
Gimli: a cross-platform permutation

Daniel J. Bernstein1, Stefan Kölbl2, Stefan Lucks3,
Pedro Maat Costa Massolino4, Florian Mendel5, Kashif Nawaz6,
Tobias Schneider7, Peter Schwabe4, François-Xavier Standaert6,

Yosuke Todo8, and Benoît Viguier4 ? Date: June 27, 2017

1 University of Illinois at Chicago
djb@cr.yp.to

2 Technical University of Denmark
stek@dtu.dk

3 Bauhaus-Universität Weimar
Stefan.Lucks@uni-weimar.de

4 Radboud University
P.Massolino@cs.ru.nl,peter@cryptojedi.org,benoit@viguier.nl

5 Graz University of Technology
florian.mendel@gmail.com

6 Université Catholique de Louvain
kashif.nawaz@uclouvain.be,fstandae@uclouvain.be

7 Ruhr-University Bochum
tobias.schneider-a7a@rub.de

8 NTT Secure Platform Laboratories
todo.yosuke@lab.ntt.co.jp

Abstract. This paper presents Gimli, a 384-bit permutation designed
to achieve high security with high performance across a broad range
of platforms, including 64-bit Intel/AMD server CPUs, 64-bit and 32-
bit ARM smartphone CPUs, 32-bit ARM microcontrollers, 8-bit AVR
microcontrollers, FPGAs, ASICs without side-channel protection, and
ASICs with side-channel protection.

Keywords: Intel, AMD, ARM Cortex-A, ARM Cortex-M, AVR, FPGA,
ASIC, side channels, the eyes of a hawk and the ears of a fox

? Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work resulted from the Lorentz Center
Workshop “HighLight: High-security lightweight cryptography”. This work was sup-
ported in part by the Commission of the European Communities through the
Horizon 2020 program under project number 645622 (PQCRYPTO) and project
number 645421 (ECRYPT-CSA); the Austrian Science Fund (FWF) under grant
P26494-N15; the ARC project NANOSEC; the Belgian Fund for Scientific Research
(FNRS-F.R.S.); the Technology Foundation STW (project 13499 TYPHOON),
from the Dutch government; the Netherlands Organisation for Scientific Research
(NWO) under grant 639.073.005; and the U.S. National Science Foundation under
grant 1314919. “Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.” Permanent ID of this document:
93eb34af666d7fa7264d94c21c18034a.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

1 Introduction

Keccak [11], the 1600-bit permutation inside SHA-3, is well known to be ex-
tremely energy-efficient: specifically, it achieves very high throughput in moderate-
area hardware. Keccak is also well known to be easy to protect against side-
channel attacks: each of its 24 rounds has algebraic degree only 2, allowing
low-cost masking. The reason that Keccak is well known for these features is
that most symmetric primitives are much worse in these metrics.

Chaskey [21], a 128-bit-permutation-based message-authentication code with
a 128-bit key, is well known to be very fast on 32-bit embedded microcontrollers:
for example, it runs at just 7.0 cycles/byte on an ARM Cortex-M3 microcon-
troller. The reason that Chaskey is well known for this microcontroller perfor-
mance is that most symmetric primitives are much worse in this metric.

Salsa20 [7], a 512-bit-permutation-based stream cipher, is well known to
be very fast on CPUs with vector units. For example, [9] shows that Salsa20
runs at 5.47 cycles/byte using the 128-bit NEON vector unit on a classic ARM
Cortex-A8 (iPad 1, iPhone 4) CPU core. The reason that Salsa20 and its variant
ChaCha20 [6] are well known for this performance is again that most symmetric
primitives are much worse in this metric. This is also why ChaCha20 is now
used by smartphones for HTTPS connections to Google [13] and Cloudflare [27].

Cryptography appears in a wide range of application environments, and each
new environment seems to provide more reasons to be dissatisfied with most
symmetric primitives. For example, Keccak, Salsa20, and ChaCha20 slow down
dramatically when messages are short. As another example, Chaskey has a lim-
ited security level, and slows down dramatically when the same permutation is
used inside a mode aiming for a higher security level.

Contributions of this paper. We introduce Gimli, a 384-bit permutation.
Like other permutations with sufficiently large state sizes, Gimli can easily be
used to build high-security block ciphers, tweakable block ciphers, stream ci-
phers, message-authentication codes, authenticated ciphers, hash functions, etc.

What distinguishes Gimli from other permutations is its cross-platform per-
formance. Gimli is designed for energy-efficient hardware and for side-channel-
protected hardware and for microcontrollers and for compactness and for vec-
torization and for short messages and for a high security level.

We present a complete specification of Gimli (Section 2), a detailed design
rationale (Section 3), an in-depth security analysis (Section 4), and performance
results for a wide range of platforms (Section 5).

Availability of implementations. We place all software and hardware imple-
mentations described in this paper into the public domain to maximize reusabil-
ity of our results. They are available at https://gimli.cr.yp.to.

2 Gimli specification

This section defines Gimli. See Section 3 for motivation.

2

https://gimli.cr.yp.to

Notation. We denote by W = {0, 1}32 the set of bitstrings of length 32. We
will refer to the elements of this set as “words”. We use

– a⊕ b to denote a bitwise exclusive or (XOR) of the values a and b,
– a ∧ b for a bitwise logical and of the values a and b,
– a ∨ b for a bitwise logical or of the values a and b,
– a≪ k for a cyclic left shift of the value a by a shift distance of k, and
– a � k for a non-cyclic shift (i.e, a shift that is filling up with zero bits) of

the value a by a shift distance of k.

We index all vectors and matrices starting at zero. We encode words as bytes in
little-endian form.

i

j

Fig. 1: State Representation

The state. Gimli applies a sequence of rounds to a 384-bit state. The state
is represented as a parallelepiped with dimensions 3 × 4 × 32 (see Fig. 1) or,
equivalently, as a 3× 4 matrix of 32-bit words.

We name the following sets of bits:

– a column j is a sequence of 96 bits such that sj = {s0,j ; s1,j ; s2,j} ∈ W3

– a row i is a sequence of 128 bits such that si = {si,0; si,1; si,2; si,3} ∈ W4

Each round is a sequence of three operations: (1) a non-linear layer, specifi-
cally a 96-bit SP-box applied to each column; (2) in every second round, a linear
mixing layer; (3) in every fourth round, a constant addition.

The non-linear layer. The SP-box consists of three sub-operations: rotations
of the first and second words; a 3-input nonlinear T-function; and a swap of the
first and third words. See Figure 2 for details.

The linear layer. The linear layer consists of two swap operations, namely
Small-Swap and Big-Swap. Small-Swap occurs every 4 rounds starting from the
1st round. Big-Swap occurs every 4 rounds starting from the 3rd round. See
Figure 3 for details of these swaps.

The round constants. There are 24 rounds in Gimli, numbered 24, 23, . . . , 1.
When the round number r is 24, 20, 16, 12, 8, 4 we XOR the round constant
0x9e377900⊕ r to the first state word s0,0.

Putting it together.Algorithm 1 is pseudocode for the full Gimli permutation.
Appendix A is a C reference implementation.

3

x

y

z

In parallel:
x← x ≪ 24
y ← y ≪ 9

x

y

z

In parallel:
x← x⊕ (z � 1)⊕ ((y ∧ z)� 2)
y ← y ⊕ x ⊕ ((x ∨ z)� 1)
z ← z ⊕ y ⊕ ((x ∧ y)� 3)

x

y

z

In parallel:
x← z
z ← x

Fig. 2: The SP-box applied to a column

Small Swap Big Swap

Fig. 3: The linear layer

3 Understanding the Gimli design

This section explains how we arrived at the Gimli design presented in Section 2.
We started from the well-known goal of designing one unified cryptographic

primitive suitable for many different applications: collision-resistant hashing,
preimage-resistant hashing, message authentication, message encryption, etc. We
found no reason to question the “new conventional wisdom” that a permutation
is a better unified primitive than a block cipher. Like Keccak, Ascon [15], etc.,
we evaluate performance only in the forward direction, and we consider only for-
ward modes; modes that also use the inverse permutation require extra hardware
area and do not seem to offer any noticeable advantages.

Where Gimli departs from previous designs is in its objective of being a single
primitive that performs well on every common platform. We do not insist on
beating all previous primitives on all platforms simultaneously, but we do insist
on coming reasonably close. Each platform has its own hazards that create poor
performance for many primitives; what Gimli shows is that all of these hazards
can be avoided simultaneously.

Vectorization.On common Intel server CPUs, vector instructions are by far the
most efficient arithmetic/logic instructions. As a concrete example, the 12-round
ChaCha12 stream cipher has run at practically the same speed as 12-round AES-
192 on several generations of Intel CPUs (e.g., 1.7 cycles/byte on Westmere; 1.5

4

Algorithm 1 The Gimli permutation

Require: s = (si,j) ∈ W3×4

Ensure: Gimli(s) = (si,j) ∈ W3×4

for r from 24 downto 1 inclusive do
for j from 0 to 3 inclusive do

x← s0,j ≪ 24 . SP-box
y ← s1,j ≪ 9
z ← s2,j
s2,j ← x⊕ (z � 1)⊕ ((y ∧ z)� 2)
s1,j ← y ⊕ x ⊕ ((x ∨ z)� 1)
s0,j ← z ⊕ y ⊕ ((x ∧ y)� 3)

end for
. linear layer

if r mod 4 = 0 then
s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 . Small-Swap

else if r mod 4 = 2 then
s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 . Big-Swap

end if

if r mod 4 = 0 then
s0,0 = s0,0 ⊕ 0x9e377900⊕ r . Add constant

end if
end for
return (si,j)

cycles/byte on Ivy Bridge; 0.8 cycles/byte on Skylake), despite AES hardware
support, because ChaCha12 takes advantage of the vector hardware on the same
CPUs. Vectorization is attractive for CPU designers because the overhead of
fetching and decoding an instruction is amortized across several data items.

Any permutation built from (e.g.) common 32-bit operations can take advan-
tage of a 32b-bit vector unit if the permutation is applied to b blocks in parallel.
Many modes of use of a permutation support this type of vectorization. But this
type of vectorization creates two performance problems. First, if b parallel blocks
do not fit into vector registers, then there is significant overhead for loads and
stores; vectorized Keccak implementations suffer exactly this problem. Second,
a large b is wasted in applications where messages are short.

