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ABSTRACT

Marchand, Belinda, M.S.A.A., Purdue University, December, 2000. Temporary Satel-
lite Capture of Short-Period Jupiter Family Comets from the Perspective of Dynam-
ical Systems. Major Professor: Kathleen C. Howell.

The Temporary Satellite Capture (TSC) of short-period comets, such as Oterma

and Helin-Roman-Crockett, by Jupiter has intrigued astronomers for many years. A

widely accepted approach to study TSC is to numerically integrate the equations

of motion for the n-body problem using a wide range of initial conditions obtained

from the heliocentric two-body problem; then, a search ensues for instances when the

Joviocentric energy becomes negative. More recently, a preliminary analysis involving

the application of dynamical systems theory to the Sun-Jupiter-comet three-body

problem has provided significant insight into the motion in the Sun-Jupiter system

and offered a simple model to account for the TSC phenomena observed in Jupiter

family short-period comets. The accuracy of this model can be immediately verified

since ephemeris data is available for comet trajectories.

In this work, the TSC path of two Jupiter family comets, Oterma and Helin-

Roman-Crockett, is compared to trajectory arcs along the stable and unstable man-

ifolds associated with three-dimensional periodic and quasi-periodic orbits near the

libration points L1 and L2 in the Sun-Jupiter system. The initial analysis is based

on the circular restricted three-body model of the Sun-Jupiter-comet system. In par-

ticular, the stable and unstable manifolds associated with three-dimensional families

of periodic halo orbits are considered. The inherent symmetry properties associated

with the circular restricted three-body problem, combined with numerical studies on

the evolution of the stable and unstable manifolds, simplify the process of identi-

fying trajectory arcs, in configuration space, that resemble the path of a particular

comet during capture. The goal of this investigation is to identify a “match” to
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the six-dimensional state of the comet during capture. Once the position elements

are successfully matched in the circular restricted model, it is necessary to establish

whether the corresponding velocity elements also match those of the comet. Analysis

of the available empirical data reveals that, in the circular restricted three-body prob-

lem, the discrepancy in the velocity elements can be significant. Thus, to improve the

accuracy of the six-dimensional match, the solution is transferred into the ephemeris

model. In this model, the equations of motion are numerically integrated using actual

ephemeris information for the planets. The concepts from dynamical systems theory

that are employed in the circular restricted three-body problem are successfully ex-

tended to the ephemeris model. In the ephemeris model, periodic solutions in the

vicinity of the libration points do not exist. Thus, quasi-periodic Lissajous trajec-

tories near L1 and L2 are considered. Although the symmetry properties are lost

mathematically in the ephemeris model, in practice the general features of the solu-

tion are well preserved. For the comets considered in this study, this loss of symmetry

introduces changes in both the position and velocity states. These changes actually

improve significantly the match relative to the solution that was initially identified in

the circular restricted three-body problem. This methodology is successfully applied

to two short-period Jupiter family comets: Oterma and Helin-Roman-Crockett.
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1. Introduction

In July 1943, L.E. Cunningham and R.N. Thomas [1] published data that revealed,

among other things, that the recently discovered comet 39P/Oterma had passed close

to Jupiter in 1938. Astronomers subsequently noted that the orbit of the comet

was “not particularly stable” due to multiple close approaches of Jupiter. It is a

generally accepted practice in astronomy to explain the erratic behavior of short-

period comets such as Oterma in the context of a heliocentric two-body problem

where perturbations from the outer planets result in significant changes to the orbital

parameters corresponding to a given comet. However, evaluating this issue from

the perspective of dynamical systems theory has offered new insight into the erratic

dynamical behavior of this and other comets.

1.1 Previous Work

Comets like 39P/Oterma (OTR) and 111P/Helin-Roman-Crockett (HRC) are

classified as Jupiter family short-period comets. These comets share at least one

significant orbital characteristic: at some time during their dynamical evolution, each

experiences a low-velocity close encounter with Jupiter such that the Joviocentric en-

ergy becomes negative. This event is denoted as Temporary Satellite Capture (TSC).

Kazimirchak-Polonskaya [2] studied TSC in the early 1970’s by numerically integrat-

ing the orbits of a group of minor bodies, with a wide range of heliocentric orbital

elements as initial conditions. She used an n-body integrator to propagate the initial

conditions and searched for instances when the bodies crossed the sphere of influence

of Jupiter, Saturn, Uranus, or Neptune. This effort was an attempt to create the

dynamical circumstances required for a TSC to occur and thus establish a criterion

for capture. Carusi [3, 4, 5, 6, 7, 8, 9, 10] in collaboration with Pozzi [3], Valsecchi
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[4, 5, 6, 7, 8, 9, 10], Kresák [7, 9], and Perozzi [8] employed a similar approach to

study the capture phenomena.

Investigations of this problem have subsequently continued. In the mid-1970’s,

Horedt [11], Heppenheimer [12, 13], and Porco [13] considered the problem of TSC

in the context of the planar circular restricted three-body problem (CR3BP). These

authors attributed the strange behavior of some Jupiter family comets to the sepa-

ratrices associated with the libration point L1 in the Sun-Jupiter system. Though

not explicitly stated, this may be the first study linking the behavior of short-period

Jupiter family comets to the dynamical structure associated with the collinear libra-

tion points in the Sun-Jupiter system. This basic concept represents the framework

of several studies in subsequent years. In the late 1980’s, Murison [14]-[15] compared

the more general aspects of TSC to the fractal nature of the dynamics in the planar

CR3BP. In a more recent effort, a similar idea is implemented by Lo and Ross [16]

in modeling the capture motion of some Jupiter family short-period comets, such as

Oterma, Gehrels 3, and Helin-Roman-Crockett. In particular, the in-plane motion of

these comets is compared to the stable and unstable manifolds associated with the

collinear libration points L1 and L2 in the Sun-Jupiter three-body system. For OTR

and HRC, this approach successfully reveals many of the significant features of the

comet’s motion. Consistent with previous work, Lo and Ross focus on the planar mo-

tion, that is, the comet motion is approximated as planar and compared to in-plane

manifolds associated with the libration points L1 and L2. It is also noted, however,

that certain comet behavior is even more completely reflected in the evolution of sta-

ble and unstable manifolds corresponding to three-dimensional periodic orbits in the

vicinity of L1 and L2, rather than just the manifolds associated specifically with the

libration points. Koon, Lo, Marsden, and Ross [17] consider this issue in the context

of the planar restricted three-body problem and present some theoretical results as

well. But, to allow for a more thorough investigation of the critical features in the

context of periodic orbits and quasi-periodic trajectories in the three-dimensional

three-body problem (3BP), the complexities involved with the out-of-plane compo-
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nent of the motion are required; such analysis is the focus of the current effort (K.C.

Howell, B.G. Marchand, and M.W. Lo [18]).

1.2 Scope of Present Work

In this investigation, the motion of OTR and HRC are considered within the

framework of the three-dimensional, restricted three-body problem. This formu-

lation allows for consideration of the impact of the stable and unstable manifolds,

associated with both three-dimensional halo orbits and Lissajous trajectories, on the

evolution of the comet trajectories. In particular, the problem is posed as a search

for trajectory arcs along the stable and/or unstable manifolds that reflect the comet

orbit. Initially, the comet trajectories are viewed in the context of the circular (but

three-dimensional) restricted problem. The inherent symmetries in this model sim-

plify the task of locating a trajectory arc that closely matches a segment along the

path of OTR and HRC, particularly during TSC. Such a trajectory arc is defined as

a “match.” Once a match is identified, the solution is transferred to the ephemeris

model. In this model, actual ephemeris data for the motion of the primary bodies

is used during the numerical integration of the relative equations of motion. The

purpose of this last step is to improve the accuracy of the match. Of course, the final

arc that is computed is evaluated against the actual comet path that is also available

from ephemeris information.

