
Correction to ”Improving the DGK comparison
protocol”
Thijs Veugen # ∗1

Department of Cryptology, Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

∗ Unit ICT, TNO
The Hague, The Netherlands
1 thijs.veugen@tno.nl

Abstract—At the IEEE Workshop on Information Forensics
and Security in 2012, Veugen introduced two ways of improving
a well-known secure comparison protocol by Damgård, Geisler
and Krøigaard, which uses additively homomorphic encryption.
The first new protocol reduced the computational effort of one
party by roughly 50%. The second one showed how to achieve
perfect security towards one party without additional costs,
whereas the original version with encrypted inputs only achieved
statistical security. However, the second protocol contained a
mistake, leading to incorrect outputs in some cases. We show
how to correct this mistake, without increasing its computational
complexity.

I. INTRODUCTION

In 2007, Damgård, Geisler and Krøigaard (DGK) invented
their secure comparison protocol [1] together with a new
homomorphic cryptosystem that together formed an interesting
and efficient solution for the so-called millionaire’s problem.
Their protocol has been used frequently ever since as a sub-
protocol in applications for signal processing with encrypted
data. We mention a few.

In secure face recognition [2] a person is identified by com-
paring many face related values with a sample value. The same
with fingerprints [3]. In secure statistical analysis [4] many
sensitive statistical data have to be compared. In secure user
clustering [5] user profiles have to be compared with cluster
centroids. When generating private recommendations [6], user
similarity values have to be compared with a threshold. Finally,
also in secure adaptive filtering [7] or secure bioinformatics
services [8], the DGK comparison protocol is used.

In the remainder of this section, we mention related work,
and repeat the preliminaries from [9]. In the second section,
the DGK comparison protocol is introduced and analysed, as
in [9]. In Section 3 we show how to improve the security
properties of the DGK comparison protocol, and explain how
to correct the flaws from [9]. The paper is finalized by the
conclusions.

A. Related work

In 2017, Baptiste Vinh Mau and Koji Nuida [10] noted the
error in [9], and described a way to correct the flaw. Unfor-
tunately, they introduced an additional secure multiplication
protocol that securely multiplies two additively-homomorphic

encrypted values, leading to a substantial increase of the
computational (and communication) complexity of Veugen’s
approach. We propose an alternative solution without needing
a secure multiplication protocol.

B. Preliminaries

The notation (x ≤ y) is used to denote the bit that will be
one exactly when x ≤ y, and ⊕ denotes the exclusive or of
two bits. We use two different homomorphic cryptosystems in
this paper to encrypt signals represented by integers.

The first one is the cryptosystem by Damgård, Geisler and
Krøigaard (DGK) [1], [11] that is dedicated to small plaintexts
and fits nicely within the secure comparison protocol. The
public key is (n, g, h, u) and the private key is (p, q, vp, vq)
such that the cipher text modulus n is the product of two large
primes p en q. In the protocols we use KDGK to denote the
private key of the DGK crypto system. The plaintext space is
Zu where u is a small (16 or 32 bit) prime divisor of both
p − 1 and q − 1. The additional parameters vp and vq are t-
bit prime divisors of p − 1 and q − 1 respectively, where a
reasonable value for parameter t is 160. The numbers g and
h are elements of Z∗n of order uvpvq and vpvq respectively.
The reasoning behind the values of all these parameters is
explained in [11].

We denote a DGK encryption of plaintext m ∈ Zu by
[m] which is computed as [m] = gmhr mod n, where r is
a fresh random integer of 2t bits. A table can be used for
decrypting [m] [11] but in the comparison protocol we only
want to determine whether m = 0 which can be done quite
fast through the check [m]vpvq mod n = 1. Since u < p it
is even sufficient to check [m]vpvq mod p = 1 which will on
average cost 3

2 (t+ t)/4 = 3
4 t multiplications modulo n.

The second cryptosystem is Paillier [12] with cipher text
modulus N2, N being a product of two large primes. The
Paillier encryption of plaintext m ∈ ZN is denoted by [[m]]
and computed as [[m]] = gmrN mod N2, where r is a fresh
random integer of size N and the order of g ∈ Z∗N2 is a
multiple of N . We choose g = N + 1 because it reduces gm

to 1 + N · m modulo N2 and saves an exponentiation. The
private key is denoted by KPaillier in our protocols. More
details can be found in the paper [12].

Both cryptosystems are additively homomorphic so [[x]] ·
[[y]] = [[x+y]] mod N2 and [x]·[y] = [x+y] mod n, a property
thas we will use frequently.