Gimli, like Salsa and ChaCha, views its state as consisting of 128-bit rows
that naturally fit into 128-bit vector registers. Each row consists of a vector
of 128/w entries, each entry being a w-bit word, where w is optimized below.
Most of the Gimli operations are applied to every column in parallel, so the
operations naturally vectorize. Taking advantage of 256-bit or 512-bit vector
registers requires handling only 2 or 4 blocks in parallel.

Logic operations and shifts. Gimli’s design uses only bitwise operations on
w-bit words: specifically, and, or, xor, constant-distance left shifts, and constant-
distance rotations.

5

There are tremendous hardware-latency advantages to being able to carry
out w bit operations in parallel. Even when latency is not a concern, bitwise
operations are much more energy-efficient than integer addition, which (when
carried out serially) uses almost 5w bit operations for w-bit words. Avoiding
additions also allows “interleaved” implementations as in Keccak, Ascon, etc.,
saving time on software platforms with word sizes below w.

On platforms with w-bit words there is a software cost in avoiding additions.
One way to quantify this cost is as follows. A typical ARX design is roughly
balanced between addition, rotation, and xor. NORX [2] replaces each addition
a + b with a similar bitwise operation a ⊕ b ⊕ ((a ∧ b) � 1), so 3 instructions
(add, rotate, xor) are replaced with 6 instructions; on platforms with free shifts
and rotations (such as the ARM Cortex-M4), 2 instructions are replaced with
4 instructions; on platforms where rotations need to be simulated by shifts (as
in typical vector units), 5 instructions are replaced with 8 instructions. On top
of this near-doubling in cost, the diffusion in the NORX operation is slightly
slower than the diffusion in addition, increasing the number of rounds required
for security.

The pattern of Gimli operations improves upon NORX in three ways. First,
Gimli uses a third input c for a ⊕ b ⊕ ((c ∧ b) � 1), removing the need for a
separate xor operation. Second, Gimli uses only two rotations for three of these
operations; overall Gimli uses 19 instructions on typical vector units, not far
behind the 15 instructions used by three ARX operations. Third, Gimli varies
the 1-bit shift distance, improving diffusion compared to NORX and possibly
even compared to ARX.

We searched through many combinations of possible shift distances (and
rotation distances) in Gimli, applying a simple security model to each combina-
tion. Large shift distances throw away many nonlinear bits and, unsurprisingly,
turned out to be suboptimal. The final Gimli shift distances (2, 1, 3 on three
32-bit words) keep 93.75% of the nonlinear bits.

32-bit words. Taking w = 32 is an obvious choice for 32-bit CPUs. It also
works well on common 64-bit CPUs, since those CPUs have fast instructions
for, e.g., vectorized 32-bit shifts. The 32-bit words can also be split into 16-bit
words (with top and bottom bits, or more efficiently with odd and even bits as
in “interleaved” Keccak software), and further into 8-bit words.

Taking w = 16 or w = 8 would lose speed on 32-bit CPUs that do not have
vectorized 16-bit or 8-bit shifts. Taking w = 64 would interfere with Gimli’s
ability to work within a quarter-state for some time (see below), and we do not
see a compensating advantage.

State size. On common 32-bit ARM microcontrollers, there are 14 easily usable
integer registers, for a total of 448 bits. The 512-bit states in Salsa20, ChaCha,
NORX, etc. produce significant load-store overhead, which Gimli avoids by (1)
limiting its state to 384 bits (three 128-bit vectors), i.e., 12 registers, and (2)
fitting temporary variables into just 2 registers.

Limiting the state to 256 bits would provide some benefit in hardware area,
but would produce considerable slowdowns across platforms to maintain an ac-

6

ceptable level of security. For example, 256-bit sponge-based hashing at a 2100

security level would be able to absorb only 56 message bits (22% of the state)
per permutation call, while 384-bit sponge-based hashing at the same security
level is able to absorb 184 message bits (48% of the state) per permutation call,
presumably gaining more than a factor of 2 in speed, even without accounting
for the diffusion benefits of a larger state. It is also not clear whether a 256-bit
state size leaves an adequate long-term security margin against multi-user at-
tacks (see [16]) and quantum attacks; more complicated modes can achieve high
security levels using small states, but this damages efficiency.

One of the SHA-3 requirements was 2512 preimage security. For sponge-based
hashing this requires at least a 1024-bit permutation, or an even larger permu-
tation for efficiency, such as Keccak’s 1600-bit permutation. This requirement
was based entirely on matching SHA-512, not on any credible assertion that 2512

preimage security will ever have any real-world value. Gimli is designed for use-
ful security levels, so it is much more comparable to, e.g., 512-bit Salsa20, 400-bit
Keccak-f [400] (which reduces Keccak’s 64-bit lanes to 16-bit lanes), 384-bit C-
Quark [3], 384-bit SPONGENT-256/256/128 [12], 320-bit Ascon, and 288-bit
Photon-256/32/32 [17].

Working locally. On the popular low-end ARM Cortex-M0 microcontroller,
many instructions can access only 8 of the 14 32-bit registers. Working with
more than 256 bits at a time incurs overhead to move data around. Similar
comments apply to the 8-bit AVR microcontroller.

Gimli performs many operations on the left half of its state, and separately
performs many operations on the right half of its state. Each half fits into 6
32-bit registers, plus 2 temporary registers.

It is of course necessary for these 192-bit halves to communicate, but this
communication does not need to be frequent. The only communication is Big-
Swap, which happens only once every 4 rounds, so we can work on the same
half-state for several rounds.

At a smaller scale, Gimli performs a considerable number of operations
within each column (i.e., each 96-bit quarter-state) before the columns com-
municate. Communication among columns happens only once every 2 rounds.
This locality is intended to reduce wire lengths in unrolled hardware, allowing
faster clocks.

Parallelization. Like Keccak and Ascon, Gimli has degree just 2 in each round.
This means that, during an update of the entire state, all nonlinear operations are
carried out in parallel: a nonlinear operation never feeds into another nonlinear
operation.

This feature is often advertised as simplifying and accelerating masked im-
plementations. The parallelism also has important performance benefits even if
side channels are not a concern.

Consider, for example, software using 128-bit vector instructions to apply
Salsa20 to a single 512-bit block. Salsa20 chains its 128-bit vector operations: an
addition feeds into a rotation, which feeds into an xor, which feeds into the next
addition, etc. The only parallelism possible here is between the two shifts inside

7

a shift-shift-or implementation of the rotation. A typical vector unit allows more
instructions to be carried out in parallel, but Salsa20 is unable to take advantage
of this. Similar comments apply to BLAKE [4] and ChaCha20.

The basic NORX operation a ⊕ b ⊕ ((a ∧ b) � 1) is only slightly better,
depth 3 for 4 instructions. Gimli has much more internal parallelism: on average
approximately 4 instructions are ready at each moment.

Parallel operations provide slightly slower forward diffusion than serial op-
erations, but experience shows that this costs only a small number of rounds.
Gimli has very fast backward diffusion.

Compactness. Gimli is intentionally very simple, repeating a small number
of operations again and again. This gives implementors the flexibility to create
very small “rolled” designs, using very little area in hardware and very little code
in software; or to unroll for higher throughput.

This simplicity creates three directions of symmetries that need to be broken.
Gimli is like Keccak in that it breaks all symmetries within the permutation,
rather than (as in Salsa, ChaCha, etc.) relying on attention from the mode
designer to break symmetries. Gimli puts more effort than Keccak into reducing
the total cost of asymmetric operations.

The first symmetry is that rotating each input word by any constant number
of bits produces a near-rotation of each output word by the same number of
bits; “near” accounts for a few bits lost from shifts. Occasionally (after rounds
24, 20, 16, etc.) Gimli adds an asymmetric constant to entry 0 of the first row.
This constant has many bits set (it is essentially the golden ratio 0x9e3779b9,
as used in TEA), and is not close to any of its nontrivial rotations (never fewer
than 12 bits different), so a trail applying this symmetry would have to cancel
many bits.

The second symmetry is that each round is identical, potentially allowing
slide attacks. This is much more of an issue for small blocks (as in, e.g., 128-
bit block ciphers) than for large blocks (such as Gimli’s 384-bit block), but
Gimli nevertheless incorporates the round number r into the constant mentioned
above. Specifically, the constant is 0x93e77900 ⊕ r. The implementor can also
use 0x93e77900+r since r fits into a byte, or can have r count from 0x93e77918

down to 0x93e77900.
The third symmetry is that permuting the four input columns means permut-

ing the four output columns; this is a direct effect of vectorization. Occasionally
(after rounds 24, 20, 16, etc.) Gimli swaps entries 0, 1 in the first row, and swaps
entries 2, 3 in the first row, reducing the symmetry group to 8 permutations (ex-
changing or preserving 0, 1, exchanging or preserving 2, 3, and exchanging or
preserving the halves). Occasionally (after rounds 22, 18, 14, etc.) Gimli swaps
the two halves of the first row, reducing the symmetry group to 4 permutations
(0123, 1032, 2301, 3210). The same constant distinguishes these 4 permutations.

We also explored linear layers slightly more expensive than these swaps. We
carried out fairly detailed security evaluations of Gimli-MDS (replacing a, b, c, d
with s ⊕ a, s ⊕ b, s ⊕ c, s ⊕ d where s = a ⊕ b ⊕ c ⊕ d), Gimli-SPARX (as in
[14]), and Gimli-Shuffle (with the swaps as above). We found some advantages

8

in Gimli-MDS and Gimli-SPARX in proving security against various types of
attacks, but it is not clear that these advantages outweigh the costs, so we opted
for Gimli-Shuffle as the final Gimli.

Inside the SP-box: choice of words and rotation distances. The bottom
bit of the T-function adds y to z and then adds x to y. We could instead add
x to y and then add the new y to z, but this would be contrary to our goal of
parallelism; see above.

After the T-function we exchange the roles of x and z, so that the next
SP-box provides diffusion in the opposite direction. The shifted parts of the T-
function already provide diffusion in both directions, but this diffusion is not
quite as fast, since the shifts throw away some bits.

We originally described rotations as taking place after the T-function, but
this is equivalent to rotation taking place before the T-function (except for a ro-
tation of the input and output of the entire permutation). Starting with rotation
saves some instructions outside the main loop on platforms with rotated-input
instructions; also, some applications reuse portions of inputs across multiple
permutation calls, and can cache rotations of those portions. These are minor
advantages but there do not seem to be any disadvantages.

