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Abstract

Searchable encryption has received a signi�cant attention from the research community with
various constructions being proposed, each achieving asymptotically optimal complexity for spe-
ci�c metrics (e.g., search, update). Despite their elegancy, the recent attacks and deployment e�orts
have shown that the optimal asymptotic complexity might not always imply practical performance,
especially if the application demands a high privacy. Hence, there is a signi�cant need for search-
able encryption frameworks that capture the recent attacks with actual deployments on cloud in-
frastructures to assess the practicality under realistic settings.

In this article, we introduce a new Dynamic Searchable Symmetric Encryption (DSSE) frame-
work called IncidenceMatrix (IM)-DSSE, which achieves a high level of privacy, e�cient search/update,
and low client storage with actual deployments on real cloud settings. We harness an incidence
matrix along with two hash tables to create an encrypted index, on which both search and up-
date operations can be performed e�ectively with minimal information leakage. This simple set
of data structures surprisingly o�ers a high level of DSSE security while at the same time achiev-
ing practical performance. Speci�cally, IM-DSSE achieves forward privacy, backward privacy and
size-obliviousness properties simultaneously. We also create several DSSE variants, each o�ering
di�erent trade-o�s (e.g., security, computation) that are suitable for di�erent cloud applications and
infrastructures. Our framework was fully-implemented and its performance was rigorously evalu-
ated on a real cloud system (Amazon EC2). Our experimental results con�rm that IM-DSSE is highly
practical even when deployed on mobile phones with a large outsourced dataset. Finally, we have
released our IM-DSSE framework as an open-source library for a wide development and adaptation.
Keywords— Privacy-enhancing technologies; private cloud services; dynamic searchable symmet-
ric encryption

1 Introduction

The rise of cloud storage and computing services provides vast bene�ts to society and IT industry.
One of the most important cloud services is data Storage-as-a-Service (SaaS), which can signi�cantly
reduce the cost of data management via continuous service, expertise and maintenance for resource-
limited clients such as individuals or small/medium businesses. Despite its bene�ts, SaaS also brings
signi�cant security and privacy concerns to the user. That is, once a client outsources her data to
the cloud, sensitive information (e.g., email) might be exploited by a malicious party (e.g., malware).
Although standard encryption schemes (e.g., AES) can provide con�dentiality, they also prevent the
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client from querying encrypted data from the cloud. This privacy versus data utilization dilemma may
signi�cantly degrade the bene�ts and usability of cloud-based systems. Therefore, it is vital to develop
privacy-enhancing technologies that can address this problem while retaining the practicality of the
underlying cloud service.

Searchable Symmetric Encryption (SSE) [9] enables a client to encrypt data in such a way that
she can later perform keyword searches on it. These encrypted queries are performed via “search to-
kens" [27] over an encrypted index which represents the relationship between search token (keywords)
and encrypted �les. A prominent application of SSE is to enable privacy-preserving keyword search
on the cloud (e.g., Amazon S3), where a data owner can outsource a collection of encrypted �les and
perform keyword searches on it without revealing the �le and query contents [18]. Preliminary SSE
schemes (e.g.,[26, 9]) only provide search-only functionality on static data (i.e., no dynamism), which
strictly limits their applicability due to the lack of update capacity. Later, several Dynamic Searchable
Symmetric Encryption (DSSE) schemes (e.g., [18, 5]) were proposed that permit the user to add and
delete �les after the system is set up. To the best of our knowledge, there is no single DSSE scheme
that outperforms all the other alternatives in terms of all the aforementioned metrics: privacy (e.g.,
information leakage), performance (e.g., search, update delay), storage e�ciency and functionality.

Research Gap andObjectives: Despite a number of DSSE schemes have been introduced in the litera-
ture, most of them only provide a theoretical asymptotic analysis1 and in some cases, merely a prototype
implementation. The lack of a rigorous actual experimental performance evaluation on real platforms
poses a signi�cant di�culty in assessing the application and practicality of proposed DSSE schemes, as
the impacts of security vulnerability, hidden computation costs, multi-round communication delay and
storage blowup might be overlooked. For instance, most e�cient DSSE schemes (e.g., [5, 12]) are vul-
nerable to �le-injection attacks, which have been showed to be easily conducted even by semi-honest
adversary in practice, especially in the personal email scenario. Although several forward-secure DSSE
schemes with an optimal asymptotic complexity have been proposed, they incur either very high delay
due to public-key operations (e.g., [3]), or signi�cant storage blowup at both client and server-side (e.g.,
[27]), and therefore, their ability to meet actual need of real systems in practice is still unclear.

There is a signi�cant need for a DSSE scheme that can achieve a high level of security with a well-
quanti�ed information leakage, while maintaining a performance and functionality balance between
the search and update operations. More importantly, it is critical that the performance of proposed DSSE
should be experimentally evaluated in a realistic cloud environment with various parameter settings,
rather than merely relying on asymptotic results. The investigation of alternative data structures and
their optimized implementations on commodity hardware seem to be key factors towards achieving
these objectives.

1.1 Our Contributions

In this article, towards �lling the gaps between theory and practice in DSSE research community, we
introduce IM-DSSE, a fully-implemented DSSE framework which favors desirable properties for realis-
tic privacy-critical cloud systems including high security against practical attacks and low end-to-end
delay. In this framework, we provide the full-�edged implementations of our preliminary DSSE scheme
proposed in [31], as well as extended schemes, which are specially designed to �t with various appli-
cation requirements and cloud data storage-as-a-service infrastructures in practice.

1One noticeable outlier is [5], which provides a standalone implementation.

2



Improvements over PreliminaryVersion: This article is the extended version of [31] which includes
the following improvements: (i) We propose extended DSSE schemes which are more compatible with
the cloud SaaS infrastructure and o�er backward-privacy at the cost of bandwidth overhead. (ii) As a
signi�cant improvement over the preliminary version, we provide a comprehensive DSSE framework,
where our preliminary DSSE scheme in [31] as well as all of its variants are fully implemented. We fully
deployed our framework on Amazon EC2 cloud and provided a much more comprehensive performance
analysis of each scheme with di�erent hardware and network settings. (iii) Finally, we have released
our framework for public use and improvement.

Desirable properties: IM-DSSE o�ers ideal features for privacy-critical cloud systems as follows.

• Highly secure against File-Injection Attacks: IM-DSSE o�ers forward privacy (see [27] or Section 4 for
de�nition) which is an imperative security feature to mitigate the impact of practical �le-injection
attacks [3, 32]. Only few DSSE schemes o�er this property (i.e., [27, 3]), some of which incur high
client storage with costly update (e.g., [27]), or high delay due to public-key operations (e.g., [3]).
Additionally, IM-DSSE o�ers size-obliviousness property, where it hides all size information involved
with the encrypted index and update query including (i) update query size (i.e., number of keywords
in the updated �le); (iii) and the number of keyword-�le pairs in the database. More importantly, one
of the IM-DSSE variants achieves backward privacy de�ned in [27]. To the best of our knowledge,
none of the state-of-the-art DSSE schemes o�er all these security properties simultaneously.

• Updates with Improved Features: (i) IM-DSSE allows to directly update keywords of an existing �le
without invoking the �le delete-then-add operation sequence. The update in IM-DSSE also leaks
minimal information and it is type-oblivious, meaning that it does not leak timing information (i.e.,
all updates take the same amount of time) and whether the operation is add, delete, or update. (ii)
The encrypted index of our schemes does not grow with update operations and, therefore, it does not
require re-encryption due to frequent updates. This is more e�cient than some alternatives (e.g., [27])
in which the encrypted index can grow linearly with the number of deletions.

• Fully Parallelizable: IM-DSSE supports parallelization for both update and search operations and,
therefore, it takes full advantages of modern computing architecture to minimize the delay of cryp-
tographic operations. Experiments on Amazon cloud indicates that the search latency of our frame-
work is highly practical and mostly dominated by the network communication between the client
and server (see Section 5).

• Detailed experimental evaluation and open-source framework: We deployed IM-DSSE in a realistic
cloud environment (Amazon EC2) to assess the practicality of our framework. We experimented with
di�erent database sizes and investigated the impacts of network condition and storage unit on the
overall performance. We also evaluated the performance of IM-DSSE on a resource-limited mobile
client. We give a comprehensive cost breakdown analysis to highlight the main factors contributing
the overall cost in all these settings. Finally, we released the implementation of our framework to
public to provide opportunities for broad adaptation and testing (see Section 5).

