simulator S such
that for all PPT adversaries A, for all z € {0,1}*,

|Pr[Reals,, a(k) = 1] — Pr[Ideals,, as(k) =1]| < negl(k).

5 LSX: A List-Based Scheme

In this section, we describe our first construction LSX. This is a multi-map encryption scheme
that makes use of an append-only data store. There are two main technical challenges that occur
when designing such a scheme. The first is handling delete operations since ADS’s do not have the
ability to modify or delete entries. The second is supporting the insertion of variable-length tuples
efficiently. To solve these issues, we use three techniques: (1) linking, where we super-impose a
linked list structure on top of the underlying ADS; (2) lazy deletion, where items are only marked
for deletion at delete time and removed from the output at query time; and (3) packing, where we
store multiple tuple values in one ADS entry.

Overview. At a high-level our scheme works as follows. Given a label/tuple pair that needs to
be added or deleted, the client encrypts and stores the tuple values into the ADS maintained by
the server. But, to differentiate between added and deleted values, it first concatenates a flag to
each value: ADD for added values and DEL for deleted values. At query time, the client reads all
the values and outputs the ones that were added but not deleted.

Linking. Recall that in order to retrieve a value from an append-only data store ADS, one needs
to know the address at which it is stored and this address cannot be computed or known a-priori by
the client. To support search, a naive approach would be to require the client to store the addresses
of all the values that it ever stored in the data store; which is obviously very space inefficient. To
improve this, the client will super-impose in the ADS a virtual linked list over the values associated
to a label £ and store locally only the address of the tail of the list. More precisely, it works as
follows: for each label ¢, and each value in £’s tuple, the client concatenates to the value the address
of the previous value that was stored in ADS. It then stores the address of the last value in the
tuple. Overall, the client only needs to keep a state that is linear in the number of labels in the
multi-map. Notice that it is possible to achieve constant size state by super-imposing a single list
over the values of all labels but we dismissed this approach since the query time would be linear in
the number of values of all labels.

Packing. Depending on how big the tuple values are, it is possible to pack multiple values in
one entry of the data store. This trivially makes the construction more efficient since queries will
require a fewer number of interactions with the ADS. Let A be a data-store-specific parameter that
denotes the maximum number of bits that can be stored in an entry of the ADS. The client then
packs the maximum number of values in what we call a value-block such that the total size of the
value-block (including the flag and the address) is at most A. It then stores the value-block as an
entry of the data store.

5.1 Details

The LSX scheme makes a black-box use of a private key encryption scheme SKE = (Gen, Enc, Dec)
and an append-only data store Yaps = (Init, Get, Put). LSX is described in detail in Figure 1 and
we provide below a high level overview on how it works.

Init. During initialization, given a security parameter 1* as input, the client generates an encryp-
tion key K and initializes a dictionary DX, while the server initializes its append-only data store
ADS using Yaps.Init(1%, 1). The client uses dictionary DX to store addresses of the values it stores
in ADS. More precisely, ADS[/] is the address of the last value stored in ADS associated with label
L.

Edit™. To add a tuple v to an (exisiting) label ¢, the client chops v into value-blocks BW .. B®,
such that the size (in bits) of each encrypted value-block appended with an address and an ADD flag
is at most A. It then does the following for each i € [t]: it first encrypts (B® || ADD || 7~1), where
r(=1) is the address of the previous block stored in ADS=D for ¢4 and then stores the encrypted
value e in ADSU~1) and computes new address r() where (rt, ADS(i)) — EADS.Put(ADS("*l)7 e). The
client finally updates DX[¢] = r(VD)| so that it can correctly extend the chain on next Editt /Edit™
operation.

Edit—. Deletion is same as addition with the difference that value-blocks are now concatenated
with DEL flag instead of ADD flag.

Query. To compute MMI/], the client sends to the server the address r = DX[¢], which the server
uses to retrieve and return e = ADS[r]. The client then decrypts e to recover a value block B, a
flag flag and an address 7. If flag = ADD, it adds B to a set V or else it adds it to V. It then sets
r =1’ and checks if r = L. If r = L, it has retrieved all the values that were ever added/deleted
to/from ¢, and if not, it repeats. Finally, it outputs the set of values in V' \ Vg, which intuitively
represent the values that were added but not yet deleted.

Security. We now describe the leakage profile of the LSX scheme. The initialization leakage is
equal to
Ly(L)=1.

The query leakage is equal to
Lo(MM, ¢) = ueq(?),

where ueq(¥) is the update equality pattern which reveals if and when the label ¢ edit had occurred.

More formally, it is defined as a bit string of length equal to the number of operations performed

until now where the " bit is set to 1 if the i** operation was an Edit™ /Edit™ on ¢, and 0 otherwise.
The add/delete leakage is equal

Le+ (MM, (EditT, £,v)) = Le- (MM, (Edit™, £,v)) = |v|,
where |v| denotes the number of values being added/deleted from the multi-map.

Theorem 5.1. If SKE is RCPA secure, then LSX is a (L, Lq, Lg+, Lg-)-secure multi-map encryp-
tion scheme.

Proof. Consider the simulator S that works as follows. It simulates the adversary A and first
generates a symmetric key K « SKE.Gen(1%).

4Note that the first added value of any label £ is concatenated with L in order to be able to identify the end of a
label’s chain.

Let A > 0 be a public parameter, let SKE = (Gen, Enc,Dec) be a private-key encryption scheme and
Yaps = (Init, Get, Put) be an append-only data store. Consider the dynamic encrypted multi-map LSX =
(Init, Query, Edit™, Edit™) defined as follows:
o Init(1%; 1) :

1. C generates K + SKE.Gen(1%);

2. C initializes an empty dictionary DX;

3. S initializes an empty append-only data store ADS + Yaps.Init()\);

4. C outputs a state st = DX and a key K, whereas S outputs ADS.

e Edit™(st, K,¢,v;ADS) :

1. C parses st as DX and sets ADS to ADS(O);
2. C sets (0 < DX[/];
3. C chops v into maximal sized value-blocks B ..., B® such that for each i € [t],
ISKE.Encx (B@ || (O || ADD)| < \;
4. for each i € [t] :
(a) C computes e + SKE.Encgx (B®W || r¢~1) || ADD);
(b) C sends e to the server S;
(¢) S computes (ADS, +()) < Saps.Put(ADSE Y e);
(d) S returns r® to C;
5. C sets DX[(] = r®.

o Edit™(st, K, £, v;ADS) :
1. It is the same as Edit™, except that at line 3a, C concatenates the DEL flag instead of ADD flag.

o Query(st, K, ¢; ADS) :

1. C parses st as DX;
2. C sets r = DX[{] and initializes two empty sets V and Vy;
3. while r # L,

(a) C sends r to S;
(b) S computes e < Yaps.Get(ADS, r) and sends e to C;
(¢) C computes (B || v’ || flag) + SKE.Deck (e);
(d) if flag = ADD, C appends B to V;
(e) otherwise if flag = DEL, C appends B to Vy;
(f)
4. C outputs V' \ V3.

Csetsr=r'.

Figure 1: The LSX scheme.

e Simulating Edit*: On receiving Lg+ (MM, 4,v) = |v|, S sets (©) = L, creates a vector ¥ with

random |v| values, chops V into maximal sized value-blocks E(l), - ,E(t) such that for each

Jj e], |SKE.Enc(§(j) | 7© || ADD)| < A, and repeats the following ¢ times, i.e. for i € [t],

it generates e; < SKE.EncK(B(z) || 7G=1) || ADD), sends e; to A, waits for A to return a new
7@ and then it repeats. It also associates and stores r® with current time.

10

e Simulating Edit™: It is exactly same as simulation of Edit™.

e Simulating Query: Given Lq(MM,?) = ueq(¢), S first sorts the update times in descending
order and stores the sorted times in tuple u. For each u € u, it then uses the address r
associated with u, sends r to A, waits for A to return e, decrypts e to compute next r and
repeats until r = L.

It remains to show that for all PPT adversaries A, the probability that Real(k) outputs 1 is
negligibly close to the probability that Ideal(k) outputs 1. This can be done with the following
sequence of games:

Gamey : is the same as a Real 4 z(k) experiment.