This study is organized as follows:

• Chapter 2: In this chapter the equations of motion for the circular restricted

three-body problem are developed. To gain insight into the geometry of the

solution space, the natural symmetry of solutions inherent to the mathemati-

cal model is observed. Furthermore, the regions of space where the comet can

dynamically evolve, in a CR3BP model, are defined via the three-dimensional

regions of exclusion corresponding to a particular energy level. Once the ex-

pected symmetry of solutions and the dynamical regions of exclusion are defined,

it is necessary to examine the stability characteristics of particular solutions in

this model. Variational equations and stability analyses of both continuous
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and discrete time systems are considered. The stability of continuous time sys-

tems is discussed introduce some basic concepts from invariant manifold theory.

Then, to facilitate the study of periodic orbits and their stability, the discretized

approach is discussed to support the application of the basic concepts and the-

orems of invariant manifold theory to discrete time systems.

• Chapter 3: Further insight into the geometry of solutions is developed through

numerical analysis. This chapter presents the results of extensive numerical

investigations that reveal similarities among the stable and unstable manifolds,

across families of periodic halo orbits. First, the necessary notation for this

numerical parametric study is introduced. Then, the evolution of the stable and

unstable eigenvector directions along a family of halo orbits is discussed. Each

state (“point of origin”) along an unstable orbit can be used to compute a six-

dimensional stable and unstable eigenvector. Observations about the features

of particular trajectory arcs in the vicinity of Jupiter are presented both as a

function of these eigenvector directions and as a function of the relative location

of the “point of origin” along the periodic orbit. To successfully exploit both

the analytical symmetries and the numerical near-symmetries corresponding to

this solution space, the definition of temporary satellite capture is modified.

The TSC mechanism is very complex and each capture exhibits its own unique

characteristics. The capture path of Oterma is very different than that of Helin-

Roman-Crockett. Hence, ephemeris information for these comets is used to

categorize the possible types of capture. A focused search of the solution space

is then initiated for a trajectory arc that matches the comet’s path. Once a

match is identified in the CR3BP, the solution is transferred to a less restrictive

ephemeris model to improve the accuracy of the match. The methodology

detailed in this chapter is applied to identify particular solutions that resemble

the capture paths of Oterma and Helin-Roman-Crockett.

• Chapter 4: Concluding remarks and suggestions for future work and applica-

tions.
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2. Background

2.1 Circular Restricted Three-Body Problem

Cometary motion is typically considered in the context of an n-body model, specif-

ically, one that incorporates all planetary perturbations. However, for some comets

the most significant gravitational influences originate from the Sun and Jupiter. Thus,

the motion of these comets is most accurately approximated within the context of the

three-body problem (3BP) as defined by the Sun-Jupiter-comet system. In this in-

vestigation, the path of a comet in a 3BP is compared to actual cometary ephemeris

information. The goal is the identification and isolation of a particular trajectory,

propagated in the three-body model, that closely resembles the “true” path of the

comet (as defined by the ephemerides), particularly during instances when the comet

is temporarily captured by Jupiter. The success of this process is based on an un-

derstanding of the geometry of the solution space that is available. The general 3BP

possesses a phase space of dimension 18. Thus, 18 integrals are required to obtain a

closed form solution to the equations of motion. To date, only ten integrals are known

in the general n-body problem. Thus, an exact analytical solution does not currently

exist for n ≥ 3. However, given the general 3BP, some additional assumptions offer

a simplified model that can be exploited for a better understanding of the types of

motion to be expected in the Sun-Jupiter-comet system.

In the simplified Sun-Jupiter-comet system, it is assumed that the mass of the

comet is both constant and negligible, relative to the masses of the Sun and Jupiter.

The two larger bodies, in this case the Sun and Jupiter, are defined as the primaries.

The primaries are assumed to be spherically symmetric and, hence, are modeled as

point masses. For notational purposes, the larger primary is defined as P1, the smaller
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primary as P2, and the comet as P3, where M3 << M2 < M1. The term “restricted”

denotes the assumption of infinitesimal mass for M3. It is also assumed that the

motion of the primaries about their common barycenter (center of mass) is circu-

lar. Geometrically, this model suggests some analytical and numerical symmetries.

Knowledge of these symmetries is a key component in identifying particular trajec-

tory arcs that exhibit characteristics similar to those of a captured comet. Thus, this

section is devoted to developing the equations of motion for the circular restricted

three-body problem (CR3BP), and analyzing the types of motion that can be ex-

pected, based on the symmetry properties inherent to this model.

2.1.1 Definitions of Appropriate Coordinate Frames

The development of any mathematical model usually requires the specification

of generalized coordinates. For example, the spatial location of each particle can

be described in terms of a set of cartesian coordinates relative to an inertially fixed

reference frame (I), defined by a dextral set of orthogonal unit vectors X̂-Ŷ -Ẑ. (Note

that carets indicate vectors of unit magnitude.) In the CR3BP, the inertial XY -plane

is defined as the plane of motion of the primaries. The inertial Z-axis coincides with

the direction of orbital angular momentum. The origin of the inertial coordinate

frame is defined as the barycenter of the three-body system, B.

An alternative representation corresponds to a set of spatial coordinates measured

relative to the synodic rotating frame (R), defined by the dextral orthonormal triad

x̂-ŷ-ẑ. In the synodic frame, the x-axis is directed from P1 to P2, the z-axis is aligned

with the direction of orbital angular momentum corresponding to the primary motion,

and the y-axis completes the right handed triad. The relative orientation of the

synodic frame with respect to the inertial frame is measured by the angle θ. These

two coordinate frames are illustrated in Figure 2.1.

2.1.2 Characteristic Quantities

To preserve the generality of the mathematical model, it is useful to introduce

some parameters that are characteristic of a particular three-body system. This set

of parameters is used to nondimensionalize the equations of motion (EOMS). To com-
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X̂

r̄2

r̄23

Ŷ

x̂

r̄3

r̄1

θ

ŷ

r̄13

B

P1

P3

P2

Figure 2.1. Coordinate Frame Definitions

pletely nondimensionalize the EOMS, it is necessary to define the three fundamental

dimensions (mass, length, and time) in terms of the system parameters. The reference

length is defined as the distance between the primaries, Lref . The combined mass

of the primaries Mref = M1 + M2 is then denoted as the reference mass. Then, the

characteristic time, tref , is defined as 1/n where

n =

√
GMref

Lref
3 , (2.1)

is the mean motion of the primaries.

In nondimensional units, the mass of P2 is evaluated as M2/Mref , and is defined

as the system mass parameter μ. Consequently, the mass of P1 is expressed as 1−μ.

