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ABSTRACT

Many studies focus on the blockchain privacy protection. Unfor-
tunately, the privacy protection brings some issues (e.g., money-
laundering problem). Tracing users’ identities is a critical step in
addressing these issues. When each user’s identity in the blockchain
data is determined, the regulator can do some regulatory opera-
tions (such as Big Data analysis) to decide who should be punished
or who should own the lost data. In this paper, we propose SkyEye,
a traceable scheme for blockchain, that can be applied to a class
of blockchain application. SkyEye enables the regulator to trace
users’ identities. Moreover, we demonstrate the security of SkyEye
under specific cryptographic assumptions. Finally, we implement
two prototypes of SkyEye, and evaluate the running time and re-
lated data storage requirements by performing the aforementioned
prototypes.
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1 INTRODUCTION

The blockchain was first introduced in Bitcoin[35], and quickly
became the supporting technology of decentralized cryptocurren-
cies such as PPcoin[25] and Litecoin[1]. The blockchain integrates
multiple technologies (e.g., cryptography and peer-to-peer networ-
king) and includes a variety of features: distributed, decentralized,
anonymity, transparency, and so on. Today, the blockchain is not
only applied in decentralized cryptocurrencies, but also has broad
applications in other fields, including defense, finance, and smart
contract.

The blockchain can be considered a distributed database that
only appends data (e.g., transactions). The data is stored in the
block that contains the block header and block body. Every block
header includes the hash of the previous block, forming a chain.
The strategy of appending a block to the blockchain uses a consen-
sus mechanism such as proof of work (PoW)[35], proof of stake
(PoS) [5, 14, 24], or practical byzantine fault tolerance (PBFT)[10].
In many blockchain applications, every user generally has pub-
lic/private information (e.g., the public key address and the signa-
ture private key for each user in Bitcoin[35], more details about
the public/private information are described in Section 2.3).
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Many studies focus on the blockchain privacy protection [7, 38].
Unfortunately, the privacy protection brings regulatory issues. On
one hand, if a user’s private information is lost or stolen, the user
loses control of the data corresponding to the private information
forever. For example, if the Bitcoin’s user loses the signature pri-
vate keys in his wallet, there is no way to recover the coins in
this wallet. In other words, the user loses the coins controlled by
these signature private keys forever. On the other hand, strong pri-
vacy protection in the blockchain facilitates many criminal activi-
ties (e.g., ransomware[2], money laundering). CipherTrace’s sec-
ond quarter 2019 cryptocurrency anti-money laundering report
shows that the total amount of funds that cybercriminals directly
steal, scam, and misappropriate from users and trading platforms is
approximately $4.4 billion in aggregate for 2019. These regulatory
issues not only present a serious threat to the interests of users,
but also have seriously hindered the development and application
of the blockchain.

We stress that tracing users’ identities is a critical step in ad-
dressing blockchain regulatory issues. When each user’s identity
in the blockchain data is determined, the regulator can conduct
some regulatory operations (such as Big Data analysis) to decide
who should be punished or who should own the lost data. Although
there has been progress in designing traceable mechanisms, such
as zkLedger([36] and several others[4, 15, 20, 23], these approaches
are designed for specific application environment and do not seem
to have been extended to other applications. More details about
these approaches are described in Section 9.

Our contributions. In this paper, we present a traceable scheme
that can be applied to a class of blockchain application. The main
contributions of this paper are as follows.

First, we introduce the notion of a traceable scheme for blockcha-
in and formalize the security properties to be satisfied, namely iden-
tity proof indistinguishability and identity proof unforgeability.

Second, we propose SkyEye, a traceable scheme for blockchain.
SkyEye can be applied to the blockchain applications that satisfy
the following conditions: (I) The users have public and private in-
formation, where the public information is generated by the pri-
vate information; (II) The users’ public information is disclosed
in the blockchain data. These blockchain applications are called
SkyEye-friendly blockchain applications; see Section 2.3 for



details. SkyEye requires the user to register only once, and en-
ables the regulator to trace users’ identities. In our design strat-
egy, we add identity proofs, associated with the users’ private in-
formation, to the blockchain data. The design of SkyEye leverages

some cryptographic primitives (e.g., zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARKSs)[21]). In addition,

we demonstrate the security of SkyEye under specific cryptographic
assumptions.

Finally, we implement two prototypes of SkyEye: SkyEyer and

SkyEyes. These correspond to the two primary ways of generat-
ing public and private information in the blockchain applications.
The first way is through a pseudorandom function, and the second
way is using elliptic curve scalar multiplication. We evaluate the
running time and related data storage requirements by performing
SkyEyer and SkyEyes. Our evaluation results illustrate that using
an i7 processor, a 16 GB RAM desktop machine, and a Merkle tree
depth of 34, the time taken by a verifier to verify a user’s identity
proof is nearly 4.6 ms in the first way and less than 25 ms in the
second way.
Paper organization. The remainder of this paper is organized
as follows. Section 2 provides the background. Section 3 provides
key ideas in SkyEye design and an overview of SkyEye. Section
4 defines the algorithm and security of the traceable scheme for
blockchain. Section 5 details SkyEye. Section 6 describes our im-
plementation and the evaluation results. We present the potential
applications of SkyEye in Section 7. We discuss remaining issues
of SkyEye and future work in Section 8. We discuss related work
in Section 9 and summarize this paper in Section 10.

2 BACKGROUND
2.1 Cryptographic Preliminaries

The cryptographic building blocks in our construction include the
following: chameleon hash scheme, zk-SNARKs, and public key en-
cryption. Below, we informally describe these notions.
Chameleon hash scheme. Compared with the traditional hash
scheme, the chameleon hash scheme has a special property: the
user who knows the trapdoor can easily find collision. A chameleon
hash scheme Chash = (Gchash» Kehash» Henashs CF chash) is de-
scribed below:

® Gehash(A) = DPchash- Given a security parameter A, Gepash
returns the public parameters pp.pash-

® Kehash (PPchash) — (PKchashs Skehash)- Given the public pa-
rameters ppchash> Kehash returns a pair of public/private keys
(pkehashs Skchash)> Where skopqp is also known as the trapdoor.

® Honash (Pkehash, m, r) — CH. Given the public key pk.pash, @
message m, and a random number r, H_p,sp, returns a chameleon
hash value CH of m.

® CF chash (Skchash, mm’, 1) — r’. Given the trapdoor sk.pgsh,
two messages m, m’, and the random number r, CF .44 returns
r’ such that Hepash (Pkchashs M 1) = Henash (Pkehash: m', 7).

A chameleon hash scheme satisfies three secure properties: (i)
collision resistance; (ii) trapdoor collision; and (iii) semantic security.
More details are available in [3, 27].

There is a relationship between the public key pk.pqsn and the
trapdoor sk.pqsh, Which we refer to as the generation relationship.
As in [27], the public parameters ppcpash = (, ¢, g), where p, g are

prime numbers such that p = kq + 1, and the order of g is q in
Z,. The public key pkcpgsp = h is computed as follows: h = g*
mod p, where x € Zg is the trapdoor. Let equation pkcpasp =
chash_gen(skcpqsp) describe this relation, where chash_gen(-) de-
notes the generation algorithm between pk,p,sp, and skepash-
Zero-knowledge succinct non-interactive arguments of kno-
wledge. Let Ryc = {(x,w) € F" x F*|AC(x, w) = 0'} be an NP
relation, where IF' denotes a finite field, and AC : " x Fh — !
denotes an IF-arithmetic circuit. The language for Rac is Lac =
{x € F"|3w € F" s.r. AC(x,w) = 0'}. A zk-SNARK scheme
NIZK = (Kpizk> Prizk> Vnizk) corresponds to the language Lac,
which is described below:

® Knizk (A, AC) — (pk,vk). Given a security parameter A and
an F-arithmetic circuit AC, K,;,; returns a proving/verification
key pair (pk, vk).