Game; : is the same as Gamey except that the encryptions of (B || r || flag) during Edit™ and Edit™
are replaced by encryptions of (B || r || flag), where B is created by chopping a vector ¥ of
random values.

Gamey : is the same as Game; except for the following. On an Editt or Edit~, we initialize 7(©) to
1 instead of initializing it to DX[{]. We also associate and store #(*) with the current time.
Then, on a query, we sort the update times of ¢, and use the addresses associated with the
sorted update times to query the server.

Note that Gamey and Game; are indistinguishable because otherwise the encryption scheme is not
RCPA secure — on Edit™ and Edit™, the vector v of Gamey is replaced with a random vector V in
Game;. Game; and Game, are also indistinguishable because the encryption is RCPA secure — on
Edit™ and Edit~, 7(©) of Game, is replaced with L in Games. The Query protocol remains the same
from the adversary’s perspective as it receives the same set of r values as it would in Game;. Proof
concludes by noticing that Gamey is Ideal(k) experiment.

Efficiency. We evaluate our scheme (as well as the next two schemes) based on three parameters:
(1) time complexity, time, which is the amount of work done by the server; (2) round complexity
for reads, rounds,, which is the number of communication rounds that take place between the client
and the server for reads; and (3) round complexity for writes, rounds,, which is the number of
communication rounds that take place between the client and the server for writes. We evaluate
the round complexity of our schemes separately for reads and writes because when the underlying
ADS is instantiated with a blockchain, writes can take much longer than reads. When the ADS
is a blockchain, we sometimes use the term stabilization complexity, which we denote stbl, to refer
to the round complexity of writes. This is because the time it takes to write a value/transaction
to a blockchain depends on the time it takes the transaction to become stable. We summarize in
Table 1 the time and stabilization complexities of LSX along with our two protocols described in
the subsequent sections, and we give a detailed analysis below.

e Query. Since the query protocol requires reading all the value-blocks that were ever added
or deleted from ¢, its time complexity time is O(|u|), where u is the sequence of all update
operations. The round complexity for reads rounds, is O(u) where u = Zlill |vil/A, where v;
is the tuple to the ith update operation in u. This holds as the the address of the value-block
B@ cannot be computed until the value-block B(*1 is read. Note that since nothing is

written to the server during query time, the stabilization complexity stbl is not relevant.

11

I Edit™ (¢, v4) I Query(¢) I Edit™ (¢, v:)

| “ time [rounds,, “ time [rounds, “ time [rounds, [rounds,,
LSX || O(lvi]) O(|vil/A) O((ui) O(us) O(|vi]) - O(|vil/A)
TRX || O(lvi]) | O(log(|vi|/A)) O((ui) O(t:) ; 0(\‘?]\‘) - O(log(|vil/A))
) v, i i OMMl_IZ.Jr i-1 o i1
PAX. || O(vil) | O(vi) || ogmmal) | ogmmigap || U EE T ogmmt) | ogog(Mm)

Table 1: We denote by time the time complexity, by rounds, the round complexity for reads, and by rounds, the
round complexity for writes. We denote by A > 0 the packing parameter. The efficiency complexities are calculated
for the ith add/delete operation. The sequence of updates u; is composed of ¢ add/delete operations. We denote by

ui = 0% |vy]/A and by t; = 3212 log(|v,]/A)).-

e Edit* and Edit™. Since |v| values are written in total, the time complexity is equal to O(|v]|)
independently of the packing factor. The stabilization complexity, however, i O(|v|/\) since
the value-block B() cannot be written unless B4~1 has been written. Since nothing is read
from the server, rounds, is not relevant.

6 TRX: Improving Stabilization Complexity

The round complexity of LSX for writes is linear in the length of the inserted or deleted tuple which
means that its stabilization complexity when instantiated over a blockchain is also linear. More
precisely, will be O(|v|/A), where v is the tuple to be added and A is the size of an entry in the
underlying ADS. As we will see in our evaluation section, from a practical standpoint this leads
to a non-trivial bottleneck for latency. To address this we propose a new scheme, TRX, with write
round complexity O(log(|v|/\)) and the same time complexity and client storage as LSX.

Overview. Recall that the Edit™ and Edit™ protocols in LSX append to each value-block the
address of the previous value-block stored in the ADS. This means that a value-block cannot be
stored until the address of the previous value-block is available or, in the context of a blockchain,
stable. Since both Edit™ and Edit™ protocols link |v|/\ value-blocks linearly, the client must wait
for |v|/A value-blocks in total to become stable. Therefore, the write round complexity is O(|v|/A).
In TRX, we modify the way the value-blocks are organized with the goal of reducing the number
of addresses needed before storing a value-blocks. Instead of using a linked list, we super-impose
a complete binary tree which allows us to parallelize the insertions of multiple value-blocks. This
approach helps reduce the number of rounds required for writes and, in the context of blockchains,
decrease the stabilization complexity to be logarithmic instead of linear in the size of the tuple.

The tree structure. The TRX scheme super-imposes a complete binary tree structure over the
value-blocks of v so that all the nodes on a level can be inserted in parallel. This is possible since
storing a value-block only requires knowing the address of its parent. To do this, TRX concatenates
two addresses, Ip and rp, to every value-block B of the tuple. Here, Ip and rp are the addresses of
other value-blocks that were stored before B, i.e., that are at a lower level in the tree. |p represents
the address of B’s left child and rp the address of its right child.

Note that the tree structure is only created for value-blocks that belong to the same update
operation. A valid question is how one could link value-blocks added across multiple Edit operations.
For this, we simply link the roots of the trees together in a linear fashion similar to the LSX scheme.

12

6.1 Details

The TRX scheme makes black-box use of a private key encryption scheme SKE = (Gen, Enc, Dec)
and an append-only data store Y aps = (Init, Get, Put). TRX is described in detail in Figure 2 and
we provide a high level overview of how it works below.

Init. The initialization protocol is similar to the one of LSX.

Edit™. To add the tuple v to a label ¢, the client first creates its value-blocks BM, ... B®).
For each B, the client then sets its Ip to be the address of B and its rp to be the address of
B2i+1) The value-blocks on the last level of the logical tree have their Ip and rp set to L. More
precisely value-blocks BU#/2+D1 t6 B®) have their Ip and rp set to L. Notice that this creates a
tree structure among the value-blocks of v. The client starts by storing value-blocks of v in reverse
order so that when it stores B, the addresses of B?) and B2+ have already been obtained.
As before, it appends an ADD flag, encrypts (B® || Ip || rp || ADD), and sends the encryption e?)
to the server. The server stores e(¥ and returns the address r(? back to the client. In order to
link different tree structures belonging to the same label ¢, the client also appends the address of
the root of the last tree to the value-block stored at the root of the current tree. More precisely,
the client also concatenates DX[¢] to (B || Ip || rp || ADD) before encryption, refer to line 5b in
Figure 2. Finally, the client updates DX[¢] with the address of the root of the current tree.

Edit~. This protocol is the same as Edit™ with the difference that value-blocks are now concate-
nated with a DEL flag instead of an ADD flag.

Query. The Query protocol is similar to the protocol of LSX with the difference that the client
now traverses multiple trees. It sends to the server r,or = DX[¢] which is the root of the last tree
stored in ADS. When the server returns e = ADS[ro0t], the client decrypts it to retrieve the address
Tloor Of the root of the next tree and the addresses of the two child nodes. It puts the addresses of
the children on a stack S and uses the stack to do a depth-first search on the tree to retrieve all the
value-blocks stored in that tree; refer to line 2h to 2(h)vi in Figure 2. As in LSX; if the retrieved
value-block has an ADD flag, the client adds the value-block to a set V' If not, the client adds it a
set V. Finally it outputs V' \ Vj.

Security. Since the only difference between TRX and LSX is how they represent the values log-
ically in ADS (LSX represents them as a list whereas TRX represents them as list of trees) their
leakage profiles as and their security proofs are the same. We therefore simply state the security
theorem without giving its proof.

Theorem 6.1. If SKE is RCPA-secure, then TRX is (L, Lq, L+, Lg-)-secure multi-map encryp-
tion scheme.
Efficiency. The efficiency of LSX is summarized in Table 1. We give a detailed analysis below.

e Editt and Edit~. Since |v| values are written in total, the time complexity time is O(|v]),
independently of the packing factor A. However, the stabilization complexity stbl is equal to
O(log(|v|/A)) because all value-blocks at the same level of the logical tree can be written in
parallel.