Rotating all three of x, y, z adds noticeable software cost and is almost equiv-
alent to rotating only two: it merely affects which bits are discarded by shifts.
So, as mentioned above, we rotate only two. In a preliminary Gimli design we
rotated y and z, but we found that rotating x and y improves security by 1
round against our best integral attacks; see below.

This leaves two choices: the rotation distance for x and the rotation distance
for y. We found very little security difference between, e.g., (24, 9) and (26, 9),
while there is a noticeable speed difference on various software platforms. We
decided against “aligned” options such as (24, 8) and (16, 8), although it seems
possible that any security difference would be outweighed by further speedups.

4 Security analysis

4.1 Diffusion

As a first step in understanding the security of reduced-round Gimli, we consider
the following two minimum security requirements:

– the number of rounds required to show the avalanche effect for each bit of
the state.

– the number of rounds required to reach a state full of 1 starting from a state
where only one bit is set. In this experiment we replace bitwise exclusive or
(XOR) and bitwise logical and by a bitwise logical or.

Given the input size of the SP-box, we verify the first criterion with the
Monte-Carlo method. We generate random states and flip each bit once. We
can then count the number of bits flipped after a defined number of rounds.

9

Experiments show that 10 rounds are required for each bit to change on the
average half of the state (see Table 5 in Appendix F).

As for the second criterion, we replace the T-function in the SP-box by the
following operations:

x′ ← x ∨ (z � 1) ∨ ((y ∨ z)� 2)

y′ ← y ∨ x ∨ ((x ∨ z)� 1)

z′ ← z ∨ y ∨ ((x ∨ y)� 3)

By testing the 384 bit positions, we prove that a maximum of 8 rounds are
required to fill up the state.

4.2 Differential Cryptanalysis

To study Gimli’s resistance against differential cryptanalysis we use the same
method as has been used for NORX [1] and Simon [20] by using a tool-assisted
approach to find the optimal differential trails for a reduced number of rounds.
In order to enable this approach we first need to define the valid transitions of
differences through the Gimli round function.

The non-linear part of the round function shares similarities with the NORX
round function, but we need to take into account the dependencies between the
three lanes to get a correct description of the differential behavior of Gimli. In
order to simplify the description we will look at the following function which
only covers the non-linear part of Gimli:

x′ ← y ∧ z
f(x, y, z) : y′ ← x ∨ z

z′ ← x ∧ y
(1)

where x, y, z ∈ W. For the Gimli SP-box we only have to apply some additional
linear functions which behave deterministically with respect to the propagation
of differences. In the following we denote (∆x, ∆y, ∆z) as the input difference
and (∆x′ , ∆y′ , ∆z′) as the output difference. The differential probability of a
differential trail T is denoted as DP(T) and we define the weight of a trail as
w = − log2(DP(T)).

Lemma 1 (Differential Probability). For each possible differential through
f it holds that

∆x′ ∧ (∆y ∨∆z) = 0

∆y′ ∧ (∆x ∨∆z) = 0

∆z′ ∧ (∆x ∨∆y) = 0

(∆x ∧∆y ∧ ¬∆z) ∧ ¬(∆x′ ⊕∆y′) = 0

(∆x ∧ ¬∆y ∧∆z) ∧ (∆x′ ⊕∆z′) = 0

(¬∆x ∧∆y ∧∆z) ∧ ¬(∆x′ ⊕∆y′) = 0

(∆x ∧∆y ∧∆z) ∧ ¬(∆x′ ⊕∆y′ ⊕∆z′) = 0.

(2)

10

Table 1: The optimal differential trails for a reduced number of
rounds of Gimli.

Rounds 1 2 3 4 5 6 7 8

Weight 0 0 2 6 12 22 36 52

Table 2: The optimal differential trails when expanding from a
single bit difference in any of the words.

Rounds 1 2 3 4 5 6 7 8 9

r = 0 0 2 6 14 28 58 102
r = 1 0 0 2 6 12 26 48 88
r = 2 - 0 2 6 12 22 36 66 110
r = 3 - - 8 10 14 32 36 52 74
r = 4 - - - 26 28 32 38 52 74

The differential probability of (∆x, ∆y, ∆z)
f−→ (∆x′ , ∆y′ , ∆z′) is given by

DP((∆x, ∆y, ∆z)
f−→ (∆x′ , ∆y′ , ∆z′)) = 2−2·hw(∆x∨∆y∨∆z). (3)

A proof for this lemma is given in Appendix G. We can then use these condi-
tions together with the linear transformations to describe how differences propa-
gate through the Gimli round functions. For computing the differential probabil-
ity over multiple rounds we assume that the rounds are independent. Using this
model we then search for the optimal differential trails with the SAT/SMT-based
approach [1,20].

We are able to find the optimal differential trails up to 8 rounds of Gimli
(see Table 1). After more rounds this approach failed to find any solution in a
reasonable amount of time. The 8-round differential trail is given in Table 6 in
Appendix G.

In order to cover more rounds of Gimli we restrict our search to a good
starting difference and expand it in both directions. As the probability of a
differential trail quickly decreases with the Hamming weight of the state it is
likely that any high probability trail will contain some rounds with very low
Hamming weight. In Table 2, we show the results when starting from a single
bit difference in any of the words. Interestingly, the best trails match the optimal
differential trails up to 8 rounds given in Table 1.

Using the optimal differential for 7 rounds we can construct a 12-round dif-
ferential trail with probability 2−188 (see Table 7 in Appendix G). If we look at
the corresponding differential, this means we do not care about any intermedi-
ate differences; many trails might contribute to the probability. In the case of
our 12-round trail we find 15800 trails with probability 2−188 and 20933 trails
with probability 2−190 contributing to the differential. Therefore, we estimate
the probability of the differential to be ≈ 2−158.63.

11

4.3 Algebraic Degree and Integral Attacks

Since the algebraic degree of the round function of Gimli is only 2, it is im-
portant how the degree increases by iterating the round function. We use the
(bit-based) division property [28,29] to evaluate the algebraic degree, and the
propagation search is assisted by mixed integer linear programming (MILP) [32].
See Appendix H.

We first evaluated the upper bound of the algebraic degree on r-round Gimli,
and the result is summarized as follows.

rounds 1 2 3 4 5 6 7 8 9
2 4 8 16 29 52 95 163 266

When we focus on only one bit in the output of r-round Gimli, the increase
of the degree is slower than the general case. Especially, the algebraic degree of
z0 in each 96-bit value is lower than other bits because z0 in rth round is the
same as x6 in (r−1)th round. All bits except for z0 is mixed by at least two bits
in (r−1)th round. Therefore, we next evaluate the upper bound of the algebraic
degree on four z0 in r-round Gimli, and the result is summarized as follows.

rounds 1 2 3 4 5 6 7 8 9 10 11
1 2 4 8 15 27 48 88 153 254 367

In integral attacks, a part of the input is chosen as active bits and the other
part is chosen as constant bits. Then, we have to evaluate the algebraic degree
involving active bits. From the structure of the round function of Gimli, the
algebraic degree will be small when 96 entire bits in each column are active.
We evaluated two cases: the algebraic degree involving si,0 is evaluated in the
first case, and the algebraic degree involving si,0 and si,1 is evaluated in the
second case. Moreover, all z0 in 4 columns are evaluated, and the following table
summarizes the upper bound of the algebraic degree in the weakest column in
every round.

rounds 3 4 5 6 7 8 9 10 11 12 13 14
active 0 0 0 4 8 15 28 58 89 95 96 96 96

columns 0 and 1 0 0 7 15 30 47 97 153 190 191 191 192

The above result implies that Gimli has 11-round integral distinguisher when
96 bits in si,0 are active and the others are constant. Moreover, when 192 bits in
si,0 and si,1 are active and the others are constant, Gimli has 13-round integral
distinguisher.

5 Implementations

This section reports the performance of Gimli for several target platforms. See
Tables 3 and 4 for cross-platform overviews of hardware and software perfor-
mance.

12

5.1 FPGA & ASIC

We designed and evaluated three main architectures to address different hard-
ware applications. These different architectures are a tradeoff between resources,
maximum operational frequency and number of cycles necessary to perform the
full permutation. Even with these differences, all 3 architectures share a common
simple communication interface which can be expanded to offer different opera-
tion modes. All this was done in VHDL and tested in ModelSim for behavioral
results, synthesized and tested for FPGAs with Xilinx ISE 14.7. In case of ASICs
this was done through Synopsis Ultra and Simple Compiler with 180nm UMC
L180, and Encounter RTL Compiler with ST 28nm FDSOI technology.

The first architecture, depicted in Figure 4, performs a certain number of
rounds in one clock cycle and stores the output in the same buffer as the input.
The number of rounds it can perform in one cycle is chosen before the synthesis
process and can be 1, 2, 3, 4, 6, or 8. In case of 12 or 24 combinational rounds,
optimized architectures for these cases were done, in order to have better results.
The rounds themselves are computed as shown in Figure 5. In every round there
is one SP-box application on the whole state, followed by the linear layer. In the
linear layer, the operation can be a small swap with round constant addition, a
big swap, or no operation, which are chosen according to the two least significant
bits of the round number. The round number starts from 24 and is decremented
by one in each combinational round block.

input_output
buffer

combinational rounds

384

384

8

8

input
output round

number

5

5

Fig. 4: Round-based architecture

Besides the round and the optimized half and full combinational architec-
tures, the other one is a serial-based architecture illustrated in Figure 6. The
serial-based architecture performs one SP-box application per cycle, through a
circular-shift-based architecture, therefore taking in total 4 cycles. In case of the
linear layer, it is still executed in one cycle in parallel. The reason of not being
done in a serial based manner, is because the parallel version cost is very low.

All hardware results are shown in Table 3. In case of FPGAs the lowest
latency is the one with 4 combinational rounds in one cycle, and the one with best
Resources×Time/State is the one with 2 combinational rounds. For ASICs the
results change as the lowest latency is the one with full combinational setting, and
the one with best Resources×Time/State is the one with 8 combinational rounds
for 180nm and 4 combinational rounds for 28nm. This difference illustrates that

13

Parallel2SP-box

-1

Big2swap Small2swap
2222and
round2const.

384 5

384 5

state round_number

combinational
round

combinational2round

new_state new_round_number

384 5
new_state new_round_number

combinational2round

384 5

new_state new_round_number

combinational
rounds

1,2,3,4,
6,82or212

Fig. 5: Combinational round in round-based architecture

input_output
buffer

8

8

input
output

round
number

SP
box32 32

Big5swap Small5swap
5555and
round5const.