2 IM-DSSE Framework

IM-DSSE framework comprises various DSSE schemes based on the incidence matrix data structure. In
this section, we provide the detailed construction of the main scheme in IM-DSSE framework denoted
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as IM-DSSEmain, which is preliminarily presented in [31]. Several extension derived from IM-DSSEmain

scheme that IM-DSSE also fully supports will be described in the next section. We �rst start with
notation, and then present typical data structures being used in IM-DSSE. We give the algorithmic
details of IM-DSSEmain scheme afterwards.

2.1 Notation and Data Structure

Notation. Operators || and |x| denote the concatenation and the bit length of variable x , respectively.
x $←  denotes variable x is randomly and uniformly selected from set  . (x1, … , xn)

$←  denotes
(x1

$←  , … , xn
$←  ). |x| denotes the size of x . We denote {0, 1}∗ as a set of binary strings of any �nite

length. ⌊x⌋ and ⌈x⌉ denote the �oor and the ceiling of x , respectively. Given a matrix I, I[i, j] denotes
the cell indexing at row i and column j. I[∗, j] and I[i, ∗] denote accessing column j and row i of matrix
I, respectively. I[∗, a, … , b] denotes accessing columns from a to b of matrix I. u[i] denotes accessing
the i’th component of vector u.

We denote an IND-CPA encryption scheme as a triplet  = (Gen, Enc, Dec): k ←  .Gen(1�), where
� is a security parameter and k is a key; c ←  .Enck(M, u) takes as input a secret key k, a counter u
and a message M and returns a ciphertext c; M ←  .Deck(c, u) takes as input a key k, a counter u and
ciphertext c, and returns M if k and u were the key and the counter under which c was produced. The
function G is a keyed Pseudo Random Function (PRF), denoted by � ← Gk (x), which takes as input a
secret key k $← {0, 1}� and a string x , and returns a token/key r . We denote H ∶ {0, 1}|x| → {0, 1} as
a Random Oracle (RO) [1], which takes an input x and returns a bit.

IM-DSSE Data Structures. Our encrypted index is an incidence matrix I, in which I[i, j].v ∈ {0, 1}
stores the (encrypted) relationship between keyword indexing at row i and �le indexing at column j,
and I[i, j].st ∈ {0, 1} stores a bit indicating the state of I[i, j].v. Particularly, I[i, j].st is set to 1 or 0 if
I[i, j].v is accessed by update or search, respectively. For simplicity, we will often write I[i, j] to denote
I[i, j].v, and be explicit about the state bit as I[i, j].st.

The encrypted index I is augmented by two static hash tables Tw and Tf that associate a keyword
and �le to a unique row and a column, respectively. Speci�cally, Tf is a �le static hash table whose key-
value pair is (sid j , ⟨yj , uj⟩), where sid j ← Gk2 (idj) for �le with identi�er idj , column index yj ∈ {1, … , n}
equivalent to the index of sid j in Tf and uj is a counter value. We denote access operations by yj ←
Tf (sid j ) and uj ← Tf [yj].ct. Tw is a keyword static hash table whose key-value pair is {swi , ⟨xi , ui⟩},
where token swi ← Gk2 (wi) for keyword wi , row index xi ∈ {1, … ,m} equivalent to the index of swi in
Tw and ui is a counter value. We denote access operations by xi ← Tw (swi ) and ui ← Tw[xi].ct. All
counter values are incremental and initially set to 1. So, the client state information is in the form of
Tw and Tf , that o�ers (on average)  (1) look-up time.

2.2 IM-DSSEmain Algorithms

We present the detailed algorithmic construction of the main scheme in IM-DSSE framework in Scheme
1, which consists of nine algorithms with the following highlights.

∙ Setup: Given a �le collection = {fid1 , … , fidn} (with unique IDs id1, … , idn) to be outsourced, the client
extract all unique keywords  , and constructs a matrix � , which represents the relationship between
keywords and outsourced �les. Afterwards, the client invokes IM-DSSE.Gen algorithm to generate
cryptographic keys which are used afterwards to encrypted � and  (IM-DSSE.Enc algorithm) resulting
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in encrypted index 
 and encrypted �les  = {cid1 , … , cidn}, respectively. Finally, the client sends 
 and
 to the cloud server along with the �le hash table Tf .
∙ Search: To search keyword w , the client generates a token �w (IM-DSSE.SearchToken algorithm)
containing a row index i and row key(s). Upon receiving �w , the server decrypts row i and determines
column indexes j where I[i, j] = 1, and returns the corresponding j-labeled ciphertexts to the client.
Finally, the client invokes IM-DSSE.Dec algorithm on each ciphertext to obtain the search result.
∙ Update: To add (or delete) a �le, the client generates a token containing column j and the encrypted
�le (if the �le is added) via IM-DSSE.AddToken (IM-DSSE.DeleteToken resp.) algorithm. The server
invokes IM-DSSE.Add ((IM-DSSE.Delete resp.) ) algorithm to update column j of I, and adds (deletes
resp.) the �le in .

Scheme 1 IM-DSSEmain Scheme
 ← IM-DSSE.Gen(1�): Given security parameter �, generate secret key 

1: k1 ←  .Gen(1�) and (k2, k3)
$← {0, 1}�

2: return , where  ← {k1, k2, k3}

f ← IM-DSSE.Dec(c): Decrypt encrypted �le c with key �
1: f ←  .Deck1(c

′, y||u) where u ← Tf [y].ct, (c′, y) ← c
2: return f

(
 ,) ← IM-DSSE.Enc(�, ): Given index � and plaintext �les  , generate encrypted index 
 and encrypted
�les 

1: Tw [i].ct ← 1, Tf [j].ct ← 1, for 0 ≤ i ≤ m, 0 ≤ j ≤ n
2: I[∗, ∗].st ← 0 and �[∗, ∗] ← 0
3: Extract (w1, … , wm′ ) from  = {fid1 , … , fidn′ }
4: for i = 1, … ,m′ do
5: swi ← Gk2 (wi), xi ← Tw (swi )
6: for j = 1, … , n′ do
7: if wi appears in fid j then
8: sid j ← Gk2 (idj ) and yj ← Tf (sid j )
9: �[xi , yj] ← 1

10: for i = 1, … ,m do
11: ri ← Gk3 (i||ui), where ui ← Tw [i].ct
12: for j = 1, … , n do
13: I[i, j] ← �[i, j] ⊕ H(ri ||j||uj ), where uj ← Tf [j].ct
14: for j = 1, … , n′ do
15: cj ← (c′j , yj ), where c′j ←  .Enck1(fidj , yj ||uyj )
16: return (
 ,), where 
 ← (I, Tf ) and  ← {c1, … , cn′}

�w ← IM-DSSE.SearchToken(, w): Generate search token �w from keyword w and key 
1: sw ← Gk2 (w), i ← Tw (sw )
2: u ← Tw [i].ct, ri ← Gk3 (i||u)
3: if u = 1 then
4: �w ← (i, ri)
5: else
6: r i ← Gk3 (i||u − 1) and �w ← (i, ri , r i)
7: Tw [i].ct ← u + 1
8: return �w
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Scheme 1 IM-DSSEmain Scheme (continued)
(w ,w ) ← IM-DSSE.Search(�w , 
 ): Given search token �w and encrypted index 
 , return sets of �le identi�ers
w and encrypted �les w ⊆  matching with �w

1: for j = 1, … , n do
2: uj ← Tf [j].ct
3: if (�w = (i, ri) ∨ I[i, j].st = 1) then
4: I′[i, j] ← I[i, j] ⊕ H(ri ||j||uj ) and set I[i, j].st ← 0
5: else
6: I′[i, j] ← I[i, j] ⊕ H(r i ||j||uj ) and set I[i, j] ← I′[i, j] ⊕ H(ri ||j||uj )
7: l ← 0
8: for each j ∈ {1, … , n} satisfying I′[i, j] = 1 do
9: l ← l + 1 and yl ← j

10: w ← {y1, … , yl}
11: 
 ← (I, Tf ), w ← {(cy1 , y1), … , (cyl , yl )}
12: return (w ,w )

(�f , c) ← IM-DSSE.AddToken(, fid ): Given key  and a �le fid , generate add token �f and ciphertext c of fid
1: sid ← Gk2 (id), j ← Tf (sid ), Tf [j].ct ← Tf [j].ct + 1 and uj ← Tf [j].ct
2: for i = 1, … ,m do
3: ri ← Gk3 (i||ui), where ui ← Tw [i].ct
4: Extract (w1, … , wt ) from fid and set I[∗, j] ← 0
5: for i = 1, … , t do
6: swi ← Gk2 (wi), xi ← Tw (swi ), I[xi , j] ← 1
7: for i = 1, … ,m do
8: I′[i, j] ← I[i, j] ⊕ H(ri ||j||uj )
9: c ← (c′, j), where c′ ←  .Enck1(fid , j||uj )

10: return (�f , c) where �f ← (I′, j)

(
 ′,′) ← IM-DSSE.Add(
 ,, c, �f ): Add token �f and ciphertext c to encrypted index 
 and set , resp.