Since the characteristic length is the constant distance between the primaries, the

nondimensional distance between P1 and P2 is always equal to one. Hence, from

the definition of the center of mass, the position vector locating P1 relative to the

barycenter can be expressed in the form r̄1 = −μx̂ in nondimensional units, where

overbars denote vector quantities. Similarly, the position vector locating P2 with

respect to the barycenter can be represented in the nondimensional form r̄2 = (1−μ)x̂.
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2.1.3 Equations of Motion

The derivation of the EOMS is based on a Newtonian approach. Let the nondi-

mensional position of P3, as observed in the rotating frame, be written as

r̄3 = xx̂ + yŷ + zẑ . (2.2)

The angular velocity of the synodic rotating frame (R) relative to the inertial frame (I)

is expressed in vector form as I ω̄R = θ̇ẑ. Since the motion of the primaries is assumed

to remain planar and circular, θ̇ is constant and equal to one in nondimensional units.

Thus, the vector kinematical expression for the inertial velocity of P3 is evaluated as

follows,

I ˙̄r3 = R ˙̄r3 + Iω̄R × r̄3 ,

= (ẋ − θ̇x)x̂ + (ẏ + θ̇x)ŷ + żẑ , (2.3)

where dots indicate derivatives with respect to nondimensional time. Subsequently,

from kinematics, the inertial acceleration of P3 is expressed as

I ¨̄r3 = R ¨̄r3 + Iω̄R × R ˙̄r3 ,

= (ẍ − 2θ̇ẏ − θ̇2x)x̂ + (ÿ + 2θ̇ẋ − θ̇2y)ŷ + z̈ẑ . (2.4)

The two significant gravitational fields in this model are represented by two forces

applied to P3. Consistent with the inverse-square gravitational force model, the re-

sultant force acting on P3 can be expressed, nondimensionally, in the form

F̄ = −(1 − μ)

r3
23

r̄23 − μ

r3
13

r̄13 . (2.5)

Substitution of equations (2.4) and (2.5) into Newton’s Law of Motion results in three

scalar equations of motion,

ẍ − 2θ̇ẏ = θ̇2x − (1 − μ)(x + μ)

r3
23

− μ(x − 1 + μ)

r3
13

, (2.6)

ÿ + 2θ̇ẋ = θ̇2y −
{1 − μ

r3
23

+
μ

r3
13

}
y , (2.7)

z̈ = −
{1 − μ

r3
23

+
μ

r3
13

}
z . (2.8)
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The right side of equations (2.6)-(2.8) can be rewritten in terms of the following

pseudo-potential function (U),

U =
1

2
θ̇2(x2 + y2) +

1 − μ

r23
+

μ

r13
. (2.9)

Since the nondimensional value of θ̇ is one, the equations of motion are reduced to

the following form,

ẍ =
∂U

∂x
+ 2ẏ , (2.10)

ÿ =
∂U

∂y
− 2ẋ , (2.11)

z̈ =
∂U

∂z
. (2.12)

Although the EOMs can be expressed in terms of a pseudo-potential function (U),

total mechanical energy is not actually conserved in the R3BP due to the infinitesimal

mass assumption for P3. In fact, Poincaré [19] proved that, unlike the general three-

body problem where 10 integrals exist (six for the center of mass, three for angular

momentum, and one for total mechanical energy), no integrals of the motion exist in

the restricted three-body problem apart from the Jacobian or Jacobi constant (C).

The algebraic expression for the Jacobian is derived from equations (2.10)-(2.12), and

appears in the following form,

C = 2U − (ẋ2 + ẏ2 + ż2) . (2.13)

The Jacobi constant is a source of significant insight into the types of motion that can

exist in the CR3BP. By evaluating equation (2.13) under conditions of zero relative

velocity it is possible to identify contours of C that bound the regions of configuration

space within which the third particle (comet) dynamically evolves. The significance

of these zero-velocity contours in the TSC problem will later be apparent.

2.1.4 State Transition Matrix

Since no closed-form analytical solution exists for equations (2.10)-(2.12), the iden-

tification of a time history for motion in the CR3BP is ultimately based on numerical
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analysis. One of the techniques used here is a differential corrections process. This

approach relies on knowledge of both the Jacobian matrix and the state transition

matrix (STM). Let the six-dimensional vector x̄ref = [x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)]T

represent the vector time history corresponding to a known solution to the nonlin-

ear EOMS, equations (2.10)-(2.12). (Superscript T denotes transpose.) The vector

variation ȳ(t) = [δx(t) δy(t) δz(t) δẋ(t) δẏ(t) δż(t)]T , relative to x̄ref , can be approx-

imated via a Taylor series expansion about x̄ref . A first order approximation results

in variational equations of the form

˙̄y(t) = A(t)ȳ(t) , (2.14)

where A(t) is the 6 × 6 Jacobian matrix, with time-varying elements that appear in

the following form,

A(t) =

⎡
⎣ I3 03

Uij 2Ω3

⎤
⎦ . (2.15)

The submatrices Ik and 0k, correspond to the k × k identity matrix and null matrix,

respectively; thus, in equation (2.15) both submatrices are 3 × 3. The elements of

the submatrix Uij correspond to the second partial derivatives of the pseudo-potential

function with respect to the position states, (x, y, z). Thus, Uij takes on the following

form,

Uij =

⎡
⎢⎢⎢⎣

Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

⎤
⎥⎥⎥⎦ . (2.16)

The 3 × 3 submatrix Ω3 is evaluated as

Ω3 =

⎡
⎢⎢⎢⎣

0 1 0

−1 0 0

0 0 0

⎤
⎥⎥⎥⎦ . (2.17)

As is well known [20]-[21], the solution to equation (2.14) is written in the form

ȳ(t) = Φ(t, t0)ȳ0 , (2.18)
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where the vector ȳ0 = ȳ(t0) is the initial variation relative to x̄ref , and Φ(t, t0) is the

state transition matrix. Clearly, at t = t0, Φ(t0, t0) = I6. Substitution of equation

(2.18) into equation (2.14) results in a set of 36 scalar differential equations that

govern the elements of the 6×6 state transition matrix, Φ(t, t0). These equations can

be represented in matrix form as follows,

Φ̇(t, t0) = A(t)Φ(t, t0) . (2.19)

The matrix equation (2.19), combined with the first order form of the EOMS, equa-

tions (2.10)-(2.12), comprise a set of 42 scalar, nonlinear, ordinary differential equa-

tions that must be solved simultaneously via a numerical integration scheme.

2.2 Particular Solutions

As stated earlier, in the six-dimensional phase space of the CR3BP, there exist

an infinite number of solutions that satisfy the equations of motion. To simplify the

process of numerically identifying six-dimensional arcs along particular solutions in

the CR3BP that resemble cometary motion during TSC, knowledge of the types of

motion that can be expected is valuable. This understanding is developed by consid-

ering known particular solutions to the equations of motion: equilibrium solutions and

periodic orbits. Also, further insight is developed by considering three-dimensional

representations of pseudo-energy levels along a family of particular solutions.