384

384
-1

5
5

Fig. 6: Serial-based architecture

each technology can give different results, making it difficult to compare results
on different technology.

Hardware variants that do 2 or 4 rounds in one cycle appear to be attractive
choices, depending on the application scenario. The serial version needs 4.5 times
more cycles than the 1-round version, while saving around 28% of the gate
equivalents (GE) in the 28nm ASIC technology, and less in the other ASIC
technology and FPGA. If resource constraints are extreme enough to justify the
serial version then it would be useful to develop a new version optimized for the
target technology, for better results.

To compare the Gimli permutation to other permutations in the literature,
we synthesized all permutations with similar half-combinational architectures,

14

taking exactly 2 cycles to perform a permutation. The permutations that were
chosen for comparison were selected close to Gimli in terms of size, even though
in the end the final metric was divided by the permutation size to try to “nor-
malize” the results.

The best results in Resources×Time/State are from 24-round Gimli and 12-
round Ascon-128, with Ascon slightly more efficient in the FPGA results and
Gimli more efficient in the ASIC results. Both permutation in all 3 technologies
had very similar results, while Keccak-f [400] is worse in all 3 technologies. The
permutations SPONGENT-256/256/128, Photon-256/32/32 and C-Quark have
a much higher resource utilization in all technologies. This is because they were
designed to work with little resources in exchange for a very high response time
(e.g., SPONGENT is reported to use 2641 GE for 18720 cycles, or 5011 GE for
195 cycles), therefore changing the resource utilization from logic gates to time.
Gimli and Ascon are the most efficient in the sense of offering a similar security
level to SPONGENT, Photon and C-Quark, with much lower product of time
and logic resources.

5.2 SP-box in assembly

We now turn our attention to software. Subsequent subsections explain how to
optimize Gimli for various illustrative examples of CPUs. As a starting point,
we show in Listing 5.2 how to apply the Gimli SP-box to three 32-bit registers
x, y, z using just two temporary registers u, v.

Rotate
x ← x ≪ 24
y ← y ≪ 9
u ← x
.
.

Compute x
v ← z � 1
x ← y ∧ z
x ← x � 2
x ← x ⊕ v
x ← x ⊕ u

Compute y
v ← y
y ← u ∨ z
y ← y � 1
y ← y ⊕ u
y ← y ⊕ v

Compute z
u ← u ∧ v
u ← u � 3
v ← v ⊕ u
z ← v ⊕ z
.

Listing 5.2: SP-box assembly instructions

5.3 8-bit microcontroller: AVR ATmega

The AVR architecture provides 32 8-bit registers (256 bits). This does not allow
the full 384-bit Gimli state to stay in the registers: we are forced to use loads
and stores in the main loop.

To minimize the overhead for loads and stores, we work on a half-state (two
columns) for as long as possible. For example, we focus on the left half-state for
rounds 21, 20, 19, 18, 17, 16, 15, 14. Before doing this, we focus on the right
half-state through the end of round 18, so that the Big-Swap at the end of round
18 can feed 2 words (64 bits) from the right half-state into the left half-state.
See Appendix C for the exact order of computation.

A half-state requires a total of 24 registers (6 words), leaving us with 8
registers (2 words) to use as temporaries. We can therefore use the same order

15

Table 3: Hardware results for Gimli and competitors.
Gates Equivalent(GE). Slice(S). LUT(L). Flip-Flop(F).
* Could not finish the place and route.

Perm. State Version Cycles Resources Period Time Res.×Time/
size (ns) (ns) State

FPGA – Xilinx Spartan 6 LX75
Ascon 320 2 732 S(2700 L+325 F) 34.570 70 158.2
Gimli 384 12 2 1224 S(4398 L+389 F) 27.597 56 175.9
Keccak 400 2 1520 S(5555 L+405 F) 77.281 155 587.3
C-quark* 384 2 2630 S(9718 L+389 F) 98.680 198 1351.7
Photon 288 2 2774 S(9430 L+293 F) 74.587 150 1436.8
Spongent* 384 2 7763 S(19419 L+389 F) 292.160 585 11812.7
Gimli 384 24 1 2395 S(8769 L+385 F) 56.496 57 352.4
Gimli 384 8 3 831 S(2924 L+390 F) 24.531 74 159.3
Gimli 384 6 4 646 S(2398 L+390 F) 18.669 75 125.6
Gimli 384 4 6 415 S(1486 L+391 F) 8.565 52 55.5
Gimli 384 3 8 428 S(1587 L+393 F) 10.908 88 97.3
Gimli 384 2 12 221 S(815 L+392 F) 5.569 67 38.5
Gimli 384 1 24 178 S(587 L+394 F) 4.941 119 55.0
Gimli 384 Serial 108 139 S(492 L+397 F) 3.996 432 156.2

28nm ASIC – ST 28nm FDSOI technology
Gimli 384 12 2 35452GE 2.2672 5 418.6
Ascon 320 2 32476GE 2.8457 6 577.6
Keccak 400 2 55683GE 5.6117 12 1562.4
C-quark 384 2 111852GE 9.9962 20 5823.4
Photon 288 2 296420GE 10.0000 20 20584.7
Spongent 384 2 1432047GE 12.0684 25 90013.1
Gimli 384 24 1 66205GE 4.2870 5 739.1
Gimli 384 8 3 25224GE 1.5921 5 313.7
Gimli 384 6 4 21675GE 2.1315 9 481.2
Gimli 384 4 6 14999GE 1.0549 7 247.2
Gimli 384 3 8 14808GE 2.0119 17 620.6
Gimli 384 2 12 10398GE 1.0598 13 344.4
Gimli 384 1 24 8097GE 1.0642 26 538.5
Gimli 384 Serial 108 5843GE 1.5352 166 2522.7

180nm ASIC – UMC L180
Gimli 384 12 2 26685 9.9500 20 1382.9
Ascon 320 2 23381 11.4400 23 1671.7
Keccak 400 2 37102 22.4300 45 4161.0
C-quark 384 2 62190 37.2400 75 12062.1
Photon 288 2 163656 99.5900 200 113183.8
Spongent 384 2 234556 99.9900 200 122151.9
Gimli 384 24 1 53686 17.4500 18 2439.6
Gimli 384 8 3 19393 7.9100 24 1198.4
Gimli 384 6 4 15886 12.5100 51 2070.0
Gimli 384 4 6 11008 10.1700 62 1749.1
Gimli 384 3 8 10106 10.0500 81 2115.8
Gimli 384 2 12 7112 15.2000 183 3377.8
Gimli 384 1 24 5314 9.5200 229 3161.4
Gimli 384 Serial 108 3846 11.2300 1213 12146.0

of operations as defined in Listing 5.2 for each SP-box. In a stretch of 8 rounds
on a half-state (16 SP-boxes) there are just a few loads and stores.

We provide two implementations of this construction. One is fully unrolled
and optimized for speed: it runs in just 10 264 cycles, using 19 218 bytes of ROM.
The other is optimized for size: it uses just 778 bytes of ROM and runs in 23 670
cycles. Each implementation requires about the same amount of stack, namely
45 bytes.

16

5.4 32-bit low-end embedded microcontroller: ARM Cortex-M0

ARM Cortex-M0 comes with 14 32-bit registers. However orr, eor, and-like
instructions can only be used on the lower registers (r0 to r7). This forces us to
use the same computation layout as in the AVR implementation. We split the
state into two halves: one in the lower registers, one in the higher ones. Then we
can operate on each during multiple rounds before exchanging them.

5.5 32-bit high-end embedded microcontroller: ARM Cortex-M3

We focus here on the ARM Cortex-M3 microprocessor, which implements the
ARMv7-M architecture. There is a higher-end microcontroller, the Cortex-M4,
implementing the ARMv7E-M architecture; but our Gimli software does not
make use of any of the DSP, (optional) floating-point, or additional saturated
instructions added in this architecture.

The Cortex-M3 features 16 32-bit registers r0 to r15, with one register used
as program counter and one as stack pointer, leaving 14 registers for free use. As
the Gimli state fits into 12 registers and we need only 2 registers for temporary
values, we compute the Gimli permutation without requiring any load or store
instructions beyond the initial loads of the input and the final stores of the
output.

One particularly interesting feature of various ARM instruction sets includ-
ing the ARMv7-M instruction set are free shifts and rotates as part of arithmetic
instructions. More specifically, all bit-logical operations allow one of the inputs
to be shifted or rotated by an arbitrary fixed distance for free. This was used,
e.g., in [26, Sec. 3.1] to eliminate all rotation instructions in an unrolled imple-
mentation of BLAKE. For Gimli this feature gives us the non-cyclic shifts by
1, 2, 3 and the rotation by 9 for free. We have not found a way to eliminate
the rotation by 24. Each SP-box evaluation thus uses 10 instructions: namely, 9
bit-logical operations (6 xors, 2 ands, and 1 or) and one rotation.

From these considerations we can derive a lower bound on the amount of
cycles required for the Gimli permutation: Each round performs 4 SP-box eval-
uations (one on each of the columns of the state), each using 10 instructions,
for a total of 40 instructions. In 24 rounds we thus end up with 24 · 40 = 960
instructions from the SP-boxes, plus 6 xors for the addition of round constants.
This gives us a lower bound of 966 cycles for the Gimli permutation, assuming
an unrolled implementation in which all Big-Swap and Small-Swap operations
are handled through (free) renaming of registers. Our implementation for the
M3 uses such a fully unrolled approach and takes 1 047 cycles.

5.6 32-bit smartphone CPU: ARM Cortex-A8 with NEON

We focus on a Cortex-A8 for comparability with the highly optimized Salsa20
results of [9]. As a future optimization target we suggest a newer Cortex-A7 CPU
core, which according to ARM has appeared in more than a billion chips. Since
our Gimli software uses almost purely vector instructions (unlike [9], which

17

mixes integer instructions with vector instructions), we expect it to perform
similarly on the Cortex-A7 and the Cortex-A8.

The Gimli state fits naturally into three 128-bit NEON vector registers, one
row per vector. The T-function inside the Gimli SP-box is an obvious match for
the NEON vector instructions: two ANDs, one OR, four shifts, and six XORs.
The rotation by 9 uses three vector instructions. The rotation by 24 uses two
64-bit vector instructions, namely permutations of byte positions (vtbl) using
a precomputed 8-byte permutation. The four SP-boxes in a round use 18 vector
instructions overall.