We assume the semi-honest model where both parties A and
B follow the rules of the protocol, but collect as much infor-
mation as possible to deduce private information. However,
the DGK comparison can be extended to the malicious model
with active adversaries [1].

The multiplicative inverse of x modulo n is denoted by x−1

and equals the integer y, 0 ≤ y < n, such that x·y = 1 mod n.
The multiplicative inverse is efficiently computed by using
the Euclidean algorithm [13], and can also be used to negate
an encrypted integer: [−x] ← [x]−1 mod n. To estimate the
computational complexity of the different protocols, we use
the fact that an involution modulo n with an exponent of e
bits will on average take 3

2e multiplications modulo n.
Finally, let σ be the statistical security parameter, which

value is usually chosen around 80. Integer division is denoted
by ÷. And we assume all random variables, excluding the
inputs of the secure multi-party computation protocol, are
uniformly chosen.

II. ANALYSIS OF DGK COMPARISON

When comparing two integers x and y bitwise, the obvious
approach is to scan both bit rows from left (the most significant
part) to right searching for the first differing bit. The outcome
of the comparison of these differing bits will determine the
comparison result of both integers. A similar approach is
followed by the DGK protocol. Assume both integers contains
` bits denoted by xi and yi respectively, so x = x`−1 . . . x1x0,
x`−1 being the most significant bit of x. Then the numbers
ci, 0 ≤ i < ` are computed which will only be zero when
xj = yj for each j, i < j < ` and at the same time xi 6= yi.

More precisely,

ci = s+ xi − yi + 3

`−1∑
j=i+1

(xi ⊕ yi)

Clearly, the sum of exclusive ors will be zero exactly when
xj = yj for each j, i < j < `. The variable s, introduced
later in [2], can be set to either −1 or 1 depending on the
comparison that is performed. For example when s = −1, ci
will only be zero when xi = 1 and yi = 0 (and xj = yj
for each j, i < j < `) and thus x > y. To avoid one of the
parties learning the comparison result, one party will set the
parameter s and the other party will learn whether ci = 0 or
not.

The basic DGK comparison protocol is depicted in Proto-
col 1. In [1] more variants are described like shared inputs
or achieving security against active adversaries. For a formal
security proof we also refer to this paper.

To show that in Protocol 1 indeed δA ⊕ δB = (x ≤ y), we
distinguigh two cases:
• If δA = 0 then s = 1 so s + xi − yi is only zero when
xi = 0 and yi = 1. Thus when B finds ci = 0 (in which
case δB = 1), we have x < y, and otherwise x ≥ y.

Protocol 1 DGK comparison with private inputs

Party A B
Input x y and KDGK

Output δA ∈ {0, 1} δB ∈ {0, 1}
Constraints δA ⊕ δB = (x ≤ y)

0 ≤ x, y < 2`

1) B sends the encrypted bits [yi], 0 ≤ i < ` to A.
2) For each i, 0 ≤ i < `, A computes [xi ⊕ yi] as follows:

if xi = 0 then [xi ⊕ yi]← [yi]
else [xi ⊕ yi]← [1] · [yi]−1 mod n.

3) A chooses a uniformly random bit δA and computes
s = 1− 2 · δA.

4) For each i, 0 ≤ i < `, A computes [ci] = [s] · [xi] ·
[yi]
−1 · (

∏`−1
j=i+1[xj ⊕ yj])3 mod n.

5) A blinds the numbers ci by raising them to a random
non-zero exponent ri ∈ {1, . . . , u − 1}, and refreshing
the randomness with a second exponent r′i of 2t bits:
[ci] ← [ci]

ri · hr′i mod n, and sends them in random
order to B.

6) B checks whether one of the numbers ci is decrypted to
zero. If he finds one, δB ← 1, else δB ← 0.

• If δA = 1 then s = −1 so s+ xi − yi is only zero when
xi = 1 and yi = 0. Thus when B finds ci = 0, we have
x > y, and otherwise x ≤ y.

In both cases, δA⊕δB = (x ≤ y). An extra measure described
in Subsection II-A is needed to provide correctness in case
x = y.

The value of B’s input y is hidden from A by the DGK
encryption system. On the other hand, A’s input x is perfectly
hidden from B (given some extra measures for the case x = y
as described in subsection II-A) because δA was uniformly
chosen and party B only learns δB . Therefore, Protocol 1
realizes computational security towards A and perfect security
towards B.

The main computational effort for A is in the multiplicative
blinding of the numbers ci which requires on average ` · 3t
multiplications modulo n. The main computational effort for
B is the decryption (checks) of the same numbers ci which
requires on average ` · 34 t multiplications modulo n.

