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Abstract. Since David Chaum introduced the idea of mix nets 40 years
ago, they have become widely used building blocks for privacy-preserving
protocols. Several important applications, such as secure e-voting, require
that the employed mix net be verifiable. In the literature, numerous
techniques have been proposed to make mix nets verifiable. Some of
them have also been employed in politically binding elections.
Verifiable mix nets differ in many aspects, including their precise veri-
fiability levels, possible trust assumptions, and required cryptographic
primitives; unfortunately, these differences are often opaque, making
comparison painful.
To shed light on this intransparent state of affairs, we provide the follow-
ing contributions. For each verifiability technique proposed to date, we
first precisely describe how the underlying basic mix net is to be extended
and which (additional) cryptographic primitives are required, and then
study its verifiability level, including possible trust assumptions, within
one generic and expressive verifiability framework. Based on our uniform
treatment, we are able to transparently compare all known verifiability
techniques for mix nets, including their advantages and limitations.
Altogether, our work offers a detailed and expressive reference point for
the design, employment, and comparison of verifiable mix nets.
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1 Introduction

Mix nets are popular building blocks for privacy-preserving technologies, most
prominently for secure e-voting systems. For example, mix nets have been em-
ployed in real political elections in Norway, Estonia, Switzerland and Australia [10,
14, 21, 37, 41, 42, 46]. Further applications include, but are not limited to, anony-
mous messaging [3, 32, 39], anonymous routing [9], and oblivious RAM [45].

On a high level, a mix net is run among a set of senders and a set of mix
servers, and works as follows. Each sender provides its input to the mix servers
who then privately shuffle all inputs and eventually publish them in random
order. Unless all mix servers are corrupted, a mix net should guarantee that the
individual links between the senders and their messages in the output remain



secret. In the context of e-voting, where the senders are voters and their messages
represent ballots, this property preserves vote privacy.

However, “plain” mix nets should not be used when misbehaving mix servers
are a real threat; they are only suitable in the honest-but-curious model. In
fact, for applications like secure e-voting, the employed mix net should also be
verifiable to guarantee that if something goes wrong (e.g., the final result does not
correspond to the submitted ballots), then this can be detected. Often, in order
to deter parties from misbehaving, a stronger form of verifiability, accountability,
is required to ensure that misbehaving parties can even be identified.

In the literature, numerous mix nets [1, 2, 4, 11, 12, 16–18, 20, 22–24, 27, 34,
35, 40, 43, 44, 47–50] have been proposed to date that aim to achieve verifiability
and even accountability. However, these mix nets differ in several important
aspects, including but not limited to:

– Verifiability level: Many mix nets [1, 2, 4, 11, 12, 16–18, 20, 22, 34, 35,
43, 44, 47, 49, 50] aim to guarantee a “perfect” verifiability level: even if only
a single message is manipulated, then this will be detected with overwhelming
probability. On the other hand, several mix nets [7, 23, 24, 27, 40, 48] were
designed to guarantee a “relaxed” verifiability level, where some (small amount
of) manipulations may not always be detectable, but which opens up advantages
in other aspects (see next points).

– Trust assumptions: Ideally, verifiability and accountability should be guar-
anteed without any (unnecessary) trust assumptions. However, some mix nets
are only verifiable if certain parties are (at least temporarily) trusted. While for
some of these mix nets, the required trust assumptions are straightforward to
see or made explicit (e.g., [24]), identifying them is non-trivial for others (e.g.,
it is unclear how to verifiably generate the common reference string in [17]).

– Cryptographic primitives: All mix nets that aim for a perfect verifiability
level employ specifically tailored cryptographic primitives. This can be disadvan-
tageous, for example in the following aspects. First, it is challenging to implement
these primitives correctly, as recently demonstrated for the mix net employed
in the Swiss e-voting system [13]. Second, the security of these techniques typ-
ically relies upon “traditional” hardness assumptions so that privacy (e.g., of
voters) may retrospectively be broken in the future with quantum computers.
On the other hand, some verifiable mix nets [7, 23, 27, 40, 48] employ only basic
cryptographic primitives.

This confusing situation raises several questions: Which verifiability levels do
the different verifiable mix nets provide and how do these levels relate? Which
trust assumptions are made, possibly implicitly? Which cryptographic primitives
are conceptually required? Which verifiable mix nets can be instantiated using
practical post-quantum cryptographic primitives only? How complex are the
different techniques computationally? Which guarantees do they provide in terms
of message privacy? Answering these questions is non-trivial. It requires some
common basis on which the resulting mix nets can be modeled and on which
their security and computational complexity can be analyzed and compared.
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Our contributions. To shed light on this intransparent state of affairs, we provide
the following contributions:

1) For each verifiable mix net from the literature (see above), we distilled
its underlying “atomic” verifiability technique(s). While some of the mix nets
employ a single technique only (e.g., [31]), others combine two or more of them
(e.g., [24, 27]). By this, we can study all atomic techniques independently in the
next steps.

2) For each verifiability technique, we precisely describe how the protocol
of the underlying basic mix net is to be extended and which additional crypto-
graphic primitives are required.

3) We use the general verifiability/accountability framework by Küsters et
al. [29] to study verifiability and accountability of each technique. This frame-
work is particularly suitable for our purposes as it measures the verifiabil-
ity/accountability level a mix net provides and makes trust assumptions (if any)
transparent. Furthermore, some mix nets have already been analyzed in this
framework before [7, 27, 28, 31]. The verifiability/accountability levels of the
remaining ones follow either immediately from their specific properties (in the
case of proofs of correct shuffle) or are formally analyzed in this work (see next
point).

4) We provide the first formal verifiability and accountability analysis of the
Khazaei-Moran-Wikström mix net [24]. Our result refines the security theorem
that was stated by Khazaei et al. [24] but for which a proof has not been pub-
lished prior to our work.

5) Based on the uniform and transparent treatment in the previous steps,
we elaborate on the advantages, disadvantages, problems, and limitations of the
various verifiability techniques. In particular, we identified several fundamental
issues that have not been mentioned prior to our work, and show how to fix
them (if possible).

Altogether, our work offers a detailed and transparent reference point for the
design, employment, and comparison of verifiable mix nets.

Scope of our contributions. We have focused on surveying and analyzing the
underlying techniques for synchronous (linear) mix nets which are particularly
important for building secure e-voting systems. We do not cover continuous
mixers, such as Loopix [39], nor systems which, though sometimes called mix
nets, more properly extend mix nets into a dynamic system across an extended
period of time, such as Miranda [33].

Structure of the paper. In Section 2, we present the basic design of all verifiable
mix nets, distinguishing between decryption mix nets (DMN) and re-encryption
mix nets (RMN). In Section 3, we introduce the computational model to later
model the different verifiability techniques, and in Section 4, we introduce the
general verifiability/accountability framework to formally analyze them.

Subsequently, each of the Sections 5 to 10 is dedicated to one of the verifiabil-
ity techniques: we first explain how the underlying basic mix net from Section 2
is to be extended, and then elaborate on important properties, focussing on
verifiability and accountability. The formal results are summarized in Table 1
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(Primitives & Verifiability). Our main insights are distilled in Section 12 where
we elaborate on the relations between the different verifiability techniques, their
advantages, and limitations.

2 Basic Mix Nets

Secure mix nets can be classified into two categories: decryption mix nets (DMN)
and re-encryption mix nets (RMN). Originally, the concept of a DMN was pro-
posed by Chaum [8], and the one of a RMN by Park et al. [38]. In Sections 2.2
and 2.3, we describe the design of a plain (i.e., non-verifiable) DMN and RMN,
respectively. In order to make these mix nets verifiable, different techniques have
been proposed which we systematically study in this paper (Sections 5-11). In-
dependently of the specific verifiability technique, the resulting verifiable DMNs
and RMNs have a specific structure that we describe in Section 2.4 and that we
call basic DMN and basic RMN, respectively.

2.1 General Structure

We start by describing the general structure of a mix net.

Protocol participants. A mix net protocol is run among the senders S1, . . . ,SnS
,

the mix servers M1, . . . ,MnMS
, and a public, append-only bulletin board B. Re-

encryption mix nets also include a number of trustees T1, . . . ,TnT
.

Channels. For each sender Si, we assume that there is an authenticated channel
from Si to the bulletin board B. These channels ensure that only eligible senders
are able to submit their inputs.

Protocol overview. A protocol run consists of the following consecutive phases.
In the setup phase, parameters are generated. In the submission phase, the
senders generate and submit their input. In the mixing phase, the mix servers
collaboratively mix the input. Optionally, re-encryption mix nets also include a
phase for decryption.

2.2 Plain DMN

The main idea of a DMN is as follows. Each sender Si iteratively encrypts its
plain input message mi under the public keys pk1, . . . , pknMS

of the mix servers
M1, . . . ,MnMS

in reverse order, and submits the resulting “nested” ciphertext ci to
the first mix server M1. The first mix server M1 uses its secret key sk1 to decrypt
the outermost encryption layer of all input ciphertexts, shuffles the decrypted
messages, and forwards them to the second mix server M2. The second mix
server M2 uses its secret key sk2 to decrypt the next encryption layer, shuffles
the result, and so on. Eventually, the last mix server MnMS

outputs the plain
messages initially chosen by the senders in random order.

Cryptographic primitives. We use the following cryptographic primitives:

– An IND-CCA2-secure public-key encryption scheme E = (KeyGen,Enc,Dec).
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– An EUF-CMA-secure signature scheme S.

Setup phase. Each mix server Mk runs the key generation algorithm of the
digital signature scheme S to generate its public/private (verification/signing)
keys. The verification keys are published on the bulletin board B.3

Each mix server Mk runs the key generation algorithm KeyGen of the public-
key encryption scheme E to generate its public/private (encryption/decryption)
key pair (pkk, skk), and posts its public key on the bulletin board B.

Submission phase. Each sender Si iteratively encrypts its secret input mi under
the mix servers’ public keys in reverse order, i.e., starting with the public key
pknMS

of the last mix server MnMS
to the public key pk1 of the first mix server

M1:
ci = Enc(pk1, (. . . ,Enc(pknMS

,mi))).

Mixing phase. The list of ciphertexts C0 ← (ci)
nS
i=1 posted by the senders on the

bulletin board B is the input to the mixing phase. Starting with the first mix
server M1, each mix server Mk takes Ck−1 as input and performs the following
tasks:

1. Decrypt all ciphertexts in Ck−1 under private key skk: C ′k[i]← Dec(skk, Ck−1[i])
for all i ∈ {1, . . . , nS}.

2. Choose a permutation σk over {1, . . . , nS} uniformly at random, and set
Ck[σ(i)]← C ′k[i] for all i ∈ {1, . . . , nS}.

3. Send Ck to the bulletin board B.

The output CnMS
of the last mix server MnMS

is the output of the mixing
phase. It equals (mσ(i))

nS
i=1, where σ = σnMS

◦ . . . ◦ σ1 is the overall permutation
of the mix net.

2.3 Plain RMN

The main idea of a RMN is as follows. We use a public-key encryption scheme
that allows for re-encrypting a given ciphertext without knowing the secret key
or the encrypted message. Now, each sender Si encrypts its plain input message
mi under a single public key pk whose secret key is typically shared among
a number of trustees (e.g., the mix servers themselves). The first mix server
M1 re-encrypts all input ciphertexts (using random coins chosen independently
and uniformly at random), shuffles the re-encrypted ciphertexts, and forwards
them to the second mix server M2. The second mix server re-encrypts these
ciphertexts again, shuffles them, and so on. Eventually, the last mix server MnMS

outputs a list of ciphertexts which encrypt the input messages initially chosen by
the senders but under different random coins and in random order. Optionally,
these ciphertexts can be decrypted by the trustees who hold the secret key shares.

Cryptographic primitives. We use the following cryptographic primitives:

3 In what follows, we implicitly assume that whenever a party (e.g., Mk) holding a
verification/signing key pair publishes information, it signs this data with its secret
signing key.
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– A distributed IND-CPA-secure public-key encryption scheme E = (KeyShareGen,
PublicKeyGen,Enc,ReEnc,DecShare,Dec) which allows for re-encryption ReEnc.