® Pk (pk,x,w) — . Given the proving key pk, a statement
x, and a witness w, ;. returns a proof x for a statement x using
a witness w.

o Vyizk(vk,x, 1) — {0,1}. Given the verification key vk, the
statement x, and the proof =z, V,;, returns 1 if verification suc-
ceeds, or 0 if verification fails.

A zk-SNARK scheme satisfies five secure properties: (i) complete-
ness; (ii) soundness; (iii) succinctness; (iv) proof of knowledge; and (v)
perfect zero knowledge. More details are available in [7, 9, 21].
Public key encryption. A public key encryption scheme Enc =
(Gencs Kencs Gencs Denc) is described below:

® Genc(A) = ppenc. Given a security parameter A, Genc returns
the public parameters ppenec.

® Kenc(ppenc) — (pkenc, skenc). Given the public parameters
PPencs Kenc returns a pair of public/private keys (pkenc, skenc)-

® Eenc(pkenc, m) — c. Given the public key pkenc and a mes-
sage m, Eenc returns a ciphertext C.

® Denc(skenc,c) — m/L. Given the private key skepc and the
ciphertext ¢, Dep returns a message m, or returns L if decryption
fails.

The public encryption scheme Enc satisfies a security property:
ciphertext indistinguishability under adaptive chosen ciphertext
attack (IND-CCA2 security). More details are provided in [11].

2.2 Notation

We use u to denote a user, id, to denote the identity of the user, and
proofig, to denote the user’s identity proof. Let (pkcpash,,» Skchash,,)
denote the user’s chameleon hash public/private key pair and CH; 4,
denote the chameleon hash value of identity id,,. We denote the
user’s public/private information as (puby, privy,).

We use pkepash, ||CH;q, to denote the concatenation of pkcpqsh,
and CH;q , where || denotes the concatenate symbol. Let MT =
(rt; pkehash, ICH;q, » ... Pkchash, |ICHiq,,) denote a Merkle tree, w-
here rt denotes the root of the Merkle Tree and (pkcpash, ||CH;qg,)
denotes one leaf node in the Merkle tree. Let (pkreg, skreq) denote
the encryption public/private key pair of the regulator. Moreover,
we use Bs to denote SkyEye-friendly blockchain applications and
Bse to denote Bs using SkyEye.

2.3 SkyEye-friendly blockchain applications

Here, we describe the blockchain data in Bg and an overview of Bs.
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Figure 1: Overview of Bs.

2.3.1 The Blockchain Data in Bs. Bs satisfies two conditions: (I)
The users have public and private information, where the public
information is generated by the private information; (IT) The users’
public information is disclosed in the blockchain data.

We use pub = gen(priv) to describe the generation relation in
the condition (I), where pub denotes the public information, priv
denotes the private information, and gen(-) denotes a one-way
function, i.e., it is easy to compute pub using the private informa-
tion priv but is hard to invert. In many blockchain applications,
every user generally has private information that corresponds to
public information. For example, the public key address and the
signature private key in Bitcoin[35] are the user’s public/private in-
formation. In Zerocash([7], (sn, (ag, p)) is the user’s public/private
information, where sn is the serial number, ag is the address pri-
vate key, and p is the random number used to generate the serial
number.

According to the condition (II), the blockchain data in Bs can
be divided into two parts: one part is the users’ public informa-
tion, such as the input/output addresses in Bitcoin[35], and the
other part is the data contents, such as the payment amount and
the executable contract code. Therefore, the blockchain data in Bg
can be represented as datag, = [(pubi)ic(1,.. n}s Clerytool> Where
(pubi)icq1,.. ny denotes the set of the users’ public information, n
is the number of the users’ public information in the blockchain
data such as the number of pubic key addresses in a Bitcoin trans-
action, C denotes the data contents, and crytool denotes the cryp-
tographic tools (e.g., digital signature) that guarantee blockchain
features such as tamper-resistance and privacy protection.

For example, Bitcoin[35], Ethereum[41], and RSCoin[13] are the
applications that belong to Bs. In these blockchain applications, the
public key address and the signature private key are the user’s pub-
lic/private information, where the public key address is generated
by the signature private key. Moreover, the user’s public key ad-
dress is disclosed in the blockchain data. We briefly describe how
to use SkyEye in these three applications in Section 7.

2.3.2  An overview of Bs. As shown in Figure 1, in (1) and (2), the
user u generates (puby, privy), and publishes pub,, to the node
network. In (3), for creating data, the user u obtains others’ pub-
lic information (pubi)ic(1,. n-1) from the node network. In (4),
the user u creates datap, = [(pubi)ic(1, .n-1,n}> Clerytool, Where
puby, denotes the public information pub,,, and publishes datap,
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Qr Q : :
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Figure 2: Design idea.

to the node network. In (5) and (6), a verifier receives datap_ from
the node network and verifies data contents. If the verification is
successful, datap, is valid and is added to the block generated by
the verifier. In (7), the block is broadcast to the node network by
the verifier. In (8), according to a consensus mechanism, the nodes
in the network select a final block and add it to the blockchain.

3 KEY IDEAS AND SKYEYE OVERVIEW

In this section, we provide key ideas in SkyEye design and an over-
view of SkyEye.

3.1 Key Ideas

As shown in Figure 2, the design idea of SkyEye is to add identity
proofs to datap_. The blockchain data in Bse can be represented as
datag,, = [(pubi,proofia,)ie(1....n}>Cl crytool> Where proofig, de-
notes the identity proof of the user whose identity is id;, and the
other variables are the same as those in datap,. (pub;, proofq,)
can be viewed as the new public information pub;’ of the user
whose identity is id;.

The identity proof is the core of SkyEye. The two purposes of
the identity proof are to prove the user’s legitimacy and to achieve
tracing. Next, we briefly describe the identity proof according to
the above two purposes. More details are described in Section 5.

3.1.1  Proving the user’s legitimacy. We assume that the user u has
generated (puby, privu), (Pkchash, Skchash,,) and CHiq, = Hepash
(Pkchash,,> idu, r), where r is the random number sampled by u.

Step 1: user registration. To prove the user’s legitimacy, there
must be something (similar to a certificate) that can indicate the
user’s legitimacy. In SkyEye, this is done through user registration.
Here, we briefly introduce user registration in SkyEye. More details
on user registration appear in Section 5.1.2.

As shown in Figure 3, the user u sends registration information
(Cinfos Tinfo) to the regulator, where Cj,, , is the ciphertext that
is the encryption of the plaintext (pkcpqash,,  idu, CHjq, ) under the
public key pkreg and 7, ¢, is the zk-SNARK proof that is used
to prove: T know (skchash,,,r) which can generate pkcpqsp, and
CH;q, ™

If the verification of (Ciyfo, Tinfo) is successful, the regulator
stores (pkchash,» idu, CH;q,,), and adds pkcpgsp, ||CH;q, to the Me-
rkle tree MT. The regulator publishes the Merkle tree MT at the
right time. The registration of u is successful only if pkcpgsn, [|CHiq
appears in the Merkle tree MT.