The DGK protocol with private inputs is easily extended
to encrypted inputs [14] as depicted in Protocol 2. The
correctness and security of Protocol 2 is shown in the same
paper [14].

In Protocol 2 the comparison (x ≤ y) is reduced to the
private comparison (α ≤ β) [14]. As in Protocol 1, it realizes
computational security towards A. Since the value x − y is
statistically hidden in z, the probability Pr(x − y|z) is not
uniform and depends on z and therefore Protocol 2 provides
only statistical security towards B. For example when z =
rmin − 1, B will know that x = 0 and y = 2` − 1.

Protocol 2 DGK comparison with encrypted inputs and sta-
tistical security

Party A B
Input [[x]] and [[y]] KPaillier and KDGK

Output [[(x ≤ y)]]
Constraints 0 ≤ x, y < 2` and `+ σ < log2N

1) A chooses a random number r of ` + 1 + σ bits, and
computes [[z]]← [[y − x+ 2` + r]] = [[y]] · [[x]]−1 · [[2` +
r]] mod N2. A sends [[z]] to B.

2) B decrypts [[z]], and computes β = z mod 2`.
3) A computes α = r mod 2`.
4) A and B run a DGK comparison protocol with private

inputs α and β resulting in outputs δA and δB such that
δA ⊕ δB = (α ≤ β).

5) B computes z ÷ 2` and sends [[z ÷ 2`]] and [[δB]] to A.
6) A computes [[(β < α)]] as follows:

if δA = 1 then [[(β < α)]]← [[δB]]
else [[(β < α)]]← [[1]] · [[δB]]−1 mod N2.

7) A computes [[(x ≤ y)]] ← [[z ÷ 2`]] · ([[r ÷ 2`]] · [[(β <
α)]])−1 mod N2.

A. Equality of inputs

When x 6= y, none or one of the values ci will be
zero depending on the (uniform) choice of δA, so δB will
be uniformly distributed and independent from the random
distributions of inputs x and y. However, when x = y there
will never occur a zero in the ci, irrespective of δA, because
the part s+xi−yi will never equal zero. So some information
is leaked towards B in case of equality of inputs. This is due
to the introduction of the variable s in [2], but they did not
mention the problem of information leakage.

As personally communicated by Tomas Toft, an easy way
to overcome this information leakage is to introduce an extra
variable c−1 that will be zero when x = y with probability 1

2
and not zero otherwise.

c−1 = δA +

`−1∑
i=0

xi ⊕ yi

Party B will set δB ← 1 only when one of the variables ci = 0,
−1 ≤ i < `, and δB ← 0 otherwise. This also assures that
δA ⊕ δB = (x ≤ y) even in the case of equality.

With this extra measure in Protocol 1, perfect security
is achieved towards B. The variable δB will be uniformly
distributed independent of the random distributions of x and
y.

III. IMPROVING THE SECURITY

We show how to provide perfect security towards B for
Protocol 2 without substantially reducing the performance.

A. The solution from [9]

In Protocol 2, no carry-over modulo N is allowed in the
addition of x−y+2` and r leading to only statistical security
towards B. If r could be chosen from the full range 0 ≤ r <

αi 0 1 0 1 0 1 0 1
βi 0 0 1 1 0 0 1 1
d 0 0 0 0 1 1 1 1
αi ⊕ βi 0 1 1 0 0 1 1 0
wi 0 1 1 0 -1 0 0 -1
α̃i ⊕ βi 1 0 0 1

TABLE I
THE VALUE wi WHEN αi 6= α̃i

N , the value z would perfectly mask the secret value x − y,
and perfect security could be achieved towards B.

Protocol 3 shows how to adjust the DGK comparison proto-
col with encrypted inputs such that perfect security is achieved
towards B requiring only a small increase in computational and
communication complexity. The difference with Protocol 2 is
the modified subprotocol with private inputs.

The idea is that B sends an encrypted bit [d] to A ’inform-
ing’ A whether a carry-over has occurred in the addition of
x − y + 2` and r. A can use this additional encrypted bit
to compute numbers ci, 0 ≤ i < `, similar to the original
Protocol 1. An additional advantage of allowing carry-overs
in Protocol 3 is that the inputs x and y are allowed to be
larger than in Protocol 2.

To ensure that bit d = 1 exactly when a carry-over has
occurred, we require ` + 2 < log2N such that 0 ≤ x − y +
2` < (N − 1)/2. This means that we pay the price of not
allowing input values consisting of log2N − 2 or log2N − 1
bits to ensure that z − r will also be in the first half of the
interval [0, N), i.e. 0 ≤ z − r < (N − 1)/2. When 0 ≤
r < (N − 1)/2, party A will be assured that no carry-over
has occurred. Otherwise, when r is in the second half of the
interval [0, N), the comparison z < (N − 1)/2 (which can be
performed by B) will inform party A about the carry-over.