– An EUF-CMA-secure signature scheme S.

Setup phase. The mix servers and trustees generate and publish their verification
keys in the same way as the mix servers do in the DMN.

Each trustee Tl runs the key share generation algorithm KeyShareGen of
the distributed public-key encryption scheme E to generate its public/private
(encryption/decryption) key share pair (pkl, skl), and posts its public key share
pkl on the bulletin board B. With PublicKeyGen, everyone can then compute the
(overall) public key pk.

Submission phase. Each sender Si encrypts its secret inputmi under the trustees’
joint public key pk: ci = Enc(pk,mi).

Mixing phase. The list of ciphertexts C0 ← (ci)
nS
i=1 posted by the senders on the

bulletin board B is the input to the mixing phase. Starting with the first mix
server M1, each mix server Mk takes Ck−1 as input and performs the following
tasks:

1. Re-encrypt all ciphertexts in Ck−1 under random coins r1k, . . . , r
nS

k chosen
uniformly at random: C ′k[i]← ReEnc(rik, Ck−1[i]) for all i ∈ {1, . . . , nS}.

2. Choose a permutation σk over {1, . . . , nS} uniformly at random, and set
Ck[σ(i)]← C ′k[i] for all i ∈ {1, . . . , nS}.

3. Send Ck to the bulletin board B.

The output CnMS
of the last mix server MnMS

is the output of the mixing
phase. It equals (c′σ(i))

nS
i=1, where σ = σnMS

◦ . . . ◦ σ1 is the overall permutation

of the mix net and c′σ(i) is the overall re-encryption of Si’s input ciphertext ci.

Decryption phase (optional). For every ciphertext CnMS
[i] in the output of the

mixing phase CnMS
, each trustee Tl uses its secret key share skl to compute

a decryption share deci,l ← DecShare(skl, CnMS
[i]), and publishes deci,l on the

bulletin board B. With Dec, everyone can then decrypt CnMS
[i].

2.4 Basic DMN and RMN

We describe the basic structures of all verifiable DMNs and RMNs extending
the plain versions described above. These basic DMN and basic RMN can be
regarded as the “greatest common divisors” of all verifiable DMNs and RMNs.

First of all, we note that each verifiable DMN or RMN also includes a phase
for auditing, where everyone can perform the required checks to guarantee that
the output is correct (provided the trust assumptions hold). The auditing phase
always includes checking whether a mix net authority (e.g., mix server) devi-
ated from its honest program in an obvious, i.e., trivially detectable, way (e.g.,
refuses to participate). In such a case, the protocol aborts immediately and the
misbehaving party is held accountable.

Basic DMN. The plain DMN (Section 2.2) is extended as follows. Ciphertext
duplicates are continuously removed. In particular, if the input of a sender Si
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contains a ciphertext that was already submitted before, then Si is held ac-
countable, and if Ck contains duplicates for some k < nMS, then Mk is held
accountable.

Basic RMN. The plain RMN (Section 2.3) is extended as follows. Ciphertext
duplicates are continuously removed, and, additionally, each sender Si provides
a NIZKP of plaintext knowledge for her input ciphertext. Input ciphertexts
without valid NIZKPs are removed.

In the setup phase, each trustee Tl provides a NIZKP for proving knowledge
and correctness of its secret key share skl.

In the decryption phase (if any), each trustee Tl provides a NIZKP for proving
correctness of its decryption shares dec1,l, . . . , decnT,l.

3 Protocol Model

The general computational model that we use follows the one in [29]. This model
introduces the notions of processes, protocols, and instances, which we briefly
recall. In this way, we then model the basic mix net protocols which can easily
be extended to also capture the more complex mix nets that we study later in
this paper.

Process. A process is a set of probabilistic polynomial-time (ppt) interactive
Turing machines (ITMs, also called programs) which are connected via named
tapes (also called channels). We write a process π as π = p1‖ · · · ‖pl, where
p1, . . . , pl are programs. If π1 and π2 are processes, then π1‖π2 is a process,
provided that the processes have compatible interfaces. A process π where all
programs are given the security parameter 1` is denoted by π(`). In the processes
we consider, the length of a run is always polynomially bounded in `. Clearly, a
run is uniquely determined by the random coins used by the programs in π.

Protocol. A protocol P is defined by a finite set of agents Σ (also called parties
or protocol participants), and for each agent a ∈ Σ its honest program π̂a, i.e.,
the program this agent is supposed to run. Agents are pairwise connected by
tapes/channels and every agent has a channel to the adversary (see below). If
π̂a1

, . . . , π̂al
are the honest programs of the agents of P , then we denote the

process π̂a1
‖ . . . ‖π̂al

by π̂P .
The process π̂P is always run with an adversary A, an arbitrary ppt program

with channels to all protocol participants in π̂P . For any program πA run by
the adversary, we call π̂P ‖πA an instance of P . Now, a run r of P with the
adversary πA is a run of the process π̂P ‖πA. We consider π̂P ‖πA to be part of
the description of r so that it is always clear to which process, including the
adversary, the run r belongs to.

We say that an agent a is honest in a protocol run r if the agent has not
been corrupted in this run: an adversary πA can corrupt an agent by sending
a corrupt message; once corrupted, an adversary has full control over an agent.
For the mix nets protocols studied in this paper, we assume static corruption,
i.e., agents can only be corrupted at the beginning of a run. In particular, the
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corruption status of each party is determined at the beginning of a run and does
not change during a run. Also, for some agents, we will assume that they cannot
be corrupted (see below).

Modeling of basic mix nets. A basic mix net protocol can be modeled in a
straightforward way either as a protocol PDMN(nS, nMS) (DMN) or a protocol
PRMN(nS, nMS, nT) (RMN). The protocol participants consist of nS senders, nMS

mix servers, nT trustees (RMN), a scheduler SC, and a public append-only bul-
letin board B. The scheduler SC plays the role of the mix net authority and
schedules all other agents in a run according to the protocol phases. We assume
that SC and the bulletin board B are honest, i.e., they are never corrupted. While
SC is merely a virtual entity, in reality, B should be implemented in a distributed
way (see, e.g., [15, 26]).

Using the different verifiability techniques presented in this paper, we will
then obtain specific mix net protocols extending the basic mix net protocols
modeled above.

4 Verifiability & Accountability

Our systematic comparison of the different mix nets in terms of verifiability
and accountability uses the generic verifiability and accountability framework
by Küsters, Truderung, and Vogt [29]. We briefly recall these frameworks in
Section 4.1 and 4.2, respectively. These frameworks are particularly suitable for
our purposes because (i) they do not require a specific mix net structure, (ii)
they make trust assumptions (if any) transparent, and (iii) they measure the
level of verifiability/accountability a mix net provides.

4.1 Verifiability Framework

Intuitively, a mix net is verifiable if an incorrect final outcome is accepted only
with small probability δ ∈ [0, 1].

Judge. To model whether the final outcome of a protocol run should be accepted,
the verifiability definition by Küsters et al. assumes an additional protocol par-
ticipant J, called the judge. The judge can be thought of as a “virtual” entity;
in reality, the program of J can be carried out by any party, including external
observers or the senders themselves, since its input is merely public information.
On a high level, the judge performs certain checks to ensure the correctness of
the final outcome (e.g., verifying all zero-knowledge proofs). Typically, as for all
the mix nets in this paper, the program of J follows immediately from the pro-
tocol description. Formally, to either accept or reject a protocol run, the judge
writes accept or reject on a dedicated channel decisionJ.

Goal. To specify which runs are “correct” in some protocol-specific sense,
Küsters et al. use the notion of a goal γ. Formally, a goal γ is simply a set
of protocol runs. For mix nets, γ would contain those runs where the announced
mix net result corresponds to the actual messages of the senders.
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In what follows, we describe the goal γ(k, ϕ) that we use to analyze all the
different mix nets. This goal has already been applied in [27, 28, 31] to analyze
some of the presented mix nets. The parameter ϕ is a Boolean formula that de-
scribes which protocol participants are assumed to be honest in a run, i.e., not
corrupted by the adversary. On a high level, the parameter k denotes the maxi-
mum number of messages submitted by the honest senders that the adversary is
allowed to manipulate. So, roughly speaking, the goal γ(k, ϕ) consists of those
runs of a mix net protocol P where either (i) ϕ is false or (ii) where ϕ holds true
and where the adversary has manipulated at most k messages of honest senders.
We recall the formal definition of γ(k, ϕ) in Appendix B.

Verifiability. Now, the idea behind the verifiability definition is very simple. The
judge J should accept a protocol run only if the goal γ is met: as discussed, if we
use the goal γ(k, ϕ), then this essentially means that the published mix net result
corresponds to the actual messages of the senders up to k messages of honest
senders. More precisely, the definition requires that the probability (over the set
of all protocol runs) that the goal γ is not satisfied but the judge nevertheless
accepts the run is δ-bounded.4 Certainly, δ = 0 is desirable but it can only be
achieved by one of the presented types of mix nets (namely, RMN with a proof
of correct shuffle, Section 11), however at the cost of other properties. Hence,
if we strictly required δ = 0, then this would deem many reasonable mix nets
insecure even though they provide good (but not perfect) levels of verifiability,
e.g., for some δk that converges exponentially fast against 0 in the number of
manipulated inputs k. The parameter δ is called the verifiability tolerance of the
protocol.

By Pr[π(`) 7→ ¬γ, (J : accept)] we denote the probability that π, with security
parameter 1`, produces a run which is not in γ but nevertheless accepted by J.

Definition 1 (Verifiability). Let P be a protocol with the set of agents Σ. Let
δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and γ be a goal. Then, we say
that the protocol P is (γ, δ)-verifiable by the judge J if for all adversaries πA

and π = (π̂P ‖πA), the probability Pr[π(`) 7→ ¬γ, (J : accept)] is δ-bounded as a
function of `.5

4.2 Accountability

Verifiability merely requires that, if some goal of the protocol is not achieved,
then the run is rejected, but it does not guarantee that the responsible parties can
be identified in such a case. However, being able to single out misbehaving par-
ties is important in practice since malicious behaviour should have consequences,

4 A function f is δ-bounded if, for every c > 0, there exists `0 such that f(`) ≤ δ+ `−c

for all ` > `0.
5 We note that the original definition in [29] also captures soundness: if the protocol

runs with a benign adversary, which, in particular, would not corrupt parties, then
the judge accepts all runs. This kind of soundness can be considered to be a sanity
check of the protocol, including the judging procedure, and is typically easy to check.
For brevity of presentation, we omit this condition here.
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in particular to deter parties from misbehaving. This property is called account-
ability, and it is a stronger form of verifiability as demonstrated in [29]. More
specifically, accountability requires that, if some desired goal of the protocol is
not met in a run (due to the misbehavior of one or more protocol participants),
then the judge J individually blames those participants who misbehaved, or at
least one of them. So, using γ(ϕ, k) as the goal, accountability guarantees that,
if more than k inputs of honest senders were manipulated, then (one or more
of) the misbehaving parties are held accountable by J. We recall the formal
accountability framework in Appendix C

5 Message Tracing (DMN)

The following technique easily extends a basic DMN. Since each sender Si knows
the trace of its own input through the mix net, Si can look up the mix net output
(which also includes the mix servers’ intermediate results) to verify whether this
trace was broken. Message tracing was employed in [27, 48] and formally analyzed
in [27].

5.1 Description

We describe how to extend a basic DMN (Section 2.4) for message tracing.

Channels. We additionally assume that there is an anonymous channel from
each sender Si to the bulletin board B. The sender can use this channel for sub-
mitting blaming evidence in case its input was manipulated (see below) without
sacrificing its message privacy.

Submission phase. In addition to generating its encrypted input ci, each sender
Si stores its message mi, all random coins r1i , . . . , r

i
nMS

used to iteratively encrypt

mi, and all (intermediate) ciphertexts c0i , . . . , c
nMS−1
i .