The Merkle tree MT can be regarded as a credential of proving
the user’s legitimacy. In other words, to prove the legitimacy of u,

u
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the user u must prove that pkcpgsh, [|CH;q, appears in the Merkle
tree MT. Therefore, proof;y, generated by the user u must be able
to prove the following.

“Tknow (skchash,» idy, 1) that can generate pkepqsp, and CHq, ,
and pkcpash, ||ICHjq, appears as a leaf of the Merkle tree MT with
the root rt”.

Step 2: establishing the binding relationship between pub,
and proofyg, . Although proof;z described above can prove the
legitimacy of u, an issue remains. It can be seen from Figure 4
that (puby, proofiq,) needs to be published in the node network.
The adversary who has registered with the regulator can generate
an identity proof proofiy , and publish (puby, proofig , ) to the
node work. At this time, pub,, corresponds to two different users’
identity proofs (i.e., proofig, and proofiq , ). This presents a great
obstacle to trace. We need to establish a relation between pub,, and
proofig, to ensure that only the user u can generate the identity
proof proofiy, corresponding to puby,.

The key idea behind establishing this relation is that we estab-
lish the binding relationship between priv, and proof;y . Because
puby, is generated by privy, there is binding relationship between
puby, and proofig .

We leverage the special property of chameleon hash scheme (i.e.,
the user who knows the trapdoor can easily find collision) to estab-
lish the binding relationship between priv, and proofig, . Given
the private information privy,, the user u who knows sk¢p4sp,, can
easily find r’ such that CH;q, = Henash (Pkchash, pPrivu,r’). To
achieve the binding of privy and proof;y, , we require the identity
proof proof;y  to prove the following.

o The public information pub,, is generated by the private infor-
mation privy,.

e Iknow (skcpgsh,, privy, r’) that generates pkcpqsp, and CHygq,,.

® pkchash, ||CH;q, appears as a leaf of a Merkle tree with the
root rt.

This binding relationship between proof;y, and priv, ensures
that only the user u who knows the private information priv, can
generate the identity proof proof;g , and others cannot forge the
identity proof corresponding to puby,.

Moreover, the special property of chameleon hash scheme makes
the user u just register once, and then can generate identity proofs
without involving the regulator.

3.1.2  Achieving tracing. To achieve tracing, we add C;4 , which
is the ciphertext of pk;pqsp, under the regulator public key pkreg,
to proofiq,, and require proof;y to prove that the plaintext corre-
sponding to the ciphertext C;q is pkcpqsh, - Because the regulator
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Figure 4: Overview of Bs.. The red lines 1*, 2*, 3* and 4* rep-
resent the operations of the SkyEye scheme. The red line 1*
denotes user registration. The red line 2* denotes generat-
ing identity proof. The red line 3* denotes verifying identity
proof. The red line 4* denotes tracing.

(pub;s proofig Diegt,...n-1

has the record (pkcpash;» idi, CHig,)ie(1,....n) the regulator can ob-
tain pk;pqsp,, through decrypting C;y  and determine the identity
idy of the user u based on the record.

3.2 SkyEye Overview

As can be seen from Figure 4, SkyEye’s application strategy in Bg is
that the user u generates the identity proof proof;  corresponding
to the public information pub,, so that every verifier can verify the
legitimacy of u and the regulator can trace datag_,.

From Figure 4, it can also be seen that the SkyEye scheme mainly
has the following operations between the regulator, users, and ver-
ifiers.

o User registration. The user generates registration information
and sends it to the regulator. The regulator is responsible for the
verification of registration information.

o Generating identity proof. The user who registers successfully
can generate the identity proof. There is a binding relationship be-
tween the identity proof and the private information.

o Verifying identity proof. Different from traditional verification
process in the blockchain, the verifier (e.g., the miner) verifies iden-
tity proofs in addition to verifying data contents. If the data con-
tents and identity proofs are simultaneously verified successfully,
the data will be added to the block generated by the verifier.

e Tracing. The regulator traces the users’ true identities in the
blockchain data.

4 DEFINITION OF A TRACEABLE SCHEME
4.1 Definition

A traceable scheme for blockchain is a tuple of polynomial-time al-
gorithms IT = (Setup, Genjp o, Verinfo, Genproof, Verproof» Trace)
described below:

o Setup(A) — pp. Given a security parameter A, Setup returns
public parameters pp. This algorithm is executed by a trusted party



and is done only once. The public parameters pp are published and
made available to all parties.

o Genyy o (pp,id) — reginfo. Given the public parameters pp and
a user identity id, this algorithm returns the registration informa-
tion reginfo.

o Verinfo(ppreginfoskreq) — b. Given the public parameters
pp, the registration information reginfo and the regulator’s private
key skyeg, this algorithm returns a bit b. If verification succeeds,
this algorithm returns 1; otherwise, it returns 0.

® Ge”proof(PP=pub:prw’ id, CH;q, pkchashs Skchashs 1. Tt pathiq)
— proof;y. Given the public parameters pp, a public/private infor-
mation (pub, priv), the identity id, the chameleon hash value CH;,4
of id, the chameleon hash public/private key (pkchashs Skchash)s
the random element r for computing CH;;, the Merkle tree root rt,
and the path path;q from pkcpashl|CHq to rt, Genpypoor returns
the user’s identity proof proof;,.

o Verproof(pp.pubproofig) — b. Given the public parameters
pp, the user public information pub and the user’s identity proof
proofiq, Verppoof returns a bit b. If the verification of proof4 suc-
ceeds, this algorithm returns 1; otherwise, it returns 0.

o Trace(datag,,, skreg) — ID. Given the blockchain data datag,,
and the regulator’s private key skyeq, Trace returns the identity set
ID for datag_,.

4.2 Security

We assume that in Bg relevant cryptographic techniques (e.g., dig-
ital signatures) have been used to ensure that the blockchain data
generated by the users cannot be tampered with. Therefore, the
identity proofs added to the blockchain data also cannot be tam-
pered with. We also assume that the regulator is trusted and has
an efficient way of verifying user identity (such as, face recogni-
tion, identity card, or short message service (SMS) verification).
Therefore, the goals of the adversary are to forge the identity proof
and to distinguish two distinct identity proofs. The security of a
traceable scheme must satisfy two properties: identity proof indis-
tinguishability and identity proof unforgeability.

Definition 4.1. A traceable scheme [] = (Setup, Gen;y, o, Verinfo,
Genproofs Verproof> Trace) is secure if it satisfies identity proof in-
distinguishability and identity proof unforgeability.

Below, we briefly describe each property, and defer formal defi-
nition of each property to Appendix A.