13

Let A > 0 be a public parameter, let SKE = (Gen, Enc,Dec) be a private-key encryption scheme and
Yaps = (Init, Get, Put) be an append-only data store. Consider the dynamic encrypted multi-map LSX =
(Init, Query, Edit™, Edit™) defined as follows:

e Init(1%; 1) : same as Init protocol in Figure 1.
e Edit™(st, K, ¢, v;ADS) :

1. C parses st as DX and sets ADS as ADS(O);

2. C chops v into maximal sized value-blocks B(M ..., B® such that for each j € [t],
ISKE.Encx (BY) || 7@ || 7(O) || ADD)| < A;

3. C creates a new vector r of size (2t + 1) where () denotes the address of B();
4. C initializes all 7 in r to L;
5. for each ¢ from ¢ to 1,

(a) C sets Ip =79 and rp = r(>+1);

(b) if i =1, C computes and sends to S

eV « SKE.Encg(BW || Ip || rp || DX[{] || ADD);
(c) otherwise if ¢ # 1, C computes and sends to S
eV « SKE.Encx (B || Ip || rp || ADD);

(d) S computes (ADS™, +()) «— L aps.Put(ADSE™Y e(®);
(e) S returns r® to C who updates r;
6. C sets DX[(] = r(1).

o Edit=(st, K, ¢, v;ADS) :
1. It is the same as Edit™, except that at lines 5b and 5¢, C concatenates the DEL flag instead of the
ADD flag.
o Query(st, K, ¢; ADS) :

1. C parses st as DX and sets 7,00t = DX[{];
2. while 70t # L,
(a) C sends 7yoor to S;

(b) S computes and sends e < Yaps.Get(ADS, ro0t) to C;
(c) C computes (B || Ip || rp || T}oor || flag) < SKE.Deck (e);
(d) if flag = ADD, then C appends B to V;

)
)
)
(e) otherwise if flag = DEL, then C appends B to Vy;
) C sets Troot = Troot;
) C initializes a stack S and pushes Ip and rp in it;
) while S is not empty,

i. C sends r « S.pop() to S;

ii. S computes and sends e <+ Xaps.Get(ADS,) to C;
iii. C computes (B || Ip || rp || flag) + SKE.Deck (e)
iv. if flag = ADD, then C appends B to V;

v. otherwise if flag = DEL, then C appends B to Vg;

vi. C computes S.push(lp) and S.push(rp) if they are not equal to L;
3. C outputs V' \ V.

Figure 2: T%ﬁ TRX scheme.

e Query. Since the query protocol requires reading all the value-blocks that were ever added
or deleted from ¢, its time complexity time is O(|u|), where u is the sequence of all update
operations. The round complexity for reads is equal to ¢ = lei‘l log(|vi|/A), where v; is the
tuple of the ith update operation. Note that this holds true as all value-blocks at the same
level can be read in parallel. Moreover, since nothing is written to the server during query

time, the stabilization complexity stbl is not relevant.

7 PAX: Improving Query Efficiency

Both LSX and TRX have time complexities that are linear in the number of updates |u| ever made
to a label /; including the delete operations. This is because both schemes use lazy deletion with
no rebuilds protocol as is the case for [26, 12]. As an example, if after |u| updates the client deletes
all but one value of a tuple, the client and server still need to do a linear amount of work in the
number of updates. In this section, we describe a new scheme, PAX, that achieves optimal time
complexity at the cost of making delete operations slightly more expensive. PAX is based on a
novel technique we call patching.

Overview. Like LSX, PAX stores added values in a single list. Unlike LSX, however, it does not
use packing. Generalizing PAX to work support packing is left as open problem. At a high level,
when a delete operation is executed, a set of patches are created and stored in the ADS. A patch
is a pair of addresses s and d that will help traverse the lists without reading the deleted values.
Now, a query operation will use the set of patches to skip over the deleted values and only read
the required values. It is important to note, however, that to achieve time optimality, the number
of patches has to be smaller than the number of values left. Achieving this is non-trivial, however,
and requires us to organize the patches themselves in a tree structure.

7.1 Overview of Patching

A patch is a pair of addresses s and d, denoted (s — d), where s is the starting address and d the
destination address. We first explain how delete operations trigger the creation of patches and then
how the query operations use them. As a first step, assume that the client stores all the patches
locally in a dictionary DXpr. In this case, a patch (s — p) is stored as DXpr[s] = p. We later
explain how, instead of storing them locally, they can be stored in the ADS.

Patch creation. FEach value v stored in the ADS has an implicit predecessor address and an
implicit successor address. More formally, the predecessor is the address of the value that was
added before v and is not yet deleted while the successor is the address of the value that was added
after v and is not yet deleted. When v is deleted, a patch (succ(v) — pred(v)) is created, where
succ(v) is the address of v’s successor and pred(v) is the address of v’s predecessor.

Querying using patches. Querying with patching works as follows. Upon querying ADS[succ(v)],
the client recovers addr(v) and is then supposed to query the ADS for v. With patching, however,
it can check its local dictionary DXpr to see if a patch (succ(v) — pred(v)) exists. If so, it can
skip querying the ADS on addr(v) and directly jump to querying on pred(v). Intuitively, a patch
(succ(v) — pred(v)) provides a way to retrieve pred(v) without reading addr(v).

15

Storing patches. Of course, storing patches locally would require too much client storage. In
fact, as we will see, the number of patches needed in the worst-case is size of the entire encrypted
multi-map. Fortunately, we can overcome this by storing the patches in the ADS. The patches will
themselves need to be linked (so that we can find them) but, unlike the tuple values, they will be
linked using a tree structure (the reason will be explained below). To create a tree structure, we
concatenate two addresses Ip and rp to every patch p = (s — d), where Ip and rp are addresses of
other patches that were stored before p. Ip is the address of the left child and rp the address of
the right child. The keys of the binary search tree are the starting address of the patches, i.e., the
order of the patches is determined by their starting addresses s. We refer to this tree as the patch
tree. As is done for the linked list structures, the client stores the address of the patch at the root
of the tree.

Storing a new patch. When we store a new patch P = (s — p) in the data store, we need to
make sure that we maintain the virtual binary search tree. This can be done using the following
steps:

e (patch creation). Since P is a new patch, it is going to be a leaf in the tree. The client first
concatenates to P its two child pointers Ip = 1L and rp = L, i.e., it has the following form

P=(G=pllLiL).

It then sends P to the server who stores it in ADS and returns its address rp to the client.

e (patch position). To find the patch’s insertion location in the tree, the client sends to the
server the address of the root of the patch tree. The server reads and returns the patch
Proot = (Sroot = Proot) || IProot || MProot- The client then checks if s < Syoot. If s0, it sends Ip,oor
to the server otherwise it sends rp,,.. The client continues this process until it retrieves a
patch

Pparent = (Sparent - pparent) H Ipparent H MPparent

where P needs to be inserted.

e (path modification). At this point, the normal binary search tree insertion operation just
involves changing one of the two addresses Ipp,rent OF rPparent t0 the address 7p of the parent
P. However, since Pparent is stored in an append-only data store, Pyarent cannot be changed.
The client, therefore, creates a new node Ppeq, sets the patch content in Py, en to be
the same as the patch content in Pparent, changes one of the addresses Ipprent OF fPparent O
rp. It then sends Py, .n, to the server who stores it in ADS and returns an address TPl et
Unfortunately this requires an address in parent of Pparent to be changed to TP ent” which
cannot be done since it is stored in append-only data store. So a new node for the parent of
Pyarent is created. This process propagates up to the root and every node on the path from P
to the root is replaced by a new node. When the server returns the address of the new root
node, the client updates its copy of the root address.

Also, since every addition to the patch tree triggers the creation of as many nodes as its height,
we keep the tree balanced for efficiency reasons. Balancing the tree follows the same approach
detailed above so we omit the details from this version of the paper.