A straightforward 4-round-unrolled assembly implementation uses just 77
instructions for the main loop: 72 for the SP-boxes, 1 (vrev64.i32) for Small-
Swap, 1 to load the round constant from a precomputed 96-byte table, 1 to xor
the round constant, and 2 for loop control (which would be reduced by further
unrolling). We handle Big-Swap implicitly through the choice of registers in two
vtbl instructions, rather than using an extra vswp instruction. Outside the main
loop we use just 9 instructions, plus 3 instructions to collect timing information
and 20 bytes of alignment, for 480 bytes of code overall.

The lower bound for arithmetic is 65 · 6 = 390 cycles: 16 arithmetic cycles
for each of the 24 rounds, and 6 extra for the round constants. The Cortex-A8
can overlap permutations with arithmetic. With moderate instruction-scheduling
effort we achieved 419 cycles, just 8.73 cycles/byte. For comparison, [9] says that
a “straightforward NEON implementation” of the inner loop of Salsa20 “cannot
do better than 11.25 cycles/byte” (720 cycles for 64 bytes), plus approximately
1 cycle/byte overhead. [9] does better than this only by handling multiple blocks
in parallel: 880 cycles for 192 bytes, plus the same overhead.

5.7 64-bit server CPU: Intel Haswell

Intel’s server/desktop/laptop CPUs have had 128-bit vectorized integer instruc-
tions (“SSE2”) starting with the Pentium 4 in 2001, and 256-bit vectorized integer
instructions (“AVX2”) starting with the Haswell in 2013. In each case the vector
registers appeared in CPUs a few years earlier supporting vectorized floating-
point instructions (“SSE” and “AVX”), including full-width bitwise logic opera-
tions, but not including shifts. The vectorized integer instructions include shifts
but not rotations. Intel has experimented with 512-bit vector instructions in co-
processors such as Knights Corner and Knights Landing, and has announced a
512-bit instruction set that includes vectorized rotations and three-input logical
operations, but we focus here on CPUs that are commonly available from Intel
and AMD today.

Our implementation strategy for these CPUs is similar to our implementa-
tion strategy for NEON: again the state fits naturally into three 128-bit vector
registers, with Gimli instructions easily translating into the CPU’s vector in-
structions. The cycle counts on Haswell are better than the cycle counts for
the Cortex-A8 since each Haswell core has multiple vector units. We save an-
other factor of almost 2 for 2-way-parallel modes, since 2 parallel copies of the

18

state fit naturally into three 256-bit vector registers. As with the Cortex-A8, we
outperform Salsa20 and ChaCha20 for short messages.

References

1. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Analysis of
NORX: investigating differential and rotational properties. In Diego F. Aranha
and Alfred Menezes, editors, Progress in Cryptology – LATINCRYPT 2014, vol-
ume 8895 of LNCS, pages 306–324. Springer, 2014. https://eprint.iacr.org/
2014/317.pdf. 10, 11

2. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX: paral-
lel and scalable AEAD. In Miroslaw Kutylowski and Jaideep Vaidya, editors,
Computer Security - ESORICS 2014 - 19th European Symposium on Research in
Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II,
volume 8713 of Lecture Notes in Computer Science, pages 19–36. Springer, 2014.
6

3. Jean-Philippe Aumasson, Simon Knellwolf, and Willi Meier. Heavy Quark for
secure AEAD. In DIAC 2012: Directions in Authenticated Ciphers, 2012. https:
//131002.net/data/papers/AKM12.pdf. 7

4. Jean-Philippe Aumasson, Willi Meier, Raphael C.-W. Phan, and Luca Henzen.
The Hash Function BLAKE. Information Security and Cryptography. Springer,
2014. 8

5. Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoit Gérard, Zheng Gong, Tim
Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos,
Thomas Pöppelmann, Francesco Regazzoni, François-Xavier Standaert, Gilles Van
Assche, Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and Ingo von Mau-
rich. Compact implementation and performance evaluation of hash functions
in ATtiny devices. Cryptology ePrint Archive: Report 2012/507, 2012. https:
//eprint.iacr.org/2012/507/. 20

6. Daniel J. Bernstein. ChaCha, a variant of Salsa20. SASC 2008: The State of the
Art of Stream Ciphers, 2008. https://cr.yp.to/chacha/chacha-20080128.pdf.
2

7. Daniel J. Bernstein. The Salsa20 family of stream ciphers. In Matthew J. B.
Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM
Finalists, volume 4986 of LNCS, pages 84–97. Springer, 2008. https://cr.yp.to/
snuffle/salsafamily-20071225.pdf. 2

8. Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of crypto-
graphic systems. https://bench.cr.yp.to (accessed 2017-06-25). 20

9. Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems
– CHES 2012, volume 7428 of LNCS, pages 320–339. Springer, 2012. https:
//cryptojedi.org/papers/#neoncrypto. 2, 17, 18

10. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Crypto-
graphic sponge functions, January 2011. http://sponge.noekeon.org/CSF-0.1.
pdf. 20

11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Advances in Cryptology – EUROCRYPT 2013, pages 313–314, 2013. http:
//keccak.noekeon.org/Keccak-slides-at-Eurocrypt-May2013.pdf. 2

19

https://eprint.iacr.org/2014/317.pdf
https://eprint.iacr.org/2014/317.pdf
https://131002.net/data/papers/AKM12.pdf
https://131002.net/data/papers/AKM12.pdf
https://eprint.iacr.org/2012/507/
https://eprint.iacr.org/2012/507/
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/snuffle/salsafamily-20071225.pdf
https://cr.yp.to/snuffle/salsafamily-20071225.pdf
https://bench.cr.yp.to
https://cryptojedi.org/papers/#neoncrypto
https://cryptojedi.org/papers/#neoncrypto
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org/Keccak-slides-at-Eurocrypt-May2013.pdf
http://keccak.noekeon.org/Keccak-slides-at-Eurocrypt-May2013.pdf

Table 4: Cross-platform software performance comparison of
various permutations. “Hashing 500 bytes”: AVR cycles
for comparability with [5]. “Permutation”: Cycles/byte
for permutation on all platforms. AEAD timings from
[8] are scaled to estimate permutaton timings.

Hashing 500 bytes Cycles ROM Bytes RAM Bytes
AVR ATmega

Spongent [5] 25 464 000 364 101
Keccak-f [400] [5] 1 313 000 608 96
Gimli-Hashh (this paper) small 805 110 778 44
Gimli-Hashh (this paper) fast 362 712 19 218 45

Permutation Cycles/B ROM Bytes RAM Bytes
AVR ATmega

Gimli (this paper) small 413 778 44
ChaCha20 [31] 238 – b 132
Salsa20 [19] 216 1 750 266
Gimli (this paper) fast 213 19 218 45
AES-128 [22] small 171 1 570 – b

AES-128 [22] fast 155 3 098 – b

ARM Cortex-M0
Gimli (this paper) 49 4 730 64
ChaCha20 [23] 40 – b – b

Chaskey [21] 17 414 – b

ARM Cortex-M3/M4
Spongent [12,24] (c-ref, our measurement) 129 486 1 180 – b

Ascon [15] (opt32, our measurement) 196 – b – b

Keccak-f [400] [30] 106 540 – b

AES-128 [25] 34 3 216 72
Gimli (this paper) 21 3 972 44
ChaCha20 [18] 13 2 868 8
Chaskey [21] 7 908 – b

ARM Cortex-A8
Keccak-f [400] (KetjeSR) [8] 37.52 – b – b

Ascon [8] 25.54 – b – b

AES-128 [8] many blocks 19.25 – b – b

Gimli (this paper) single block 8.73 480 – b

ChaCha20 [8] multiple blocks 6.25 – b – b

Salsa20 [8] multiple blocks 5.48 – b – b

Intel Haswell
Gimli (this paper) single block 4.46 252 – b

NORX-32-4-1 [8] single block 2.84 – b – b

Gimli (this paper) two blocks 2.33 724 – b

Gimli (this paper) four blocks 1.77 1227 – b

Salsa20 [8] eight blocks 1.38 – b – b

ChaCha20 [8] eight blocks 1.20 – b – b

AES-128 [8] many blocks 0.85 – b – b

b no data
h Sponge construction[10] with c = 256 bits, r = 128 bits and 256 bits of output.

20

12. Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. SPONGENT: The design space of lightweight crypto-
graphic hashing, 2011. https://eprint.iacr.org/2011/697. 7, 20

13. Elie Bursztein. Speeding up and strengthening HTTPS connections for
Chrome on Android, 2014. https://security.googleblog.com/2014/04/
speeding-up-and-strengthening-https.html. 2

14. Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl,
and Alex Biryukov. Design strategies for ARX with provable bounds: SPARX and
LAX. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, volume 10031 of LNCS, pages 484–513. Springer, 2016. https:
//eprint.iacr.org/2016/984.pdf. 8

15. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to the CAESAR competition: https://competitions.
cr.yp.to/round3/asconv12.pdf, 2016. 4, 20

16. Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user colli-
sions: Applications to discrete logarithm, Even-Mansour and PRINCE. In Palash
Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, vol-
ume 8873 of LNCS, pages 420–438. Springer, 2014. https://eprint.iacr.org/
2013/761.pdf. 7

17. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In Phillip Rogaway, editor, Advances in Cryptology
- CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Sci-
ence, pages 222–239. Springer, 2011. 7

18. Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. ARMed SPHINCS – com-
puting a 41KB signature in 16KB of RAM. In Giuseppe Persiano and Bo-Yin
Yang, editors, Public Key Cryptography – PKC 2016, volume 9614 of LNCS,
pages 446–470. Springer, 2016. Document ID: c7ea17f606835ab4368235a464e1f9f6,
https://cryptojedi.org/papers/#armedsphincs. 20

19. Michael Hutter and Peter Schwabe. NaCl on 8-bit AVR microcontrollers.
In Amr Youssef and Abderrahmane Nitaj, editors, Progress in Cryptology –
AFRICACRYPT 2013, volume 7918 of LNCS, pages 156–172. Springer, 2013.
https://cryptojedi.org/papers/#avrnacl. 20

20. Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
block cipher family. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology – CRYPTO 2015, volume 9215 of LNCS, pages 161–185. Springer,
2015. https://eprint.iacr.org/2015/145.pdf. 10, 11

21. Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Pre-
neel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm for 32-bit
microcontrollers. volume 8781 of LNCS, pages 306–323. Springer, 2014. 2, 20