1: Set I[i, j] ← I′[i, j] and I[i, j].st ← 1, for 1 ≤ i ≤ m
2: Tf [j].ct ← Tf [j].ct + 1
3: return (
 ′,′), where 
 ′ ← (I, Tf ) and ′ ←  ∪ {(c, j)}

� ′f ← IM-DSSE.DeleteToken(, f ): Given key  and deleted �le fid , generate deletion token � ′f
1: Execute steps (1-3) of AddToken Algorithm that produces (j, uj , ⟨r1, … , rm⟩) and increases Tf [j].ct to 1
2: for i = 1, … ,m do
3: I′[i] ← H(ri ||j|uj )
4: return � ′f , where � ′f ← (I′, j)

(
 ′,′) ← IM-DSSE.Delete(
 ,, � ′f ): Update token � ′f in encrypted index 
 ′ and delete a �le from set ′

1: Set I[i, j] ← I′[i, j] and I[i, j].st ← 1, for 1 ≤ i ≤ m
2: Tf [j].ct ← Tf [j].ct + 1
3: return (
 ′,′), where 
 ′ ← (I, Tf ), ′ ←  ⧵ {(c, j)}

Keyword update for existing �les. Some existing schemes (e.g., [24]) only permit adding or deleting a
�le, but do not permit updating keywords in an existing �le directly. It is easy to achieve this in our
scheme as follows: Assume the client wants to update �le fid by adding (or removing) some keywords,

6



she will prepare a new column I′[i, j] ← bi for 1 ≤ i ≤ m, where bi = 1 if wi is added and bi = 0 if
otherwise and j ← Tf (sid ) with sid ← Gk2 (id) as in IM-DSSE.AddToken algorithm (steps 4-6). The rest
of the algorithm remains the same.

Analytical analysis. For keyword search, IM-DSSEmain incurs n invocations of hash function H and n
XOR operations. Despites the fact that IM-DSSEmain has linear search complexity which is asymptoti-
cally less e�cient than other DSSE schemes (e.g., [5, 3]), we show in the experiment that, this impact is
insigni�cant in practice for personal cloud usage with moderate database size where all optimizations
are taken into account. Speci�cally, since IM-DSSEmain is fully parallelizable, the search and update
computation times can be reduced to n/p and m/p, respectively, where p is the number of processors in
the system. Therefore, cryptographic operations in IM-DSSEmain only contribute a small portion to the
overall end-to-end search delay which is dominated by the network communication latency between
client and server. Moreover, notice that all sub-linear DSSE schemes [27, 5] are less secure and some-
times incur more costly updates than IM-DSSEmain. For �le update operation, IM-DSSEmain incurs m
invocations of H and m XOR operations along with m bits of transmission.

Regarding to storage overhead, IM-DSSEmain costs (2m ⋅ n + n ⋅ (� + |u|)) bits at the server for
encrypted index I and �le hash table Tf . At the client side, IM-DSSEmain requires (n + m)(� + |u|) + 3�
bits for two hash tables Tw , Tf and secret key .

3 Extended IM-DSSE Schemes

We now present e�cient extended schemes derived from IM-DSSEmain scheme in Section 2 that our
IM-DSSE framework also supports.

3.1 IM-DSSEI: Minimized search latency

In IM-DSSEmain, we encrypt each cell of I with a unique key-counter pair, which requires n invocations
of H during keyword search. This might not be ideal for some applications that require extremely
prompt search delay. Hence, we introduce an extended scheme called IM-DSSEI, which aims at achiev-
ing a very low search latency with the cost of increasing update delay. Speci�cally, instead of encrypt-
ing the index bit-by-bit as in IM-DSSEmain scheme, IM-DSSEI leverages b-bit block cipher encryption
to encrypt b successive cells with the same key-counter pair. This is achieved by interpreting columns
of I as D = ⌈nb ⌉ blocks, each being IND-CPA encrypted using counter (CTR) mode with block cipher
size b. The counter will be stored via a block counter array (denoted u) instead of Tf [⋅].u as in the
main scheme. The update state is maintained for each block rather than each cell of I[i, j]. Hence, I is
decomposed into two matrices with di�erent sizes: I.v ∈ {0, 1}m×n and I.st ∈ {0, 1}m×D .

IM-DSSEI requires some straightforward algorithmic modi�cations from the main scheme. Speci�-
cally, we substitute encryption and decryption using H(ri ||j||uj) with  .Encri(⋅, l||u′l ) and  .Decri(⋅, l||u′l ),
respectively, where ul is a block counter stored in u. Since I is encrypted by blocks, the client needs to
retrieve a whole block and the states �rst before being able to update a column residing in the block
during �le update. Therefore, the reduction of search cost increases the cost of communication over-
head for the update as a trade-o�. We present modi�ed algorithms for �le addition in Scheme 2. The
modi�cations for �le deletion follow the same principle. The Gen and Dec algorithms of IM-DSSEI are
identical to those of the main scheme.
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Scheme 2 IM-DSSEI Scheme
(�f , c) ← AddToken(, fid ): Given key  and a �le fid , generate addition token �f and ciphertext c of fid

1: sid ← Gk2 (id), j ← Tf (sid ), l ← ⌊
j−1
b ⌋, ul ← u[l]

2: a ← (l ⋅ b) + 1, a′ ← b ⋅ (l + 1)
3: Extract (w1, … , wt ) from fid
4: for i = 1, … , t do
5: swi ← Gk2 (wi), xi ← Tw (swi )
6: Get from server (I[∗, a … a′]) and I[∗, l].st
7: for i = 1, … ,m do
8: ui ← Tw [i].ct
9: if (ui > 1 ∧ I[i, l].st = 0) then

10: ui ← ui − 1
11: ri ← Gk3 (i||ui)

†

12: I′[i, a … , a′] ←  .Decri(I[i, a … a′], l||ul )
13: I′[i, j] ← 0 for 1 ≤ i ≤ m and I′[xi , j] ← 1 for 1 ≤ i ≤ t
14: u[l] ← u[l] + 1, ul ← u[l]
15: for i = 1, … ,m do
16: if (ui > 1 ∧ I[i, l].st = 0) then
17: ri ← Gk3 (i||ui + 1)
18: I[i, a … a′] ←  .Encri(I′[i, a … a′], l||ul )
19: Tf [j].ct ← Tf [j].ct + 1 and u′j ← Tf [j].ct
20: c ← (c′, j) where c′ ←  .Enck1(fid , j||u

′
j )

21: return (�f , c) where �f ← (I, j)

(
 ′,′) ← Add(
 ,, c, �f ): Add token �f and ciphertext  to encrypted index 
 and ciphertext set , resp.