16

Cleaning up a patch tree. Cleaning up the patch tree is the process of deleting some patches
to achieve both time optimality and correctness. Let us start with an example to illustrate when
and why a cleanup might be required. Assume that the unencrypted contents of the data store ADS
are: ADS[r1] = (v1 || L), ADS[r2] = (ve || r1), ADS[r3] = (vs || 72), and ADS[r4] = (v4 || r3). Then,
when vs is deleted, a patch (r4 — r2) is created. However, if vy is deleted next, the creation of a
new patch (r4 — 71) means we have two patches with the same starting address 4. It is therefore
not clear which patch is the right one. Moreover, the number of patches in the patch tree will then
be equal to the number of values deleted, which means that searching for a patch in the patch tree
is as expensive as employing the lazy deletion approach. To avoid these issues, we need a way to
delete old patches. In the example above, suppose we want to delete r4 — 79 and add ry — 1.
Deletion from a patch tree is similar to an addition: we first find the node P to be deleted, replace
it with the appropriate descendant node P’ by replacing nodes on path from P to the root with
new nodes with appropriate pointer changes.

7.2 Details

The PAX scheme makes black-box use of a private key encryption scheme SKE = (Gen, Enc, Dec)
and an append-only data store ¥aps = (Init, Get, Put). PAX is described in detail in Figure 3 and
we provide below a high level overview of how it works.

Init. The initialization of PAX is similar to the one of LSX with the difference that now the client
also initializes an empty dictionary DXgeot to store the addresses of the roots of the patch trees.

Edit™. Edit" is also similar to the one of LSX but with the following differences: (1) it no longer
concatenates the ADD flag to the values that it stores in ADS; (2) it no longer packs values in
value-blocks; and (3) it stores the values in v in a random order in ADS.

Query. As afirst step, the client reads all the patches in the patch tree using the root of the patch
tree DXRoot[f]. It stores them in a local dictionary DXpt by storing a patch (s — d) as DXpt[s| = d.
To compute MM[/], it sends the address r = DX[{] to the server who uses it to retrieve and return
e = ADS|[r]. The client decrypts e to recover a value v and an address 7. It adds v to a set V and
checks if there exists a patch starting at r» by checking if there exists an entry corresponding to r
in DXpr. If so, it sets r = DXpt[r], else it sets r = /. It repeats this process until » = 1, at which
point it has retrieved all the values that are currently in MM[{]. Finally it outputs the set V.

Edit~. As first step, the client reads all the patches and stores them locally in DXpt. It then
starts reading all the values stored in ADS one-by-one. While reading, it also skips over the deleted
values using the downloaded patches as it does during query. The aim of this traversal is to
compute patches for values that are to be deleted. Recall that a patch for a value is its successor
and predecessor addresses. Therefore, during traversal, when the client reads a value v € v, it
stores (succ(v) — pred(v)) in a set P and addr(v) in a set C. There is a subtlety here though:
the client has to be careful when creating these successor-predecessor pairs. For example, if two
consecutive values are being deleted then they should share the same successor-predecessor pair.
Once the client collects all the new patches in P, it needs to add all of them to the patch tree. But
before it does so, it checks if there is some cleanup needed to the patch tree.

17

Let SKE = (Gen, Enc, Dec) be a private-key encryption scheme and ¥aps = (Init, Get, Put) be an append-
only data store. Consider the dynamic encrypted multi-map PAX = (Init, Query, Edit™ Edit™) defined as

follows:

e Init(1%; 1) : Same as in Figure 1, with the difference that client also initializes an extra dictionary
DXRoot-

o Edit™(st, K,¢,v;ADS) :
1. C parses st as (DX, DXgoot) and sets (%) <— DX[/]
2. S lets ADS(®) = ADS;
3. for each i € [|v]] in random order,
(a) C computes and sends e +— SKE.Encg (v || r(~1) to S;
(b) S computes (ADS), r()) = Yaps.Put(ADS ™Y ¢) and sends r(?) to C;
4. C sets DX[¢] = r(IVD.

e Query(st, K, ¢; ADS) :

1. C parses st as (DX, DXroot);

2. Starting from DXgoot[¢], C reads all patches and stores them into a local dictionary DXpr,
where patch (s — d) is stored as DXpr[s] = d;

3. C sets r = DX[{);

4. while r #£ 1,
(a) CsendsrtoS
(b) S computes and sends e < Yaps.Get(ADS, r) to C;

(¢) C computes (v || r') < SKE.Deck (e) and appends v to V;
(d) if r € DXpr, then C sets r = DXpr]r]
(e) otherwise if r ¢ DXpr, then C sets r = r/;

5. C outputs V.

e Edit™(st, K,¢,v;ADS) :

1. C parses st as (DX, DXgoot);
2. Starting from DXgeot[¢], C reads all patches and stores them into a local dictionary DXpr,
where patch (s — d) is stored as DXpr[s] = d;

3. Starting from DX[¢], C reads all values in the chain and computes the following two sets,
P = {succ(v) = pred(v) | v e v} C = {addr(v)|v e v}

4. forall c € C,
(a) if there exists a patch (¢ — d) in DXpr, then C deletes (¢ — d) from ADSRroot;

5. for all (s — p) € P:
(a) if there exists a patch (s — p) in DXpr, then C replaces (s — p’) with (s — p) in ADSgeot;
(b) otherwise, C adds (s — p) in ADSgeot-

Figure 3: The PAX scheme.

18

Security. We now describe the leakage profile of PAX. The initialization leakage is £i(L) = L.
The query leakage is
LQ(MM, ?) = aeq(¥),

where aeq is the add equality pattern which reveals if and when additions were made to the label.
The add leakage is
Le+ (MM 4, v) = |v|,

where |v| is the number of values being added. The delete leakage is
Le- (MM, ¢, v) = (aeq(?), {vad({,v) }rev),

where aeq is the add equality pattern, and vad is the value addition pattern of all the values that
are being deleted, where vad represents if and when a value was added to a label.

Theorem 7.1. If SKE is RCPA-secure, then PAX is a (L), £Lq, Lg+, Lg-)-secure multi-map encryp-
tion scheme.

Proof. Consider the simulator S that works as follows. It simulates the adversary A and first
generates a symmetric key K « SKE.Gen(1%).

e Simulating Edit*: On receiving Lg+ (MM, ¢, v) = |v|, S sets rp = L, and repeats the following
|v| times: for i € [|v|], it generates e; < SKE.Encg (01! || r;_1), sends e; to A, waits for A to
return a new r; and then it continues. It also associates and stores r|y| with the current time
t. We denote T|v| by head;. S also stores all the addresses r; in a set R;.

e Simulating Edit™: On receiving
Le- (MM, 4, v) = (aeq(¥), {vad({,v) }vev),

S first downloads the patch tree using the root stored in DXyoot[min(aeq(?))]. Note that the
simulator is only given as leakage the time vad(¢,v) which is the time at which v was added.
But there can be multiple values that were added at the same time as v. Therefore for each

t € {vad(¢,v)}yev, S selects 1 il R;, adds it to a set C and removes r; from R;. Set C
intuitively represents the set of addresses to be deleted. S then computes the predecessor and
successor pairs of addresses in C' by using heads in {head; | ¢t € aeq(t)} and the patch tree
(this is similar to how P is computed in Line 3 of Figure 3). S then follows Lines 4 and 5 of
Figure 3 to update the patch tree. Finally, it updates DXoot[min(aeq(?))] to store the new
root of the patch tree.

e Simulating Query: Given LQ(MM, ¢) = aeq(¥), S first downloads the patch tree using the root
in DX/oot[min(aeq(¢))]. It finally traverses the list by using heads in {head; | t € aeq(¢)} and
the patch tree.

It remains to show that for all PPT adversaries A, the probability that Real(k) outputs 1 is
negligibly close to the probability that Ideal(k) outputs 1. This can be done with the following
sequence of games:

Gamey : is the same as a Real 4 z(k) experiment.
Game; : is the same as Gameg except that the encryption of node (v || r) during Edit™ and Edit™

is replaced by SKE.Encg (01! || 7).

19

Games : is the same as Game; except the following. On an Edit™, we initialize rg to L instead of
initializing it to DX[¢]. We also set and store head; = r,| where t is the current time. Then,
on Query and Edit™, to read the chain of values, we sort the add equality pattern aeq of ¢,
and use head; associated with ¢ € aeq(¢) to read the values from the server. Moreover, on
Edit™, for all v € v, instead of deleting v, we select and delete an un-deleted random value
from the set vad(¢,v).