22. B. Poettering. AVRAES: The AES block cipher on AVR controllers, 2003. http:
//point-at-infinity.org/avraes/. 20

23. Niels Samwel and Moritz Neikes. arm-chacha20, 2016. https://gitlab.science.
ru.nl/mneikes/arm-chacha20/tree/master. 20

24. Erik Schneider and Wouter de Groot. spongent-avr, 2015. https://github.com/
weedegee/spongent-avr. 20

25. Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3
and M4. In Roberto Avanzi and Howard Heys, editors, Selected Areas
in Cryptology – SAC 2016, LNCS. Springer, to appear. Document ID:
9fc0b970660e40c264e50ca389dacd49, https://cryptojedi.org/papers/#aesarm.
20

21

https://eprint.iacr.org/2011/697
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://eprint.iacr.org/2016/984.pdf
https://eprint.iacr.org/2016/984.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://eprint.iacr.org/2013/761.pdf
https://eprint.iacr.org/2013/761.pdf
https://cryptojedi.org/papers/#armedsphincs
https://cryptojedi.org/papers/#avrnacl
https://eprint.iacr.org/2015/145.pdf
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://github.com/weedegee/spongent-avr
https://github.com/weedegee/spongent-avr
https://cryptojedi.org/papers/#aesarm

26. Peter Schwabe, Bo-Yin Yang, and Shang-Yi Yang. SHA-3 on ARM11 proces-
sors. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptology
– AFRICACRYPT 2012, volume 7374 of LNCS, pages 324–341. Springer, 2012.
https://cryptojedi.org/papers/#sha3arm. 17

27. Nick Sullivan. Do the ChaCha: better mobile performance
with cryptography, 2015. https://blog.cloudflare.com/
do-the-chacha-better-mobile-performance-with-cryptography/. 2

28. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
volume 9056 of LNCS, pages 287–314. Springer, 2015. https://eprint.iacr.org/
2015/090.pdf. 12

29. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
Simon family. In Thomas Peyrin, editor, Fast Software Encryption - 23rd Inter-
national Conference, FSE 2016, volume 9783 of LNCS, pages 357–377. Springer,
2016. https://eprint.iacr.org/2016/285.pdf. 12

30. Gilles Van Assche and Ronny Van Keer. Structuring and optimizing Keccak soft-
ware. 2016. http://ccccspeed.win.tue.nl/papers/KeccakSoftware.pdf. 20

31. Rhys Weatherley. Arduinolibs, 2016. https://rweather.github.io/
arduinolibs/crypto.html. 20

32. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Ad-
vances in Cryptology – ASIACRYPT 2016, volume 10031 of LNCS, pages 648–678.
Springer, 2016. https://eprint.iacr.org/2016/857. 12

22

https://cryptojedi.org/papers/#sha3arm
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://eprint.iacr.org/2015/090.pdf
https://eprint.iacr.org/2015/090.pdf
https://eprint.iacr.org/2016/285.pdf
http://ccccspeed.win.tue.nl/papers/KeccakSoftware.pdf
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/arduinolibs/crypto.html
https://eprint.iacr.org/2016/857

A The Gimli permutation in C

#include <stdint.h>

uint32_t rotate(uint32_t x, int bits)
{

if (bits == 0) return x;
return (x << bits) | (x >> (32 - bits));

}

extern void gimli(uint32_t *state)
{

int round;
int column;
uint32_t x;
uint32_t y;
uint32_t z;

for (round = 24; round > 0; --round)
{

for (column = 0; column < 4; ++column)
{

x = rotate(state[column], 24);
y = rotate(state[4 + column], 9);
z = state[8 + column];

state[8 + column] = x ^ (z << 1) ^ ((y&z) << 2);
state[4 + column] = y ^ x ^ ((x|z) << 1);
state[column] = z ^ y ^ ((x&y) << 3);

}

if ((round & 3) == 0) { // small swap: pattern s...s...s... etc.
x = state[0];
state[0] = state[1];
state[1] = x;
x = state[2];
state[2] = state[3];
state[3] = x;

}
if ((round & 3) == 2) { // big swap: pattern ..S...S...S. etc.

x = state[0];
state[0] = state[2];
state[2] = x;
x = state[1];
state[1] = state[3];
state[3] = x;

}

if ((round & 3) == 0) { // add constant: pattern c...c...c... etc.
state[0] ^= (0x9e377900 | round);

}
}

}

23

B The Gimli-Hash in C

#include "gimli_hash.h"

#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define rateInBytes 16

void Gimli_hash(const uint8_t *input,
uint64_t inputByteLen,
uint8_t *output,
uint64_t outputByteLen)

{
uint32_t state[12];
uint8_t* state_8 = (uint8_t*)state;
uint64_t blockSize = 0;
uint64_t i;

// === Initialize the state ===
memset(state, 0, sizeof(state));

// === Absorb all the input blocks ===
while(inputByteLen > 0) {

blockSize = MIN(inputByteLen, rateInBytes);
for(i=0; i<blockSize; i++)

state_8[i] ^= input[i];
input += blockSize;
inputByteLen -= blockSize;

if (blockSize == rateInBytes) {
gimli(state);
blockSize = 0;

}
}

// === Do the padding and switch to the squeezing phase ===
state_8[blockSize] ^= 0x1F;
// Add the second bit of padding
state_8[rateInBytes-1] ^= 0x80;
// Switch to the squeezing phase
gimli(state);

// === Squeeze out all the output blocks ===
while(outputByteLen > 0) {

blockSize = MIN(outputByteLen, rateInBytes);
memcpy(output, state, blockSize);
output += blockSize;
outputByteLen -= blockSize;

if (outputByteLen > 0)
gimli(state);

}
}

24

C Computation order on AVR

1 2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

. . .

Round 21

Round 20

Round 19

Round 18

1. SP-box col. 0
2. SP-box col. 1
swap word s0,0 and s0,1
3. SP-box col. 1
4. SP-box col. 1
5. SP-box col. 0
6. SP-box col. 0
store columns 0,1 ; load columns 2,3
7. SP-box col. 2
8. SP-box col. 3
swap word s0,2 and s0,3
9. SP-box col. 3
10. SP-box col. 3
11. SP-box col. 2
12. SP-box col. 2
push word s0,2, s0,3 ; load word s0,0, s0,1
13. SP-box col. 2
14. SP-box col. 2
15. SP-box col. 3
16. SP-box col. 3
swap word s0,2 and s0,3
17. SP-box col. 3
18. SP-box col. 3
19. SP-box col. 2
20. SP-box col. 2
store columns 2,3 ; load columns 0,1
pop word s0,0, s0,1
21. SP-box col. 0
22. SP-box col. 0
23. SP-box col. 1
24. SP-box col. 1
swap word s0,0 and s0,1
25. SP-box col. 1
26. SP-box col. 1
27. SP-box col. 0
28. SP-box col. 0
push word s0,0, s0,1 ; load word s0,2, s0,3
. . .

Round 24

Round 23

Round 22

Fig. 7: Computation order on AVR

25

D Test Vectors for Gimli-Hash

input: "There’s plenty for the both of us, may the best Dwarf win."
input (bytes):
54686572 65277320 706c656e 74792066 6f722074 68652062 6f746820 6f662075
732c206d 61792074 68652062 65737420 44776172 66207769 6e2e
output:
baf8f9bfcb870a122e9c341f7dc5b27d57f3376ddc875f4aecbaacb89f6b90a4

input: "If anyone was to ask for my opinion, which I note they’re not, I’d say
we were taking the long way around."
input (bytes):
49662061 6e796f6e 65207761 7320746f 2061736b 20666f72 206d7920 6f70696e
696f6e2c 20776869 63682049 206e6f74 65207468 65792772 65206e6f 742c2049
27642073 61792077 65207765 72652074 616b696e 67207468 65206c6f 6e672077
61792061 726f756e 642e
output:
e52dffeb49300acdcf43f33d66ac0349bcc0c2ef54c29de5174143823d748f41

input: "It’s true you don’t see many Dwarf-women. And in fact, they are so
alike in voice and appearance, that they are often mistaken for Dwarf-men. And
this in turn has given rise to the belief that there are no Dwarf-women, and that
Dwarves just spring out of holes in the ground! Which is, of course, ridiculous."
input (bytes):
49742773 20747275 6520796f 7520646f 6e277420 73656520 6d616e79 20447761
72662d77 6f6d656e 2e20416e 6420696e 20666163 742c2074 68657920 61726520
736f2061 6c696b65 20696e20 766f6963 6520616e 64206170 70656172 616e6365
2c207468 61742074 68657920 61726520 6f667465 6e206d69 7374616b 656e2066
6f722044 77617266 2d6d656e 2e202041 6e642074 68697320 696e2074 75726e20
68617320 67697665 6e207269 73652074 6f207468 65206265 6c696566 20746861
74207468 65726520 61726520 6e6f2044 77617266 2d776f6d 656e2c20 616e6420
74686174 20447761 72766573 206a7573 74207370 72696e67 206f7574 206f6620
686f6c65 7320696e 20746865 2067726f 756e6421 20576869 63682069 732c206f
6620636f 75727365 2c207269 64696375 6c6f7573 2e
output:
db7e9ebd4043bddbc922261615282793c5268af026cc1741f699010b44194f8e

input: "" (empty string)
input (bytes): (0 bytes)
output:
bd2a1b1cdab81f9fea9d5fd513372ab9d1481428385de2b2d3571d8504fdd703

26

E Bijectivity of Gimli

The bijectivity of the SP-box is not easy to see. If we exclude the swapping and
the rotations (which are trivially bijective), we can unroll SP over the first bits:

f0 =


x′0 ← x0

y′0 ← y0 ⊕ x0
z′0 ← z0 ⊕ y0

f1 =


x′1 ← x1 ⊕ z0
y′1 ← y1 ⊕ x1 ⊕ (x0 ∨ z0)

z′1 ← z1 ⊕ y1

f2 =


x′2 ← x2 ⊕ z1 ⊕ (y0 ∧ z0)

y′2 ← y2 ⊕ x2 ⊕ (x1 ∨ z1)

z′2 ← z2 ⊕ y2
and

fn =


x′n ← xn ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)

y′n ← yn ⊕ xn ⊕ (xn−1 ∨ zn−1)

z′n ← zn ⊕ yn ⊕ (xn−3 ∧ zn−3)

Thus:

f−10 =


x0 ← x′0 = x′0
y0 ← y′0 ⊕ x0 = y′0 ⊕ x′0
z0 ← z′0 ⊕ y0 = z′0 ⊕ y′0 ⊕ x′0

f−11 =


x1 ← x′1 ⊕ z0 = x′1 ⊕ z0
y1 ← y′1 ⊕ x1 ⊕ (x0 ∨ z0) = y′1 ⊕ x′1 ⊕ z0 ⊕ (x0 ∨ z0)

z1 ← z′1 ⊕ y1 = z′1 ⊕ y′1 ⊕ x′1 ⊕ z0 ⊕ (x0 ∨ z0)

f−12 =


x2 ← x′2 ⊕ z1 ⊕ (y0 ∧ z0) = x′2 ⊕ z1 ⊕ (y0 ∧ z0)

y2 ← y′2 ⊕ x2 ⊕ (x1 ∨ z1) = y′2 ⊕ x′2 ⊕ z1 ⊕ (y0 ∧ z0)⊕ (x1 ∨ z1)

z2 ← z′2 ⊕ y2 = z′2 ⊕ y′2 ⊕ x′2 ⊕ z1 ⊕ (y0 ∧ z0)⊕ (x1 ∨ z1)

and

f−1n =


xn ← x′n ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)

yn ← y′n ⊕ x′n ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)⊕ (xn−1 ∨ zn−1)

zn ← z′n ⊕ y′n ⊕ x′n ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)⊕ (xn−1 ∨ zn−1)⊕ (xn−3 ∧ zn−3)

SP−1 is fully defined by recurrence. SP is therefore bijective.