¢ Identity proof indistinguishability. This property requires
that even if the adversary can adaptively induce honest parties
to perform operations of his choice, the identity proof reveals no
information except for some public information, such as public
addresses and serial numbers. In other words, even if the adver-
sary queries two different honest parties (one identity is idg, and
the other identity is id1), no polynomial-time adversary can dis-
tinguish between the identity proofs proofy, and proofiq, . The
meaning of this property is that if the blockchain is indistinguish-
able, adding the identity proofs to the blockchain data does not
affect the indistinguishability of the blockchain.

o Identity proof unforgeability. This property requires that
even if the adversary can adaptively induce honest parties to per-
form operations of his choice, no polynomial-time adversaries can
forge the identity proof of honest parties. This property ensures

that the adversary cannot forge the honest user’s identity proof to
create blockchain data for evading tracing.

5 CONSTRUCTION

5.1 SkyEye Construction

5.1.1 Initialization. The public parameters pp created by the Setup
algorithm include the following information: the proving/verification
key (pkinfo.vkinfo) used to generate and verify the zk-SNARK
proof 7;, , for the NP relation Ry, r, (see Section 5.1.2 for details),
the proving/verification key (pkyro0f: Vkproos) used to generate
and verify the zk-SNARK proof 7,4, for the NP relation Ry00 1
(see Section 5.1.3 for details), the regulator public key pkyeq for
public key encryption, and the public parameters pp.p,sp of the
chameleon hash scheme. Because the regulator is trusted, Setup
algorithm is performed by the regulator. (See Setup algorithm in
Algorithm 1 for specific operations.)

5.1.2 User Registration. As shown in Algorithm 1, the Gen;;, ¢, al-
gorithm is responsible for the generation of registration informa-
tion and the Ver;, s, algorithm is used to verify the registration
information.

In the Gen;, ¢, algorithm, a user generates the chameleon hash
public-private pair (pk.pashs Skchash) based on pp.pasp and com-
putes the chameleon hash value CH;; of identity id. Then the user
stores (id, pkchashs Skchashs > CHjq), where r is a random number
used to generate CH;,4. At this point, the user can produce a zk-
SNARK proof ¢, for the following NP relation, which we call
Rin fo*

“Given Xinfo = (id, pkcpash, CHiq), T know Winfo = (skchashT)
such that:

¢ The chameleon hash private key matches the chameleon hash
public key: pk.pash = chash_gen(skcpash)-

¢ The chameleon hash is computed correctly: CH;q = Hepasn(
pkchash: id, r)~”

The Gen,y g, algorithm outputs registration information reginfo,
which consists of the ciphertext Cj;, ¢, and zk-SNARK proof 7;;, f,.
Cinfo is the ciphertext of x;, ¢, encrypted by pkyeg.

The verification operations in the Ver;, ¢, algorithm include ver-
ifying the identity id and verifying the zk-SNARK proof 7, f,. If
the above two operations are verified successfully, the regulator
stores (pkcpash, id, CHiq), and adds pkepasn||CHjq to the Merkle
tree MT. Meanwhile, this algorithm returns 1. Finally, the regula-
tor broadcasts MT to the network at the right time.

5.1.3 Generating and Verifying ldentity Proof. As shown in Algo-
rithm 1, the Gen,, 0 algorithm is used to generate the identity
proof for each user.

In the Genyyoop algorithm, assume a user has generated pub-
lic/private information (pub, priv). According to the known trap-
door skpqsh, the user can calculate a value r’ such that CH;y =
Hehash (Pkchash priv, r’). Next, the user computes ciphertext C;y =
Eenc(Pkreg, pPkchash, r), where pkreg is the public key of the reg-
ulator, and rn is the random number used for encryption. Finally,
the user produces a zk-SNARK proof 7,4, for the following NP
relation, which we term Ry, ¢
“Given a statement x50 = (pub, t, pkreg, Cig), Lknow wy o0 ¢ =
(path;q, CH;q, skehash» Pkchashs Privsr’,rn) such that:



Algorithm 1 SkyEye Construction

Setup Genproof
Input: security parameter A; Input:
Output: public parameters pp; public parameters pp,
1: construct arithmetic circuit AC;;, fo for relation R;;, fo at secu- user public/private information (pub, priv),
rity A; user identity id,
2: construct arithmetic circuit ACp,oof for relation Ry,o,f at se- chameleon hash value CH;q of id,
curity 4; chameleon hash public/private key (pkcpashs Skchash)
3 (Pkinfor vkinfo) = Knizk (4 ACingo) ; random number r for computing CH;q,
4 (Pkproof> Vkproof) = Knizk (A ACproof); Merkle tree root rt,
5: compute ppenc = Genc(4); path path;q from pkepgsp||CHiq to rt;
6: compute (pkreg, Skreg) = Kenc(PPenc)s Output:
7. compute ppehash = Gehash (A); identity proof proof;4;
8 return pp = (Pkinfos z)kinfm Pkproof’ Ukproof’pkreg> 1. compute r'= CF chash (Skchash, id, priv, r);
PDehash); 2: randomly sample rn for encrypting;
3: compute Cig = Eenc (Pkreg: Pkchash, T1)3
Genjnfo 4 set Uproof = (rt, pkreg, Cig);
Input: 5: set Xproof = (pub, uproof)s
public parameters pp, Wproof = (path;q, CH;q, Skchashs Pkchashs prio, r’, rn);
user identity id; 6: COmMPULe Tpro0f = Prizk (Pkproof’ Xproof> Wproof);
Output: 7: return proofig = (uproof’ ”proof);
registration information reginfo;
1= (pkchashs Skchash) = Kehash (PPehash); Verproof
2: randomly sample r; Input:
3: compute CH;g = Hepash (PKchashs 14, 7); public parameters pp,
4 setXjpfo = (id, pkehash» CHia), Winfo = (skchashT); public information pub,
5 Tinfo = Prizk (Pkinfcw Xinfo» Winfo); identity proof proofig;
6: set Cinfo = Senc(Pkreg: Xinfo); Output:
7: store (id’pkchash’ Skchashs T, CHid)§ bit b;
8 return reginfo = (Cinfo, Tinfo); 1: parse proofig as (Uproof: Tproof)
2 Set Xproof = (pub, uproof)
Ver: 3 if (Viizk (Ukproof) Xproof> ”proof) = 0) then
info 4  return b=0;
Input: 5 else
public parameters pp, 6 return b=1:
registration information reginfo, 7. end if
the regulator’s private key skreg;
Output: bit b Trace
1: parse reginfo as (Cinfos Tinfo); Input:
% Xinfo = Dene (SI?reg +Cingo): blockchain data datag_,,
3: PaIS€ Xinfo as (id, pkchash: CHia); the regulator’s private key skyeg;
4: if id not valid then Output:
P
5 return b=0; identity set ID for datap__;
6: end if el se
. 1: setID = gf),
7: A Vaizk (0Kinfo, Xinfos Tinfo) = 0 then 2. get the chameleon hash public key ciphertext set C from
8: return b=0; datap. :
9: else se

3: for (each Ciq, € C) do

: ] H. ;):
bty ikahaﬂlC,;j ) Ct 1;1})1, Merkle tree MT; 4 compute pkepash; = Denc(skreg Cid,);
1 add pRehash id to the Veriie tree ’ 5. search (pkepash, id, CH;q) records, get id; corresponding to
12:  return b=1; k .
13: end if PKchash;s
’ 6:  putid; inID;
7: end for

8: return ID;




¢ The private information matches the public information: pub =
gen(priv).

¢ The chameleon hash private key matches the chameleon hash
public key: pkcpash = chash_gen(skepash)-

¢ The chameleon hash is computed correctly: CH;y = Hepash(
Pkehashs priv,r’).