Auditing phase. Each sender Si can read the mix servers’ outputs C1, . . . , CnMS

from the bulletin board B, and perform the following check. Si first verifies
whether c1i is in the signed output C1 of the first mix server M1. If this is not
the case, Si retrieves the locally stored random coins r1i that it used to encrypt
the (missing) ciphertext c1i under pk1 to obtain the ciphertext c0i . Then, Si
sends (M1, c

0
i , c

1
i , r

1
i ) to the bulletin board B via its anonymous channel. Due

to the correctness of the underlying public-key encryption scheme E , this tuple
serves as a public evidence that M1 misbehaved, hence holding M1 accountable.
Otherwise, if c1i is in the signed output C1 of M1, the sender checks whether c2i
is in C2, and so on. If there is a mix server Mk for which cki is not in Ck, Si
publishes the respective evidence, analogously to the case of a misbehaving M1.

5.2 Properties

We summarize the main properties of the message tracing technique. Account-
ability was formally proven in [27], Theorem 3. We also elaborate on two intrinsic
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Table 1: Techniques for Verifiable Mix Nets: Primitives and Verifiability

Technique Cryptographic primitives
Trust

assumptions
Verifiability

tolerance

Accounta-
bility

Basic DMN
(Sec. 2.4)

– IND-CCA2-secure
PKE

Tracing
(Sec. 5)

+ none (1− pverify)
k+1 indiv.

Verification
Codes

(Sec. 6)
+ none (1− pverify)

k+1 none

RPC (Sec. 7)
+ NIZKPs of correct de-

cryption
+ Commitment scheme

∨
j hon(ADj)

(
3
4

)k+1 indiv.

Trip Wires
(Sec. 9)

+ IND-CCA2-secure dis-
tributed PKE

∨
j hon(ADj)

(
nhon

S
k+1

)
/
(
nhon

S +ntw

k+1

)
indiv.

Replication
(Sec. 10)

+ IND-CCA2-secure dis-
tributed PKE

+ NIZKP of correct de-
cryption

∨
j hon(Mj)

(
nhon

S
k+1

)
/
(nrepl(n

hon
S +1)

nrepl·(k+1)

) indiv.

Basic RMN
(Sec. 2.4)

– IND-CPA-secure
threshold PKE (with
re-encryption)

– NIZKP of private key
share knowledge

– NIZKP of plaintext
knowledge

– NIZKP of correct
(shared) decryption

RPC (Sec. 8)
+ NIZKP of correct re-

encryption
+ Commitment scheme

∨
j hon(ADj)

(
3
4

)k+1 indiv.

Correct
Shuffle

(Sec. 11)

+ NIZKP of correct shuf-
fle

N/A negl.
indiv.

Cryptographic primitives: “+” denotes additional cryptographic primitives to ba-
sic DMN/RMN. Trust assumptions: Parties required to be honest for verifiabil-
ity/accountability (modeled by ϕ in the goal γ(k, ϕ)). Verifiability tolerance: Upper
bound δ for the probability that manipulating more than k honest inputs remains un-
detected (under given trust assumptions). See Section 4 for details on verifiability and
accountability definitions.
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issues of the message tracing technique (one of which had not been identified
prior to our work), and show how to effectively solve them.

Verifiability. Observe that, to ensure verifiability, the tracing technique requires
that the probability of the event that two distinct senders choose the same
input message is negligible, or at least sufficiently small. Otherwise, the last mix
server could undetectably replace all but identical messages by different ones
(clash attack [30]). There are different mechanism to ensure this property, for
example, by combining tracing with verification codes (Section 6) as in [27], or
by adding a further encryption layer, as we recommend further below.

Under the previous assumption, in a DMN with message tracing, the prob-
ability that manipulating more than k honest inputs remains undetected is
bounded by (1 − pverify)k+1, where pverify denotes the probability that an hon-
est sender performs the verification procedure described above.

The intuition behind this formula is the following one. If an adversary ma-
nipulates more than k honest senders’ inputs, then this remains undetected only
if none of the affected senders does the auditing. Assuming that senders verify
pairwise independently, the probability that the adversary succeeds is bounded
by (1− pverify)k+1.6

We note that we do not have to assume (or be able to verify) that the
public/secret key pairs were generated correctly. In fact, for each mix server Mk

and each sender Si, the individual relation of Si’s input and output message in
the k-the mixing step (see above) can also be verified even if Mk published a
malformed public key pkk.

In order to guarantee that pverify is sufficiently large in practice, an automated
verification procedure was proposed in [27]. This mechanism is carried automat-
ically by a sender’s device as soon as the sender looks up the final result. In
order to evaluate its effectiveness, two mock elections were carried out: in both
cases, the automated verification rates reported by [27] were ≥ 55%. As a result,
the verifiability property of the tracing technique ensures that manipulating, for
example, 5 votes in one of these mock elections would have been detected with
probability ≥ 95%.

Accountability. If a sender detects that the trace of its message through the mix
net is broken, it reveals sufficient information to publicly identify a misbehaving
mix server. Hence, message tracing also provides individual accountability.

Anonymous channel issue. The anonymous channels between the senders and
the bulletin board are required for the following reason. Assume, for example,
that the last mix server MnMS

drops an arbitrary message m. Then, if the affected
sender Si performs the auditing described above, Si publishes (MnMS

, cnMS−1
i ,mi, r

nMS
i ),

6 We note that in [27], a more refined verifiability tolerance was formally proven: the
resulting formula also reflects that a malicious bulletin board could undetectably
stuff input ciphertexts for abstaining senders with a certain probability if, for ex-
ample, no PKI among the senders is assumed. Since this issue is orthogonal to the
actual verifiability technique employed, we abstract away from it in this paper and
present a slightly simplified formula here.
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where mi is Si’s plain message. If the publication was not anonymous, then ev-
eryone could link Si’s identity to its message mi.

Fairness issue. Let us consider an adversary who controls some dishonest senders
and the last mix server MnMS

. Furthermore, assume, for example, that we run an
election with candidates A,B,C, and that a candidate wins if he gets more votes
than any other candidate. Now, the adversary wants B or C to win but, before
submission closes, does not know which one has better chances. However, since
the adversary controls the last mix server, he gets to know the final outcome
after he has received CnMS−1. Therefore, he can change the dishonest senders’
choices in CnMS

“on the fly” such that one of his favourite choices wins. For
example, the adversary could adaptively swap all dishonest choices from B to C
such that C wins against A. Therefore, the election is not fair because B and C
have an advantage. At the same time, this manipulation is not detected because
the honest senders’ traces remain intact.7

Recommendation. In order to solve the two issues mentioned above, we recom-
mend to extend the message tracing technique as follows.

After the “main” mix net, we add a further mix net (with the same mix
servers) or a single layer of encryption for which the secret key is (nMS, nMS)-
shared among the mix servers. Once the main mixing phase is over, the mix
servers run the second mix net or distributed decryption, respectively. After
that, during the auditing phase, each sender can verify as before whether the
trace of its message through the main mix net is broken. If it is broken, then
Si non-anonymously sends its blaming evidence to the bulletin board B, and
the whole protocol aborts. Otherwise, if no sender publishes a valid complaint
during the auditing phase, then the second mix net/shared encryption layer is
verified explicitly by asking each mix server to publicly reveal its secret key of
the second mix net/secret key share for the final encryption layer. (Observe that
verification is still possible even if the scheduled auditing phase is over.)

Extending the DMN with message tracing in this way makes the assumption
of anonymous channels dispensable, and resolves the fairness issue described
above (assuming one honest mix servers).

6 Verification Codes (DMN)

The following technique is particularly simple and intuitive to extend a basic
DMN. It was originally proposed in [40], and later used in [27] where it was also
formally analyzed.

6.1 Description

We describe how to extend a basic DMN (Section 2.4) for verification codes.

7 This is not a contradiction to the verifiability result because the goal γ(k, ϕ) that we
used to instantiate the general verifiability definition (Definition 1) is only concerned
with protecting honest senders’ choices (as long as no dishonest choices are stuffed).
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Submission phase. In addition to its actual message mi, each sender Si chooses
an individual verification code ni (of a given size) uniformly at random. Then, Si
encrypts the message-code pair (mi, ni) according to the underlying basic DMN.

Auditing phase. Each sender Si can verify whether its verification code ni ap-
pears next to its message mi in the final outcome. If this is not the case, the
sender Si files a complaint.

6.2 Properties

We summarize the main properties of the verification code technique. Security
was formally proven in [27], Theorem 1. We also elaborate on the feasibility of
employing verification codes for RMNs.

Verifiability. In a DMN with verification codes, the probability that manipulat-
ing more than k honest inputs remains undetected is bounded by (1−pverify)k+1,
where pverify is the probability that an honest sender performs the verification
procedure described above. For this result to hold true, we need to assume that
the probability of clashes [30] between codes is negligible. Then, with a similar
reasoning as for the message tracing technique (Section 6.2), the verifiability
result follows.

Accountability. In contrast to all other verifiability techniques in this paper,
the verification code technique does not guarantee accountability. To see this,
observe that in case a sender complains, the judge cannot be sure whether (i) the
sender (is dishonest and) falsely claims that its message-verification code pair
does not appear in the final result, or (ii) the sender (is honest and) legitimately
complains.

Human verifiability. A unique feature of the verification code technique is that,
for applications like secure e-voting where a human being inputs the message mi,
we can also let the human sender choose (part of) the verification code. Then,
the protocol can be verified even if all computers are manipulated (assuming
that the senders can look up the correct final outcome). This property is called
human verifiability. Yet, one should keep in mind that human-generated nonces
have low entropy [5, 6]. Hence, if two human senders Si and Sj choose the same
message mi = mj and the same verification code ni = nj , then a malicious mix
server can undetectably manipulate one of these two clashing messages [30].

Fairness issue. The verification code technique suffers from the same fairness
issue as the message tracing technique (Section 5). Therefore, when using the
verification code technique, we recommend to extend the mix net as described
in Section 5.2.

Verification codes for RMN. Obviously, it would be possible to also apply the
verification code technique for extending a basic RMN. However, we note that
the resulting mix net does not provide privacy without any further means. To see
this, assume that the last mix server MnMS

is dishonest. Instead of re-encrypting
and shuffling its actual input CnMS−1, MnMS

simply re-encrypts and shuffles the
input C0 to the mix net. By this, the adversary bypasses all previous mix servers,
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hence, breaks privacy. This privacy attack is not detectable because none of the
message/verification code pairs was manipulated. Therefore, verification codes
should only be employed for RMNs in conjunction with one of the other verifi-
ability techniques presented in this paper.

7 Randomized Partial Checking (DMN)

The basic idea of randomized partial checking (RPC), originally proposed in [23],
is as follows: each mix server Mk has to open some of the links between its input
messages Ck−1 and its output messages Ck. The set of links to be opened is
chosen uniformly at random by a set of auditors. In a DMN with RPC, opening
a link refers to proving that the input message decrypts to the output message,
and in a RMN with RPC, this refers to proving that the output message is a
re-encryption of the input message. Since the details of RPC differ for DMN
and RMN, we handle them separately, starting with DMN here, and RMN in
Section 8.

7.1 Description

We describe how to extend a basic DMN (Section 2.4) for RPC.

Protocol participants. The set of protocol participants is extended by a number
of auditors AD1, . . . ,ADnAD

.

Cryptographic primitives. We additionally assume that the IND-CCA2-secure
public-key encryption scheme E also allows for NIZKPs of correct decryption.
Furthermore, we use a computationally hiding and computationally binding com-
mitment scheme (M, C,R,Comm).

Protocol overview. Typically, pairs of mix servers are audited. For the sake of
presentation, we will therefore assume that each mix server performs two mixing
steps.

Setup phase. Each auditor AD generates its verification/signing key pair and
publishes the verification key. Each mix server Mk generates two public/private
key pairs (pk2k−1, sk2k−1), (pk2k, sk2k), and publishes the public keys.

Mixing phase. Each mix server Mk with input C2k−2 performs the following
steps:

1. Decrypt C2k−2 using sk2k−1, shuffle the resulting messages using σ2k−1, and
send the outcome C2k−1 to B.

2. Decrypt C2k−1 using sk2k, shuffle the resulting messages using σ2k, and send
the outcome C2k to B.

3. Commit to the values of σ2k−1(i) and commit to the values of σ−12k (i) for all
i ≤ |C2k−1|. Send the commitments to B.
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Auditing phase. After the final outcome was published,8 the challenges for the
mix servers are generated as follows:

1) Generating randomness: Each auditor ADj chooses a bit string uniformly
at random, commits to it, and sents the commitment to B. Once all auditors
have published their commitments, each ADj opens its commitment and the
resulting bit strings are then combined into one (e.g, by XOR).