27

F Avalanche Criterion

The following tables shows the average number of flipped bits after 10 rounds
if the bit at the index position is flipped. Sampling has been done over 1024
independent random inputs.

Table 5: average number bit flipped and standard deviation
format: bit index (x̄, σ)
s0,0 s1,0 s2,0

000 (192.3, 9.6) 032 (192.5, 9.5) 064 (191.8, 9.9)
001 (191.8, 9.8) 033 (192.2, 9.8) 065 (192.8, 9.9)
002 (191.8, 9.8) 034 (192.0, 10.2) 066 (191.7, 9.5)
003 (192.3, 9.6) 035 (191.7, 9.7) 067 (191.5, 9.6)
004 (192.1, 9.8) 036 (192.4, 9.6) 068 (192.0, 10.0)
005 (191.7, 9.9) 037 (191.3, 9.7) 069 (192.0, 10.1)
006 (192.1, 9.9) 038 (191.8, 9.9) 070 (192.0, 9.5)
007 (191.9, 9.8) 039 (192.2, 9.8) 071 (191.2, 9.8)
008 (191.7, 9.8) 040 (192.2, 9.9) 072 (192.2, 9.9)
009 (192.1, 9.8) 041 (192.6, 10.0) 073 (191.7, 9.6)
010 (191.8, 10.1) 042 (192.1, 9.9) 074 (192.2, 9.9)
011 (191.7, 9.9) 043 (192.7, 9.9) 075 (191.8, 9.7)
012 (191.9, 9.8) 044 (191.9, 9.8) 076 (191.9, 9.9)
013 (191.7, 9.3) 045 (192.1, 9.4) 077 (192.4, 9.5)
014 (192.2, 9.6) 046 (192.5, 9.7) 078 (191.9, 9.6)
015 (192.4, 9.5) 047 (192.5, 9.7) 079 (192.0, 10.2)
016 (191.9, 9.7) 048 (192.3, 9.9) 080 (191.8, 9.7)
017 (191.9, 9.7) 049 (192.0, 9.6) 081 (192.7, 9.6)
018 (191.5, 9.7) 050 (191.8, 9.9) 082 (192.2, 9.8)
019 (191.8, 9.6) 051 (191.5, 9.7) 083 (191.9, 9.9)
020 (191.9, 9.7) 052 (192.0, 10.1) 084 (192.5, 9.9)
021 (192.0, 9.8) 053 (192.0, 9.8) 085 (192.1, 9.9)
022 (192.1, 9.7) 054 (191.6, 9.8) 086 (192.2, 9.6)
023 (191.8, 10.2) 055 (192.3, 9.9) 087 (191.6, 9.9)
024 (191.9, 10.0) 056 (191.9, 9.6) 088 (191.6, 9.7)
025 (192.1, 9.9) 057 (192.1, 9.5) 089 (192.4, 9.5)
026 (191.8, 9.9) 058 (192.2, 10.3) 090 (192.5, 10.1)
027 (191.9, 10.1) 059 (192.1, 9.8) 091 (191.8, 9.8)
028 (192.0, 10.0) 060 (192.7, 10.1) 092 (192.2, 9.6)
029 (192.4, 9.9) 061 (192.0, 9.5) 093 (191.9, 10.1)
030 (192.0, 10.0) 062 (192.0, 9.8) 094 (192.3, 9.7)
031 (192.1, 10.0) 063 (191.6, 10.2) 095 (191.7, 9.7)

28

s0,1 s1,1 s2,1
096 (191.8, 9.7) 128 (192.5, 9.8) 160 (192.0, 9.8)
097 (191.3, 9.9) 129 (192.0, 10.1) 161 (192.0, 9.8)
098 (192.1, 10.1) 130 (191.9, 10.0) 162 (191.7, 9.7)
099 (191.7, 9.9) 131 (191.9, 10.0) 163 (191.6, 9.7)
100 (191.8, 9.8) 132 (192.1, 10.0) 164 (192.2, 9.9)
101 (191.7, 10.0) 133 (192.1, 9.7) 165 (192.1, 10.3)
102 (192.3, 10.0) 134 (192.0, 9.7) 166 (192.3, 10.1)
103 (191.8, 9.6) 135 (192.4, 9.4) 167 (192.0, 9.8)
104 (192.0, 9.4) 136 (192.4, 9.9) 168 (192.2, 9.8)
105 (191.8, 9.8) 137 (191.9, 9.8) 169 (192.1, 9.5)
106 (192.2, 10.0) 138 (191.9, 10.3) 170 (191.6, 9.6)
107 (192.3, 9.6) 139 (191.6, 9.7) 171 (192.2, 10.0)
108 (192.0, 9.7) 140 (191.8, 9.9) 172 (192.5, 10.1)
109 (191.9, 9.5) 141 (192.6, 9.8) 173 (192.2, 9.6)
110 (192.1, 9.6) 142 (191.6, 9.8) 174 (192.6, 9.9)
111 (192.5, 9.6) 143 (191.7, 9.8) 175 (192.3, 9.6)
112 (192.0, 9.6) 144 (192.0, 9.8) 176 (192.0, 9.8)
113 (191.9, 9.6) 145 (191.8, 9.6) 177 (192.4, 9.9)
114 (191.7, 9.5) 146 (191.7, 10.0) 178 (192.5, 9.6)
115 (192.4, 9.8) 147 (191.7, 9.9) 179 (191.5, 9.5)
116 (192.0, 9.7) 148 (191.7, 9.9) 180 (191.9, 9.7)
117 (191.8, 9.8) 149 (192.1, 9.7) 181 (192.4, 9.7)
118 (192.1, 9.6) 150 (191.7, 9.9) 182 (192.0, 9.9)
119 (192.4, 10.0) 151 (191.9, 10.0) 183 (191.5, 9.9)
120 (191.9, 10.0) 152 (191.9, 9.9) 184 (192.1, 9.8)
121 (191.6, 9.6) 153 (192.5, 10.1) 185 (191.8, 9.8)
122 (192.1, 9.6) 154 (192.2, 10.1) 186 (191.9, 9.7)
123 (191.6, 9.6) 155 (191.6, 9.9) 187 (192.1, 9.8)
124 (191.8, 9.6) 156 (191.9, 9.3) 188 (192.2, 9.9)
125 (191.6, 9.7) 157 (192.2, 9.8) 189 (192.2, 9.6)
126 (191.6, 9.8) 158 (192.1, 9.9) 190 (192.4, 9.8)
127 (192.2, 9.8) 159 (191.6, 9.5) 191 (192.8, 10.1)

29

s0,2 s1,2 s2,2
192 (192.0, 9.8) 224 (192.5, 9.8) 256 (192.2, 10.0)
193 (191.6, 9.9) 225 (191.5, 10.2) 257 (192.4, 9.7)
194 (191.9, 10.0) 226 (192.9, 9.8) 258 (191.9, 9.6)
195 (192.0, 9.6) 227 (191.5, 9.5) 259 (192.5, 9.7)
196 (191.5, 10.0) 228 (192.3, 9.8) 260 (191.9, 9.9)
197 (192.1, 9.9) 229 (192.2, 9.8) 261 (192.9, 9.5)
198 (191.9, 9.8) 230 (191.9, 9.7) 262 (192.4, 9.8)
199 (191.7, 9.4) 231 (191.9, 9.8) 263 (191.9, 10.0)
200 (192.0, 9.6) 232 (192.5, 10.2) 264 (191.9, 10.0)
201 (191.3, 9.8) 233 (192.0, 9.9) 265 (192.2, 9.6)
202 (191.5, 9.9) 234 (191.6, 10.0) 266 (191.9, 10.0)
203 (192.0, 9.9) 235 (192.1, 9.7) 267 (191.9, 10.0)
204 (191.8, 9.8) 236 (191.9, 9.4) 268 (191.9, 9.7)
205 (191.9, 9.9) 237 (192.1, 9.3) 269 (191.9, 9.6)
206 (192.2, 9.9) 238 (191.9, 9.8) 270 (192.2, 9.6)
207 (192.4, 9.8) 239 (192.2, 10.0) 271 (192.1, 9.7)
208 (191.7, 10.2) 240 (191.8, 9.7) 272 (191.7, 9.9)
209 (191.9, 9.7) 241 (191.6, 10.4) 273 (191.9, 9.8)
210 (192.0, 9.5) 242 (192.0, 10.0) 274 (192.4, 10.1)
211 (192.3, 10.0) 243 (192.0, 9.6) 275 (192.0, 9.7)
212 (192.3, 9.9) 244 (192.5, 9.5) 276 (192.3, 10.0)
213 (191.8, 9.4) 245 (192.3, 9.8) 277 (192.1, 9.9)
214 (192.3, 9.8) 246 (192.0, 9.7) 278 (192.3, 9.8)
215 (192.0, 10.2) 247 (192.3, 9.6) 279 (191.5, 10.0)
216 (191.8, 10.2) 248 (192.1, 10.2) 280 (192.0, 9.6)
217 (192.4, 9.8) 249 (192.0, 9.6) 281 (191.6, 9.8)
218 (192.3, 10.0) 250 (191.7, 9.7) 282 (192.2, 9.8)
219 (192.1, 9.7) 251 (192.3, 9.5) 283 (192.1, 9.9)
220 (192.1, 9.9) 252 (192.0, 9.7) 284 (191.5, 9.9)
221 (191.8, 10.0) 253 (192.4, 10.4) 285 (192.1, 9.7)
222 (192.6, 9.8) 254 (192.3, 9.6) 286 (191.9, 9.7)
223 (191.8, 10.0) 255 (192.3, 9.9) 287 (192.1, 9.9)