Note that Gameg and Game; are indistinguishable because otherwise the encryption scheme is not
RCPA-secure. Game; and Games are also indistinguishable because the encryption is RCPA-secure
— on Edit™, rg of Game; is replaced with L in Games. The Query protocol remains the same from
the adversary’s perspective as it receives the same set of r values as it would in Game;. The Edit™
protocols are also indistinguishable because the Edit™ protocol adds values in random order and
thus the adversary cannot distinguish whether actually v € v is getting deleted or some other
value that was added at the same time as v. Proof concludes by noticing that Gamey is Ideal(k)
experiment.

Size of the patch tree. To assess the efficiency of PAX, we first need to bound the size of the
patch tree. We do this in the following Theorem.

Theorem 7.2. If T be the patch tree of a label ¢, then |T| < |[MM[{]|.

Proof. One can see by construction that for all patches (s — p) in T', if v = ADS[s] then v € MM[/].
Therefore the number of patches cannot be more than [MM[{]|, provided that multiple patches
starting at s are not stored in 7. On the other had, notice that for any two patches (s; — p1)
and (sg — p2), s1 # s2. That is, given an address s, there exists a unique patch that starts at s.
Therefore, the number of patches is at most [MM[{]|.

Efficiency. The efficiency of PAX is summarized in Table 1. We give a detailed analysis below.

e Edit™. Since |v| values are written in total, the time complexity time is O(|v]). The stabi-
lization complexity stbl is also O(|v|) because the ith value v() in v cannot be written unless
v(~1 has been already written.

e Query. Let MMU~ be the state of the multi-map after the (¢ — 1)th operation has been
completed and let 7 be the current operation. Since the number of nodes in the patch tree are
at most |[MM~1[¢]|, refer to Theorem 7.2, it takes at most [MM*~1[/]| time to download it.
Once it is downloaded, finding patches onwards has a constant time in the size of the patch
tree. Since the Query protocol only reads the un-deleted values, the time complexity time is
O(IMM*=1[¢]|). The rounds, is also O(IMM~1[¢]|) because the un-deleted values can only be
read sequentially.

e Edit™. As explained for Query, downloading the patch structure and traversing the chain
of un-deleted values to compute the new patches incurs a time and round complexity of
O(IMM*~1[¢]|). There are no more reads that Edit™ does, therefore rounds, is O(|[MM*~1[/])).
Since the patch tree is balanced, any addition/deletion to the tree updates constant number of
logarithmic sized paths in the tree. Since there are at most |v| additions/deletions made, they
together account for O(|v|log(MM*~1[¢]|)) time. Combining this time with the time taken

20

by a traversal, the time complexity is O(IMM*~ /]| +|v|log(|MM*~1[(]])). Even though up to
|v| logarithmic sized paths in the patch tree are updated, the updates to one level ‘of the tree
can be made in parallel. Therefore, the stabilization complexitystbl is O(log(|MM*~1[£]|)).

8 Instantiating Append-only Data Stores with Blockchains

As discussed in Section 1, append-only data stores are an abstraction of blockchains and designing
our schemes based on this abstraction means that our constructions can be used on any blockchain.
The specifics of the underlying blockchain, however, have an impact on performance which we study
in Section 9. Here, we show concretely how two blockchains, Ethereum and Algorand, instantiate
ADSs.

Overview. At a high level, an ADS can be instantiated with a blockchain as follows. The Init
protocol creates a blockchain wallet for the client with some initial funds. The wallet also has a
public address and a private key associated with it. The public address is only used to buy funds for
the wallet while the private key is used to sign transactions. The Put(ADS, v) protocol stores v in a
transaction, signs it using the private key, and sends it to the blockchain. The address 7 of the value
varies from one blockchain to another. For some, it is the transaction hash and for others it will be
the transaction hash along with the transaction’s block number after it is mined. The Get(ADS,)
protocol communicates with one or more nodes to retrieve the transaction corresponding to address
r and then retrieves the value v stored in that transaction.

We now discuss some practical implications of using a transaction hash over a block number
(along with a transaction hash) as the address.

8.1 Instantiating Addresses

Both transaction hashes and block numbers (along with a transaction hash) are valid choices to
instantiate ADS addresses. Which one should be used depends on: (1) how efficiently blockchain
nodes create them at add time; and (2) how efficiently nodes can lookup transactions using them
at query time.

Transaction hash. Using transaction hashes addresses can be very efficient at add time because
these hashes can be computed locally by the client without needing to interact with the blockchain.
Because of this, the client does not have to wait for older transactions to become stable before
creating new ones. In this case, the stabilization complexity of LSX and TRX is independent of
|v| which means that TRX’s asymptotic advantage over LSX in terms of stabilization complexity
disappears.

However, it is not always possible to use transaction hashes as addresses. In fact, due the storage
overhead involved, many blockchains do not mandate that nodes support lookup by transaction
hash. This is the case, for example, for Bitcoin, Ethereum, and Algorand. Of course some nodes—
especially third party hosted nodes—might choose to implement lookup by transaction hash but
this is not mandatory.

Block number. Using the block number along with the transaction hash as the address is a
safer approach that guarantees that clients will be able to retrieve their data from the blockchain
EMM. Unfortunately, using block numbers leads to higher stabilization complexity since the client
has to wait for transactions to be mined and to become stable before it can use the address. For

21

example, in Bitcoin, block numbers are only reliable after the block has reached a certain depth in
the blockchain.

8.2 Using Ethereum

Ethereum is a proof-of-work based public blockchain that supports smart contracts. A smart
contract is a program that is stored as a special transaction and executed by the blockchain. Each
contract has some memory associated with it which is the state of the contract. The state can be
changed by calling the functions of the program through transactions. The states of all contracts
form the state of the blockchain which can then be seen as a state transition machine, where
transactions stored in the blockchain specify how the state changes.

Details. We used Ethereum’s web3 API package [11] to interact with the Ethereum network. In
particular, we instantiate each of the ADS protocols as follows:

e Init(L): We use Metamask [7] to create a wallet. Metamask automatically creates the public
address and private key for the wallet. We then fund the wallet using the Metamask testnet
faucet.

e Put(ADS,v): We create and sign transactions using web3’s method call signTransaction().
signTransaction takes as input a dictionary with multiple fields (labels), one of which is
called data. Traditionally, the data field is set to the bytecode of the function to be called
followed by the function’s arguments. However, it is also possible to provide custom input of
up to 98KB. We use this field to store our values. signTransaction outputs a transaction
that is signed by the private key but not yet submitted to the network. We then call web3’s
sendRawTransaction() method which takes as input the signed transaction and sends it to
the Ethereum network. It also outputs the hash r of the transaction which we use later to
retrieve the transaction.

To compute the block number, we execute the method call waitForTransactionReceipt()
which takes as input a transaction hash, waits for the transaction specified by the hash to
be mined, and returns the transaction’s receipt. The receipt is an object which contains the
block number in which the transaction is mined.

e Get(ADS,r): We call web3’s getTransaction() method which takes as input the hash r of a
transaction and outputs the associated transaction. We then read the data field to retrieve
the value v.

To retrieve the transaction by block number, we execute the getBlock() method, which takes
as input the block number and outputs the block information. The block information contains
a list of transactions which we scan to find our transaction.

8.3 Using Algorand

Algorand is a pure proof-of-stake public blockchain that provides high scalability and security
without forking. We describe how an ADS can be implemented with Algorand. We used Algorand’s
algosdk [3] Python package for interacting with the Algorand network.

e Init(L): We use the algosdk’s account.generate_account() method to create a wallet.
generate_account outputs a private key and account address for the wallet. We then fund
the wallet using Algorand’s testnet faucet.

22

e Put(ADS,v): We create a transaction using the method called transaction.PaymentTxn(). It
takes as input multiple parameters, one of which is called note. We write our data in the note
field, which allows for up to 1KB of data. PaymentTxn outputs an unsigned transaction which
we sign using the sign() method. We then call the AlgodClient.send transaction() method
which takes as input the signed transaction, sends it to the blockchain network and outputs
the hash r of the transaction. To compute the block number containing the transaction with
hash r, we call the AlgodClient.transaction_info() method. It returns multiple pieces of
the confirmed transaction information, one of which is the block number.

o Get(ADS, r): To retrieve the transaction by hash, we call the AlgodClient.transaction by_id()
method which takes as input the transaction hash r and outputs the corresponding transac-
tion. We then read the note field and retrieve the value v. However, to retrieve the transaction
by block number, we execute the AlgodClient.block info() method, which takes as input
the block number and outputs the block information. The block information contains a list
of transactions which we scan to find our transaction.