Depending on the value of d a different comparison should
be executed (see Equation 1). When d = 0, z = x−y+2`+r
and the original comparison α ≤ β should be computed, but in
case a carry-over occurred (d = 1 and z = x−y+2`+r−N),
the comparison α̃ ≤ β should be performed where the non-
negative integer α̃ = (r −N) mod 2`.

The most important part of the modified subprotocol is
in the computation of the encrypted values wi that should
approximate αi⊕βi in case no carry-over occurred, and α̃i⊕βi
when a carry-over actually did occur. When αi = α̃i this is
obviously true. The most interesting case is αi 6= α̃i when
wi = (αi ⊕ βi)− d.

As can be deduced from Table I, wi will be zero in exactly
the right cases. That is, wi = 0 when αi ⊕ βi = 0 and d = 0,
but also when α̃i ⊕ βi = 0 and d = 1. Furthermore, wi ∈
{−1, 1} in all other cases.

By multiplying each wi with a factor 2i in step 4(f) of the
protocol, we can assure that in step 4(h) the sum

∑`−1
j=i+1 wj =

0 exactly when all individual wj = 0.
The final difference with Protocol 2 is that we use [αi] ·

[d]α̃i−αi instead of [αi] in step 4(h). In effect, when d = 0 it
will equal [αi] and when d = 1 it will be [α̃i]. So the right

value is used depending on whether a carry-over occurred or
not.

Because the absolute value of s+αi+ d · (α̃i−αi)−βi in
step 4(h) is bounded by two, the factor three in 3

∑`−1
j=i+1 wj

avoids interference with this value, so ci will eventually be
zero only when both parts are zero.

We conclude that

δA ⊕ δB = (α ≤ β) , if d = 0 (1)
(α̃ ≤ β) , if d = 1

For further optimizing the computational complexity of
Protocol 3, and in particular its subprotocol of step 4, see
[9].

B. Incorrect output

As pointed out in [10], in Protocol 3 the value (β < α)
is correctly computed, even in case of overflow during the
computation of z. The problem is the value z ÷ 2` used in
step 7, which is sometimes too small, because a large r led to
an overflow in the computation of z in step 1, thereby reducing
the value of z by N .

To correct this overflow problem, we need to compute z ÷
2`, in case d = 0, so no overflow occurred, and we need
(z +N)÷ 2`, in case there was an overflow and d = 1. The
solution of [10] was to securely multiply [[z]] and [[((z+N)÷
2`)− (z ÷ 2`)]], and add this encrypted product to [[(x < y)]]
in step 7. However, this intensive secure multiplication can be
avoided as follows:
• In step 5, party B not only computes ζ1 = z ÷ 2`, but

also ζ2, where ζ2 = (z+N)÷ 2`, if z < (N − 1)/2, and
ζ2 = z÷ 2`, otherwise. Party B encrypts both ζ1 and ζ2,
and sends them to A.

• In step 7, party A uses [[ζ]] instead of [[z ÷ 2`]], where
ζ = ζ1, if r < (N − 1)/2, and ζ = ζ2, otherwise.

In this way, the parties can ensure that ζ = z ÷ 2` in case no
overflow occurred (r small or z large), and ζ = (z+N)÷ 2`

in case an overflow did occur (r large and z small).

IV. CONCLUSIONS

In [9] the widely used secure comparison protocol by
Damgård, Geisler and Krøigaard [1], [11] was carefully an-
alyzed, and two improvements were presented. The second
improvement achieved perfect security towards party B with-
out additional costs in the variation with encrypted inputs,
whereas the original version only achieved statistical security.
As pointed out in [10], the output of this improved protocol
was not computed correctly. We showed how to correct this
flaw without increasing the computational complexity of the
protocol.

REFERENCES

[1] I. Damgård, M. Geisler, and M. Krøigaard, “Homomorphic encryption
and secure comparison,” Journal of applied cryptology, vol. 1, no. 1,
pp. 22–31, 2008.

[2] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, R. L. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in Proceedings of the
Privacy Enhancing Technologies Symposium, Seattle, USA, 2009, pp.
235–253.

[3] M. Barni, T. Bianchi, D. Catalano, M. D. Raimondo, R. D. Labati, and
P. Failla, “Privacy-preserving fingercode authentication,” in Workshop
on Multimedia and Security, 2010.

[4] J. Guajardo, B. Mennink, and B. Schoenmakers, “Modulo reduction
for Paillier encryptions and application to secure statistical analysis,”
in SPEED’09, Lausanne, Switzerland, sep 2009.