1: l ← ⌊
j−1
b ⌋, a ← (l ⋅ b) + 1, a′ ← b(l + 1)

2: I[i, j′] ← I[i, j′], for 1 ≤ i ≤ m and a ≤ j′ ≤ a′
3: u[l] ← u[l] + 1 and I[∗, l].st ← 1
4: return (
 ′,′), where 
 ′ ← (I, Tf ) and ′ ←  ∪ {c}

† G should generate a suitable key for  (e.g., 128-bit key for AES-CTR)

Analytical analysis. For keyword search, IM-DSSEI requires n/b invocations of  , which is theoret-
ically b times faster than the main scheme. Given the CTR mode, the search time can be reduced to
n/(b ⋅ p), where p is the number of processors in the system. For update, IM-DSSEI requires transmis-
sion of (2b + 1) ⋅ m bits along with decryption and encryption operations at the client side, compared
withm non-interactive transmission and encryption-only in the main scheme. Thus, IM-DSSEI o�ers a
trade-o� where the search speed is increased by a factor of b (e.g., b = 128) with the cost of transmitting
(2b + 1) ⋅ m bits in update operation. IM-DSSEI reduces the server storage overhead to (

n⋅|u|+m⋅n⋅(b+1)
b )

bits, while the client storage remains the same as in IM-DSSEmain.

3.2 IM-DSSEII: Achieving cloud SaaS infrastructure with backward privacy

All DSSE schemes introduced so far require the server to perform some computation (i.e., encryp-
tion/decryption) during keyword search, which might not be fully compatible with typical cloud sys-
tems (e.g., Dropbox, Google Drive, Amazon S3) that generally only o�ers storage-only services. Hence,
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Scheme 3 IM-DSSEII Scheme
(w ,w ) ← Search(, w): Given keyword w and key , return sets of �le identi�ers w and encrypted �les
w ⊆  matching with w

1: swi ← Gk2 (w), i ← Tw (swi ), ri ← Gk3 (i), l ← 0
2: Fetch the i’th row data I[i, ∗] from server
3: for j = 1, … , n do
4: uj ← Tf [j].ct
5: I′[i, j] ← I[i, j] ⊕ H(ri ||j||uj )
6: for each j ∈ {1, … , n} satisfying I′[i, j] = 1 do
7: l ← l + 1 and yl ← j
8: w ← {y1, … , yl}
9: Send w to server and receive w = {(cy1 , y1), … , (cyl , yl )}

10: fi ← Dec(cyi ) for 1 ≤ i ≤ l
11: return (w ,w ), where w ← {f1, … , fl}

we propose another extended scheme derived from IM-DSSEmain scheme called IM-DSSEII, where all
computations during keyword search are performed at the client side while the server does nothing
rather than serving as a storage service. This simple trick makes IM-DSSEII not only compatible with
the current infrastructure of SaaS clouds, but also more importantly, achieve the backward-privacy
property. This is because the server is no longer able to decrypt any part of encrypted index to keep
track of historical update operations. Additionally, IM-DSSEII also reduces the storage overhead at
both client and server sides by eliminating the need of state matrix and keywords counters, which is
used in IM-DSSEmain and IM-DSSEI schemes to perform correct decryption during keyword search and
forward-privacy during update. The detail is as follows.

To search a keyword w , the client sends to the server the w’s row index i and receives the corre-
sponding row. The client decrypts row i, obtains the column indexes j, where I[i, j] = 1. The client
then fetches and decrypts encrypted �les indexed at j to obtain the search result. We present the key-
word search of IM-DSSEII in Scheme 3, which is a protocol combined from IM-DSSE.SearchToken and
IM-DSSE.Search algorithms in IM-DSSEmain scheme. Since everything is computed by the client, it is
not required to derive new keys for forward-privacy and therefore, state matrix I[∗, ∗].st as well as �le
hash table Tf at the server and keyword counters Tw .ct at the client are not needed in IM-DSSEII.
Therefore, the modi�cations of IM-DSSE.Enc, IM-DSSE.Add, IM-DSSE.AddToken, IM-DSSE.Delete,
IM-DSSE.DeleteToken algorithms are straightforward by (i) substituting row key generation ri ←
Gk3 (i, ui) by ri ← Gk3 (i), (ii) omitting all keyword counters ui , block states I[∗, ∗].st, Tf at the server
(e.g., step 2, IM-DSSE.Add algorithm) and all operations involved.

Analytical analysis. The computation cost of IM-DSSEII is identical to the main scheme (i.e., n and
m invocations of H for search and update resp.), except that the decryption is performed at the client,
instead of the server during keyword search. However, IM-DSSEII requiresm bits of transmission and a
two-round communication. IM-DSSEII reduces the client and sever storage costs to n(�+|u|)+m⋅�+3�
and m ⋅ n bits, respectively.

3.3 IM-DSSEI+II: Low search latency, backward-privacy and compatible with cloud
SaaS infrastructure

Our IM-DSSE also supports IM-DSSEI+II, an extended DSSE scheme which is the combination between
IM-DSSEI and IM-DSSEII schemes. Speci�cally in IM-DSSEI+II, the incidence matrix I is encrypted
with b-bit block cipher encryption, and the decryption is performed by the client during search. Since
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IM-DSSEI+II inherits all properties of IM-DSSEI and IM-DSSEII schemes, IM-DSSEI+II is highly desirable
for cloud SaaS infrastructure that requires a very low search latency and backward-privacy with the
costs of more delayed update and an extra communication round during search.

4 Security Analysis

In this section, we analyze the security and update privacy of all DSSE schemes provided in our IM-DSSE
framework.

4.1 Security Model

Most known e�cient SSE schemes (e.g., [27, 5, 24]) reveal the search and �le-access patterns de�ned as
follows:

• Given search query w at time t , the search pattern (�,Query, t) is a binary vector of length t with a 1
at location i if the search time i ≤ t was for w , and 0 otherwise. The search pattern indicates whether
the same keyword has been searched in the past or not.

• Given search query wi at time t , the �le-access pattern Δ(�, , w, t) is identi�ers w of �les having wi .

We consider the following leakage functions, in the line of [16] that captures dynamic �le addi-
tion/deletion in its security model as we do, but we leak much less information compared to [16].

De�nition 1. We de�ne leakage functions (1,2) as follows:

1. (m, n,, ⟨|fid1 |, … , |fidn |⟩) ← 1(�, ): Given the index � and the set of �les  (including their
identi�ers), 1 outputs the maximum number of keywords m, the maximum number of �les n, the
identi�ers  = {id1, … , idn} of  and the size of �le |fidj | for 1 ≤ j ≤ n (which also implies the size
of its corresponding ciphertext |cidj |).

2. ((�,Query, t), Δ(�, , w, t)) ← 2(�, , w, t): Given the index � , the set of �les  and a keyword
w for a search operation at time t , it outputs the search pattern  and �le-access pattern Δ.

De�nition 2 (IND-CKA2 Security [9, 18]). Let  be a stateful adversary and  be a stateful simulator.
Consider the following probabilistic experiments:

Real(�): The challenger executes ← Gen(1�).  produces (�, ) and receives (
 ,) ← Enc(�, )
from the challenger.  makes a polynomial number of adaptive queries Query ∈ (w, fid , fid′) to the chal-
lenger. IfQuery = w is a keyword search query then receives a search token �w ← SearchToken(, w)
from the challenger. If Query = fid is a �le addition query then  receives an addition token (�f , c) ←
AddToken(, fid ) from the challenger. If Query = fid′ is a �le deletion query then  receives a deletion
token � ′f ← DeleteToken(, fid′) from the challenger. Eventually,  returns a bit b that is output by the
experiment.

Ideal, (�):  produces (�, ). Given 1(�, ),  generates and sends (
 ,) to .  makes a poly-
nomial number of adaptive queries Query ∈ (w, fid , fid′) to  . For each query, is given 2(�, , w, t).
If Query = w then  returns a simulated search token �w . If Query = fid or Query = fid′ ,  returns a
simulated addition token �f or deletion token � ′f ,respectively. Eventually,  returns a bit b that is output
by the experiment.
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A DSSE is said to be (1,2)-secure against adaptive chosen-keyword attacks (CKA2-security) if for
all PPT adversaries, there exists a PPT simulator  such that

| Pr[Real(�) = 1] − Pr[Ideal, (�) = 1]| ≤ neg(�)

Remark 1. In De�nition 2, we adopt the notion of dynamic CKA2-security from [16], which captures the
�le addition and deletion operations by simulating tokens �f and � ′f , respectively.

The security of IM-DSSE can be stated as follows.

Theorem 1. If Enc is IND-CPA secure, G is PRF andH is a RandomOracle (RO) then IM-DSSE is (1,2)-
secure in ROM by De�nition 2 (CKA-2 security with update capacity).