9 Empirical Evaluation

To evaluate and compare the efficiency of our schemes, we implemented and evaluated them empir-
ically. All the experiments were run on a MacBook Pro 2.8 GHz Intel Core i7 with 16GB of RAM.
We implemented symmetric encryption with the pycryptodome library’s AES implementation using
a 128-bit key

Experimental setup for Ethereum. We used Metamask [7] to create a client wallet and con-
nect it to a full node hosted by Infura [6]. We interact with the full node using Ethereum’s web3
APT package [11] which is written in Python. Since running experiments on the mainnet is ex-
pensive, we did all of our experiments on Ethereum’s Ropsten testnet and funded our wallet using
Ropsten’s faucet.

Experimental setup for Algorand. We used Algorand’s algosdk [3] Python package to create
a client wallet and connect it to a full node hosted by Purestake [10]. We interact with the full node
using the same algosdk package. As for the Ethereum experiments, we ran them on Algorand’s
testnet and funded our wallet using the testnet’s faucet.

Experimental data. We generated the experimental data synthetically. We created multi-maps
that hold a single randomly-generated label/tuple pair. We created a single tuple because, for all
our schemes, processing one label does not affect processing of any other labels. For example, in
LSX, the values associated with different labels are stored in different virtual lists so the query and
update times for one label are not affected by query and update times of other labels. This is also
true for TRX and PAX.

9.1 Experiments

We now describe our experiments and our findings. In all the experiments for LSX and TRX, we
set A to be 1KB for both Algorand and Ethereum.® We considered two ways to instantiate ADS

®Note that 1KB is the maximum packing factor for Algorand but not for Ethereum.

23

—e— LSX block
3500 o= LSXblock —e— LsXtx
—— LSXtx —e— TRX block
3000 —e— PAX block TRX tx
—o— PAXtx
—e— TRX block
TRX tx

2500
3 2000
E 1500 200

1000

-/'fa’/*:/—. o L. *>-— " e

o1 &of 3 4 0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600 Number of values
Number of values

(b) Add complexity (omitting PAX

(a) Add complexity for legibility)

Figure 4: Edit™ complexity for Algorand

addresses: (1) as transaction hashes; and (2) as block numbers (along with the transaction hash).
Our goal was to evaluate the following characteristics of our schemes:

e (add time): time to add a label/tuple pair as a function of tuple size;

e (delete time): time to delete a label/tuple pair as a function of the tuple size. In particular,
we are interested in three different delete modes: sparse, dense, and random deletes.

e (query time): time to query a label ¢ as a function of its tuple size. In particular, we measure
the query time before and after delete operations.

Before describing the experiments, we discuss the problem of spam filtering that we faced during
our experiments.

A note on DDoS protection. During our experiments on the Algorand testnet, our put and
get requests failed every few operations which meant we had to wait for a non-deterministic amount
of time before re-starting the experiments. We believe this occurred because the testnet is using a
form of DDoS protection mechanism. The wait time was in seconds and is included in the times
we report for both queries and updates.

We found that Ethereum was also employing a DDoS protection mechanism. In this case,
however, the wait times were on the order of minutes which made our experiments infeasible.

Measuring Edit™. We measure the time our schemes take to add a label /tuple pair to the multi-
map. For this, we create random label/tuple pairs (¢,v), with a number of values that increase
from 1 to 1,500. We then execute the Edit™ to store them on the blockchain.

Figure 4 shows that instantiating addresses with block numbers (along with transaction hashes)
is always more expensive than with transaction hashes. This is because transaction hashes can be
computed locally even before the transaction is mined while block numbers are only known after
the transaction is mined and can only be used after stabilization. We also noticed that TRX is
much faster than LSX when we use block numbers as addresses. This is expected since TRX has
logarithmic stabilization complexity while LSX has a linear stabilization complexity. When using
transaction hashes, adding a label with a tuple of 400 values takes 18.53, 18.97, and 3416.56 seconds
for LSX, TRX and PAX, respectively. PAX has the worst add time since it cannot pack multiple
values in a transaction.

24

—e— LsX block —e— LSX block
e LSXtx
—e— PAX block
o PAXtx
—e— TRX block
TRX tx

Time (s)

- 20
e

b —

[ER —saman

0 100 200 300 400 500 600 700 800 [50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 800
Number of values Number of values Number of values

(a) Sparse deletes (b) Dense deletes (¢) Random deletes

Figure 5: Edit™ complexity for Algorand

Measuring Edit~. To measure deletion time, we considered three different patterns. For each
one, we first store a label/tuple pair (¢,v) on the blockchain, then delete half of the values in the
tuple. In the first mode, which we call sparse deletes, we delete every alternate value in v. In the
second mode, which we call dense deletes, we delete the first half of the values in v. And in the
third mode, which we call random deletes, we delete half of the values in v chosen uniformly at
random.

Figure 5 shows that the delete time for LSX and TRX have a similar trend across all modes.
They also have a similar trend as their add times (see Figure 4). This is expected since LSX and
TRX need to add values during deletion. Moreover, we also see that the time LSX and TRX take
to delete values is almost the same across all three modes which shows that their performance on
deletes is independent of the mode. More precisely, to delete 200 values in the sparse setting, it
takes 18.31 and 21.17 seconds for LSX and TRX.

Finally, we see PAX takes longer than the other schemes for sparse deletes. This is expected
since PAX spends a non-trivial amount of time creating and storing |v|/2 patches in the patch
tree. In the case of dense deletes, however, it only creates a single patch and we observe that PAX
outperforms LSX and TRX when the number of values is smaller than 50 for the case of dense
deletes.

Measuring Query. To measure the time to query a label, we conducted two experiments. The
first measures query time after addition whereas the second measures query time after deletion. For
the first experiment, we store a label /tuple pair and then query it. The second experiment consists
of four sub-experiments, where we measure the query time after a sparse delete, a dense delete, a
random delete, and an all-but-one delete. This last mode deletes all the values in the tuple except
for one.

Figure 6 shows that using block numbers as addresses slows all the schemes down slightly
compared to using transaction hashes. This is because, when block numbers are used, entire blocks
need to be retrieved and scanned to find the transaction. This is clearly more expensive than
retrieving the transaction directly. However, we did not notice a large gap between the two since
all the blocks contained only 1 or 2 transactions. Before deletions, the query time was 1.16, 1.08,
144.57 seconds for LSX, TRX and PAX, respectively. On the other hand, after dense deletes, PAX
had slightly better query time of 66.19 seconds for 200 values. The query time for both LSX and
TRX remains similar to the pre-deletion times. Finally, we observe that PAX outperforms the other
two schemes when all the values of a tuple are deleted except for one. In this case, the query time is
0.64 seconds. This aligns with our theoretical results since the query protocol only needs to retrieve
two transactions whereas it needs to retrieve hundreds of transactions in the other two schemes.

25

20| —8= LSX block
0 —e— LSXblock -~ LSX block (ex)
=== LSX block (ex) —&— LSXitx
- Lsxix —e— TRX block
—e— PAX block 15 ==~ TRX block (ex)
-~ PAX block (ex) —o- TRXtx
—— PAXtx
—e— TRX block
~=- TRX block (ex)
o TRXtx

160 i ~8— LSX block
=== LSX block (ex)
140 ; —— LsXtx
~8— PAX block
120 7 -~ PAX block (ex)
! —— PAX tx
- —&— TRX block
- TRX block (ex)

/ -
80 y o TRXtx

Time (s)

el 0

0 200 400 600 800 1000 1200 1400 1600 0
0 200 400 600 800 1000 1200 1400 1600 Number of values
Number of values.