2) Generating verification sets: Using the random string produced by the
auditors, for all Mk and for all i ≤ |C2k−1|, it is randomly decided, independently
of other elements, whether i is added to the initially empty set Ik.

Then, each mix server Mk with input Ik performs the following steps:

1) Opening/proving left links: For all i ∈ Ik, open the i-commitment (on the
value σ2k−1(i)) from the first sequence of commitments on B. For all i ∈ Ik, create
a NIZKP for proving that C2k−1[i] is obtained by decrypting C2k−2[σ2k−1(i)]
(using sk2k−1), and send the proof to B.

2) Opening/proving right links: For all i /∈ Ik, open the i-commitment (on
the value σ−12k (i)) from the second sequence of commitments on B. For all i /∈ Ik,
create a NIZKP for proving that C2k[σ−12k (i)] is obtained by decrypting C2k−1[i]
(using sk2k), and send the proof to B.

Now, everyone can verify the correctness of Mk’s output by checking whether
all commitments were opened correctly, the opened indices do not contain du-
plicates, and the decryption proofs are valid. If one of these checks fails, Mk is
blamed individually.

7.2 Properties

We summarize the main properties of the randomized partial checking technique.
Security was formally proven in [31].

Verifiability. The auditing described above guarantees that for a message from
C2k−1 either the direct connection to some message from C2k−2 or to some
message from C2k is revealed (but never both, which would break privacy).
Nevertheless, there are different kinds of manipulation that may not always be
detectable [25, 31]. For example, if a malicious mix server replaces a ciphertext,
either in the first or the second mixing, by a different one, then this misbehaviour
remains undetected with probability 1

2 .

However, as demonstrated by [25, 31], there are more subtle attacks. If the
last mix server MnMS

is malicious, it can manipulate its outcome as follows.
Let i and j be two different positions in C2nMS−1 which encrypt the same mes-
sage. First, place the honest decryption at Cσ2nMS

(i) and any other message at

Cσ2nMS
(j), and then commit to σ2nMS−1(i) at both positions i and j. This ma-

nipulation can only be detected if both i and j belong to the set of indices Ik

8 We note that there are two variants of RPC decryption mix nets, depending on
when auditing takes places: either during the mixing phase or afterwards. Since, the
verifiability/accountability level is the same for both variants [31], we only describe
the latter variant for the sake of simplicity.
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for which Mk has to open the right links, and hence, remains undetected with
probability 3

4 .
Küsters et al. [31] formally proved that this attack is “optimal”: if an arbi-

trary adversary (controlling one or more mix servers) manipulates more than k
honest senders’ inputs, then this remains undetected with probability at most(
3
4

)k+1
.

Accountability. The auditing procedure described above always ensures that a
misbehaving mix server can be identified in case some manipulation is detected.
Hence, the DMN with RPC provides individual accountability.

8 Randomized Partial Checking (RMN)

In this section, we describe how RPC works for RMN.

8.1 Description

We describe how to extend a basic RMN (Section 2.4) for RPC.

Protocol participants. As for the DMN with RPC, we assume that there is a
number of auditors AD1, . . . ,ADnAD

.

Cryptographic primitives. In addition to the standard requirements, we use
the following cryptographic primitives (the NIZKPs relate to the underlying
distributed public-key encryption scheme E):

– A computationally hiding and computationally binding commitment scheme
(M, C,R,Comm).

– A NIZKP of knowledge of the private key share (for a given public key share).
– A NIZKP of correct re-encryption (such a proof would typically simply reveal

the random coins used for re-encryption).
– A NIZKP of correct (shared) decryption.

Setup phase. In addition to the steps taken in the basic RMN, each mix server
Mk generates and publishes a NIZKP of knowledge of its private key share skk
for its public key share pkk.

Mixing phase. The steps taken by a mix server Mk are analogous to the ones
of a mix server in a DMN with RPC, except for that Mk does not decrypt but
re-encrypts its inputs.

Auditing phase. The auditing phase is analogous to the one of the DMN with
RPC. The only difference is that, for the RMN with RPC, each mix server
has to provide a NIZKP of correct re-encryption instead of a NIZKP of correct
decryption.

Decryption phase (optional). In addition to the steps taken in the basic RMN,
each mix server Mk generates and publishes a NIZKP of correct decryption.
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8.2 Properties

Security was formally analyzed in [28]. As the security results are analogous to
the ones for the DMN with RPC, we refer to Section 7.2 for details.

9 Trip Wires (DMN)

The concept of the trip wire technique was, in a specific variant, originally em-
ployed in the mix net by Khazaei et al. [24] (Section 10) as a subroutine. Sub-
sequently, Boyen et al. [7] generalized the original trip wire technique so that it
can be used as an independent verifiability technique.

The basic idea of the trip wire technique is to hide the senders’ inputs by a
set of indistinguishable dummy inputs which serve as trip wires. The trip wires
are injected by a set of auditors one of which needs to be trusted temporarily
(similar to the RPC technique, Section 7). Now, the mix net is run with this
extended set of inputs. Once mixing has finished, the auditors publicly reveal
the trip wires’ traces through the mix net. If a mix server Mk manipulated one
of the dummy traces, then Mk can be identified and be held accountable.

In order to guarantee that the mix servers cannot distinguish between real
and dummy inputs, two mechanisms are integrated. First, the complete input
is “pre-mixed” by the auditors using a plain DMN (explicit mix net). Second,
an additional layer of encryption (with shared secret key among the auditors) is
added directly to the plain input messages (repetition encryption layer). Hence,
the input to the main DMN consists of a list of secretly shuffled real and dummy
ciphertexts, and its output is still encrypted under the innermost layer of en-
cryption. Now, once the mix server have published the (still encrypted) outcome
of the main DMN, each auditor is supposed to reveal its secret key of the first
DMN so that its correctness can be verified perfectly. Furthermore, all dummy
traces are revealed. If one of these checks is negative, the misbehaving party can
be singled out and the whole process aborts. Otherwise, each auditor reveals
its share of the innermost secret key so that the DMN outcome can publicly be
decrypted.

9.1 Description

We describe how to extend a basic DMN (Section 2.4) for trip wires.

Protocol participants. The set of protocol participants is extended by a number
of auditors AD1, . . . ,ADnAD

.

Cryptographic primitives. We additionally use an IND-CCA2-secure (nAD, nAD)-
threshold public-key encryption scheme Ed.

Setup phase. The following additional steps are executed. Each auditor ADj gen-

erates its verification/signing key pair, a public/private key pair (pkexpl
j , skexpl

j ) for

the explicit mix net, and a public/private key share pair (pkrep
j , skrep

j ) (w.r.t. Ed)
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Table 2: Techniques for Verifiable Mix Nets: Computational Complexity

Mix Net
Technique

Cost Setup
(per

authority)

Cost
Submission
(per sender)

Cost Mixing
(per

authority)

Cost Audit
(per mix
server)

Cost Audit
(public)

Basic
DMN

(Sec. 2.4)
Ckey(nMS) Cenc(nMS) nS · Cdec(nMS) N/A N/A

Tracing
(Sec. 5) No Overhead No Overhead No Overhead N/A

Per claimed
cheat:
Cenc(nMS)

Verification
Codes

(Sec. 6)
No Overhead No Overhead No Overhead N/A N/A

RPC
(Sec. 7)

2 · Ckey(2nMS) Cenc(2nMS)
2nS ·

Cdec(2nMS)

nS ·
Cproof

dec (2nMS)
nMS · nS ·
Cverif

dec (2nMS)

Trip Wires
(Sec. 9)

Mix server:
Ckey(nMS + 1)

Auditor:
2 · Ckey(nMS +
nAD +1)+ntw ·
Cenc(nMS +
nAD + 1)

Cenc(nMS +
nAD + 1)

Mix server:
(nS + ntw ·
nAD) ·

Cdec(nMS + 1)

Auditor:
(nS + ntw ·
nAD) ·

Cdec(nMS +
nAD + 1)

N/A

Pre-mix net:
nAD · (nS +
ntw · nAD) ·
Cdec(nMS +
nAD + 1)

Main mix
net:

ntw ·nAD ·nMS ·
Cenc(nMS + 2)

Replication
(Sec. 10)

5 · Ckey(2nMS +
3) +

Cenc(2nMS + 3)

nrepl ·
Cenc(2nMS + 3)

nrepl · (nS +
nMS) ·

Cdec(2nMS + 2)

Per back-
wards/forward
trace: nrepl ·
Cproof

dec (nMS +2)

Pre-mix net:
nMS · nrepl ·

(nS + nMS) ·
Cdec(2nMS + 2)

Main mix
net:

ntw ·nMS ·nMS ·
Cenc(nMS + 2)

Per back-
wards/forward

trace:
nrepl · nMS ·
Cverif

dec (nMS + 2)
Basic
RMN

(Sec. 2.4)

Pkey(1) +
Pproof

key (1)
Penc(1) +
Pproof

enc (1)
nS · Preenc(1) N/A

nMS·Pverif
key (1)+

nS · Pverif
enc (1)

RPC
(Sec. 8) No Overhead No Overhead

Overhead:
nS · Preenc(1)

nS · Pproof
reenc (1)

Overhead:
nMS · nS ·
Pverif

reenc(1)
Correct
Shuffle

(Sec. 11)
No Overhead No Overhead No Overhead Pproof

shuffle

Overhead:
nMS · Pverif

shuffle

Notation: C refers to the IND-CCA2 PKE scheme in a DMN, and P to the IND-
CPA PKE scheme in an RMN. For both, C and P, let the subscripts key, enc, and

dec denote the computational cost of the respective key generation, encryption, and
decryption algorithm. For C, we parameterize the above costs on the number of layers
of nested ciphertexts. Cproof

dec and Cverif
dec denote the cost of generating and verifying the

ZKP of correct decryption for C, respectively. For P, let Preenc denote the cost of the
re-encryption algorithm, and let Pproof

key , Pverif
key , Pproof

enc , Pverif
enc , Pproof

reenc , Pverif
reenc denote the

cost of generating and verifying the ZKPs of correct key generation, encryption, and
re-encryption for P, respectively. See Appendix A for more details.
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for the repetition encryption layer. ADj publishes the respective public keys on
B. With PublicKeyGen everyone can then compute the joint public key pkrep for
the repetition layer.

Submission phase (senders). Each sender Si first encrypts its message mi under
the auditors’ joint public key pkrep, then under the mix servers’ public keys
pk1, . . . , pknMS

of the main decryption mix net, and eventually under the auditors’

public keys pkexpl
1 , . . . , pkexpl

nAD
of the explicit decryption mix net in reverse order.

The resulting ciphertext ci is Si’s input to the mix net.

Submission phase (auditors). Each auditor ADj executes ntw times the senders’
submission steps described above, every time with (dummy) input message m =
0l (where l is the bit size of a sender’s message). Furthermore, ADj stores the
random coins that it used to generate its trip wire ciphertexts.

Mixing phase. The input to the mixing phase consists of the nS ciphertexts
submitted by the senders and the nAD ·ntw ciphertexts submitted by the auditors.
Then, the overall mixing phase consists of two consecutive parts:

1. Explicit mixing: The auditors use their secret decryption keys skexpl
1 , . . . , skexpl

nAD

to run the basic DMN.
2. Main mixing: The mix servers use their secret decryption keys sk1, . . . , sknMS

to run the basic DMN.

Auditing phase. Each auditor ADj publishes its secret key skexpl
j associated to

the explicit decryption mix net. With this, everyone can verify that the explicit
mixing was executed correctly. If verification fails, a misbehaving auditor is iden-
tified and the whole protocol stops.

After that, each auditor ADj publishes the random coins that it used to
create its trip wires. With this, everyone can verify the integrity of trip wires’
traces through the main decryption mix net. If verification fails, a misbehaving
mix server is identified and the whole protocol stops.