Proof. We present the detailed IND-CKA2 security proof for IM-DSSEmain scheme in Section 2. The
proof for extended schemes in Section 3 can be easily derived from this proof and therefore, we will
not repeat it.

To begin with, we construct a simulator  that interacts with an adversary  in an execution of an
Ideal, (�) experiment as described in De�nition 2. In this experiment,  maintains lists ,  and
 to keep track of query results, states and history information, respectively. Initially, all lists are
set to empty.  is a list of key-value pairs and is used to keep track of RO(⋅) queries. We denote
value ← (key) and ⊥ ← (key) if key does not exist in .  is to keep track of random
values generated during the simulation and it follows the same as .  is to keep track of search
and update queries,  ’s replies to those queries and their leakage output from (1,2).  executes the
simulation as follows:

I. Handle RO(⋅) Queries: b ← RO(x) takes an input x and returns a bit b as output. Given x , if⊥ = (x)

set b $← {0, 1}, insert (x, b) into  and return b as the output. Else, return b ← (x) as the output.

II. Simulate (
 ,): Given (m, n, ⟨id1, … , idn′⟩, ⟨|c1|, … , |cn′ |⟩) ← 1(�, ), simulates (
 ,) as follows:

1. (sid j , k)
$← {0, 1}� , yj ← Tf (sid j ), insert (idj , sid j , yj) into and cyj ←  .Enck({0}|cidj |) for 1 ≤ j ≤ n′.

2. For j = 1, … , n and i = 1, … ,m

(a) Tw[i].ct ← 1 and Tf [j].ct ← 1.

(b) zi,j
$← {0, 1}� , I[i, j] ← RO(zi,j) and I[i, j].st ← 0.

3. Output (
 ,), where 
 ← (I, Tf ) and  ← {⟨ci , yi⟩}n
′
i=1

Correctness and Indistinguishability of the Simulation:  has the correct size and distribution, since
1 leaks ⟨|cid1 |, … , |cidn′ |⟩ and Enc is a IND-CPA secure scheme, respectively. I and Tf have the correct
size since 1 leaks (m, n). Each I[i, j] for 1 ≤ j ≤ n and 1 ≤ i ≤ m has random uniform distribution, since
RO(⋅) is invoked with random value zi,j . Tf has the correct distribution, since each sid j has random
uniform distribution, for 1 ≤ j ≤ n′. Hence,  does not abort due to ’s simulation of (
 ,). The
probability that  queries RO(⋅) on any zi,j before  provides I to is negligible (i.e., 1

2� ). Hence,  also
does not abort.

III. Simulate �w : Simulator  receives a search query for an arbitrary keyword w on time t .  is given
((�,Query, t), Δ(�, , w, t)) ← 2(�, , w, t).  adds these to . then simulates �w and updates
lists (,) as follows:
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1. If w is in , then fetch sw . Else, sw
$← {0, 1}� , i ← Tw (swi ), ui ← Tw[i].ct, insert (w,1(�, ), sw )

into .

2. If ⊥ = (i||ui), then ri
$← {0, 1}� and insert (ri , i, ui) into . Else, ri ← (i||ui).

3. If ui > 1, then r i ← (i||ui − 1), �w ← (i, ri , r i). Else, �w ← (i, ri).
4. Tw[i].ct ← ui + 1.
5. Given 2(�, , w, t),  knows identi�ers w = {y1, … , yl}. Set I′[i, y] ← 1 for each y ∈ w and rest

of the elements as I′[i, j] ← 0 for each j ∈
{
{1, … , n} ⧵ w

}
.

6. If ((�w = (i, ri) ∨ I[i, j].st) = 1), then V[i, j] ← I[i, j]′ ⊕ I[i, j] and insert tuple (ri ||j||uj , V[i, j]) into ,
where uj ← Tf [j].ct for 1 ≤ j ≤ n.

7. I[i, j].st ← 0 for 1 ≤ j ≤ n.
8. I[i, j] ← I′[i, j] ⊕ RO(ri ||j||uj), where uj ← Tf [j].ct for 1 ≤ j ≤ n.
9. Output �w and insert (w, �w ) into .
Correctness and Indistinguishability of the Simulation: Given any Δ(�, , w, t),  simulates the output of
RO(⋅) such that �w always produces the correct search result for w ← Search�w , 
 .  needs to simulate
the output of RO(⋅) for two conditions (as in III-step 6): (i) The �rst search of w (i.e., �w

?= (i, ri)), since
 did not know � during the simulation of (
 ,). (ii) If any �le fid containing w has been updated
after the last search on w (i.e., I[i, j].st ?= 1), since  does not know the update content.  sets the
output of RO(⋅) for those cases by inserting tuple (ri ||j||uj , V[i, j]) into  (as in III-step 6). In other
cases,  just invokes RO(⋅) with (ri ||j||uj), which consistently returns the previously inserted bit from
 (as in III-step 8).

During the �rst search onw , each RO(⋅) outputsV[i, j] = RO(ri ||j|uj) that has the correct distribution,
since I[i, ∗] of 
 has random uniform distribution (see II-Correctness and Indistinguishability argument).
Let  = {j1, … , jl} be the set of indexes of �les containing w , which are updated after the last search
on w . If w is searched again after being updated, then each RO(⋅)’s output V[i, j] = RO(ri ||j|uj) has
the correct distribution, since �f ← (I′, j) for indexes j ∈  has random uniform distribution (see IV-
Correctness and Indistinguishability argument). Given that  ’s �w always produces correct w for given
Δ(�, , w, t), and relevant values and RO(⋅) outputs have the correct distribution,  does not abort
during the simulation due to  ’s search token. The probability that  queries RO(⋅) on any (ri ||j|uj)
before querying  on �w is negligible (i.e., 1

2� ) and, therefore,  does not abort due to ’s search query.

IV. Simulate (�f ,� ′f ):  receives an update request Query = (⟨Add, |c|⟩, Delete) for an arbitrary �le
having id at time t . simulates update tokens (�f , � ′f ) as follows:

1. If id is in , then fetch (id, sid , j). Else set sid
$← {0, 1}� , j ← Tf (sid ) and insert (id, sid j , j) into .

2. Tf [j].ct ← Tf [j].ct + 1, uj ← Tf [j].ct.

3. If ⊥ = (i||ui), then ri
$← {0, 1}� and insert (ri , i, ui) into , where ui ← Tw[i].ct for 1 ≤ i ≤ m.

4. I′[i, j] ← RO(zi), where zi
$← {0, 1}2� for 1 ≤ i ≤ m.

5. Set I[i, j] ← I′[i, j] and I[i, j].st ← 1 for 1 ≤ i ≤ m.
6. If Query = ⟨Add, |c|⟩, then simulate cj ←  .Enck({0}|c|) add cj into , set �f ← (I′, j) and output �f .

Else, set � ′f ← (I′, j), remove cj from  and output � ′f .
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Correctness and Indistinguishability of the Simulation: Given access pattern (�f , � ′f ) for a �le fid ,  checks
the correctness of update by searching all keywords  = {wi1 , … , wil} in fid . Since  is given access
pattern Δ(�, , w, t) for a search query (which captures the last update before the search), the search
operation always produces a correct result after an update (see III-Correctness and Indistinguishability
argument). Hence,  ’s update tokens are correct and consistent.

It remains to show that (�f , � ′f ) have the correct probability distribution. In the real algorithm, the
counter uj is increased for each update as simulated in IV-step 2. If fid is updated after the keyword
w at row i is searched, a new ri is generated for w as simulated in IV-step 3 (ri remains the same for
consecutive updates but uj increases). Hence, the real algorithm invokes H(.) with a di�erent (ri ||j||uj)
for 1 ≤ i ≤ m.  simulates this step by invoking RO(⋅)with zi and I′[i, j] ← RO(zi), for 1 ≤ i ≤ m. (�f , � ′f )
have random uniform distribution since I′ has random uniform distribution and update operations are
correct and consistent as shown above. cj also has the correct distribution since Enc is an IND-CPA
encryption. Hence,  does not abort during the simulation due to  ’s update tokens. The probability
that  queries RO(⋅) on any zi prior querying  on (�f , � ′f ) is negligible (i.e., 1

22⋅� ) and, therefore,  does
not abort due to ’s update query.
V. Final Indistinguishability Argument: (swi , sid j , ri) for 1 ≤ i ≤ m and 1 ≤ j ≤ n are indistinguishable
from real tokens and keys since they are generated by PRFs that are indistinguishable from random
functions. Enc is a IND-CPA scheme, the answers returned by  to for RO(⋅) queries are consistent
and appropriately distributed, and all query replies of  to during the simulation are correct and
indistinguishable as discussed in I-IV Correctness and Indistinguishability arguments. Hence, for all
PPT adversaries, the outputs of Real(�) and Ideal, (�) experiment are:

|Pr[Real(�) = 1] − Pr[Ideal, (�) = 1]| ≤ neg(�)

4.2 Privacy Levels

The leakage de�nition and formal security model imply various levels of privacy for di�erent DSSE
schemes. We summarize important privacy notions based on the various leakage characteristics dis-
cussed in [16, 27, 5, 24] with di�erent levels of privacy as follows:

∙ Size pattern: The number of actual keyword-�le pairs.