0 100 200 300 400 500 600 700 800
Number of values

(a) Query before deletes gt;)x?uery before deletes (omitting (¢) Query after sparse deletes

—e— LsXblock —e— LsX block

12| &= Lsxblock
-==- LSX block (ex) 100

-~ LSX block (ex) 24
- Lsxix

10{ —e- PAX block
-~ PAX block (ex)
- PAXtx

—e— TRX block
~=- TRX block (ex)
- TRX

—e— Lsxix
~8— PAX block
=== PAX block (ex) &0
—e— PAXx

~e— TRX block
~=- TRX block (ex)
o TRX tx

60

Time (s)

40

[50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 800 [50 100 150 200 250 300 350 400
Number of values Number of values Number of values

(d) Query after dense deletes (e) Query after random deletes (f) Query after all-but-one deletes

Figure 6: Query complexity for Algorand before and after different forms of deletes. The dashed
lines plot the simulated data assuming blocks contain 10 transactions each.

Block size. When the address is instantiated with block numbers, it is clear that the size of a
block will affect the query time. We wanted to assess this impact experimentally but could not due
to the anti-DDoS measures of the testnets so we carried out a simulation. Note that measuring
the query time with a block size of 1 or 2 transactions and multiplying that by = to estimate the
query time with block size of x or 2z would not work because our measured query times include
wait times due to the anti-DDoS measures.

To address this, we carried out a separate experiment to estimate the average processing time
of a block as a function of the number of transactions, where the processing time refers to the
time it takes to download and scan the block to find the transaction, including the time wait time
due to the anti-DDoS measures. We inspected the block explorer of Algorand and found blocks
with a number of transactions ranging from 1 to 7 (which was the largest block that we could find
throughout the entire experiment). We then processed each block 1000 times and computed the
average processing time. We then ran a regression on these 7 points to estimate the line

v = 0.0006306x + 0.3003

which gives the average processing time as a function of the number number of transactions x.

We then computed the number of blocks needed to store a fixed number of values and multiplied
that by the average processing time to get an estimate. In Figure 6, we set z to 10 and show the
simulated results in dashed lines. We can see that the slope of the dotted lines is more than the
original line which indicates that the query time of the schemes (when using block numbers as
addresses) depend on the block size.

26

9.2 Storage Complexity

We now estimate the storage complexity of our schemes on Ethereum and Algorand. We compute
the number of transactions needed and multiply that with the space taken by each transaction.
We estimate the storage cost under three scenarios: (1) before any deletes; (2) after sparse deletes;
and (3) after dense deletes. We further subdivide each scenario into two: (1) separate-updates; and
(2) bulk-updates. In the former, we assume all the values are added (deleted) using separate Edit™
(Edit™) calls, and in the latter we assume all are added (deleted) in a single Edit™ (Edit™) call.
The former measures the maximum space overhead while the latter measures the minimum space
overhead. We detail our results in Tables 2 and 3 to store 1MB and 100MB of data on Ethereum
and Algorand blockchains respectively.

Notation. Let V be the initial number of label/value pairs in the multi-map. For simplicity, we
assume each value is 1B long.%. Therefore, in total, the size of the multi-map is V bytes. Further
let f be the size of the fixed fields in a transaction and A\ be the maximum size of the variable-sized
data field in a transaction (both in bytes).

LSX. Before any deletions and if all values are added in a single transaction, LSX takes at least

55] ()

bytes to store a V-byte multi-map. This is because the number of transactions needed to store
V bytes is at least [V/(A —r)] and each transaction takes (f + A) bytes of storage. If the values
are added separately (i.e., in different transactions), LSX creates V separate transactions, where
each transaction store an r-byte long pointer to the previous transaction and 1B long value. LSX,
therefore, takes at most V' (f + r + 1) bytes to store a V-byte multi-map.

Since LSX handles deletions through additions, deleting a value is equivalent to adding a value.
Therefore, deleting V/2 values is equivalent to adding V/2 values to the already existing V' values.
Moreover, since LSX treats both sparse and dense deletes similarly, the min and max values are the
same. More precisely, LSX takes in total at least

zmal (7)

bytes and at most 3V (f + r + 1)/2 bytes after both sparse and dense deletes.

TRX. The analysis is exactly the same as for LSX with the difference that we store two addresses
in each transaction instead of one and therefore all r’s in the expressions are replaced with 2r.

PAX. Before any deletions, PAX takes V(f + r + 1) bytes to store a V-byte multi-map. This is
because PAX stores all the values in separate transactions with each transaction storing a single
value and a single address. There is also no patch structure at this point.

Recall that a patch contains a left pointer, a right pointer and data of the form (s — p)||Ip||rp.
All four quantities are addresses so patch is 4r bytes long. After sparse deletes, PAX requires

g(f+r+1)+g(f+4r):g(2f+5r+1)

5The estimates can be trivially extended to use a different value size.

27

Before deletes || After sparse deletes || After dense deletes

min max min max min max
Eth: LSX 1.0 159.0 1.5 238.5 1.5 238.5
Eth: TRX 1.0 191.0 1.5 286.5 1.5 286.5
Eth: PAX || 159.0 | 159.0 | 206.5 206.5 79.5 79.5
Algo: LSX || 1.25 | 237.0 1.87 355.5 1.87 355.5
Algo: TRX || 1.32 | 289.0 1.98 433.5 1.98 433.5
Algo: PAX || 237.0 | 237.0 || 314.5 314.5 118.5 118.5

Table 2: Storage Estimates (in MBs) for Ethereum and Algorand blockchains for storing 1 MB of
data. For Ethereum: V =1 MB, f = 126 B, A = 98 KBs, r = 66 B. For Algorand: V' = 1 MB,
f=184 B, A=1KB, r =52 B.

bytes of space. This is because there are V/2 transactions with un-deleted values, each of which is
(f +7+4 1) bytes long, and there are V/2 transactions for patches in the patch tree, each of which
is (f + 4r) bytes long. After dense deletes PAX takes

g(f—i-r—l—l)—i-(f—i-élr)

bytes since the patch tree only contains a single patch. Since PAX does not pack multiple values in
one transaction, its storage overhead is independent of whether updated are done individually or
all in one transaction. Therefore, all the min and max values are the same for PAX.

Storage estimates for Ethereum and Algorand. We estimated the storage overhead for
storing IMB and 100MB of data on Ethereum and Algorand. That is, we set V = 1MB and
V = 100MB:s.

For Ethereum, we analysed the fields of its transactions and estimated that a transaction takes
126 bytes (excluding the variable data) so we f = 126 bytes. We also set A = 98KB, which is the
maximum amount of data that can be stored in an Ethereum transaction (since the current gas
limit per Ethereum block is 4.7 million gas). Finally, we set r = 32 bytes, which is the size of a
transaction hash. We did a similar analysis for Algorand and set f = 184 bytes, A = 1 KB, and
r = 52 bytes”. The storage overhead estimates are summarised in Tables 2 and 3.

As expected, in the best case LSX and TRX do much better than PAX. This is because, due to
packing, they create a smaller number of transactions and can amortize some of the storage costs
of transactions. Also, in the worst case, when clients make individual updates, LSX and TRX are
unable to pack and hence perform approximately the same PAX. However, if deletes are dense,
PAX maintains only a single patch in the patch tree, whereas both LSX and TRX maintain a long
history of deleted values which makes their storage much larger.

References

[1] The monero project, 2014. https://web.getmonero.org/.

[2] Wanchain, 2018. https://www.wanchain.org/.

"We point out that for Algorand the address is not really the hash but a transaction id which they compute by
encoding the signed transaction in Base64.

28

https://web.getmonero.org/
https://www.wanchain.org/

Before deletes || After sparse deletes || After dense deletes

min max min max min max
Eth: LSX 0.1 15.9 0.15 23.85 0.15 23.85
Eth: TRX || 0.1 19.1 0.15 28.65 0.15 28.65
Eth: PAX || 15.9 15.9 20.65 20.65 7.95 7.95
Algo: LSX || 0.12 23.7 0.19 35.55 0.19 35.55
Algo: TRX || 0.13 28.9 0.2 43.35 0.2 43.35
Algo: PAX || 23.7 23.7 31.45 31.45 11.85 11.85

Table 3: For Ethereum: V =1 MB, f = 126 B, A = 98 KBs, r = 66 B. For Algorand: V =1 MB, f = 184
B, A=1KB, r=52B.

Algorand’s algosdk package, 2020. https://github.com/algorand/py-algorand-sdk.
Bluzelle, 2020. URL https://bluzelle.com/.

Covenantsql, 2020. https://covenantsql.io/.

Infura, 2020. https://infura.io/.