¢ The ciphertext C;4 corresponds to the plaintext pk.pash: Cig =
Senc (Pkreg> Pkchash, T1)-

¢ The pk.pash||CH; 4 appears as a leaf of a Merkle tree with the
root rt”

Finally, Geny,o0 ¢ outputs the identity proof proofig = (upm0 f>
T[praaf) = ((rt, Pkreg) Cid)’ ”praof)~

The Verpyoof algorithm in Algorithm 1 is used to verify the
user’s identity proof proo f;;. The verification operation verifies the
zk-SNARK proof 7,4, - This algorithm returns 1 if and only if the
above operation verifies successfully.

5.1.4 Tracing. As shown in Algorithm 1, the Trace algorithm is
used to trace the blockchain data datap_, . The regulator can obtain
a chameleon hash public key set by decrypting each chameleon
hash public key ciphertext in datap,, . Then the regulator can de-
termine the true identities of the users in datag_, according to the
record that stores each user’s chameleon hash public key, chameleon
hash value, and identity. This algorithm returns the identity set ID.

5.2 SkyEye Security

THEOREM 5.1. Assuming that the Chash scheme is collision resis-
tant, trapdoor collision and semantic security, the NIZK scheme is per-
fect zero-knowledge and proof of knowledge, the encryption scheme
Enc satisfies IND-CCA2 security, and gen(-) is a one-way function.
Our scheme [ = (Setup, Genjngo, Verinfo, Genproof, Verproofs
Trace) described in Algorithm 1 is a secure (cf. Definition 4.1) trace-
able scheme.

We provide the proof of Theorem 5.1 in Appendix B.

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation

There are two main ways of generating public and private infor-
mation in blockchain applications. One is through the pseudoran-
dom function (e.g., Zerocash[7], Hawk[26]), i.e. pub = PRFpyiy(s),
where PRF denotes the pseudorandom function, pub is the pseu-
dorandom number, priv is the private key used to generate pub,
and s is the uniform seed. The other way is to use elliptic curve
scalar multiplication (e.g., Bitcoin) to generate the public and pri-
vate information, i.e., pub = priv - G, where priv is a scalar, G is a
base point on the elliptical curve, and pub is a point on the ellipti-
cal curve. We use SkyEyep; to represent the scheme that generates
public and private information in the first way, and SkyEyeg to rep-
resent the scheme that generates public and private information in
the second way. We use the C++ programming language to imple-
ment the prototype of the above two different schemes based on
the zk-SNARK library, libsnark[8].

There are some cryptographic building blocks in SkyEyey: the
pseudorandom function, chameleon hash scheme, hash function in
the Merkle tree, public encryption scheme, and zk-SNARK scheme.
For the chameleon hash scheme, we use the chameleon hash scheme

proposed by Hugo Krawczyk and Tal Rabin[27]. For efficiency, we
use the SHA256 compression function to implement the pseudo-
random function and hash function in the Merkle tree, which is
similar to the approach used in Zerocash[7]. We use the practical
public key encryption scheme proposed by Cramer and Shoup[11],
an IND-CCAZ2 secure public encryption scheme, as our encryption
scheme. We use the scheme proposed by Parno et al.[37] as the
zk-SNARK scheme. In the concrete implementation, we use the
Barreto-Naehrig elliptic curve[6] that provides 128-bit security as
the underlying curve of the zk-SNARK scheme. The implementa-
tion of the chameleon hash and public key encryption scheme is
based on a prime field of 254 bits.

In SkyEyes, the main cryptographic building block differs from
the former in that the pseudorandom function is replaced by ellip-
tic curve scalar multiplication. The chameleon hash scheme, pub-
lic key encryption scheme, and zk-SNARK scheme are the same
as those in the SkyEyep. In the concrete implementation, we use
the MNT4 elliptic curve[34] as the underlying curve of the zk-
SNARK scheme. The implementation of elliptic curve scalar multi-
plication is based on the MNT6 elliptic curve [34]. We implement
the chameleon hash scheme and public key encryption scheme in
a prime field of 298 bits. To improve efficiency, in the formation
of the Merkle tree, because the length of the leaf node is 298 bits,
two leaf nodes together cannot form 512 bits. Therefore, the upper
node is generated by the leaf node using the standard SHA256. In
addition, the data length of the node above the leaf node is 256
bits, so each node that is not generated through the leaf node is
generated by the SHA256 compression function.

6.2 Evaluation

We evaluate the performance of every algorithm in the two afore-
mentioned schemes in two different configurations: configuration
1, with an Intel i5 processor and 4 GB memory laptop; and config-
uration 2, with an Intel i7 processor and 16 GB memory desktop
machine. The depth of the Merkle tree in our evaluation is 10, 20,
30, and 34, respectively. In other words, the maximum number of
users which the Merkle tree supports is 210 920 930 and 234
This fully meets demand, because the current global population is
about 7.5 billion, and 234 reaches more than 17 billion. Moreover,
we evaluate the performance of the Trace algorithm under the con-
dition that there are already 1024 successfully registered users at
the regulator.

Table 1 and Table 2 illustrate the performance results of the
Setup,Geniy o, Verinfo, GeNproof, Verproof and Trace algorithms
in SkyEyer and SkyEyeg, respectively (the time in the two tables
is the average of 10 runs per algorithm). In the two tables, time rep-
resents the running time of the algorithm, and | - | represents the
data length. For example, the |pk;, f,| represents the length of the
proving key in the registration. Without loss of generality, using
an i7 processor, a 16 GB memory desktop machine, and with a tree
depth of 34 in Table 1, we can obtain the results of the SkyEyer
scheme:

o Setup algorithm takes 94 s. The size of the proving key and
verification key used for user registration are 480 KB and 574 B,
respectively. And the size of the proving key and verification key
used for user identity proof are 231 MB and 21 KB, respectively.



Table 1: Performance of SkyEyer

Configuration 1: Configuration 2:
intel(R) core(TM) i5-2450M intel(R) core(TM) i7-6700
@2.50GHz @ 3.40GHz
4GB of RAM 16GB of RAM
Tree depth
SkyEyen 10 | 20 | 30 | 34 | 10 | 20 | 30 | 34
time(s) 69 | 114 | 156 | 175 | 37 61 83 94
|PKingol(KB) 430
Setup [vkingol(B) 574
[Pkproof|(MB) | 90 | 149 [ 209 [ 231 [ 90 [ 149 [ 209 | 231
|vkpraaf|(KB) 21
time(ms) 475.7 | 4943 | 530.1 | 538.5 | 231.5 [ 248.0 | 266.2 [ 2724
Genmfo B 3
|7infol(B) 87
Verinfo time(ms) 153 | 153 | 15.7 | 151 7.1 7.0 7.0 6.9
Gen time(s) 29 46 59 66 15 24 30 35
Proof ™ o0 1B) 287
Verproof time(ms) 101 [ 102 [ 101 [ 102 | 45 | 45 [ 48 [ 46
Trace time(ms) 0.13 0.075
Table 2: Performance of SkyEyes
Configuration 1: Configuration 2:
intel(R) core(TM) i5-2450M intel(R) core(TM) i7-6700
@2.50GHz @ 3.40GHz
4GB of RAM 16GB of RAM
Tree depth
SkyEyes 10 20 30 34 10 | 20 | 30 | 34
time(s) 187 296 403 451 101 | 162 | 220 | 244
|pkinfo|(KB) 661
Setup [vKingol(B) 667
[pkproof|(MB) | 105 | 174 [ 243 [ 268 | 105 | 174 | 243 | 268
|Ukproof|(KB) 13
time(ms) 1398.0 | 1413.3 | 14563 [ 1523.9 | 754.9 | 772.6 | 787.8 | 793.8
Genmf0 B
7infol(B) 337
Verinfo time(ms) 51.8 | 524 | 534 | 544 | 273 | 27.8 | 27.0 | 27.3
Gen time(s) 56 83 109 120 30 45 58 64
Proof o0 1(B) 337
Verproof time(ms) 478 | 479 [ 480 | 479 [ 249 [ 249 [ 247 [ 249
Trace time(ms) 0.14 0.09