Final decryption phase. Each auditor ADj publishes its secret key share skrep
j

on the bulletin board B. Then, each output ciphertext of the main mix net can
publicly be decrypted.

9.2 Properties

We summarize the main properties of the trip wire technique. Verifiability and
accountability were formally analyzed in [7].

Verifiability. The verifiability theorem for the trip wire technique states that,
assuming at least one honest auditor, the probability of manipulating more
than k honest inputs without being detected is bounded by δk(nhon

S , ntw) =(
nhon

S
k+1

)
/
(
nhon

S +ntw

k+1

)
. The intuition behind this formula is the following one. Since

the explicit mixing and the repetition encryption layer are perfectly verifiable,
an adversary can only manipulate messages in the main mix net without being
detected. However, due to the IND-CCA2-security of the underlying public-key
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encryption schemes, the adversary has to do this manipulation “blindly” as the
nhon

S +ntw ciphertexts related to the honest input parties (one ciphertext for each
of the nhon

S honest senders plus ntw trip wires by the honest auditor) are pairwise
indistinguishable. Hence, the probability of not being caught cheating equals to
the one of picking more than k out of nhon

S + ntw balls such that all of them
belong to the first group of nhon

S balls. The probability of this event is at most(
nhon

S
k+1

)
/
(
nhon

S +ntw

k+1

)
. Importantly, for all k, the verifiability tolerance δk(nhon

S , ntw) is

bounded by (nhon
S /(nhon

S + ntw))k+1 which converges exponentially fast to 0 in
the number of manipulated honest inputs k.

Accountability. The auditing procedure described above ensures that a misbe-
having mix server can be identified. Hence, the DMN with trip wires provides
individual accountability (assuming at least one honest auditor).

10 Message Replication (DMN)

The basic idea of the message replication technique, originally proposed by Khaz-
aei, Moran, and Wikström [24], is to let each sender Si replicate its input several
times so that all of its replications are part of its input, too. Now, if a malicious
mix server Mk tries to manipulate Si’s input, then Mk has to simultaneously
manipulate Si’s replicated inputs in the same way as well.

In order to guarantee that a malicious mix server Mk cannot distinguish be-
tween groups of associated ciphertexts, the following mechanisms are integrated.
Similarly to the trip wire technique (Section 9), the input ciphertexts are “pre-
mixed” using a basic DMN (explicit mixing), and an additional encryption layer
is added to the plain input messages (repetition encryption layer). In contrast to
the trip wire technique (Section 9), where a number of external auditors estab-
lish these two mechanisms, in the mix net by Khazaei et al. [24], the mix servers
themselves execute them.

Furthermore, in order to resolve possible disputes between senders and mix
servers, the auditing phase contains a tracing mechanism. Using this mechanism,
it is possible to single out whether a malicious sender submitted mal-formed in-
put ciphertexts or a malicious mix server manipulated a sender’s message. Since
the tracing mechanism reveals the links between a sender and some output mes-
sages, two more encryption layers are required to protect the senders’ message
privacy (outer encryption layer and final encryption layer).

Observe that in the version of the replication technique described so far, a
malicious mix server could simply replace all (honest) messages at once which
would remain undetected. In order to protect against this attack, Khazaei et
al. [24] employed the following variant of the trip wire technique (Section 9):
each mix server Mk injects a single dummy message to the input. Obviously,
this mechanism protects against the verifiability attack described above.

10.1 Description

We describe how to extend a basic DMN (Section 2.4) for replications.
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Cryptographic primitives. We additionally use an IND-CCA2-secure (nMS, nMS)-
threshold public-key encryption scheme Ed.

Setup phase. The following additional steps are executed. Each mix server Mk

(i) generates a public/private key pair (pkexpl
k , skexpl

k ) for the explicit mix net and

publishes the public key pkexpl
k , and (ii) generates three public/private key share

pairs (pkout
k , skout

k ), (pkrep
k , skrep

k ), (pkfin
k , skfin

k ) (w.r.t. Ed) and publishes the public

key shares pkout
k , pkrep

k , pkfin
k . With PublicKeyGen, everyone can then compute the

joint public keys pkout, pkrep, pkfin for the outer, repetition, and final encryption
layer, respectively.

Submission phase (senders). Each sender Si first encrypts its message mi under
the mix servers’ joint public key pkfin. Then, Si makes nrepl identical copies of
this ciphertext, and encrypts each copy first under the mix servers’ joint public
key pkrep, then under the mix servers’ public keys pk1, . . . , pknMS

of the main
decryption mix net in reverse order, and then under the mix servers’ public keys
pkexpl

1 , . . . , pkexpl
nMS

of the explicit decryption mix net in reverse order. The resulting
ciphertexts are concatenated and the concatenation is encrypted under the mix
servers’ joint public key pkout. The resulting ciphertext ci is Si’s input to the
mix net.

Submission phase (mix servers). Each mix server Mk executes one time the
senders’ submission steps described above with (dummy) input message m = 0l

(where l is the bit size of a sender’s message). Furthermore, Mk stores the random
coins that it used to generate its trip wire ciphertexts.

Mixing phase. The input to the mixing phase consists of the nS ciphertexts
submitted by the senders and the nMS ciphertexts submitted by the mix servers.
Then, the overall mixing phase consists of the following consecutive parts:

1. Decrypting outer layer: The mix servers reveal their secret key shares skout
1 , . . . ,

skout
nMS

and all input ciphertexts are publicly decrypted.
2. Splitting: Each resulting message is split into nrepl ciphertexts.

3. Explicit mixing: The mix servers use their secret decryption keys skexpl
1 , . . . ,

skexpl
nMS

to run the basic DMN.
4. Main mixing: The mix servers use their secret decryption keys sk1, . . . , sknMS

to run the basic DMN.

Auditing phase. Each mix server Mk publishes its secret key skexpl
k associated to

the explicit decryption mix net. With this, everyone can verify that the explicit
mixing was executed correctly. If verification fails, a misbehaving mix server is
identified and the whole protocol stops.

After that, each mix server Mk publishes the random coins that it used to
create its trip wires. With this, everyone can verify the integrity of trip wires’
traces through the main decryption mix net. If verification fails, a misbehaving
mix server is identified and the whole protocol stops.

Afterwards, each mix server Mk publishes its secret key share skrep
k on the

bulletin board B. Then, each output ciphertext of the main mix net can publicly
be decrypted.
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After that, it is publicly verified whether the list of ciphertexts (without
the revealed dummy messages) can be decomposed into groups of nrepl identical
ciphertexts. If there is a ciphertext which does not belong to a group of (a
multiple of) nrepl identical ciphertexts, this can be due to a misbehaving sender
or due to a misbehaving mix server. For each such ciphertext c′, this is publicly
verified as follows:

1) Backward tracing: First, the last mix server MnMS
reveals the ciphertext

that MnMS
decrypted to c′ under its secret key. Furthermore, MnMS

generates
and publishes a NIZKP of correct decryption πDec for proving the correctness of
this relation. If this proof is not valid, then the whole process stops and MnMS

is held accountable. Otherwise, the second but last mix server continues, and so
on. Eventually, the ciphertext c′ can be traced back to one of the senders.

2) Forward tracing: Each input ciphertext from the identified sender is now
verifiably traced forward to a ciphertext in the output of the mixing phase,
analogously to the backward tracing. Again, if one the mix servers does not
publish a required NIZKP of correct decryption πDec, the whole process stops
and this mix server is held accountable. Eventually, all ciphertexts linked to the
identified sender are removed.

Altogether, the auditing phase either identifies a misbehaving mix server or
outputs a list of ciphertexts which are to be decrypted (see next step).

Final decryption phase. Each mix server Mk publishes its secret key share skfin
k

on the bulletin board B. Then, each output ciphertext of the auditing phase can
publicly be decrypted.

10.2 Properties

We summarize the main properties of the replication technique. We state and
prove its formal verifiability/accountability theorem in Appendix D. We note
that in the original publication [24], an unproven security theorem was stated.
In this work, we give the first formal proof of the original statement—in fact,
our result even refines Khazaei et al.’s theorem.

Verifiability. The verifiability theorem for the replication technique states that,
assuming at least one honest mix server, the probability of manipulating more
than k honest inputs without being detected is bounded by δk(nhon

S , nrepl) =(
nhon

S
k+1

)
/
(nrepl(n

hon
S +1)

nrepl·(k+1)

)
. The intuition behind this formula is the following one. Since

the explicit mixing, as well as the outer, repetition, and final encryption layer
are perfectly verifiable, an adversary can only manipulate messages in the main
mix net without being detected. However, due to the IND-CCA2-security of the
underlying public-key encryption schemes, the adversary has to do this manip-
ulation “blindly” as the nrepl(n

hon
S + 1) ciphertexts related to the honest input

parties (nrepl ciphertexts for each of the nhon
S honest senders plus nrepl by the hon-

est mix server) are pairwise indistinguishable. Hence, the probability of not being
caught cheating equals to the one of picking more than k associated groups (each
of size nrepl) out of nrepl(n

hon
S + 1) balls such that all of them belong to the first

group of nhon
S balls. The probability of this event is at most

(
nhon

S
k+1

)
/
(nrepl(n

hon
S +1)

nrepl·(k+1)

)
.
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In particular, for all k, the verifiability tolerance δk(nhon
S , nrepl) is bounded by

(1/nhon
S )

nrepl−1 (which proves Theorem 1 in [24]).

Accountability. The auditing procedure described above ensures that a misbe-
having mix server can be identified. Hence, the DMN with message replication
provides individual accountability (assuming at least one honest mix server).

11 Proof of Correct Shuffle (RMN)

One of the most popular techniques to transform a basic RMN into a verifi-
able one is to let each mix server prove in zero-knowledge that it correctly re-
encrypted and shuffled its input ciphertexts. There are numerous instantiations
of this technique [1, 2, 4, 16–18, 20, 22, 34, 35, 44, 49].

11.1 Description

We describe how to extend a basic RMN (Section 2.4) for proofs of correct
shuffle.

Cryptographic primitives. In addition to the standard requirements, we use a
NIZKP for the following relation (w.r.t. E): given two ciphertext vectors C and
C ′ of size n, there exists a permutation σ over {1, . . . , n} and a list of random
coins r1, . . . , rn such that for every i ∈ {1, . . . , n}, the σ(i)-th ciphertext in C ′

is a re-encryption of the i-th ciphertext in C using the random coins ri. This is
called a NIZKP of correct shuffle.

Mixing phase. In addition to the steps taken in the basic RMN, each mix server
Mk generates and publishes a NIZKP of correct shuffling for its output Ck. If
mix server Mk receives Ck−1 as input without a (valid) NIZKP of correct shuffle,
it immediately aborts.

Auditing phase. In addition to the checks in the basic mix net, for each mix
server Mk, it is verified whether Mk published a valid NIZKP of correct shuffle.
If this is not the case, Mk is held accountable and the whole process stops.
Otherwise, the decryption phase starts.

11.2 Properties

Verifiability. A proof of correct shuffle by definition includes a sound verifier for
checking claimed proofs. The one caveat is that often the proof of correct shuffle
is more properly a Zero Knowledge Argument rather than a Zero Knowledge
Proof ; in this case, care must be taken that whatever additional conditions are
introduced are satisfied. Normally, this means that for any ppt algorithm which
produces a valid proof, with non-negligible probability either the shuffle was
performed correctly or the trapdoor key to the CRS can be extracted.

Accountability. Since the proofs are, normally, independent for each mix server,
this very naturally converts verifiability into accountability; any mix server which
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fails to produce a proof which verifies is held accountable. In the case of a cumu-
lative proof (e.g., [22]), each step should be published in addition to the result.
The first authority who outputs a proof which does not verifies successfully
should be blamed.

Instantiations. In practice, the most common proofs of correct shuffle appear
to be [44, 49] and [4] (which produces smaller proof transcripts than [44, 49]).
They apply to any public-key encryption scheme which allows for re-encryption
and for which a sigma protocol for correct re-encryption is known. There are
also more efficient proofs of correct shuffle which have since emerged [16–18].
These new proofs are roughly three times faster than [4, 44, 49] and the cost
of the verifiable mixing is close to optional, meaning little further improvement
is possible. Recent work [22] has suggested using updatable proofs, where each
mix server updates the proof as it mixes. This results in a verification complexity
which is independent of the number mix severs. There are approaches for post-
quantum proofs of correct shuffle [11, 12, 43] which are, however, not practical.
This may begin to change in the near future but for now both the space and
time requirements are prohibitive.