Metamask, 2020. https://metamask.io/.

Oursql, 2020. http://oursql.org/.

Provendb, 2020. https://www.provendb.com/litepaper/.

Purestake, 2020. https://www.purestake.com/.

Web3 documentation, 2020. URL https://web3py.readthedocs.io/en/stable/web3.eth.
html.

Ghous Amjad, Seny Kamara, and Tarik Moataz. Breach-resistant structured encryption. In
Proceedings on Privacy Enhancing Technologies (Po/PETS ’19), 2019.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Proceedings of the Thirteenth FuroSys Conference, pages 1-15, 2018.

Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec: Using blockchain
for medical data access and permission management. In 2016 2nd International Conference
on Open and Big Data (OBD), pages 25-30. IEEE, 2016.

Silvia Bartolucci, Pauline Bernat, and Daniel Joseph. Sharvot: secret share-based voting
on the blockchain. In Proceedings of the 1st International Workshop on Emerging Trends in
Software Engineering for Blockchain, pages 30-34, 2018.

Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiw:1407.3561, 2014.

Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu
Lin, Tal Rabin, and Leonid Reyzin. Can a blockchain keep a secret? IACR Cryptol. ePrint
Arch., 2020:464, 2020. URL https://eprint.iacr.org/2020/464.

29

https://github.com/algorand/py-algorand-sdk
https://bluzelle.com/
https://covenantsql.io/
https://infura.io/
https://metamask.io/
http://oursql.org/
https://www.provendb.com/litepaper/
https://www.purestake.com/
https://web3py.readthedocs.io/en/stable/web3.eth.html
https://web3py.readthedocs.io/en/stable/web3.eth.html
https://eprint.iacr.org/2020/464

[18]

[19]

[20]

[21]

31]
[32]

Christian Berger, Birgit Penzenstadler, and Olaf Drogehorn. On using blockchains for safety-
critical systems. In Proceedings of the 4th International Workshop on Software Engineering
for Smart Cyber-Physical Systems, pages 30-36, 2018.

R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer
and Communications Security (CCS ’16), 20016.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IFEE
Symposium on Security and Privacy (SP), pages 315-334. IEEE, 2018.

Chengjun Cai, Xingliang Yuan, and Cong Wang. Hardening distributed and encrypted keyword
search via blockchain. In 2017 IEEE Symposium on Privacy-Aware Computing (PAC), pages
119-128. IEEE, 2017.

Chengjun Cai, Xingliang Yuan, and Cong Wang. Towards trustworthy and private keyword
search in encrypted decentralized storage. In 2017 IEEE International Conference on Com-
munications (ICC), pages 1-7. IEEE, 2017.

M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages
577-594. Springer, 2010.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In ACM Conference on Computer and Com-
munications Security (CCS '06), pages 79-88. ACM, 2006.

Muhammad El-Hindi, Martin Heyden, Carsten Binnig, Ravi Ramamurthy, Arvind Arasu, and
Donald Kossmann. Blockchaindb-towards a shared database on blockchains. In Proceedings
of the 2019 International Conference on Management of Data, pages 1905-1908, 2019.

Mohammad Etemad, Alptekin Kiipccii, Charalampos Papamanthou, and David Evans. Effi-
cient dynamic searchable encryption with forward privacy. PoPETs, 2018(1):5-20, 2018. doi:
10.1515/popets-2018-0002. URL https://doi.org/10.1515/popets-2018-0002.

Sven Helmer, Matteo Roggia, Nabil El Ioini, and Claus Pahl. Ethernitydb-integrating database
functionality into a blockchain. In European Conference on Advances in Databases and Infor-
mation Systems, pages 37—44. Springer, 2018.

Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, and Kui Ren. Search-
ing an encrypted cloud meets blockchain: A decentralized, reliable and fair realization. In IEEE
INFOCOM 2018-1EEFE Conference on Computer Communications, pages 792-800. IEEE, 2018.

S. Kamara and T. Moataz. SQL on Structurally-Encrypted Data. In Asiacrypt, 2018.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE
symposium on security and privacy (SP), pages 839-858. IEEE, 2016.

Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11), 2014.

Protocol Labs. Filecoin, 2020. https://filecoin.io/.

30

https://doi.org/10.1515/popets-2018-0002
https://filecoin.io/

[33]

[34]

[35]

[42]

[43]

[44]

Will Martino. Kadena: The first scalable, high performance private blockchain. Kadena,
Okinawa, Japan, Tech. Rep, 2016.

Gregory Maxwell and Andrew Poelstra. Borromean ring signatures. Accessed: Jun, 8:2019,
2015.

Trent McConaghy, Rodolphe Marques, Andreas Miiller, Dimitri De Jonghe, Troy McConaghy,
Greg McMullen, Ryan Henderson, Sylvain Bellemare, and Alberto Granzotto. Bigchaindb: a
scalable blockchain database. white paper, BigChainDB, 2016.

Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In 20183 IEEE Symposium on Security and Privacy, pages
397-411. IEEE, 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen Jayachan-
dran. Blockchain meets database: Design and implementation of a blockchain relational
database. Proc. VLDB Endow., 12(11):1539-1552, 2019. doi: 10.14778/3342263.3342632.
URL http://www.v1ldb.org/pvldb/voll12/p15639-nathan. pdf.

Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen Jayachan-
dran. Blockchain meets database: design and implementation of a blockchain relational
database. Proceedings of the VLDB Endowment, 12(11):1539-1552, 2019.

Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. Fairaccess: a new
blockchain-based access control framework for the internet of things. Security and Communi-
cation Networks, 9(18):5943-5964, 2016.

Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. Towards a novel privacy-
preserving access control model based on blockchain technology in iot. In Furope and

MENA Cooperation Advances in Information and Communication Technologies, pages 523~
533. Springer, 2017.

Mayank Raikwar, Danilo Gligoroski, and Katina Kralevska. Sok of used cryptography in
blockchain. IEEE Access, 7:148550-148575, 2019.

Jens-Andreas Hanssen Rensaa, Danilo Gligoroski, Katina Kralevska, Anton Hasselgren, and
Arild Faxvaag. Verifymed—a blockchain platform for transparent trust in virtualized healthcare:
Proof-of-concept. arXiv preprint arXiv:2005.08804, 2020.

Manuj Subhankar Sahoo and Pallav Kumar Baruah. Hbasechaindb—a scalable blockchain
framework on hadoop ecosystem. In Asian Conference on Supercomputing Frontiers, pages
18-29. Springer, 2018.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, lan Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459-474. IEEE, 2014.

E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small
leakage. In Network and Distributed System Security Symposium (NDSS ’14), 2014.

31

http://www.vldb.org/pvldb/vol12/p1539-nathan.pdf

[47] Andrew Tam. Secret with enigma: A walkthrough., 2018. https://blog.enignma.co/
secret-voting-smart-contracts-with-enigma-a-walkthrough-5bb976164753.

[48] Viktor Trén, Aron Fischer, Daniel A Nagy, Zsolt Felfoldi, and Nick Johnson. Swap, swear, and
swindle: Incentive system for swarm. Technical Report, Ethersphere Orange Papers 1, 2016.

[49] Sarah Underwood. Blockchain beyond bitcoin, 2016.

[50] Licheng Wang, Xiaoying Shen, Jing Li, Jun Shao, and Yixian Yang. Cryptographic primitives
in blockchains. Journal of Network and Computer Applications, 127:43-58, 2019.

[51] Yinghui Zhang, Robert H Deng, Jiangang Shu, Kan Yang, and Dong Zheng. Tkse: Trustworthy
keyword search over encrypted data with two-side verifiability via blockchain. IEEE Access,
6:31077-31087, 2018.

32

https://blog.enigma.co/secret-voting-smart-contracts-with-enigma-a-walkthrough-5bb976164753
https://blog.enigma.co/secret-voting-smart-contracts-with-enigma-a-walkthrough-5bb976164753

	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Structured Encryption
	Security

	LSX: A List-Based Scheme
	Details

	TRX: Improving Stabilization Complexity
	Details

	PAX: Improving Query Efficiency
	Overview of Patching
	Details

	Instantiating Append-only Data Stores with Blockchains
	Instantiating Addresses
	Using Ethereum
	Using Algorand

	Empirical Evaluation
	Experiments
	Storage Complexity