information in configuration 1 and approximately 7 ms in config-
uration 2; and the time taken by a verifier to verify the user iden-
tity proof is approximately 10 ms in configuration 1 and approxi-
mately 5 ms in configuration 2. From Table 2, we can observe that
the time taken for verifying the user registration information is ap-
proximately 53 ms in configuration 1 and approximately 28 ms in
configuration 2; and the time taken for verifying the user identity
proof'is approximately 48 ms in configuration 1 and approximately
25 ms in configuration 2.

o Geny, ¢, requires 272.4 ms, and the size of the zk-SNARK proof
Tinfo is 287 B.

o Ver,f, algorithm takes 6.9 ms.

® Genppoor algorithm takes 35 s to generate a user’s identity
proof, and the size of the zk-SNARK proof 7, is 287 B.

o Verppoof algorithm takes 4.6 ms.

o Trace algorithm takes 0.075 ms to trace a user’s identity.
The tables reveal the following:

e In each configuration, the time required for verification by

the regulator and the verifiers is small and does not substantially
change as the depth of the tree changes. As shown in Table 1, the
regulator takes approximately 15 ms to verify the user registration

e Not all of the information in SkyEye must be on-chain. Only
the information proofy generated by the Geny,oo ¢ algorithm is
added to the user data. Furthermore, the size of the user’s proof
Tproof in the proof;y is dominant. As can be observed from the two



tables, the length of the zk-SNARK proof 7,4, ¢ Will not change
as the configuration environment and tree depth change. The size
of Tyroof is small, and the length is 287 B in SkyEyey and 337 B
in SkyEyes.

7 POTENTIAL APPLICATIONS

The SkyEye scheme provides an alternative traceable strategy for
the blockchain applications that belong to Bs. If a blockchain ap-
plication that does not belong to Bs wants to use SkyEye, this ap-
plication can modify some rules to make it belong to Bs.

In this section, we briefly describe how to apply SkyEye to some
applications: Bitcoin[35], Ethereum[41], and RSCoin[13]. It can be
seen from Section 2.3 that these three applications belong to Bs.

7.1 Bitcoin and Ethereum

Although SkyEye is a centralized traceable scheme, SkyEye pro-
vides two functions: proving the user’s legitimacy and tracing. There-
fore, blockchain applications can use SkyEye according to their re-
quirements. If SkyEye’s tracing function is used in the Bitcoin or
Ethereum, because the identity proofs are added to the blockchain
data, the underlying rules of these applications need to be modi-
fied.

If Ethereum or Bitcoin only uses the function of proving the
user’s legitimacy, the underlying rules of these applications do not
be modified. For example, in Bitcoin or Ethereum, users wish to
trade with certifiable merchants in many cases, which is more se-
cure and more assured. At this point, SkyEye can be used to allow
the merchants that need to be certified to register with the reg-
ulator. A successfully registered merchant shows the public key
address and identity proof to the user. The user can determine
whether the merchant is certifiable by verifying the identity proof.
If so, the user generates a transaction to transfer coins to the mer-
chant. This transaction does not contain the merchant’s identity
proof. Therefore, all operations of SkyEye are performed off-chain.
In this way, the user only needs to reach a consensus with the
merchant. And Ethereum and Bitcoin do not need to modify the
underlying rules.

7.2 A Regulatory Currency

Although existing private digital currency systems (such as Bit-
coin) exhibit advantages such as cost savings, transaction trans-
parency and high security, their problems (e.g., low transaction
throughput and difficulty in supervision) have severely restricted
the application of digital currency. To make better use of the ad-
vantages of digital currency and to prevent the risks and harms
caused by private digital currency, many countries in the world
such as China, Britain, and America have performed studies on dig-
ital currency, striving to issue legal digital currency as soon as pos-
sible to enhance their international competitiveness. The represen-
tative is RSCoin[13], the first digital currency framework. Because
the transaction amount is disclosed in the blockchain in RSCoin,
realizing identity tracing through traceable scheme achieves the
purpose of supervision.

SkyEye can combine with the RSCoin framework to enable the
central bank to trace transactions in the blockchain, thereby con-
structing a regulatory currency. As can be seen from Figure 5, the
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Figure 5: RSCoin with SkyEye

user first registers with the central bank. After the central bank
passes the verification, the user can generate the transaction tx,
which contains the data contents and the identity proofs, and send
tx to the mintettes that have been certified by the central bank.
Mintettes are divided into two groups: group 1 verifies whether the
user’s inputs are legal (such as whether the inputs belong to the
unspent transaction output (UTXO) collection). In addition to the
original verification of RSCoin, group 1 must also verify the iden-
tity proofs in the transaction tx. Finally, the group 2 provides sev-
eral low-level blocks to the central bank. The central bank merges
the blocks to produce a high-level block and adds it to the blockchain.
At this point, the central bank can obtain the identities of the users
through SkyEye to complete the tracing of the blockchain.

8 DISCUSSION AND FUTURE WORK

In SkyEye, the centralization of the regulator is a major issue. The
regulator can arbitrarily trace the identity of blockchain data with-
out any restrictions and oversight.

From the data tracing process of the regulator, it can be seen
that the regulator must first use its private key skyeq to decrypt
the ciphertext of each user’s chameleon hash public key in the
blockchain data. Therefore, we can restrict the regulator through
the distributed key generation (DKG) protocol[22]. Specifically, the
public/private key pair (pkreg, skreg) is generated by a committee
with a threshold of ¢ through the DKG protocol. In this way, pkreg
is made public, and each committee member has a share of skeg.
The regulator submits the data and tracing evidence to the commit-
tee. If at least t+1 members of the committee accept the data and
tracing evidence, the regulator will obtain skye4 from the commit-
tee.

However, this approach does not completely restrict the regu-
lator. Even if the committee regularly updates the public/private



key pair, as long as the regulator obtains the private key skyeq in
a cycle, it can trace not only the data submitted to the committee,
but also all user data in this cycle. In future work, we will consider
how to restrict the regulator to make the regulator only trace the
data submitted to the committee.

9 RELATED WORK

Blockchain research focuses primarily on enhancing blockchain
privacy protection [7, 12, 33, 38], improving blockchain scalabil-
ity [16, 31, 42], analyzing blockchain security[17-19, 30], and ap-
plying blockchain to other areas[28, 29, 32, 40]. However, research
on traceable mechanisms is limited.