∙ Forward privacy: A search on a keywordw does not leak the identi�ers of �les matching this keyword
for future �les.

∙ Backward privacy: A search on a keyword w does not leak all historical update operations (e.g.,
addition /deletion) on the identi�ers of �les having this keyword.

∙ Update privacy: Update operation may leak di�erent levels of information depending on the con-
struction of the scheme. Speci�cally, we de�ne �ve levels of update privacy, in which the level-1
leaks least information while the level-5 leaks the most, as follows:

– Level-1 (L1) leaks only the time t of the update.
– Level-2 (L2) leaks L1 plus the identi�er of the �le being updated, the number of keywords in it

and update type (i.e., add/delete/modify) (e.g., [27]).
– Level-3 (L3) leaks L2 plus if that identi�er has same keywords added or deleted previously, and

also when/if the same keywords were searched before (e.g., [5]).
– Level-4 (L4) leaks L3 plus if the same keyword was added/deleted from two �les (e.g., [16]).
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– Level-5 (L5) leaks the pattern of all intersections of everything is added/deleted and whether
the keywords were searched for (e.g., [18]).

Corollary 1. IM-DSSE framework o�ers forward-privacy.

Proof (sketch). In IM-DSSE framework, the update involves reconstructing a new column/block of en-
crypted index I. The column/block is always encrypted with row keys that have never been revealed
to the server (steps 2–4 in Simulate (�f ,� ′f ))). This is achieved in IM-DSSEmain and IM-DSSEI schemes
by increasing the row counter after each keyword search operation (e.g., step 4 in Simulate (�w )) so
that fresh row keys will always be used for subsequent update operations. In IM-DSSEII scheme, since
all cryptographic operations are performed at the client side where no keys are revealed to the server,
it is unable for the server to infer any information in the update, given that the encryption scheme is
IND-CPA secure. These properties enable our IM-DSSE framework to achieve forward privacy.

Corollary 2. IM-DSSEII and IM-DSSEI+II achieve backward-privacy.

Proof (sketch). In most DSSE schemes, the client sends a key that allows the server to decrypt a small
part of the encrypted index during keyword search. The server can use this key to backtrack historical
update operations on this part and therefore, compromise the backward-privacy. In IM-DSSEII and
IM-DSSEI+II schemes, instead of sending the key to the server, the client requests this part and decrypts
it locally. This prevents the server from learning information about historical update operations on the
encrypted index and therefore, allows both schemes to achieve backward-privacy.

One might observe that all developed DSSE schemes in IM-DSSE framework do not leak the update
type (add/delete) on encrypted index I since it has the same access pattern on I. However, it can be
distinguishable due to access pattern on encrypted �les. This leakage can be sealed by sending a dummy
�le to the server during deletion. This strategy enables both add and delete operations to have the same
procedure on both I and encrypted �les and, therefore, achieves Level-1 of update privacy, where only
the update time and a column index are leaked. Finally, since keyword-�le relationships are represented
by an encrypted incidence matrix, IM-DSSE framework also hides the size pattern (i.e., number of ‘1’
entities in I), and therefore, achieve the size-obliviousness.

5 Performance Analysis and Evaluation

We evaluate the performance of our IM-DSSE framework in real-life networking and system settings.
We provide a detailed cost breakdown analysis to fully assess criteria that constitute the performance
overhead of our constructions. Given that such analysis is generally missing in the literature, this is
the main focus of our performance evaluation. Finally, we give a brief asymptotic comparison of our
framework with several DSSE schemes in the literature.

Implementation Details. We implemented our framework using C/C++. For cryptographic prim-
itives, we used libtomcrypt cryptographic toolkit version 1.17. We modi�ed low level routines
to call AES hardware acceleration instructions (via Intel AES-NI library) if they are supported by the
underlying hardware platform. Key generation was implemented using the expand-then-extract key
generation paradigm analyzed in [19]. However, instead of using a standard hash function, we used
AES-128 CMAC for performance reasons. This key derivation function has been formally analyzed and
is standardized. Our random oracles were all implemented via 128-bit AES CMAC. For hash tables, we
employed Google’s C++ sparse hash map with the hash function being implemented by CMAC-based

14



random oracles truncated to 80 bits. We implemented the IND-CPA encryption  using AES with CTR
mode.

IM-DSSE framework contains the full implementation of all schemes presented in this article in-
cluding IM-DSSEmain, IM-DSSEI, IM-DSSEII and IM-DSSEI+II, which can be freely accessible via our
Github repository:

https://github.com/thanghoang/IM-DSSE/

Our implementation supports the encrypted index stored on either memory or local disk. Therefore,
our schemes can be directly deployed in either storage-as-a-service (e.g., Amazon S3) or infrastructure-
as-a-service clouds (e.g., Amazon EC2). For this experimental evaluation, we selected block cipher size
b = 128 for IM-DSSEI and IM-DSSEI+II schemes.

Dataset. We used the Enron email dataset and select its subsets, ranging from 50,000 to 250,000 �les
with 240,000–940,000 unique keywords to evaluate the performance of our schemes with di�erent en-
crypted index sizes. These selected sizes surpass the experiments in [18] by three orders of magnitude
and are comparable to the experiments in [27].

Hardware. We conducted the experiment with two settings:

(i) We used HP Z230 Desktop as the client and built the server using Amazon EC2 with m4.4xlarge
instance type. The desktop was equipped with Intel Xeon CPU E3-1231v3 @ 3.40GHz, 16 GB RAM,
256 GB SSD and CentOS 7.2 installed. The server was installed with Ubuntu 14.04 and equipped
with 16 vCPUs @2.4 GHz Intel Xeon E5-2676v3, 64 GB RAM and 500 GB SSD hard drive.

(ii) We selected LG G4 mobile phone to be the client machine, which runs Android OS, v5.1.1 (Lollipop)
and is equipped with Qualcomm Snapdragon 808 64-bit Hexa-core CPU @1.8 GHz, 3GB RAM and
32 GB internal storage. Notice that AES-NI library cannot be used to accelerate cryptographic op-
erations on this mobile device since its incompatible CPU, which a�ects the performance of our
schemes in the mobile environment as will be shown in the following section.

We disabled the slow-start TCP algorithm and maximized initial congestion window parameters
in Linux (i.e., 65535 bytes) (see [10] for more insights) to reduce the network impact during the initial
phase in case the scheme requires low amount of data to be transmitted.