2.2.1 Libration Points

The most familiar particular solution to equations (2.10)-(2.12) is the equilibrium

solution. In the CR3BP, five equilibrium locations exist. In 1772, Leonhard Euler

and Joseph-Louis Lagrange [22] shared the award from the Académie des Sciences of

Paris for the discovery of these five equilibrium points. The relative configuration of

these points (Li, i = 1, . . . 5) for the Sun-Jupiter system appears in Figure 2.2. Note

that the mass ratio in the Sun-Jupiter system is μ = 9.5388 × 10−4. This indicates

that the Sun and the barycenter are in close proximity (≈ 742 × 103 km), consistent

with Figure 2.2. Also apparent in this figure, three of the equilibrium (or libration)

points lie on the line joining the primaries (x-axis). These points are termed the
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collinear libration points. For notational purposes, L1 is defined as the collinear

point that lies between the primaries, L2 is located beyond the smaller primary (P2)

along the positive x-axis, and L3 is positioned on the opposite side of P1 at a distance

approximately equal to Lref , along the negative x-axis. The remaining two points,

also labeled Lagrange points, are in the xy-plane and lie at the vertices of equilateral

triangles with the primaries.
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Figure 2.2. CR3BP Libration Points in the Sun-Jupiter System

2.2.2 Periodic Orbits

As previously stated, no closed-form analytical solution exists to the equations

of motion in the CR3BP. However, linear analysis of equations (2.10)-(2.12) suggests

the existence of periodic and quasi-periodic solutions in the vicinity of the libration

points. Consequently, several researchers (including R. Farquhar and A. Kamel [23],

D. Richardson [24] and N. Cary [25], C. Marchal [26], as well as G. Gómez, A. Jorba, J.

Masdemont and C. Simó [27]) have developed higher order analytical approximations

to represent this type of motion. For example, Richardson [24] develops a third

order approximation for periodic motion near L1 and L2 in the Sun-Earth system.
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Such approximations are based on expansions relative to the libration points. Thus,

although these approximations provide great insight into the motion near the libration

points, the range of validity is limited. Consequently, to more fully explore the

solution space, these approximations must ultimately be combined with numerical

techniques to more accurately identify a periodic solution. Of course, any periodic

orbit can be represented simply by a set of initial conditions. Hence, a search for a

periodic orbit reduces to a search for an accurate initial state vector. For instance, as

an initial guess, the equations of motion are numerically integrated using a set of initial

conditions based on an analytical approximation. Then, a differential corrections

process is implemented to adjust the initial states until, numerically, the periodicity

of the solution is established. The available analytical approximations are typically

based on parameters in the Sun-Earth or Sun-Earth-Moon system (μ ≈ 3×10−6); the

comet analysis here corresponds to the Sun-Jupiter system (μ ≈ 9 × 10−4). Rather

than derive new approximations for a system with a higher μ value, a combination of

numerical μ-continuation and differential corrections is used here to successfully map

a set of initial conditions to the Sun-Jupiter system.

Naturally, there are an infinite number of periodic solutions that satisfy the equa-

tions of motion in the CR3BP. Halo orbits, in the vicinity of the collinear libration

points, are among these solutions. Halo orbits (and, consequently, halo families) are

three-dimensional and result from the bifurcation of a family of planar periodic orbits

(Lyapunov orbits) that exist in the xy-plane (M. Hénon [28], M. Michalodimitrakis

[29] and S.S. Ichtiaroglou [30], I.A. Robin and V.V. Markellos [31], K.C. Howell and

B.T. Barden [32]). Halo orbits associated with a specific collinear libration point are

defined along a halo family, one such that each member corresponds to a different

energy level (Jacobi Constant). For notational purposes, let SJL1 denote the Sun-

Jupiter L1 halo family and SJL2 denote the Sun-Jupiter L2 halo family. These contin-

uous, three-dimensional families are represented in Figure 2.3, in terms of projections

on the xz-plane of a limited number of periodic trajectories that are members of these

families. Note that the maximum out-of-plane components along these families, as



14

-4E+07

-2E+07

0

2E+07

4E+07

6E+07

8E+07

Z
[k

m
]

-6E+07 -4E+07 -2E+07 0 2E+07 4E+07 6E+07

X [km]

L1
L2

Jupiter

Figure 2.3. Sun-Jupiter L1 and L2 Halo Families

illustrated in Figure 2.3, are in the +z direction. Particular halo orbits along a fam-

ily, whose maximum out-of-plane component (Az) is in the +z direction are termed

northern solutions. As will become apparent in the following section, it is simple to

verify that for any single solution to the differential equations, there exists a second

solution with out-of-plane component (z) that is simply of opposite sign. Hence, it

follows that there exists a second set of halo orbits, similar to those illustrated in Fig-

ure 2.3, but mirrored across the rotating xy-plane. Halo orbits along these families,

whose maximum out-of-plane excursion is in the −z direction, are termed southern

solutions. As an example, an L1 northern halo orbit and a southern L2 halo orbit,

with similar out-of-plane amplitudes, are illustrated in Figure 2.4. In general, when

projected onto the xy-plane, motion along both southern and northern L1 and L2

halo orbits appears to flow clockwise. However, projections onto the yz-plane might

indicate otherwise. For example, while the direction of motion along the northern L1

and southern L2 halo orbits, illustrated in Figure 2.4, appears clockwise in both the
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xy and yz planar projections, the same relation does not apply to a southern L1 and

northern L2 halo orbits where motion seems to flow counterclockwise in the yz plane

projection. As discussed later in greater detail, knowledge of the existence of the
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Figure 2.4. Northern L1 and Southern L2 Halo Orbits

northern and southern families is essential in identifying a solution whose dynamical

characteristics are similar to those of a comet during TSC.

2.2.3 Analytical Symmetries

The form of the mathematical model for the CR3BP lends itself to various types

of symmetries. The more obvious one is, of course, the xy-plane symmetry. That is,

if [x y z ẋ ẏ ż]T satisfies the equations of motion, then so does [x y −z ẋ ẏ − ż]T

as illustrated in Figure 2.5. This property leads to the existence of the northern and

southern families of periodic halo orbits once the halo families bifurcate out of the

xy-plane, as discussed in the previous section. The two halo families represented in
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Figure 2.3 are both northern families of solutions. The northern/southern symmetry

of solutions is defined here as symmetry property 1 (SP1).

The structure of the equations of motion also suggests time-invariance properties.

That is, if the independent variable, time (t), is transformed to τ = −t it is clear

that, if [x y z ẋ ẏ ż]T satisfies the EOMS for Δt > 0, then [x −y z − ẋ ẏ − ż]T

satisfies the EOMS for Δt < 0. The symmetry due to time-invariance is defined here

as symmetry property 2 (SP2) and is illustrated in Figure 2.6.

2.2.4 Regions of Exclusion

Recall the form of the expression for the Jacobi constant (C) in equation (2.13).

Consider the conditions when ẋ = ẏ = ż = 0 for a given value of the pseudo-energy

(C). That is, at a given energy level, the velocity of the comet is zero as observed in the

rotating frame. For the sake of simplicity, suppose z = z0, where z0 is some prescribed

out-of-plane component. The values of x and y that then satisfy equation (2.13) form

a two-dimensional curve as observed in the rotating frame. This zero-velocity curve

defines the region of configuration space, in the z = z0 plane, that is available as

the particle subsequently dynamically evolves. To cross a zero-velocity boundary

requires an imaginary velocity; thus, these curves serve as an effective barrier along

the path of a natural body such as a comet. Hence, these curves determine the two-



17

-0.4

-0.2

0

0.2

0.4

y
[1

0
8

km
]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [108 km]

L1
L2

-0.4

-0.2

0

0.2

0.4

z
[1

08
km

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x [108 km]

L1
L2

Figure 2.6. Symmetry of Solutions due to Time-Invariance

dimensional dynamical regions of exclusion as observed in the rotating frame. Any

solution characterized by this value of C is bounded by this curve.

As an example, consider the case when z0 = 0. A collection of zero-velocity

curves are plotted in Figure 2.7 for C values ranging between C4 < C ≤ C1 where Cj

denotes the value of the Jacobi constant at the jth libration point, C1 = 3.0388, and

C4 = C5 = 2.9990. Note, from Figure 2.7, that, for C = C1, the regions of exclusion

are determined by three closed contours, a large exterior curve that envelopes both P1

and P2, and two smaller contours, the largest surrounds P1 and the smallest isolates

P2. As determined by these regions, a particle, P3, can exist, dynamically, inside the

two smaller contours near P1 or P2, or in the region exterior to the larger contour.