[5] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Privacy-preserving
user clustering in a social network,” in IEEE International Workshop on
Information Forensics and Security, 2009.

[6] ——, “Generating private recommendations efficiently using homomor-
phic encryption and data packing,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 3, pp. 1053–1066, 2012.

[7] J. Troncoso-Pastoriza and F. Perez-Gonzalez, “Secure adaptive filtering,”
IEEE Transactions on Information Forensics and Security, vol. 6, no. 2,
pp. 469 – 485, 2011.

[8] M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzenbeisser, and
H. Schröeder, “Towards secure bioinformatics services,” in Financial
Cryptography and Data Security, ser. Lecture Notes in Computer
Science, vol. 7035, 2012, pp. 276–283.

[9] T. Veugen, “Improving the dgk comparison protocol,” in IEEE Workshop
on Information Security and Forensics, 2012, pp. 49–54.

[10] B. V. Mau and K. Nuida, “Correction of a secure comparison protocol
for encrypted integers in IEEE WIFS 2012,” in IWSEC 2017, ser. LNCS,
S. Obana and K. Chida, Eds., vol. 10418, 2017, pp. 181–191.

[11] I. Damgård, M. Geisler, and M. Krøigaard, “A correction to efficient and
secure comparison for on-line auctions,” Journal of applied cryptology,
vol. 1, no. 4, pp. 323–324, 2009.

[12] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proceedings of Eurocrypt 1999, ser. Lecture Notes
in Computer Science, vol. 1592. Springer-Verlag, 1999, pp. 223–238.
[Online]. Available: citeseer.ist.psu.edu/article/paillier99publickey.html

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied cryptography. CRC Press, 1996.

[14] T. Veugen, “Encrypted integer division,” in IEEE Workshop on Infor-
mation Forensics and Security, Dec 2010.

Protocol 3 DGK with encrypted inputs and perfect security

Party A B
Input [[x]] and [[y]] KPaillier and KDGK

Output [[(x ≤ y)]]
Constraints 0 ≤ x, y < 2` and `+ 2 < log2N

1) A chooses a random number r, 0 ≤ r < N , and
computes [[z]]← [[y − x+ 2` + r]] = [[y]] · [[x]]−1 · [[2` +
r]] mod N2. A sends [[z]] to B.

2) B decrypts [[z]], and computes β = z mod 2`.
3) A computes α = r mod 2`.
4) A and B run a modified DGK comparison protocol with

private inputs α and β resulting in outputs δA and δB :
a) B sends the encrypted bit [d] where d = (z <

(N−1)/2) is the bit informing A whether a carry-
over has occured.

b) B sends the encrypted bits [βi], 0 ≤ i < ` to A.
c) A corrects [d] by setting [d] ← [0] whenever 0 ≤

r < (N − 1)/2.
d) For each i, 0 ≤ i < `, A computes [αi ⊕ βi] as

follows:
if αi = 0 then [αi ⊕ βi]← [βi]
else [αi ⊕ βi]← [1] · [βi]−1 mod n.

e) A computes α̃ = (r − N) mod 2`, the corrected
value of α in case a carry-over actually did occur
and adjusts [αi ⊕ βi] for each i:
If αi = α̃i then [wi]← [αi ⊕ βi]
else [wi]← [αi ⊕ βi] · [d]−1 mod n

f) For each i, 0 ≤ i < `, A computes [wi] ←
[wi]

2i mod n such that these values will not in-
terfere each other when added.

g) A chooses a uniformly random bit δA and com-
putes s = 1− 2 · δA.

h) For each i, 0 ≤ i < `, A computes [ci] = [s] · [αi] ·
[d]α̃i−αi · [βi]−1 · (

∏`−1
j=i+1[wj])

3 mod n.
i) A blinds the numbers ci by raising them to a

random non-zero exponent ri ∈ {1, . . . , u−1}, and
refreshing the randomness with a second exponent
r′i of 2t bits: [ci] ← [ci]

ri · hr′i mod n, and sends
them in random order to B.

j) B checks whether one of the numbers ci is de-
crypted to zero. If he finds one, δB ← 1, else
δB ← 0.

5) B computes z ÷ 2` and sends [[z ÷ 2`]] and [[δB]] to A.
6) A computes [[(β < α)]] as follows:

if δA = 1 then [[(β < α)]]← [[δB]]
else [[(β < α)]]← [[1]] · [[δB]]−1 mod N2.

7) A computes [[(x ≤ y)]] ← [[z ÷ 2`]] · ([[r ÷ 2`]] · [[(β <
α)]])−1 mod N2.