Narula, Vasquez, and Virza proposed zkLedger[36], the first dis-
tributed ledger system, that provides strong privacy protection,
public verifiability, and practical auditing. zkLedger uses table con-
struction in the ledger. Each user identity corresponds to each col-
umn in the ledger. Therefore, the regulator can determine every
user identity through the ledger. However, this traceable mecha-
nism in zkLedger cannot be applied to environments with a large
number of users and is used only for auditing digital asset transac-
tions over some banks.

Defrawy and Lampkins[15] proposed a proactively-private dig-
ital currency (PDC) scheme that can provide privacy-preserving
and accountability. In their scheme, the ledger is kept by a group
of ledger servers. Every ledger sever has a balance ledger that con-
tains a share of every user identity. Therefore, the regulator can de-
termine every user identity through those ledger servers. However,
their traceable mechanism does not seem to have been extended
to other applications.

Ateniese et al.[4] constructed a scheme that provides certified
Bitcoin addresses to enable Bitcoin users to trade with certifiable
users authenticated by the trusted certificate authority. The regula-
tor can determine every user identity through the authority. How-
ever, if a user wants to use a new certified address for each trans-
action, the user must contact the certificate authority to obtain a
certified address. This reduces the efficiency of the entire system
and exerts considerable pressure on the certificate authority when
the number of users is large. Moreover, their approach only applies
to Bitcoin.

Garman et al.[20] designed new decentralized anonymous pay-
ment (DAP) systems to address the regulatory issue by adding pri-
vacy preseving policy-enforcement mechanisms that guarantee re-
gulatory compliance, allow selective user tracing, and admit trac-
ing of tainted coins. The regulator can determine every user iden-
tity through the identity escrow policy. However, the DAP system
are based on Zerocash([7].

The traceable mechanisms proposed above can only be applied
to specific application environments and do not seem to have been
extended to other applications. We propose SkyEye, a traceable
scheme for blockchain. Our scheme can be applied to a class of
blockchain applications, which is denoted by Bs.

10 CONCLUSION

In this paper, we design SkyEye, a traceable scheme for blockchain.
SkyEye can be applied to the blockchain applications that satisfy

the following conditions: (I) The users have public and private in-
formation, where the public information is generated by the pri-
vate information; (II) The users’ public information is disclosed in
the blockchain data. SkyEye just requires the user to register only
once, and enables the regulator to trace users’ identities. More-
over, we implement two different SkyEye prototypes: SkyEyers
and SkyEyes. Our evaluation results show that even if the num-
ber of users is very large, the registration information and identity
proof are verified quickly.
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A SECURITY OF THE TRACEABLE SCHEME

We describe identity proof indistinguishability and identity proof
unforgeability. Every property is formalized as an experiment be-
tween an adversary A and a challenger C. The behavior of the
honest user with identity id is realized by the oracle O;4, and the
behavior of the regulator is realized by the oracle Oy¢4. We assume
that the honest users and adversary in the experiment have already
registered successfully in the regulator, i.e., they can generate any
identity proof. Below, we describe how O;4 and Oyeq work.

Oracles O;4 and Oreq are initialized by challenger C using the
public parameters pp. Oreq stores: (1) Record, a set of information
used to trace true identities of all registered users; (2) the encryp-
tion public/private key pair (pkreg, skreg). Oreg accepts different
queries, which are described below:

e Q = (judge, proofia,  proofi,).

Oreg determines whether proof;;, and proof;y, belong to the
same user, and sends the result to the inquirer.

o Q = (chashset, proof;q).

Oreg sends the chameleon hash set Ppsp, to the inquirer, where
P.pash includes the chameleon hash value of the user who gener-
ates proofig.

0,4 stores: (1) RegPrilnfo, the secret information used to gen-
erate registration information; (2) IdProof, a set of identity proofs
generated by the user whose identity is id; (3)IdProofPriInfo, the
set of evidence that the user uses to generate the identity proofs.
The oracle O;4 accepts different queries, which are described be-
low:

e Q = (genidproof). The adversary is not aware of the private
information priv. The oracle O;4 first randomly selects priv, and
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then generates the public information pub. Finally, the oracle O;y4
calls the Geny,o, ¢ algorithm to generate the identity proof proofiy.
and sends (pub, proof;y) to the inquirer.

e Q = (genidproof, priv).

The adversary knows the private information priv, and the ora-
cle O;4 uses the priv selected by the adversary to generate the pub-
lic information pub and then calls the Gen,; . algorithm to gen-
erate the identity proof proof;;. Finally, O;4 sends (pub, proof;y)
to the inquirer.

o Q = (genidproof, pub;).

Here, pubi € Tyyup, and Ty = {pubi}ic(1, . ny is the public
information set of the user whose identity is id. The oracle O;4 calls
the Gen,, o algorithm to generate the identity proof proof;g, and
sends (pub;, proof;g) to the inquirer.

A.1 Identity proof indistinguishability

This property is formalized by Explﬂ]?’ﬁ_IN D(2), which is shown
below:

1. The challenger C randomly samples b € {0,1}, gets pp by run-
ning Setup(A), and sends pp to adversary A. Next, C initializes two
separate oracles O;q, and Oyq, .

2. At each query phase, the adversary A issues a pair of queries
(0, Q'), where (Q, Q,) is one of the following:

e QandQ areboth genidproof queries. C forwards Q to O,q, , and
forwards o t00;q, - C repliesto A with ((puby, proofiq, ), (pubq_p,
proofiq, ,)), which is the two oracle answer.

* {0, 0’} = {(genidproof, priv), (genidproof, priv )}, where
priv = priv . C forwards Q to Oiq,, and forwards Q to Oiq, ,-C
replies to A with ((pub, proofig, ), (pub, proofiq, ,)), which is the
two oracle answer.

3. At the end of the query, A sends C a guess b e {0,1}. Ifb = b,
C outputs 1; otherwise, C outputs 0.

Identity proof indistinguishability requires that the adversary
A wins the above experiment with only negligible probability. Next,
we formally define this property.

Definition A.1. A traceable scheme [] satisfies identity proof
indistinguishability if for all probabilistic polynomial-time adver-
saries A, there is a negligible function negl(-) such that

Adol T IND < negl(2), (1)

where AdvII‘S.IID_IND = Pr[EprﬂP’ﬁ_IND(A) =1] -1/21is A’s ad-
IDP—IND(A)_

vantage in the experiment Exp ;'

A.2 Identity proof unforgeability

This property is formalized by Explﬂ?ﬁ_UN F(2), which is shown
below:

1. The challenger C obtains pp by running Setup(A), and sends pp to
adversary A. Next, C initializes two separate oracles O;q and Oyeg.
Let Tyyup = {pub1, ..., pubn} be the public information set for the user
whose identity is id.

2. The adversary ‘A issues queries 41, ..., ¢m, where q; is (genidproof,
pub;), and pub; € Tyyp. C forwards Q to O;q, C replies to A with
(pub;, proof;q), which is the oracle O;4’s answer.

3. At the end of the query, let P = {proofi, ..., proofm} is the identity
proof set that is generated by O;q. A sends (pub®, proof;) to C. C
checks as follows:

o If proof;, & P A Verproor (pp, pub®, proof;’;) = 1, C proceeds
as follows; otherwise it aborts.

e C sends (judge, proofig, proof;) to Oreg, wherei € [1,m]. If
proofig: and proof; belong to the user whose the identity is id, Oreq
sends ¢ = 1 to C; otherwise it returns ¢ = 0.