However, since each contour is closed for C = C1, it is not possible for P3 to evolve

across regions. A small decrease in C, C = C2, allows the two interior curves to merge

into a single contour that bridges the two interior regions. However, transitions to or

from the region exterior to the orbit of P2 are still not attainable. These transitions
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require C < C2 such that the interior and exterior zero-velocity curves merge into

a single “C”-shaped contour. For C < C3, the left end of this “C”-shaped curve

collapses onto L3 and, in the xy-plane but off the x-axis, two separate curves emerge

that eventually collapse to the Lagrange points L4 and L5 as C → C4.
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Figure 2.7. Two-Dimensional Regions of Exclusion for Various C Levels

Now, consider a fixed value of C and a range of values for z0. In essence, the

collection of two-dimensional curves (one for each value of z0, where the curve for

z0 = 0 appears in Figure 2.7 forms a three-dimensional zero-velocity surface. Any

three-dimensional solution characterized by this value of C is bounded by this surface

in configuration space. Hence, this zero-velocity surface bounds the three-dimensional

region of configuration space where the particle can dynamically evolve. For the Sun-

Jupiter system, Figure 2.8 depicts a three-dimensional contour for C = 3.0058.

The Sun-Jupiter L1 and L2 halo families, depicted in Figure 2.3, correspond to

a specific range of C. The associated zero-velocity surfaces are similar to that illus-

trated in Figure 2.8. In fact, C = 3.0058 reflects the pseudo-energy constant that

corresponds to the largest member of the L2 halo family that is represented in Figure

2.3. In essence, these surfaces apportion the configuration space into three regions:

the interior region, the exterior region, and the capture region near Jupiter. As ob-

served in Figure 2.8, the interior region reflects motion within the center spheroid;
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Figure 2.8. Three-Dimensional Region of Exclusion for C = 3.0058

the exterior region is defined as the space beyond the “pinched” cylindrical structure

that surrounds the system; and, the capture region is seen as the relatively small

opening that connects the available regions of motion. A comet on or near the Sun-

Jupiter line (x-axis), and in the vicinity of the opening of the zero-velocity surface,

can move across regions through this opening. Note that the interior region is closed

except for the single connection to the capture region. Thus, in the CR3BP, the out-

of-plane motion of a comet in the interior region remains bounded. The opening of

the zero-velocity surface narrows as the Jacobi constant increases towards the value

associated with the libration point L2. At the same time, the out-of-plane dimension

of the bounded interior region decreases with increasing C. Across the range of orbits

in the SJL2 halo family that appears in Figure 2.3, this increase in C is equivalent

to a decrease in the Az amplitude of the orbit. Hence, for some prescribed value of

C, the out-of-plane amplitude of the motion in the interior region is closely related

to the Az amplitude of a halo orbit with the same pseudo-energy level.

In the ephemeris model, a comet moving within the “interior region” is in an

orbit contained within the heliocentric orbit of Jupiter. A comet moving in the

“exterior region” is in an orbit that extends beyond the heliocentric orbit of Jupiter.

A comet that shifts into the “capture region” is temporarily captured by Jupiter
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and, thus, remains in the vicinity of the planet until it escapes and crosses into

either the interior or exterior region. For the comets considered in this investigation,

ephemeris information reveals that the out-of-plane motion of the comet, both inside

the heliocentric orbit of Jupiter and in the vicinity of the planet, is bounded. Thus,

by measuring the out-of-plane excursion along the actual (ephemeris) path of the

comet in either the interior or capture regions, a value of the Jacobi constant, one

that is associated with a solution in the CR3BP that is most likely to best resemble

the overall features of the comet’s path, can be estimated.

2.3 Invariant Manifold Theory

The process of identifying particular solutions, in the R3BP, that possess charac-

teristics resembling the dynamical features along the path of a small natural body,

temporarily captured by a planet, requires a thorough understanding of the geom-

etry of the phase space [32]. The geometrical theory of dynamical systems (from

Poincaré) is based on the phase portrait of a dynamical system as discussed in var-

ious mathematical sources including Wiggins [21], Guckenheimer and Holmes [33],

Nayfeh and Mook [34], Perko [35], Hale [36], Nayfeh and Balachandran [37], Khalil

[38], and Parker and Chua [20]. Equilibrium points and periodic solutions are two

examples of the fundamental models available for the phase space, that is, invariant

manifolds. Some of the concepts from invariant manifold theory have roots in linear

stability analysis. Hence, some of the basic concepts of linear systems are reviewed.

The background information presented here follows directly from the discussion in

Parker and Chua [20], Guckenheimer and Holmes [33], and Perko [35] on continuous

and discrete time autonomous systems.

2.3.1 Continuous Time Systems

Consider a general, autonomous, nonlinear vector field

˙̄x = f̄(x̄) , (2.20)

where x̄(t) ∈ IRn is the state vector at time t, ˙̄x represents the time derivative of x̄,

and f̄ : U → IRn is a smooth function defined on some subset U ⊆ IRn. A collection
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of trajectories that represent the solutions to equation (2.20), in the phase space,

is defined as a phase portrait of the system. In general, a phase portrait contains

information about both the transient and asymptotic behavior of the solutions. Tra-

jectories originating from different initial conditions describe the flow, φt(U), under

the given system of equations. To demonstrate the dependence on the initial condi-

tions, a single trajectory, representing the flow for all time t from initial conditions

defined by x̄(t0) = x̄0, is often expressed in the form φt(x̄0). Then, the flow, φt(U),

represents a one-parameter family of mappings such that φt : U →IRn. Here it is

assumed that for any time t, φt is a diffeomorphism. That is, the map φt is both

smooth and invertible.

From a dynamical systems perspective, the structure and geometry of the phase

space are typically studied by considering particular solutions to the differential equa-

tions and the associated local flow. For most applications, the local behavior of the

flow can be determined through linear stability analysis. As a simple example consider

the flow in the vicinity of the libration point Li, in the Sun-Jupiter-comet system.

Let x̄eq, the six-dimensional equilibrium state at Li, represent the reference solution,

x̄ref = x̄eq. A phase portrait of the flow near Li consists of trajectories with initial

conditions in the immediate vicinity of x̄eq. Hence, let ȳ denote a small perturbation

relative to x̄eq such that x̄ = x̄eq + ȳ. Assuming that f̄ is at least C2, and expanding

the vector field in a Taylor series about x̄eq – retaining only the linear terms – leads

to the variational equation,

˙̄y(t) = Aȳ(t) , (2.21)

where A is the n×n matrix of first partial derivatives or Jacobian matrix. Note that,

since x̄eq is an equilibrium solution of equation (2.20), the elements of A are constant.

(However, in general, if the reference solution, x̄ref , is time-varying, then A = A(t)).

If the system matrix is constant, the solution of equation (2.21) can be written in the

form

ȳ(t) = e(t−t0)Aȳ(t0) , (2.22)
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where

e(t−t0)A =
∞∑

j=1

(t − t0)
j

j!
Aj . (2.23)

Furthermore, if the eigenvalues (ηj) of A are distinct, then there exists a matrix

S = [S̄1 S̄2 . . . S̄n] such that S−1AS = Λ, where Λ is a diagonal matrix with entries

η1, η2, . . . , ηn and the j-th column of S, that is S̄j , corresponds to the eigenvector

associated with ηj . If the eigenvalues are complex, the matrix S is also complex.