30

s0,3 s1,3 s2,3
288 (191.7, 9.6) 320 (192.2, 9.6) 352 (191.6, 9.7)
289 (192.3, 10.0) 321 (192.1, 9.8) 353 (192.3, 9.9)
290 (192.0, 9.8) 322 (191.6, 9.7) 354 (192.2, 9.7)
291 (192.2, 10.2) 323 (192.2, 9.4) 355 (191.7, 9.9)
292 (192.3, 9.5) 324 (192.0, 9.6) 356 (191.5, 9.8)
293 (191.8, 10.0) 325 (191.5, 9.7) 357 (192.3, 9.7)
294 (192.0, 9.7) 326 (192.5, 10.2) 358 (192.2, 9.8)
295 (192.5, 9.7) 327 (192.6, 10.0) 359 (191.7, 9.9)
296 (192.1, 9.7) 328 (192.0, 9.6) 360 (192.0, 10.0)
297 (192.1, 9.4) 329 (192.2, 9.9) 361 (192.2, 9.7)
298 (192.1, 9.8) 330 (192.0, 9.8) 362 (191.9, 9.5)
299 (191.8, 9.7) 331 (191.9, 9.9) 363 (191.9, 9.7)
300 (192.2, 9.5) 332 (192.1, 9.7) 364 (191.9, 10.1)
301 (192.3, 10.2) 333 (192.5, 9.9) 365 (191.9, 9.9)
302 (192.1, 9.7) 334 (191.9, 9.8) 366 (192.0, 9.9)
303 (191.9, 10.0) 335 (191.9, 9.6) 367 (192.0, 9.8)
304 (192.0, 10.2) 336 (192.3, 9.7) 368 (191.9, 9.5)
305 (191.9, 9.8) 337 (191.7, 9.6) 369 (191.9, 9.9)
306 (192.5, 9.5) 338 (192.0, 9.7) 370 (192.1, 10.0)
307 (191.9, 9.5) 339 (192.1, 10.2) 371 (191.9, 10.2)
308 (191.8, 9.8) 340 (192.0, 9.8) 372 (191.8, 9.8)
309 (192.4, 9.6) 341 (192.3, 9.6) 373 (191.9, 9.8)
310 (192.0, 9.8) 342 (192.3, 9.8) 374 (192.1, 10.1)
311 (191.5, 9.7) 343 (191.7, 9.6) 375 (192.2, 9.7)
312 (192.3, 10.0) 344 (192.4, 10.3) 376 (192.3, 9.9)
313 (191.8, 9.7) 345 (192.2, 9.9) 377 (192.3, 9.7)
314 (192.2, 10.2) 346 (192.2, 10.0) 378 (192.0, 9.8)
315 (192.4, 9.8) 347 (192.3, 9.9) 379 (191.4, 10.0)
316 (192.2, 9.9) 348 (191.8, 9.9) 380 (191.9, 9.9)
317 (192.3, 9.7) 349 (192.3, 9.3) 381 (191.8, 9.8)
318 (191.8, 9.5) 350 (192.4, 9.6) 382 (191.9, 9.7)
319 (192.2, 9.6) 351 (192.1, 9.8) 383 (191.0, 9.6)

31

G Differential Cryptanalysis

Proof (Proof of Lemma 1).
We want to show how to compute the set of valid differentials for a given

input difference

{(∆x′ , ∆y′ , ∆z′) : f(x, y, z)⊕ f(x⊕∆x, y⊕∆y, z⊕∆z) = (∆x′ , ∆y′ , ∆z′)}. (4)

It is sufficient to look at the case where W is F2 as there is no interaction
between different coordinates in f . The output differences for f are given by

∆x′ = (y ∧ z)⊕ (y ⊕∆y ∧ z ⊕∆z)

∆y′ = (x ∨ z)⊕ (x⊕∆x ∨ z ⊕∆z)

∆z′ = (x ∧ y)⊕ (x⊕∆x ∧ y ⊕∆y).

(5)

If the input difference (∆x, ∆y, ∆z) = (0, 0, 0), then the output difference is
clearly (0, 0, 0) as well. We can split the remaining cases in three groups

Case 1. (∆x, ∆y, ∆z) = (1, 0, 0). This simplifies Equation 5 to

∆x′ = (y ∧ z)⊕ (y ∧ z) = 0

∆y′ = (x ∨ z)⊕ (¬x ∨ z) = −z
∆z′ = (x ∧ y)⊕ (¬x ∧ y) = y.

(6)

and gives us the set of possible output differences

(∆x′ , ∆y′ , ∆z′) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}. (7)

In a similar way we can find the differentials for the other cases with a single bit
difference which gives us the first three conditions in Lemma 1.

Case 2. (∆x, ∆y, ∆z) = (1, 1, 0). This simplifies Equation 5 to

∆x′ = (y ∧ z)⊕ (¬y ∧ z) = z

∆y′ = (x ∨ z)⊕ (¬x ∨ z) = −z
∆z′ = (x ∧ y)⊕ (¬x ∧ ¬y) = ¬(x⊕ y).

(8)

giving the set of possible output differences

(∆x′ , ∆y′ , ∆z′) ∈ {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}. (9)

Again we can derive the other two cases in a similar way, giving us conditions
4-6 in Lemma 1.

Case 3. (∆x, ∆y, ∆z) = (1, 1, 1). This simplifies Equation 5 to

∆x′ = (y ∧ z)⊕ (¬y ∧ ¬z) = ¬(y ⊕ z)
∆y′ = (x ∨ z)⊕ (¬x ∨ ¬z) = ¬(x⊕ y)

∆z′ = (x ∧ y)⊕ (¬x ∧ ¬y) = ¬(x⊕ y).

(10)

32

giving the set of possible output differences

(∆x′ , ∆y′ , ∆z′) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. (11)

This corresponds to the last condition in Lemma 1.

As in all but the (0, 0, 0) cases the size of the set of possible output differences
is 4 the probability of any differential transition is 2−2. ut

.

Table 6: Optimal differential trail for 8-round Gimli.
Round s∗,0 s∗,1 s∗,2 s∗,3 Weight

0
0x80404180 0x00020100 - -

180x80002080 - - -
0x80002080 0x80010080 - -

1
0x80800100 - - -

80x80400000 - - -
0x80400080 - - -

2
0x80000000 - - -

00x80000000 - - -
0x80000000 - - -

3
- - - -

0- - - -
0x80000000 - - -

4
0x00800000 - - -

2- - - -
- - - -

5
- - - -

40x00000001 - - -
0x00800000 - - -

6
0x01008000 - - -

60x00000200 - - -
0x01000000 - - -

7
- - - -

140x01040002 - - -
0x03008000 - - -

8
0x02020480 - - -

-0x0a00040e - 0x06000c00 -
0x06010000 - 0x00010002 -

33

Table 7: A 12-round differential trail for Gimli with probability
2−188 expanding the optimal 7-round differential trail.

Round s∗,0 s∗,1 s∗,2 s∗,3 Weight

0
0x04010100 0x80010380 0x06010100 0x80100C00

46- 0x40010180 0x02000000 0x40100400
0x02008080 0x40010180 0x03018080 0x40104400

1
- 0x80020080 - 0x80210180

24- 0x00060080 - 0x40200080
- 0x00070480 - 0x00318400

2
- 0x00003100 - 0x80401180

20- 0x00000100 - 0x80000180
- 0x80000980 - 0x80000980

3
- - - 0x80800100

8- - - 0x80400000
- - - 0x80400080

4
- - - 0x80000000

0- - - 0x80000000
- - - 0x80000000

5
- - - -

0- - - -
- - - 0x80000000

6
- - - 0x00800000

2- - - -
- - - -

7
- - - -

4- - - 0x00000001
- - - 0x00800000

8
- - - 0x01008000

6- - - 0x00000200
- - - 0x01000000

9
- - 0x00010002 -

14- - - 0x01040002
- - - 0x03008000

10
- - - 0x020A0480

24- - 0x02000400 0x0A000402
- - 0x00010002 0x0A010000

11
0x02020104 0x02000100 - -

40- - 0x00080004 0x14010430
- - 0x00020004 0x1E081480

12
- - 0x00000A00 0xB00A0910

-0x04020804 0x00020004 0x10001800 0x02186078
0x02020104 0x02000100 0x00040008 0x3C102900

34

H Degree Evaluation by Division Property

The division property is normally used to search for integral distinguishers. Eval-
uation of the algebraic degree, which we use in this paper, is kind of a reverse use
of the division property. Assume that the MILP modelM in which the propaga-
tion rules of the division property for Gimli are described, and x and y denote
MILP variables corresponding to input and output of Gimli, respectively. In the
normal use of the division property, x has a specific value. To be precise, xi = 1
when the ith bit of the input is active, and xi = 0 otherwise. Then, we check
the feasibility that y = ej , where ej is 384-dimensional unit vector whose jth
element is 1. If it is impossible then the jth bit is balanced.

In the reverse use, we constrain y and maximize
∑384
i=1 xi by MILP. For

example, we constrain
∑384
i=1 yi = 1 and maximize

∑384
i=1 xi by using MILP.

Suppose the maximized value is d in r-round Gimli. Then, in other words,
if
∑384
i=1 xi = d + 1, it is impossible that

∑384
i=1 yi = 1. From this it follows that

the algebraic degree of r-round Gimli is at most d. If we focus on a specific
bit in the output, e.g., the jth bit, we constrain y = ej and maximize

∑384
i=1 xi

by using MILP. Moreover, if the algebraic degree involving active bits chosen
by attackers is evaluated, we maximize

∑
i∈S xi, where S is chosen by attack-

ers. This strategy allows us to efficiently evaluate the algebraic degree in several
scenarios.

35

	Gimli: a cross-platform permutation