If proof;y, & P A Verppoor(pp, pub®, proofs) = 1Ac=1,C
outputs I; otherwise, C outputs 0.

The adversary A wins the above experiment if proo fl’; such
that: (i) proof; ¢ P; (i) Verproof (pp, pub®, proofy) = 1; (iii)
proof;g- belongs to the user whose identity is id. In other words,
A can forge the identity proof of honest parties. Identity proof
unforgeability requires that the adversary wins the above exper-
iment with only negligible probability. Next, we formally define
this property.

Definition A.2. A traceable scheme [] satisfies identity proof un-
forgeability if for all probabilistic polynomial time adversaries A,
there is a negligible function negl(-) such that

AdolTUNF < negl(2), @)

where AduiD{_UNF = Pr[EprﬂPﬁ_UNF(A) =1]-1/2is A’s

IDP—UNF(A).

advantage in the experiment Exp 2’1,

B PROOF OF THEOREM 5.1

B.1 Proof of identity proof indistinguishability

THEOREM B.1. Assuming that the NIZK scheme is perfect zero-
knowledge and proof of knowledge, the encryption scheme Enc satis-
fies IND-CCA2 security, and gen(-) is a one-way function, then, our
scheme [] described in Algorithm 1 satisfies identity proof indistin-
guishability.

We prove the Theorem B.1 through a sequence of hybrid exper-
iments. Let gp, be the number of queries issued by the adversary
A.

expPreql- The experiment exp,..,; is the same as the experiment
Expggg—fND(A).

expi. This experiment is the same as the experiment exp,.q;
except that the challenger C simulates the NIZK. More precisely,
C calls a polynomial-time simulator Sp;, (4, ACpr0f) to obtain
(Pkproof vkproof- tra), where tra is the trapdoor, instead of in-
voking Kz (A, ACproor)- When an oracle Ojy sends an identity
proof to C, C replaces the real zk-SNARK proof with a simulated
zk-SNARK proof by invoking Spizk (PKkproofs Xproofs tra), without
using the witness.

Because the NIZK scheme is perfect zero-knowledge, the distri-
bution of the simulated zk-SNARK proof is identical to that of the
proof computed in exp,.qq;. Therefore, Advexp,,,; = Advexp, -

expo. This experiment is the same as the experiment exp; ex-
cept that when Q and Q/ sent by the adversary are both genid-
proof queries, the challenger C replaces the public information by
a random number. Because gen(-) is a one-way function, then no
polynomial-time adversary can distinguish exp; and expa except
with negligible probability.



exPfingl- The experiment expringy is the same as the experi-
ment expa except that the challenger C replaces C;4 in proof;; by
encrypting a random string. More precisely, when an oracle O;4
sends an identity proof proof;; to C, C replaces the C;; with a C; 4
generated by Eenc(pkreg, 1, rn), where r is a random string sam-
pled uniformly from the plaintext space of the encryption scheme.
Because the responses to the adversary A in expfinq are inde-
pendent of the bit b. Therefore, Advexp,,,, = 0 in the experiment
eXpPfinal-

Next, we prove that no polynomial-time adversary can distin-
guish expy from expyin, except with negligible probability(see
below lemma).

LemMA 1. After qm queries, |Advexprine — Advexp,| < Gm -
Advepc, where Advenc denotes the adversary’s advantage in the IND-
CCA2 experiment.

Proof sketch. We construct an algorithm 8, using A as a sub-
routine, to win the IND-CCA2 experiment.

Let € = Advexppipe — Advexp,. For some i € {1, ..., qm}, when
A issues an i-th query, 8 use the same method as exp2 to gen-
erate proof;y except for the ciphertext C;; generation method. 8
chooses a random string r that has the same length as plaintext m
corresponding to C;4. B sends (mg, m1) = (m,r) to the IND-CCA2
challenger and receives C* = Eenc(pkregs my, rn), where b is the
bit chosen by the IND-CCA2 challenger. 8 replaces C;; included
in proof;y with C*. 8B returns b’, which A outputs as the guess
in the IND-CCA2 experiment. We know that when b =0, As
view of the interaction is distributed identically to that of expo.
And when b = 1, A’s view represents the exps in which one ci-
phertext C;; has been replaced. Based on a standard hybrid argu-
ment over each of the g, ciphertexts, we can conclude that over
the randomness of the experiment, 8 must succeed in the IND-
CCA2 experiment with the advantage of at least €/gq;,. Therefore,
|AdUexpfma1 — Advexp,| < qm - Advenc.

B.2 Proof of identity proof unforgeability

THEOREM B.2. Assuming that the Chash scheme is collision resis-
tant, trapdoor collision and semantic security, the NIZK scheme is
perfect zero-knowledge and proof of knowledge, and gen(-) is a one-
way function, then, our scheme [] described in Algorithm 1 satisfies
identity proof unforgeability.

From experiment Expg? ﬁ_UN F(1), we can observe that A suc-
ceeds only if it outputs (pitb*,proofl.’:i) such that: (i) proofl.’:i ¢ P;
(i) Verproof (pp, pub®, proof;y) = 1; (iii) proofig- belongs to the
user whose identity is id. We define the two disjoint events which
A succeeds: (i) Event, A succeeds, and pub* € Tpub; (ii) Event, A
succeeds, and pub™ ¢ Ty,

Obviously, Adeﬁf‘UNF = Pr[Event] + Pr[Event]. Define €1 =
Pr[Event] and ey = Pr[Event].

When Event occurs, we construct the algorithm 8. It uses ‘A as
a subroutine, and solves the one-wayness of gen(-). Let ¢ be the
NIZK extractor for A. The algorithm B works as follows.

1. B randomly selects i € {1, ...,n}.

2. B performs the experiment Exply]{)’ﬁ_UN F(2) with A to ob-

tain (pub®, proof;)).

*

3. B runs the e(vkpro0fs T[;roof) to obtain wy,o0r = {pathy,,

CH:d’pk:hash’ sk:hash,priv*, r¥,rn*}.

4.If pub* = pub;, then B outputs priv*; otherwise, B aborts.

Because the index i is selected at random, B succeeds with prob-
ability €1 /n. Because of the one-wayness of the gen(-), €1 must be
negligible in A.

When Event occurs, we construct algorithm Z. It uses A as a
subroutine and finds collision for the chameleon hash scheme. Z
sends (chashset, proofq) to Oreg, and obtains Pepasp, = {CHjq,, ...,
CHjg, } from the oracle Oyeg4, where k << A. The set P.p4sp, includes
the chameleon hash CH;; of the user whose identity is id. The al-
gorithm Z performs as follows.

1. Z randomly selects i € {1, ...,k}.

2. Z performs the experiment Explﬂ? ﬁ_UN F(}) with A to ob-
tain (pub®, proof;).

3. Z runs the e(vkpro0 s ﬂ;mo
CH? sk*

i PR ohashe SKepashy PTIVs T .

4. If CHl.*d = CH,q,, then Z outputs (prio*, r*); otherwise, Z
aborts.

Because the index i is selected at random, Z succeeds with prob-
ability eg /k. Furthermore, because of the collision resistance of the
chameleon hash scheme, e2 must be negligible in A.

f) to obtain wp,o0 = {path;,,
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