Since the eigenvalues are distinct, the eigenvectors are linearly independent; thus, the

matrix S is nonsingular. Hence, equation (2.22) can be simplified as follows

ȳ(t) = SeΛ(t−t0)S−1ȳ(t0) . (2.24)

The matrix eΛ(t−t0) is diagonal with entries eηj(t−t0). Hence, the eigenvalues of A

are also known as the characteristic exponents of the local flow. The solution repre-

sented by equation (2.24) can now be written in a form that reveals the fundamental

dynamical components of the motion,

ȳ(t) =
n∑

j=1

cje
ηj(t−t0)S̄j . (2.25)

In equation (2.25), the coefficients cj are determined from the initial state, ȳ(t0).

2.3.2 Eigenspaces and Invariant Manifolds

For the system described by equation (2.21), let A possess ns eigenvalues with

positive real parts, nu eigenvalues with negative real parts and nc eigenvalues with zero

real parts, such that n = ns + nu + nc. Since the eigenvectors corresponding to these

eigenvalues are linearly independent, they span IRn. Thus, IRn can be represented as

the sum of the three fundamental subspaces Es, Eu, and Ec; note that Es, Eu, and Ec

are invariant subspaces of the corresponding linear system. That is, by appropriate

choice of the initial conditions, a solution that is initially contained entirely within

a given subspace remains in this subspace for all time. Thus, solutions initiated in

Es approach ȳ = 0̄ as t → +∞, solutions with initial conditions in Eu approach

ȳ = 0̄ as t → −∞, and initial state vectors in Ec yield solutions that neither grow
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nor decay in time relative to ȳ = 0̄. These facts lead to the following definitions. The

local stable manifold (W s
loc), associated with x̄eq, is the set of all initial conditions,

in a neighborhood of x̄eq, such that the flow initiated at these states asymptotically

approaches x̄eq as t → +∞. Similarly, the local unstable manifold (W u
loc) is the

set of all initial conditions, near x̄eq, such that the flow initiated at these states

asymptotically approaches x̄eq as t → −∞. If all the eigenvalues of A have non-zero

real parts, x̄eq is defined as a hyperbolic equilibrium point. For an equilibrium point,

the local stable and unstable manifolds are related to the invariant subspaces Es and

Eu of the linear system via the Stable Manifold Theorem (Guckenheimer and Holmes

[33]):

Theorem 2.1 (Stable Manifold Theorem for Flows). Suppose that ˙̄x = f(x̄) has a

hyperbolic equilibrium point x̄eq. Then there exist local stable and unstable manifolds

W s
loc(x̄eq), W u

loc(x̄eq), of the same dimensions ns, nu as those of the eigenspaces Es

and Eu of the linearized system (2.21), and tangent to Es and Eu at x̄eq. W s
loc(x̄eq),

W u
loc(x̄eq) are as smooth as the function f̄ .

To better visualize the significance of Theorem 2.1, let x̄eq be an equilibrium

point of a two-dimensional first order system, with eigenvalues ηs and ηu, such that

the eigenvectors, v̄s and v̄u, span Es and Eu, respectively. Hence, v̄s and v̄u form a

vector basis for IR2. The stable subspace, Es, is then defined as the line segment that

extends along +v̄s and −v̄s. Similarly, Eu extends along +v̄u and −v̄u. Since W s
loc

and W u
loc are tangent to Es and Eu at x̄eq, the corresponding local stable manifold,

associated with x̄eq, is formed by the union of two half-manifolds, W s+
loc and W s−

loc ,

as represented in Figure 2.9. Similarly, the local unstable manifold is formed by the

union of W u+
loc and W u−

loc .

For higher order systems, a one-dimensional invariant subspace is analogous to a

line segment in IR2, as illustrated in Figure 2.9. Similarly, a two-dimensional subspace

in IR2 is equivalent to a hyperplane in IRn. Furthermore, the local invariant manifolds,

W s
loc and W u

loc, have global analogs, W s and W u, obtained by propagating the flow
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Figure 2.9. Stable Manifold Theorem

backwards in time along W s
loc and forward in time along W u

loc:

W s(x̄ref) =
⋃
t≤0

φt [W s
loc(x̄ref )] , (2.26)

W u(x̄ref) =
⋃
t≥0

φt [W u
loc(x̄ref )] . (2.27)

Note that equations (2.26)-(2.27) are expressed in terms of a general reference so-

lution, x̄ref , to preserve the generality of the definition. For an equilibrium point,

x̄ref = x̄eq.

Now, suppose x̄eq is a non-hyperbolic equilibrium point. In particular, consider

the case when ns, nu, and nc are all non-zero. That is, 	(ηj) < 0 for j = 1 . . . ns,

	(ηk) > 0 for k = 1 . . . nu, and 	(ηi) = 0 for i = 1 . . . nc. In this case, the structure

of the local flow is determined by the Center Manifold Theorem (Guckenheimer and

Holmes [33]). Note, in Theorem 2.2, the form of the system is such that x̄eq = 0̄ and

Df̄(x̄eq) denotes the Jacobian matrix, A, evaluated at x̄eq.

Theorem 2.2 (Center Manifold Theorem for Flows). Let f̄ be a Cr vector field on

IRn vanishing at the origin (f̄(0̄) = 0̄) and let A = Df̄(0̄). Divide the spectrum of A

into three parts, ns, nc, and nu with

	(η)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 0 ; η ∈ ns

= 0 ; η ∈ nc

> 0 ; η ∈ nu

(2.28)
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Let the (generalized) eigenspaces of ns, nc, and nu be Es, Ec, and Eu, respectively.

Then, there exist Cr stable and unstable invariant manifolds W u and W s tangent to

Eu and Es at 0̄ and a Cr−1 center manifold W c tangent to Ec at 0̄. The manifolds

W u, W s, and W c are all invariant for the flow f̄ . The stable and unstable manifolds

are unique, but W c need not be.

The existence of the center manifold suggests that the structure of the flow near

an equilibrium point, possessing at least one zero eigenvalue, is more diverse than

that of an equilibrium point with no center subspace. Recall that solutions initiated

in the center manifold neither grow nor decay in time, relative to x̄eq. Periodic orbits

and quasi-periodic trajectories are examples of the types of motion that might exist

in the center manifold near x̄eq. In the CR3BP, the collinear libration points (Li,

i = 1, . . . , 3) possess a four-dimensional center manifold, and one-dimensional stable

and unstable manifolds. In-plane Lyapunov orbits and nearly vertical out-of-plane

orbits are examples of periodic solutions that exist in the center manifold near Li.

Lyapunov orbits exist in the plane of motion of the primaries. Their amplitudes in-

crease as the maximum excursion in the direction parallel to the y-axis, shifts further

from x̄eq. At the critical amplitude, three-dimensional periodic halo orbits in the

vicinity of Li bifurcate from the two-dimensional Lyapunov orbits (M. Hénon [28],

M. Michalodimitrakis [29] and S.S. Ichtiaroglou [30], I.A. Robin and V.V. Markellos

[31], K.C. Howell and B.T. Barden [32]). These types of solutions represent only a

small subset of the solutions that exist in the center manifold near Li.