PerformanceResults. Figure 1 presents the overall performance in terms of end-to-end cryptographic
delay of all schemes in IM-DSSE framework. In this experiment, we located client and server in the same
geographical region, resulting in the network latency of 11.2 ms and throughput of 264 Mbps. We refer
to this con�guration as a fast network setting. Notice that we only measured the delay due to accessing
the encrypted index I, and omitted the time to access encrypted �les (i.e., set ) as it is identical for all
(D)SSE and non-SSE schemes. For instance, in keyword search, we measured the delay of IM-DSSEmain

scheme and IM-DSSEI scheme by the time the client sends the request and the server �nishes decrypting
an entire row of the encrypted index and gets cells whose value is 1. The IM-DSSEmain scheme and its
extended versions took less than 100 ms to perform a keyword search, while it took less than 2 seconds
to update a �le. The cost per keyword search depends linearly on the maximum number of �les in
the database (i.e., (n)) and yet it is highly practical even for very large numbers of keyword-�le pairs
(i.e., more than 1011 pairs). Indeed, we con�rm that the search operation in IM-DSSE is very fast and
most of the overhead is due to network communication delay as it will be later analyzed in this section.
Note that the costs for adding and deleting �les (updates) over the encrypted index are similar since
their procedure is identical. The keyword search operation delay of IM-DSSEmain is higher than that

15

https://github.com/thanghoang/IM-DSSE/


1010 1011
40

60

80

100

# keyword-�le pairs (log)

D
el

ay
(m

s)
IM-DSSEmain

IM-DSSEI

IM-DSSEII

IM-DSSEI+II

(a) Keyword search

1010 1011
0

0.5

1

1.5

# keyword-�le pairs (log)

D
el

ay
(s)

IM-DSSEmain

IM-DSSEI

IM-DSSEII

IM-DSSEI+II

(b) File update

Figure 1: The latency of our schemes with fast network.
of extended schemes and it increases as the size of the encrypted index increases due to two reasons:
First, the encrypted index I in IM-DSSEmain scheme is bit-by-bit encrypted compared with 128-bit block
encryption in IM-DSSEI. Hence, the server needs to derive more AES keys than in IM-DSSEI to decrypt
a whole row. Thus, the gap between IM-DSSEmain and IM-DSSEI represents the server computation
cost required for this key derivation and encryption. Second, processes in IM-DSSEmain scheme are
performed subsequently, in which the server needs to receive some information sent from the client
�rst before being able to derive keys to decrypt a row. Such processes in IM-DSSEI and IM-DSSEII can
be parallelized, where the client generates the AES-CTR keys while receiving a row of data transmitted
from the server. We can see that the delay is not so di�erent between IM-DSSEI and IM-DSSEII and
IM-DSSEI+II. This indicates that using 128-bit encryption signi�cantly reduces the server computation
cost to be negligible as it will be later shown.

Considering the �le update operation, our IM-DSSEmain and IM-DSSEII schemes leverage 1-bit en-
cryption and, therefore, it does not require to transfer a 128-bit block to the client �rst prior to up-
dating the column as in IM-DSSEI and IM-DSSEI+II schemes. Hence, they are faster and less a�ected
by the network latency than IM-DSSEI and IM-DSSEI+II. So, the gap between such schemes re�ects
the data download delays, which will be signi�cantly higher on slower networks as shown in the next
experiment. Update in IM-DSSEI+II is considerably faster than in IM-DSSEI because it allows for par-
allelization, in which the client can pre-compute AES-CTR keys while receiving data from the server.
In IM-DSSEI, such keys cannot be computed as they need some information being sent from the server
beforehand (i.e., state data I[∗, j].st ).

The impact of network quality. The previous experiments were conducted on a high-speed network,
which might not be widely available in practice. Hence, we additionally investigated how our schemes
perform when the network quality is degraded. To do that, we setup the server to be geographically
located distant from the client machine, resulting in the network latency and throughput to be 67.5 ms
and 46 Mbps, respectively . Figure 2 shows the end-to-end crypto delay of our schemes in this moderate
network setting. Due to the high network latency, search operation of each scheme is slower than that
of fast network by 230ms. The impact of the network latency is clearly shown in the update operation
as re�ected in Figure 2b. The delays of IM-DSSEI, IM-DSSEI+II are signi�cantly higher than those of
IM-DSSEmain and IM-DSSEII. As explained previously, this gap actually re�ects the download delay
incurred by such schemes.
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Figure 2: The latency of our schemes with moderate network.
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Figure 3: The latency of IM-DSSE framework with SSD server-storage and (a,b) fast and (c,d) moderate
networks.

Storage location of encrypted index: RAM vs. disk. Another important performance factor for
DSSE is the encrypted index storage access delay. Hence, we investigated the impact of the encrypted
index storage location on the performance of our schemes. Clearly, the ideal case is to store all server-
side data on RAM to minimize the delay introduced by storage media access as shown in previous
experiments. However, deploying a cloud server with a very large amount of RAM capacity can be
very costly. Thus, in addition to the RAM-stored results shown previously, we stored the encrypted
index on the secondary storage unit (i.e., SSD drive), and then measured how overall delays of our
scheme were impacted by this setting. Figure 3 presents results with two aforementioned network
quality environments (i.e., fast and moderate speeds). In IM-DSSEmain and IM-DSSEI schemes, the disk
I/O access is incurred by loading a part of the encrypted index including value I.v and state I.st . It
is clear that the disk I/O access time incurred an insigni�cant latency to the overall delay in terms of
keyword search operation as shown in Figures 3a and 3d since our schemes achieve perfect locality as
de�ned by Cash et al. [7]. However, in the �le update operation, the delay in IM-DSSE framework was
1–4 seconds more, compared with RAM-based storage. That is because we stored all cells in each row
of the encrypted matrix I in contiguous memory blocks. Therefore, keyword search invokes accessing
subsequent memory blocks while update operation results in accessing scattered blocks which incurs
much higher disk I/O access time. Due to the incidence matrix data structure and this storage strategy,
our search operation was not a�ected as much by disk I/O access time as other non-local DSSE schemes
(e.g., [5, 6, 17]), which require accessing random memory blocks for security.
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Figure 4: Detailed costs of IM-DSSE framework with moderate network and SSD server-storage.

Cost breakdown. We dissected the overall cost of our schemes previously presented in Figures 1, 2
and 3 to investigate which factors contribute a signi�cant amount to the total delay of each scheme.
For analysis, we selected the cost of our schemes when performing on the largest encrypted index size
being experimented (i.e., 2.36×1011) with moderate network speed, where the encrypted index is stored
on a SSD drive. Figure 4 presents the major factors that contribute to the total delay of our schemes
during keyword search and �le update operations.

Considering the search operation, it is clearly data transmission what occupied the largest amount
of delay of all schemes. In our IM-DSSEmain and IM-DSSEI schemes, most of the computations were per-
formed by the server wherein cryptographic operations were accelerated by AES-NI so that they only
took a small number of the total, especially in IM-DSSEI scheme. Meanwhile, the client only performed
simple computations such as search token generation so that its cost was negligible. In IM-DSSEII and
IM-DSSEI+II schemes, encrypted data were decrypted at the client side, while the server did nothing
but transmission. Therefore, the client computation cost took a small portion of the total delay and
the server’s cost was negligible. However, as indicated in Section 3, the client computation and data
transmission in IM-DSSEII and IM-DSSEI+II are fully parallelizable where their partially parallel costs
are indicated by their overlapped area in Figure 4a. Hence, we can infer that client computation was
actually dominated by data transmission and, therefore, the computation cost did not a�ect the total
delay of the schemes. As explained above, we stored the encrypted matrix on disk with row-friendly
strategy so that the disk I/O access time due to keyword search was insigni�cant, which contributed
less than 3% to the total delay.

In contrast, it is clear that disk I/O access time occupied a considerable proportion of the over-
all delay of the update operation, especially in the IM-DSSEmain and IM-DSSEII schemes due to non-
contiguous memory access. Data transmission was the second major factor contributing to the total
delay. As the server did not perform any expensive computations, its cost was negligible in all schemes.
The client performed cryptographic operations which were accelerated byAES-NI library so that it only
contributed less than 7% of the overall cost. Additionally, the client computation was mostly parallelized
with the data transmission and the server’s operations in IM-DSSEII and IM-DSSEI+II schemes so that
it can be considered not to signi�cantly impact the total delay.