One of the issues with proofs of correct shuffles is that they rely upon a
Common Reference String (CRS). If an adversary knows the trapdoor to the
CRS, then it can efficiently create fake proofs which pass verification. In some
cases, like electronic voting, where verifiability should hold without relying on
any trust assumptions, generating the CRS is hard. For [4, 44, 49], this CRS is
a collection of group elements and the trapdoor is the discrete log relationship
between them. Fortunately, in this case, there are standards such as the one
contained in FIPS 186.4 [19] (A.2.3) which allow the verifiable generation of
the CRS without any trust assumptions. Some of the newer, and more efficent,
proofs of correct shuffle [16–18] use more complicated CRSs which it is unclear
how to generate without creating trust assumptions.

12 Discussion

Based on the uniform and transparent treatment of the different verifiability
techniques in the previous sections, we can now precisely elaborate on the ques-
tions that motivated this systemization of knowledge.

Q: Which verifiability levels do the different verifiability techniques provide and
how do these levels relate?

A: At a high level, we identified three different classes of verifiability levels
which can be ordered as follows, starting with the strongest one:

1) Manipulating at least one honest input remains undetected with at most
negligible probability (proof of correct shuffle).

2) Manipulating at least one honest input remains undetected with proba-

bility at most (1/nhon
S )

nrepl−1 (replication technique).
3) Manipulating more than k honest inputs remains undetected with prob-

ability at most fk+1 where f is some linear function. We have f = (1 − pverify)

25



for the tracing and verification code technique, f = 3/4 for RPC, and f =
nhon

S /(nhon
S + ntw) for the trip wire technique.

Within the latter class, we have the following order. If 3ntw > nS, then the
trip wire technique offers a better verifiability level than RPC (under the same
trust assumptions, see next question). For a given protocol run, the tracing
and verification code technique provide a better verifiability level than RPC or
the trip wire technique if and only if pverify > 1/4 or if pverify > ntw/(n

hon
S +

ntw), respectively. Note, however, that pverify crucially depends on the concrete
application as well as the specific protocol run.

Q: Which trust assumptions do the different verifiability techniques make?

A: We identified four different classes of trust assumptions:

1. No trust is required (tracing, verification codes).
2. At least one auditor needs to be trusted (RPC, trip wires). This assumption is

qualitatively weaker for RPC than for trip wires as it neither affects efficiency
nor robustness.

3. At least one mix server needs to be trusted (replication).
4. A general statement is not possible (proof of correct shuffle). Whether trust

is required, typically depends on how the CRS can be constructed (Sec-
tion 11.2).

Q: Are there any limitations in terms of what can be verified?

A: Using the tracing, verification code, trip wire or replication code technique,
an adversary can manipulate dishonest senders’ choices “on the fly” during the
mixing phase without being detected. The reason is that all of these techniques
merely protect the integrity of the honest senders’ choices (and prevent dishonest
input stuffing). However, based on internal or external information (e.g., exit
polls), an adversary may adaptively tamper with the outcome of the mix net
to take advantage over the honest senders (e.g., move dishonest voters’ choices
from one to another candidate). We refer to Section 5.2 for a concrete example.

Q: Which cryptographic primitives do the different verifiability techniques re-
quire?

A: The most basic cryptographic primitives are required by the tracing and
the verification code technique (no additional primitives), followed by the trip
wire technique (black-box distributed decryption). On the next level, we have
the RPC technique and the replication technique, both of which additionally
require a (black-box) NIZKP of correct decryption/re-encryption. Finally, the
proofs of correct shuffle require the most sophisticated cryptographic primitives
in this line.

Q: Which verifiability techniques can be instantiated using practical post-quantum
cryptographic primitives only?

A: There are efficient instantiations and highly practical implementations of
lattice-based IND-CCA2-secure (distributed) public-key encryption schemes and
EUF-CMA-secure signature schemes (see, e.g., [36]). However, no practical (NI)ZKP
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of correct decryption for lattice-based encryption schemes has been published so
far (whose security can be reduced to lattice assumptions, too). From the previ-
ous answer, it follows that if the objective is to instantiate a verifiable mix net
with existing practical lattice-based cryptographic primitives only, then one has
to extend a basic DMN with the tracing, verification code, or trip wire technique
(or, if suitable, a combination thereof).9

Q: What concrete instantiations of the verifiability techniques are used?

A: All of the techniques reviewed, with the exception of replication, have been
implemented. The most common concrete instantiation used in national elections
is ElGamal encryption with a proof of correct shuffle; this has been used in
Norway [21], Estonia [37], Switzerland [41, 42] and Australia [10]. RPC with
ElGamal encryption has also been used in Australia [14].

Q: Which computational complexities do the different verifiability techniques
have?

A: We refer to Fig. 2 for the technical details and summarize the main insights
in what follows. The most lightweight verifiability techniques are tracing and
verification codes, followed by RPC. Importantly, the verifiability level of these
techniques is independent of their complexity. In contrast to that, the trip wire
and the replication technique have the disadvantage that improving their veri-
fiability levels (either by increasing ntw or nrepl) increases the complexity in all
phases and for all participants (senders, auditors, mix servers). Regarding the
proofs of correct shuffle, a general statement is not possible as the respective
complexity is typically very specific (recall Section 11.2 for details).

Q: Which message privacy guarantees do the different verifiability techniques
provide?

A: The only verifiability technique that does not provide privacy even in the
presence of honest-but-curious adversaries is RPC because some information
about the permutations used is always revealed which weakens privacy to a
certain degree (see [31] for details).

We have already pointed out that a RMN with verification codes does not
provide privacy without any further means (Section 6.2). For a DMN with tracing
and for a DMN with verification codes, it was formally proven in [27] that these
two mix nets with nhon

S honest senders provide the same level of privacy as an
ideal mix net with nhon

S − k honest senders if an adversary manipulates at most
k honest inputs. We conjecture that this also holds true for the trip wire and the
replication technique. It is also worth noting that many of the proof of correct
shuffle mix nets do not prove the privacy of the mix net; rather, they prove
that the proof of correct shuffle is zero knowledge. The gap here is that the mix
net includes not only the proof of correct shuffle but also the decryption of the

9 For example, Boyen et al. [7] implemented a DMN (with trip wires) using a robust
IND-CCA2-secure hybrid encryption scheme, consisting of a lattice-based CCA2-
secure KEM, combined with an AES256-based DEM/MAC. They report that a
single shuffle of 1 million ciphertexts takes less than 2.5 min (on commodity consumer
hardware, targeting the 240-bit security level).
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ciphertexts, which also needs to be simulated. This is easily fixed by requiring
the input to be coupled with proofs of plaintext knowledge, as we do in our
definition of a basic RMN (Section 2.4).

13 Conclusion

We have extracted all existing verifiability techniques for mix nets from the lit-
erature and presented them in a uniform framework. We have systematically
studied and compared all of these techniques in terms of their precise verifi-
ability levels, underlying trust assumptions, required cryptographic primitives,
and computational overheads. Furthermore, we have discovered additional issues
that had not been published prior to our work. We also provide the first formal
verifiability proof for the message replication technique.

Altogether, our systemization of knowledge demonstrates that there does
not exist a “one-size-fits-all” verifiable mix net. Instead, one always has to find
a balance between different properties that fits well to a given application.
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A Computational Analysis

In Section A.1, we first introduce some notation to analyze the computational
cost of the various verifiability techniques. Afterwards, in Section A.2, we an-
alyze the computational cost of the basic DMN and the basic RMN. For each
verifiability technique studied in this paper, the cost of the resulting verifiable
mix net to the various parties activate in the different stages is explained in the
respective section. In Table 2, we summarize and compare all of these results.

A.1 Notation

The computational complexity of each verifiability techniques depends on the
number of senders nS, mix servers nMS, and trustees nT. Some techniques also
involve auditors whose number nAD is a basic complexity parameter, too.

We describe the computational complexity of all verifiable mix nets depend-
ing on the underlying costs of the respective cryptographic primitives, i.e., the
public-key encryption scheme and the ZKPs.10 By C, we refer to the IND-CCA2
public-key encryption scheme in a DMN, and by P to the IND-CPA public-key
encryption scheme in an RMN. For both, C and P, let the subscripts key, enc, and

dec denote the computational cost of the respective key generation, encryption,
and decryption algorithm.

Decryption mix nets. For the IND-CCA2 public-key encryption scheme C, we
parameterize the above costs on the number of layers of nested ciphertexts. For
example, Cenc(3) denotes the cost of iteratively using the encryption algorithm of
C three times. Depending on the concrete instantiation of C, iteratively encrypt-
ing a message can significantly increase the overall computational complexity
of the DMN. For example, using ElGamal, doubling the group size with each
nesting, results in an exponential blowup, whereas using AES (in an appropriate
mode of operation) with a random key encrypted under an IND-CCA2 secure
public-key encryption scheme has a linear increase. Observe that RMNs do not
suffer from this issue!

Furthermore, let Cproof
dec and Cverif

dec denote the cost of generating and verifying
the zero knowledge proof of correct decryption for the IND-CCA2 encryption
scheme, respectively. They are also parameterized on the level of nesting.

Re-encryption mix nets. For the IND-CPA encryption scheme P, let Preenc de-
note the cost of the re-encryption algorithm. Let Pproof

key , Pverif
key , Pproof

enc , Pverif
enc ,

Pproof
reenc , Pverif

reenc denote the cost of generating and verifying the ZKPs of correct key
generation, encryption, and re-encryption for P, respectively.

10 We have elected to exclude from this analysis the commitment and signature schemes
since the computational cost they bring is insignificant and would serve only to
obscure the write up.

32



A.2 Computational Complexity of the Basic Mix Nets

We now analyze the computational complexity of the basic DMN and the basic
RMN. This allows us to easily describe the overhead introduced by each of the
verifiability techniques.

Basic DMN. In the setup phase, each mix server generates its public key at
a cost bounded by Ckey(nMS). In the submission phase, each sender iteratively
encrypts its input under the public key of each mix server at a total cost bounded
by Cenc(nMS). In the mixing phase, each mix server Mk decrypts and permutes
its input at a cost bounded by nS · Cdec(nMS − i+ 1) ≤ nS · Cdec(nMS). The audit
phase has no cryptographic work and therefore negligible cost.

Basic RMN. In the setup phase, each trustee generates its share of the public key
and proves that it knows the corresponding secret key share at a cost bounded
by Pkey(1) + Pproof

key (1). In the submission phase, each sender encrypts its input
under the mix servers’ joint public key and proves knowledge of the plaintext
at cost bounded by Penc(1) + Pproof

enc (1). In the mixing phase, each mix server
re-encrypts and permutes its input at a cost bounded by nS · Preenc(1). In the
audit phase, the ZKPs of secret key share knowledge and the ZKPs of plaintext
knowledge are verified at the cost of nMS · Pverif

key (1) + nS · Pverif
enc (1).

B Formal Definition of Goal γ(k, ϕ)

In this section, we formally define the goal γ(k, ϕ) which we have described on a
high level in Section 4. This goal can be defined for an arbitrary result function
ρ that takes as input a vector of input messages (as provided by the senders) and
then outputs the overall result (e.g., a vector of plain messages or of encrypted
messages). Recall that, on a high level, γ(k, ϕ) is achieved if less than k honest
inputs are manipulated in case the trust assumptions (modeled by) ϕ hold true.

Definition 2 (Goal γ(k, ϕ)). Let P (nS, nMS, µ) be a mix net protocol, let π be
an instance of P (nS, nMS, µ), and let r be a run of π. Let S1, . . . ,Snhon

S
be those

senders that are honest in r. Let m = m1, . . . ,mnhon
S

be the plaintext inputs of

these senders in r, chosen according to µ. Then, γ(k, ϕ) is satisfied in r if either
(a) the trust assumption ϕ does not hold true in r, or if (b) ϕ holds true in r and
there exist valid messages m̃1, . . . , m̃nS

such that the following conditions hold
true:

– The multiset {m̃1, . . . , m̃nS
} contains at least nhon

S −k elements of the multiset
{m1, . . . ,mnhon

S
}.