The focus of this study is the identification of segments along three-dimensional

solutions, in the phase space of the R3BP, that exhibit dynamical features similar

to those of a captured comet. The path of such comets is both three-dimensional

and chaotic in nature and flows towards and away from the capture region. Hence,

periodic orbits and quasi-periodic trajectories are not themselves representative of

the capture mechanism. In fact, the in-plane features of temporary satellite capture

are best described by the stable and unstable manifolds associated with the equilib-

rium/libration points, Li. However, the out-of-plane component is not insignificant
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for the comets considered in this study. Thus, it is necessary to consider the sta-

ble and unstable manifolds associated with three-dimensional periodic orbits and

quasi-periodic trajectories. The Center Manifold Theorem, as presently stated, is

only applicable to equilibrium points. To assess the stability of periodic and quasi-

periodic solutions near Li, it is necessary to consider an alternate representation of a

dynamical system, that is, a discrete map.

2.3.3 Reduction to a Discrete Time Dynamical System

Any map P : IRn → IRn defines a discrete dynamical system through the state

equation,

x̄k+1 = P x̄k (2.29)

where x̄k ∈ IRn is the state and P maps the state from x̄k to x̄k+1. A useful technique

to analyze dynamical systems is the classical approach that replaces the flow, φt(x̄0),

of an nth-order continuous-time system, with an (n− 1)th-order discrete-time system.

This process results in the classical Poincaré map. Consider an nth-order autonomous

system with limit cycle Γ. A limit cycle is an attracting set to which orbits or

trajectories converge, and upon which trajectories are periodic. Let Σ be an (n− 1)-

dimensional hyperplane transverse to Γ at x̄∗. The periodic trajectory defined by x̄∗

intersects Σ again at x̄∗ within some minimum period T of the limit cycle. Thus, x̄∗ is

a fixed point of P . Since the flow, φt, of the nonlinear system is assumed to be smooth

and continuous with respect to x̄∗, trajectories starting on Σ in a sufficiently small

neighborhood of x̄∗ will, in approximately T time units, intersect Σ in the vicinity of

x̄∗. Hence φt, and thus, Σ, define a mapping P of some neighborhood U ⊂ Σ of x̄∗

onto another neighborhood V ⊂ Σ of x̄∗. The map P is defined as a Poincaré map

of the autonomous system. A portrait of a Poincaré map, representative of a second

order system, is illustrated in Figure 2.10. Note that the map P is defined only in the

neighborhood of x̄∗. Thus, there is no guarantee that a trajectory emanating from

any point in Σ will subsequently return to Σ. Also, P is a diffeomorphism and is

therefore invertible and differentiable. A proof of this statement is available in Parker

and Chua [20].
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Figure 2.10. Poincaré Section - Adapted from Parker and Chua [20]

2.3.4 Periodic Solutions and Maps

In the CR3BP, solutions to the variational equation (2.14) can be expressed as

a function of the initial conditions and the corresponding state transition matrix,

as defined in equation (2.18). Consider a periodic orbit, Γ = Γ(t), as the reference

solution of interest, x̄ref . In its present form, the solution defined by equation (2.18)

corresponds to a flow that reflects a continuous trajectory. This continuous arc can

be envisioned as an infinite set of discrete states, sampled at Δt intervals for Δt → 0.

Among this infinite set, a single state, x̄∗, completely represents a periodic orbit in a

Poincaré map. Without loss of generality, let x̄∗ = x̄(t0) for t0 = 0. Since equation

(2.18) governs the evolution of the perturbation ȳ(0) in a neighborhood of x̄∗, the

state x̄(nT ) can be estimated as

x̄(nT ) = x̄∗ + ȳ(nT ) ,

= x̄∗ + Φ(nT, 0)ȳ(0) ,

= x̄∗ +

n∑
j=1

cjλ
n
j v̄(j) , (2.30)

where cj represent complex constants determined from the initial perturbation, ȳ(0).

The λj’s are the eigenvalues of the monodromy matrix Φ(T, 0), that is, the state

transition matrix (STM) evaluated after one period. To simplify the form of the

solution in equation (2.30), the eigenvalues are assumed to be distinct. Then, v̄(j) are
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the corresponding eigenvectors. Note that, since Γ = Γ(t) represents a solution in the

nonlinear flow, Γ(t) must satisfy equation (2.20). That is,

Γ̇(t) = f̄ [Γ(t)] . (2.31)

Differentiation of equation (2.31) with respect to time yields,

Γ̈(t) = Df [Γ(t)]Γ̇(t)

= A[Γ(t)]Γ̇(t) . (2.32)

Thus, Γ̇(t) must satisfy the variational equation (2.21). Since Γ denotes a periodic

orbit, Γ̇(T ) = Γ̇(0) = f̄(0̄). Furthermore, equation (2.19) must also be satisfied. This

implies that f̄(0̄) = Φ(T, 0)f̄(0̄). That is, for a periodic orbit to exist, the monodromy

matrix must possess at least one eigenvalue at unity, with eigenvector f̄(0̄). The

stability of the periodic orbit, defined by the fixed point x̄∗, is then determined by

the position of the remaining eigenvalues in the complex plane.

2.3.5 Stability of Periodic Orbits

The linearization of equation (2.20) relative to a periodic orbit (Γ) results in a

nonautonomous system of equations defined in equation (2.14), where A(t) is a T -

periodic matrix (A(t) = A(t + T )). Consequently, the elements of A(t) are functions

of time and the stability results established for equilibrium points are not applicable.

However, a nonautonomous linear system can be reduced to an autonomous system

by appropriate choice of coordinates. Let t0 = 0 and consider the following theorem

(Perko [35]):

Theorem 2.3 (Floquet’s Theorem) If A(t) is a continuous T -periodic matrix, then

for all t ∈IR any fundamental matrix solution for (2.14) can be written in the form

Φ(t, 0) = Q(t, 0)eBt (2.33)

where Q(t, 0) is a nonsingular, differentiable, T -periodic matrix and B is a constant

matrix. Furthermore, if Φ(0, 0) = In then Q(0, 0) = In.
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Corollary 2.1 Under the hypotheses of Theorem (2.3), the nonautonomous linear

system (2.14), under the linear change of coordinates

w̄(t) = Q−1(t, 0)ȳ(t) (2.34)

reduces to the autonomous linear system

˙̄w(t) = Bw̄(t) (2.35)

A proof of Corollary (2.1) is detailed in Perko [35]. Note that, by Corollary

(2.1), the stability properties of the nonautonomous linear system defined in equation

(2.14), are equivalent to those of the autonomous linear system in equation (2.35).

Consequently, since Q(T, 0) = Q(0, 0) = I6 and Φ(T, 0) = eBT , the eigenvalues of the

monodromy matrix correspond to the eigenvalues of eBT , that is, the characteristic

multipliers (λj). Although the eigenvalues of Φ(T, 0) are uniquely determined for a

given periodic orbit, neither the matrix B nor its eigenvalues are uniquely determined

for the system described in equation (2.21). For example, equation (2.33) can be

replaced by Φ(t, 0) = Q̃(t, 0)eB̃t where Q̃ = Q(t, 0)e2πit and B̃ = B − 2πiIn. The

eigenvalues of B are termed the characteristic exponents (βj). For βj = aj + ibj , the

characteristic exponents are related to the characteristic multipliers, λj , through the

following relation

λj = eβjT , (2.36)

= eaj (cos bj + i sin bj) . (2.37)

Based on equation (2.37), the following must be true

aj > 0 → ‖λj‖ > 1,

aj < 0 → ‖λj‖ < 1,

aj = 0 → ‖λj‖ = 1.