Realization on mobile environments. Finally, we evaluated our schemes’ performance when de-
ployed on a mobile device with limited computational resources. Similarly to the desktop experiments,
we tested on fast and moderate network speed by geographically locating the server close and far away
from the mobile phone, respectively. The phone was connected to a local WiFi which, in turn, allowed
the establishment of the connection to the server via a wireless network resulting in the network latency
and throughput of fast network case to be 18.8 ms, 136 Mbps while those of moderate case were 76.3 ms
and 44 Mbps respectively. Figures 5 and 6 present the benchmarked results with aforementioned net-
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Figure 5: The latency of IM-DSSE framework on mobile and RAM server-storage with (a,b) fast and
(c,d) moderate networks.
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Figure 6: The latency of IM-DSSE framework on mobile and SSD server-storage with (a,b) fast and (c,d)
moderate networks.
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Figure 7: Detailed costs of IM-DSSE framework on mobile with moderate network and SSD server-
storage.

work settings when the data in the server were stored on primary (i.e., RAM) and secondary (i.e., SSD)
storage units, respectively. In the mobile environment, the IM-DSSEII scheme performed considerably
slower than others in terms of keyword search. That is because, in this scheme, a number of crypto-
graphic operations (i.e.,  (n)) were performed by the mobile device. Moreover, these operations were
not accelerated by AES-NI library as in our Desktop machine because the mobile CPU did not have spe-
cial crypto accelerated instructions. Considering the keyword search performance of IM-DSSEII in the
moderate network setting (i.e., Figures 5c and 6c), we can see that its delay signi�cantly increased when
the size of encrypted index exceeded 1011 keyword-�le pairs. This is because starting from this size of
the encrypted index, the client computation began to dominate the data transmission cost. The update
delays of our schemes, especially the IM-DSSEmain and IM-DSSEII schemes, were substantial in the
mobile environment because the mobile platform had to perform intensive cryptographic operations.

Figure 7 shows the decomposition of the total end-to-end delay of our schemes in the out-of-state
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Table 1: Security and asymptotic complexity of some state-of-the-art DSSE schemes.

Scheme/Property KPR12 [18] KP13 [16] CJK+14 [5] HK14 [12] SPS14[27] B16 [3] IM-DSSE
Update Privacy L5 L4 L3 L3 L2 L2 L1
Size Privacy 7 7 7 7 7 7 3

Forward Privacy 7 7 7 7 3 3 3

Backward Privacy 7 7 7 7 7 7 3†

Client Storage  (1)  (1)  (1)  (m′)  (N ′� )  (m log n)  (m + n)
Index Size  (N ′ + m)  (m ⋅ n)  (N ′)  (N ′)  (N ′)  (N ′)  (m ⋅ n)

Search Cost  (r)  (
r log n
p )  (

r+dw
p )  (r) (min

{
dw + logN ′

r log3 N ′

}

)  (r + dw )  (
n
p)

Update Cost  (m′′)  (m log n)  (m′′ + r ′′)  (m′′)  (m′′ log2 N ′)  (m′′)  (m)
Parallelizable 7 3 3 7 7 7 3

† IM-DSSEII and IM-DSSEI+II schemes in our IM-DSSE framework o�er backward-privacy (see Section 4).
∙ m and n denote the maximum number of keywords and �les, respectively. m′ < m and n′ < n denote the actual number of keywords and �les,
respectively. N ′ ≤ m′ ⋅ n′ is # keyword-�le pairs. m′′ = # unique keywords included in an updated �le, r = # �les matching search query, p = #
processors, 0 < � < 1, dw = # historical update (add/delete) operations on keyword w , r ′′ = (accumulated) # unique keywords being newly added.
∙ We omitted the security parameter � for analyzed complexity cost. Update privacy levels {L1, … , L5} are described in Section 4.

network setting when the server data were stored on a SSD hard drive. For the search operation, the
detailed costs of IM-DSSEmain and IM-DSSEI schemes are the same as those of the desktop setting be-
cause computations were performed by the server while the client only did lightweight computation to
generate the search token. In the IM-DSSEII scheme, the client computation contributed almost 100%
to the total delay due to  (n) number of AES-CTR decryptions, compared with that of  (n) /128 in
IM-DSSEI+II which was all dominated by the data transmission delay. The limitation of computational
capability of the mobile device is re�ected clearly in Figure 7b, wherein the client computation cost ac-
counted for a considerable amount of the overall delay of most schemes except for IM-DSSEI+II scheme.

Asymptotic performance comparison. Compared to Kamara et al. in [18], which achieves optimal
sublinear search time but leaks signi�cant information for update, our IM-DSSE framework has linear
search time but achieves highly secure updates. Moreover, the scheme in [18] can not be parallelized
whereas our schemes can be. Kamara et al. in [16] relies on red-black trees as the main data structure,
achieves parallel search and oblivious update. However, it incurs extreme server storage overhead due
to its large encrypted index size. The scheme of Stefanov et al. [27] requires relatively high client
storage (e.g., 210 MB for moderate size of �le-keyword pairs), where the client fetches a non-negligible
amount of data from the server and performs an oblivious sort on it. We only require two hash tables
and three symmetric secret keys storage. The scheme in [27] also requires signi�cant amount of data
storage (e.g., 2000–3200 bits) per keyword-�le pair at the server side versus 1-2 bits per keyword-�le pair
along with a hash table in our framework. The data structure in [27] grows linearly with the number
of deletion operations, which requires re-encrypting the data structure eventually. Our schemes do
not require re-encryption (but we assume an upper bound on the maximum number of �les), and our
storage is constant regardless of the number of updates. Cash et al. introduced the most e�cient DSSE
scheme [5] which achieves a sub-linear search complexity. Despite being asymptotically better than
our scheme, our simulated result showed that, it is only one order of magnitude faster in practice on
very-large databases with hundred millions of documents (as used in [5]). Remark that this scheme
does not o�er forward-privacy and therefore, it is less secure than our schemes. Table 1 provides a
asymptotic comparison of our framework with several prominent DSSE schemes regarding security,
asymptotic complexity and some additional properties.
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6 Related Work

SSE was �rst introduced by Song et al. [26] and it was followed by several improvements (e.g., [9, 8]).
Curtmola et al. [9] proposed a sublinear SSE scheme and introduced the security notion for SSE called
adaptive security against chosen-keyword attacks (CKA2). Re�nements of [9] have been proposed which
o�er extended functionalities (e.g., [29]). However, the static nature of those schemes limited their
applicability to applications required dynamic �le collections. Kamara et al. were among the �rst
to develop a DSSE scheme in [18] that could handle dynamic �le collections via an encrypted index.
However, it leaks signi�cant information for updates and it is not parallelizable. Kamara et al. [16]
proposed a DSSE scheme, which leaked less information than that of [18] and it was parallelizable.
Recently, a series of new DSSE schemes (e.g., [27, 5, 24, 12, 3, 15]) have been proposed which o�er
various trade-o�s between security, functionality and e�ciency properties such as small leakage (e.g.,
[27] ), scalable searches with extended query types (e.g., [6, 30, 15] ), or high e�ciency (e.g., [24, 21]).
Among these state-of-the art DSSE schemes, we have already selected several typical ones (i.e.,[27, 5,
18, 17, 3, 12]) and compared their security and e�ciency properties in Table 1 and Section 5. Inspired by
the work from [5], Kamara et al. in [15] proposed a new DSSE scheme which supports more complex
queries such as disjunctive and boolean queries and achieved sub-linear search time.

Due to the deterministic keyword-�le relationship, most traditional DSSE schemes (including ours)
leak search and access patterns de�ned in Section 4 which are vulnerable to statistical inference attacks.
A number of attacks (e.g., [14, 25, 4, 20, 23, 32]) have been demonstrated. Several DSSE schemes have
been proposed to deal with such leakages (e.g., [13, 2]) but they are neither e�cient nor fully secure.
Oblivious Random Access Machine (ORAM) (e.g., [11, 28]) can hide search and access patterns in DSSE.
Despite a lot of progress on these techniques, their costs are still extremely high to be applied to DSSE
in practice [22]. Hence, hiding access pattern leakages in DSSE with more e�cient approaches is still an
open research problem that needs to be resolved to make DSSE fully secure in real-world applications.

7 Conclusions

In this article, we presented IM-DSSE, a new DSSE framework which o�ers very high privacy, e�cient
updates, low search latency simultaneously. Our constructions rely on a simple yet e�cient incidence
matrix data structure in combination with two hash tables that allow e�cient and secure search and
update operations. Our framework o�ers various DSSE construction, which are speci�cally designed to
meet the needs of cloud infrastructure and personal usage in di�erent applications and environments.
All of our schemes in IM-DSSE framework are proven to be secure and achieve the highest privacy
among their counterparts. We conducted a detailed experimental analysis to evaluate the performance
of our schemes on real Amazon EC2 cloud systems. The achieved results showed the high practicality of
our framework even when deployed on mobile devices with large datasets. We released the full-�edged
implementation of our framework for public use and analysis.
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