– The mix net outcome as published in r (if any) equals to ρ({m̃1, . . . , m̃nS
}).

If ϕ does not hold true in r and no outcome is published in r, then γ(k, ϕ) is
not satistied in r.

33



C Accountability Framework

To specify accountability in a fine-grained way, Küsters et al. [29] used the
notions of verdicts and accountability properties which we briefly recall here.

Verdicts. A verdict can be output by the judge and it states which parties are to
be blamed, i.e., which ones have misbehaved, according to the judging procedure.
In the simplest case, a verdict can state that a specific party misbehaved. Such
an atomic verdict is denoted by dis(a) (or ¬hon(a)). It is also useful to state
more expressive or weaker verdicts, such as “a or b misbehaved”. Therefore, in
the general case, we will consider verdicts which are Boolean combinations of
atomic verdicts.

Accountability constraints. Who should be blamed in which situation is ex-
pressed by a set of accountability constraints. Intuitively, for each undesired
situation, e.g., when the goal γ(k, ϕ) is not met in a run of a mix net protocol,
we would like to describe who to blame. For most of the mix nets studied in this
paper, the respective accountability theorem states that if the adversary breaks
the goal γ(k, ϕ) in a run of P , then (at least) one misbehaving mix server can be
blamed individually (with a certain probability). The accountability constraint
for this situation is ¬γ(k, ϕ)⇒ dis(M1)| . . . |dis(MnMS

).

A judge J ensures this constraint in a run r if r ∈ γ(k, ϕ) or the verdict output
by J in r implies dis(Mk) for some mix server Mk mentioned in the constraint.

Accountability property. A set Φ of accountability constraints for a protocol P
is called an accountability property of P . An accountability property Φ should
be defined in such a way that it covers all relevant cases in which a desired goal
is not met. For all mix nets studied in this paper which provide accountability
w.r.t. the goal γ(k, ϕ), we define the accountability property Φk to consist of the
single constraint mentioned above. Clearly, this accountability property covers
¬γ(k, ϕ) by construction, i.e., if γ(k, ϕ) is not satisfied, this constraint requires
the judge J to blame some party.

Notation. Let P be a protocol with the set of agents Σ and an accountability
property Φ of P . Let π be an instance of P and J ∈ Σ be an agent of P . We write
Pr[π(`) 7→ ¬(J : Φ)] to denote the probability that π, with security parameter 1`,
produces a run such that J does not ensure Γ in this run for some Γ ∈ Φ.

Definition 3 (Accountability). Let P be a protocol with the set of agents Σ.
Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and Φ be an accountability
property of P . Then, the protocol P is (Φ, δ)-accountable w.r.t. the judge J if
for all adversaries πA and π = (π̂P ‖πA), the probability Pr[π(`) 7→ ¬(J : Φ)] is
δ-bounded as a function of `.11

11 Similarly to the verifiability definition, we also require that the judge J is computa-
tionally sound in P , i.e., for all instances π of P , the judge J states false verdicts only
with negligible probability. For brevity of presentation, this is omitted here (see [29]
for details). This condition is typically easy to check.
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D Message Replication: Verifiability & Accountability

In Section D.1, we first state the formal accountability result for the DMN with
message replication (Section 10) w.r.t. the goal γ(k, ϕ) as formally defined in
Section 4.1. Following [29], our accountability result in particular implies ver-
ifiability for the DMN with message replication w.r.t. the same goal γ(k, ϕ),
under the same assumptions, and for the same tolerance. We formally prove our
accountability result in Section D.2.

D.1 Accountability Result

In what follows, we state the accountability result of the DMN with message
replication (Theorem 1) for the goal γ(k, ϕ), with γ(k, ϕ) as defined in Sec-
tion 4.1. Before that, we first introduce some notation, and then precisely define
the accountability constraint and accountability property for which we state the
formal accountability result.

Formal model. The DMN protocol with message replication can be modeled in a
straightforward way as an extension P repl

DMN(nS, n
hon
S , nMS, nrepl) of the basic DMN

protocol PDMN(nS, nMS) (Section 3), where nhon
S is the number of honest senders,

and nrepl is the number of replicated messages per sender. The honest programs
of all parties are described in Section 2.2, 2.4 and 10.

Accountability constraint. The accountability theorem for DMN with message
replication (see below) states that if the adversary breaks the goal γ(k, ϕ) in a run

of P repl
DMN, then (at least) one misbehaving mix server can be blamed individually

(with a certain probability). The accountability constraint for this situation is

¬γ(k, ϕ)⇒ dis(M1)| . . . |dis(MnMS
).

Accountability property. For P repl
DMN and the goal γ(k, ϕ), we define the account-

ability property Φk to consist of the constraint mentioned above. Clearly, this
accountability property covers ¬γ(k, ϕ) by construction, i.e., if γ(k, ϕ) is not
satisfied, this constraint requires the judge J to blame some party. Note that
in the runs covered by the constraint of Φk all verdicts are atomic. This means
that Φk requires that, whenever the goal γ(k, ϕ) is violated, an individual party
is blamed, so-called individual accountability.

Assumptions. We prove the accountability result for DMN with message repli-
cation for the goal γ(k, ϕ), with γ(k, ϕ) as defined in Section 4.1, and under the
following assumptions:

(A1) The public-key encryption scheme E is IND-CCA2-secure.
(A2) The (nMS, nMS)-threshold public-key encryption scheme Ed is IND-CCA2-

secure.
(A3) The signature scheme S is EUF-CMA-secure.
(A4) The scheduler SC, the bulletin board B, the judge J, and at least one mix

server are honest, i.e., ϕ = hon(SC) ∧ hon(J) ∧ hon(B) ∧ (
∨
k Mk).
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(A5) For all honest senders, the length of the message plaintext has the same
size in each run of the protocol (given a security parameter).

(A6) For E and Ed, we require that for any two plaintexts of the same length,
their encryption always yields ciphertexts of the same length.

(A7) πDec is a NIZKP of correct decryption for E .

Accountability result. Now, the following theorem states the accountability result
of the DMN with message replication.

Theorem 1 (Accountability). Under the assumptions (A1) to (A7) stated

above, the protocol P repl
DMN(nS, n

hon
S , nMS, nrepl) provides (Φk, δ(n

hon
S , nrepl))-accountability,

where

δk(nhon
S , nrepl) =

(
nhon

S
k+1

)(nrepl(nhon
S +1)

nrepl·(k+1)

) .
D.2 Accountability Proof

Let P repl
DMN = P repl

DMN(nS, n
hon
S , nMS, nrepl) be the DMN protocol with message repli-

cation, as defined above. Now, let π = (π̂P ‖πA) be an instance of P repl
DMN, where

π̂P is the composition of the (honest) programs of all honest parties in π, and
πA is the composition of all remaining parties controlled by the adversary. Recall
that we assume that the judge J, the scheduler SC, the bulletin board B, one mix
server Mk, and nhon

S senders are honest; hence, π̂P is the composition of their
programs.

In order to prove the accountability theorem, we need to show that for all
such instances π = (π̂P ‖πA) of P repl

DMN, the probability of the event

X = ¬γ(k, ϕ) ∧ ¬IB

is δ(nhon
S , nrepl)-bounded as a function of `, where

IB = dis(M1) ∨ . . . ∨ dis(MnMS
).

In other words, ¬IB describes the event that none of the mix servers is blamed
individually by the judge J.

In order to prove the result, we use a sequence of games.12 We start with
Game 0 which is simply the original protocol P 0 = P repl

DMN. Step by step, we
transform Game 0 into Game 7. For each protocol P i, we will show that for all
instances πi = (π̂iP ‖πiA) of P i, there exists an instance πi+1 = (π̂i+1

P ‖π
i+1
A ) of

P i+1 such that the probability of X in πi either equals to the probability of
X in πi+1 or is negligibly close to it (Lemma 1 to Lemma 7). Eventually, we
will prove that for all instances π7 of P 7, the probability of X is δk(nhon

S , ntw)-
bounded (Lemma 9).

12 We note that some of these steps are similar to the ones of the accountability proof
of the trip wire technique [7].
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We start with Game 0.

Game 0. This is the original protocol P 0 = P repl
DMN. 4

In the first step, we modify the original protocol P 0 such that the honest
mix server Mk is not supposed to prove that it behaved correctly in the explicit
mixing phase. Since an honest mix server does not manipulate any (honest)
messages, the probability that more than k honest inputs can be manipulated
(i.e., ¬γ(k, ϕ)) without anyone being blamed individually (i.e., ¬IB) is bounded
by the same tolerance for both games (Lemma 1).

Game 1. For Game 1, we modify P 0 in the following way to obtain P 1. Apart
from the modifications below, P 0 and P 1 are identical.

Auditing phase (modified): In contrast to P 0, it is no longer verified whether
the honest mix server Mk behaved correctly in the explicit mixing phase, i.e.,
Mk is not asked to reveal its secret key related to the explicit mixing phase. 4

In the second step, we construct Game 2 which exploits the IND-CCA2-
security of the public-key encryption scheme E . More precisely, at the beginning
of the explicit mixing phase, the adversary will only receive fake input cipher-
texts from the honest input parties (i.e., honest senders and honest mix server)
encrypting random strings. Then, in the explicit mixing phase, the honest mix
server replaces these fake messages by ciphertexts encrypting the real messages
(by the honest senders and itself).

Before we describe this modification in more details, we make the following
observation. Recall that we denote Si’s plain input message by mi and let us de-
note Si’s input ciphertext to the main mix net by cmain

i . Then, from assumptions
(A5) and (A6), it follows that for each mix server Mk, the size of

αik := Enc(pkexpl
k , (. . . ,Enc(pkexpl

nMS
, cmain
i )))

is independent of the specific sender Si. Hence, there exists a function ηk in the
security parameter such that for every instance π(`) of the protocol P repl

DMN and
for every honest sender Si in π(`) and every run of π(`), the size |αik| of αik is
ηk(`). In what follows, we simply write ηik = ηik(`). In order to determine ηk, one
can take an arbitrary message (of correct size) and encrypt it under the public

keys pkfin, pkrep, pknMS
, . . . , pk1, pkexpl

nMS
, . . . , pkexpl

k (in this order).

Game 2. For Game 2, we modify P 1 in the following way to obtain P 2. Apart
from the modifications below, P 1 and P 2 are identical.

Input creation (simulated): Recall that, in order to create its input ciphertext
c, an honest input party (sender or mix server) first chooses its message m. After
that, the input party encrypts m under the shared public key pkfin, makes ntw

identical copies of it, and afterwards encrypts each copy under the shared public
key pkrep, then under the public keys of the main mix net, and then under
the public keys of the explicit mix net. Eventually, the sender concatenates all
resulting ciphertexts and encrypts the concatenation under the shared public
key pkout.

To simulate the process of an arbitrary honest input party (sender or mix
server) in the submission phase, the simulated process follows the original one
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until the encryption under the public key pkexpl
k of the honest mix server Mk

in the explicit mixing phase. Now, however, the honest input party does not
encrypt its ntw inputs to the next mix server Mk+1 further. Instead, the honest
input party encrypts a random string (of size ηk, where ηk is defined as above)
under the remaining keys of the mix servers Mk,Mk−1, . . . ,M1. The pairs of
faked and real ciphertexts are logged for replacement later on. After that and
before simulating the process of Mk (see below), all honest processes remain the
same. This means that the input ciphertext to the explicit mix net encrypting a
random bit string of length ηk is supposed to fake the original input ciphertext
of the honest input party.

Honest mixing (simulated): The honest process of the honest mix server Mk in
the explicit mixing phase is simulated in the following way. For all input parties
whose associated (fake) ciphertexts are in the input to Mk (recall that ciphertexts
can be dropped or manipulated), the mix server Mk adds the (logged) respective
real ciphertexts of this input party to its output. Apart from this, the process
of Mk remains the same. In particular, if the input to Mk contains a ciphertext
which was not logged (as described above), then this ciphertext is decrypted
(using the decryption key of Mk) and, if successful, added to the output of Mk.
4

We modify the honest parties in Game 2 in such a way that the point when
the honest input parties are supposed to choose their messages is postponed to
the point in the explicit mix net when the honest mix server Mk is triggered to
mix its input.

Game 3. For Game 3, we modify P 2 in the following way to obtain P 3. Apart
from the modifications below, P 2 and P 3 are identical.

Input creation (simulated): In contrast to Game 2, each honest input party
(sender or mix server) does not choose its message when creating its input ci-
phertext to the explicit mix net. Instead of logging the pairs of fake and real
ciphertexts, the pairs of fake ciphertext and input party’s name is logged.

Honest mixing (simulated): For all (honest) input parties whose associated
fake ciphertext is in the input to Mk, the mix server chooses a message m (ei-
ther according to the underlying message distribution of the honest senders or
a dummy message, respectively). Then, Mk encrypts this message under the re-
maining public keys, starting with the shared public key pkout to the public key
pkexpl
k+1 of the next mix server Mk+1. 4
In the next step, we relax the underlying result function so that all nrepl input

ciphertexts provided by a sender are counted as nrepl “independent” inputs for
the final result (instead of one). Then, from an adversary’s point of view, it is as
challenging to break the goal γ(k, ϕ) without being caught cheating in P 3 as it is
to break the goal γ(k ·nrepl, ϕ) without being caught cheating in P 4 (Lemma 4).

Game 4. For Game 4, we modify P 3 in the following way to obtain P 4. Apart
from the modifications below, P 3 and P 4 are identical.

In P 3, for each sender Si, only one of the nrepl input messages is counted for
the final result. Now, in P 4, for each sender Si, all of the nrepl input messages
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are counted for the final result. The underlying result function ρ is changed
accordingly. 4

Recall that in the original DMN protocol with message replication (Sec-
tion 10), the tracing mechanism in the auditing phase is executed if, for a given
ciphertext c in the output of the main mixing, there are not exactly nrepl − 1
copies of c in the same output. Now, in the next step, we modify the auditing
phase of P 4 in the following way. First, the honest mix server (which, in fact,
generates all honest inputs) stores the ciphertexts c of all honest senders that
are supposed to appear in the outcome of the main mixing in groups (one group
per honest sender). Then, in the auditing phase, the honest mix server verifies
for all stored ciphertexts c that also appear in the outcome of the main mixing
whether all of the ciphertexts stored in the same group appear in outcome, too.
If this is not the case, the honest mix server sends a complaint to the bulletin
board which includes the affected ciphertext. Now, in the new protocol P 5, the
tracing mechanism for a given ciphertext c in the outcome of the main mixing
is executed if and only if the honest mix server files a respective complaint.
Obviously, for both P 4 and P 5, a ciphertext c is traced in the same situations,
namely if there are less than nrepl − 1 copies of c in the outcome of the repeti-
tion decryption step. Hence, an adversary’s advantage of breaking γ(k · nrepl, ϕ)
without being blamed individually remains the same (Lemma 5).

Game 5. For Game 5, we modify P 4 in the following way to obtain P 5. Apart
from the modifications below, P 4 and P 5 are identical.

Honest mixing (modified): For each honest sender Si (on behalf of which the
honest mix server created the sender’s input), the honest mix server stores all of
the sender’s intermediate ciphertexts encrypted under the joint public key pkrep

in a separate group (i.e., one group of intermediate ciphertexts per sender).

Auditing phase (modified): For each honest sender Si (on behalf of which the
honest mix server created the sender’s input), the honest mix server verifies the
outcome of the main mixing as follows. If a ciphertext c is in the group of stored
ciphertexts related to Si but one of the related ciphertexts from this group is
not in the outcome of the repetition decryption step, then the honest mix server
sends a complaint to the bulletin board B (indicating that the tracing mechanism
should be executed for c).

If such a complaint by the honest mix server appears on the bulletin board,
then the tracing mechanism is executed for the respective ciphertext as in the
previous game. Otherwise, if no such complaint appears, then no tracing mech-
anism is executed, and the decryption phase starts. 4

In the next step, we completely remove the repetition and final decryption
steps. Since each mix server Mk has to reveal its secret key shares skrep

k and

skfin
k , these two steps are perfectly verifiable: it is not possible for any corrupted

mix server to manipulate/drop any ciphertext during the repetition or final
decryption without being blamed individually. Therefore, the probability that
more than k ·nrepl honest inputs can be manipulated (i.e., ¬γ(k ·nrepl, ϕ)) without
anyone being blamed individually (i.e., ¬IB) is bounded by the same tolerance
for both games (Lemma 6).
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Game 6. For Game 6, we modify P 5 in the following way to obtain P 6. Apart
from the modifications below, P 5 and P 6 are identical.

Decryption phase (removed): In contrast to P 5, the repetition decryption
phase and the final decryption phased are removed in P 6. The final outcome of
P 6 (if any) equals to the outcome of the main mixing phae. 4

In the next step, we construct Game 7 which exploits the IND-CCA2-security
of the (nMS, nMS)-threshold public-key encryption scheme Ed. More precisely, in
the explicit mixing phase, the honest mix server Mk does not choose the honest
inputs according to the original message distribution (or a dummy message) but
instead chooses these messages uniformly at random. Hence, at the beginning
of the (main) mixing phase, the adversary will only receive fake input cipher-
texts from the honest input parties (i.e., honest senders and honest mix server)
encrypting random strings.

Game 7. For Game 7, we modify P 6 in the following way to obtain P 7. Apart
from the modifications below, P 6 and P 7 are identical.

Honest mixing (simulated): For all (honest) input parties whose associated
fake ciphertext is in the input to Mk, the mix server chooses a random message
m. Then, Mk encrypts this random message under the remaining public keys,
starting with the shared public key pkfin to the public key of the next mix server
Mk+1. 4

Now, we inductively prove that for any adversary πA, its advantage of break-
ing γ(k, ϕ) without being blamed individually in the original protocol (Game
0) is bounded by any adversary’s advantage of breaking γ(k · nrepl, ϕ) without
being blamed individually in Game 7 (Lemma 1 to Lemma 7). At the same
time, it is straightforward to see that the latter advantage is always bounded by
δk(nhon

S , ntw) (Lemma 9). (Of course, we have designed Game 7 such that this
property is straightforward to see.) This will conclude the proof of Theorem 1.

Lemma 1. Under the assumptions (A1) to (A7), for all instances π0 = (π̂0
P ‖π0

A)
of P 0, there exists an instance π1 = (π̂1

P ‖π1
A) of P 1 such that the probability of

X in π0 equals to the probability of X in π1.

Proof. An honest mix server does not manipulate (honest) messages.

Lemma 2. Under the assumptions (A1) to (A7), for all instances π1 = (π̂1
P ‖π1

A)
of P 1, there exists an instance π2 = (π̂2

P ‖π2
A) of P 2 such that the probability of

X in π1 is negligibly close to the probability of X in π2.

Proof. Assume that there exists an instance π1 = (π̂1
P ‖π1

A) of P 1 such that for
all instances π2 = (π̂2

P ‖π2
A) of P 2, the probability of X in π1 is greater than

the probability of X in π2. Then, there exists an adversary who can distinguish
between a vector of encrypted messages secretly chosen according to the message
distribution of the honest senders and a vector of encrypted messages secretly
chosen uniformly at random (both w.r.t. the public key pkexpl

k of the honest
mix server Mk). This is a contradiction to the IND-CCA2-security of E , i.e.,
assumption (A1).
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Lemma 3. Under the assumptions (A1) to (A7), for all instances π2 = (π̂2
P ‖π2

A)
of P 2, there exists an instance π3 = (π̂3

P ‖π3
A) of P 3 such that the probability of

X in π2 equals to the probability of X in π3.

Proof. The modifications are purely syntactical.

Lemma 4. Under the assumptions (A1) to (A7), for all instances π3 = (π̂3
P ‖π3

A)
of P 3, there exists an instance π4 = (π̂4

P ‖π4
A) of P 4 such that the probability of

X in π3 equals to the probability of X ′ = ¬γ(k · nrepl, ϕ) ∧ ¬IB in π4.

Proof. The modifications are purely syntactical.

Lemma 5. Under the assumptions (A1) to (A7), for all instances π4 = (π̂4
P ‖π4

A)
of P 4, there exists an instance π5 = (π̂5

P ‖π5
A) of P 5 such that the probability of

X ′ in π4 equals to the probability of X ′ in π5.

Proof. The modifications are purely syntactical.

Lemma 6. Under the assumptions (A1) to (A7), for all instances π5 = (π̂5
P ‖π5

A)
of P 5, there exists an instance π6 = (π̂6

P ‖π6
A) of P 6 such that the probability of

X ′ in π5 equals to the probability of X ′ in π6.

Proof. The repetition decryption step and the final decryption step are perfectly
verifiable.

Lemma 7. Under the assumptions (A1) to (A7), for all instances π6 = (π̂6
P ‖π6

A)
of P 6, there exists an instance π7 = (π̂7

P ‖π7
A) of P 7 such that the probability of

X ′ in π6 is negligibly close to the probability of X ′ in π7.

Proof. Assume that there exists an instance π4 = (π̂4
P ‖π4

A) of P 4 such that for
all instances π5 = (π̂5

P ‖π5
A) of P 5, the probability of X in π4 is greater than

the probability of X in π5. Then, there exists an adversary who can distinguish
between a vector of encrypted messages secretly chosen according to the original
message distribution of the honest senders and a vector of encrypted messages
secretly chosen uniformly at random (both w.r.t. the (nMS, nMS)-shared public
key pkrep of which the honest mix server Mk holds one secret share skrep

k ). This
is a contradiction to the IND-CCA2-security of Ed, i.e., assumption (A2).

We use the following result in the proof of Lemma 9.

Lemma 8. For all integers n,m such that n ≥ 1 and m ≥ 2, we have that the
function

fn,m : {1, . . . , n} → [0, 1]

fn,m(k) 7→
(
n
k

)(
m(n+1)
mk

)
is strictly monotonically decreasing.
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Proof. First recall that the basic equation(
a

b+ 1

)
=

(
a

b

)
· a− b
b+ 1

(1)

holds true for all integers a > b ≥ 1.
Let n, k,m be integers such that n ≥ k ≥ 1 and m ≥ 2. Then, we have that

fn,m(k + 1)

=

(
n

k + 1

)
·
(
m(n+ 1)

m(k + 1)

)−1
=(1)

(
n− k
k + 1

)
·

(
m∏
i=1

m(n− k) + i

m(k + 1) + 1− i

)−1
·
(
m(n+ 1)

mk

)

=

(
m∏
i=1

(
n− k

m(n− k) + i

)
·
(
m(k + 1) + 1− i

k + 1

))
· fn,m(k)

=

(
m∏
i=1

(
m+

1− i
k + 1

)(
m+

i

n− k

)−1)
· fn,m(k)

< fn,m(k)

holds true. This concludes the proof.

Lemma 9. Under the assumptions (A1) to (A7), for all instances π7 of P 7, the
probability of X ′ is δk(nhon

S , ntw)-bounded.

Proof. Let π7 be an instance of P 7. The only opportunity for an adversary in
π7 to break γ(k ·nrepl, ϕ), i.e., to manipulate more than k ·nrepl honest messages,
without being blamed (individually) is to do so during the main mixing phase.
Since the input to main mixing phase consists of (encrypted) messages chosen
uniformly at random, the adversary effectively has to “blindly” pick k′ ·nrepl mes-
sages of k′ ≥ k+1 different honest senders out of (nhon

S +1)nrepl honest messages
in total. (If the adversary picks one of the nrepl dummy messages injected by the
honest mix server or if the chosen k′ ·nrepl messages do not belong to k′ different
honest senders, he will be caught and blamed individually.) The probability that
the adversary wins this game equals to(

nhon
S
k′

)(nrepl(nhon
S +1)

nrepl·k′
)

which is bounded by δk(nhon
S , ntw) according to Lemma 8.
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