Thus, if k eigenvalues of B have negative real parts, then the monodromy matrix

possesses k eigenvalues situated inside the unit circle in the complex plane. Similarly,
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if j eigenvalues of B have positive real parts, then the corresponding j characteristic

multipliers are located outside the unit circle. If, instead, the real part of an eigenvalue

of B is zero, then the corresponding characteristic multiplier lies on the unit circle in

the complex plane. The stability of a periodic orbit is thus determined by the real

part of the characteristic exponents, or the modulus of the characteristic multipliers,

as apparent in equation (2.30) and established by the following theorem (Perko [35]).

Theorem 2.4 (The Stable Manifold Theorem for Periodic Orbits). Let f̄ ∈ C1(E)

where E is an open subset of IRn containing a periodic orbit

Γ : x̄ = γ(t) ,

of (2.20) of period T . Let φt be the flow of (2.20) and γ(t) = φt(x̄
∗). If k of the

characteristic exponents of γ(t) have negative real part where 0 ≤ k ≤ n − 1 and

n − k − 1 of them have positive real part then there is a δ > 0 such that the stable

manifold of Γ,

S(Γ) = {x̄ ∈ Nδ(Γ) | d(φt(x̄), Γ) → 0 as t → ∞ and φt(x̄) ∈ Nδ(Γ) for t ≥ 0}

is a (k + 1)-dimensional, differentiable manifold which is positively invariant under

the flow φt and the unstable manifold of Γ,

U(Γ) = {x̄ ∈ Nδ(Γ) | d(φt(x̄), Γ) → 0 as t → −∞ and φt(x̄) ∈ Nδ(Γ) for t ≤ 0}

is an (n− k)-dimensional, differentiable manifold which is negatively invariant under

the flow φt. Furthermore, the stable and unstable manifolds of Γ intersect transversally

in Γ.

Once more, the local stable and unstable manifolds of Γ, S(Γ) = W s
loc(Γ) and

U(Γ) = W u
loc(Γ), in Theorem (2.4) can be utilized to define the global stable and

unstable manifolds associated with Γ, that is, W s(Γ) and W u(Γ), by defining states

along W s
loc and propagating the flow backwards in time, and, then, states along W u

loc

forward in time. Note that W s(Γ) and W u(Γ) are unique, invariant, differentiable
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manifolds of the same dimensions as W s
loc(Γ) and W u

loc(Γ), respectively. Also, W s(Γ)

and W u(Γ) are tangent to the stable and unstable subspaces Es(Γ) and Eu(Γ) of Γ at

the point x̄∗. The difference between W s(Γ) and W s(x̄∗) is a significant issue. Recall

that, by the definition of a Poincaré map, the fixed point x̄∗ is an (n−1)-dimensional

representation of Γ, a periodic orbit in IRn. Suppose that the monodromy matrix

associated with x̄∗ possesses m eigenvalues of modulus one, j of modulus greater

than one, and k eigenvalues of modulus less than one. The stable, unstable, and

center subspaces associated with x̄∗ are then defined with dimensions m, j, and k,

respectively. However, as stated by Theorem (2.4), the stable manifold associated

with Γ, W s(Γ), is of dimension k + 1 and W u(Γ) is of dimension j + 1. To illustrate

the added dimension, consider a two-dimensional system (n = 2), where the unstable

subspace, Eu, associated with x̄∗ is one-dimensional. Recall that Σ is the (n − 1)-

dimensional hyperplane transverse to Γ at x̄∗. Let ȳ(tj) denote a state, perturbed

from x̄∗ along Eu. The unstable manifold associated with x̄∗, W u(x̄∗), is formed by a

set of discrete points on Σ that asymptotically depart x̄∗ with each successive iteration

of the map P . Thus, W u(x̄∗) is a one-dimensional manifold. However, since x̄∗ is

an (n− 1)-dimensional representation of Γ, the unstable manifold associated with Γ,

W u(Γ), is a two-dimensional surface in IR2. This is illustrated in Figure 2.11. The

dimensions of W s(Γ) and W u(Γ) are always one degree higher than the dimension of

Es and Eu, respectively. Note that Theorem (2.4) addresses only n − 1 eigenvalues,

uE

x*

Figure 2.11. Dimension of the Unstable and Stable Manifolds
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since, as previously stated, at least one of the characteristic multipliers must have a

modulus of one for a periodic orbit to exist. If only one of the eigenvalues has modulus

one, Γ is an isolated periodic orbit and Theorem (2.4) is applicable as stated. That

is, all solutions in a neighborhood of Γ lie either on W s
loc(Γ) or W u

loc(Γ). Otherwise,

the results of Theorem (2.4) must be extended to include the center manifold (Perko

[35]).

Theorem 2.5 (The Center Manifold Theorem for Periodic Orbits) Let f̄ ∈ Cr(E)

with r ≥ 1 where E is an open subset of IRn containing a periodic orbit

Γ : x̄ = γ(t)

of (2.20) of Period T . Let φt be the flow of (2.20) and let γ(t) = φt(x̄
∗). If k

of the characteristic exponents have negative real part, j have positive real part and

m = n − k − j have zero real part, then there is an m-dimensional center manifold

of Γ, W c(Γ), of class Cr which is invariant under the flow φt. Furthermore, W s(Γ),

W u(Γ) and W c(Γ) intersect transversally in Γ and if the origin has been translated

to the point x̄∗ so that γ(t) = φt(0̄), then W c(Γ) is tangent to the center subspace of

Γ, Ec, at the point 0̄ ∈ Γ.

Recall, state vectors initially in Ec neither grow nor decay relative to x̄∗. For ex-

ample, solutions with initial states in Ec can lead to nearby periodic or quasi-periodic

solutions. Although, in the CR3BP, the center manifold represents a significant sub-

set of the phase space, as discussed by Howell and Barden [32], the motion of interest

in this study is more consistent with trajectories that lie on stable and unstable

manifolds. Thus, the discussion in the following sections is focused on the relative

geometry of the stable and unstable manifolds and the flows associated with a single

periodic orbit.

2.3.6 Time-Invariance Properties of the STM

To understand the geometry of the flow along the stable and unstable manifolds

that are associated with periodic orbits in the CR3BP, it is necessary to examine
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some of the properties of the state transition matrix. In particular, one of the most

useful properties of the STM is derived from the time-invariance of the linear system.

To preserve the generality of the time-invariance properties, consider first the general

form of the solution to equation (2.14), as expressed in equation (2.18). Define the

following coordinate transformation

ȳ(t) = Gξ̄(τ) , (2.38)

where the new independent time variable is defined as τ = −t and G is a constant

nonsingular matrix. Substitution of equation (2.38) into equation (2.14) reveals that

A(t) = −GA(−t)G−1 . (2.39)

Since equation (2.39) must hold true for all time t, then A(−t) = −GA(t)G−1 is also

true for all t. However, this relation leads to

A(t) = −G−1A(−t)G . (2.40)

For both equations (2.39) and (2.40) to be satisfied, G = G−1 and thus G2 = In for

G �= In. Here, In is the n×n identity matrix. An example of a matrix G that satisfies

G2 = In and G �= In is the diagonal matrix defined as follows,

G(i, i) = (−1)(i+1) , (2.41)

where i denotes the row and column of the corresponding diagonal entry. All the

off-diagonal entries in G are zero.

The coordinate transformation defined in equation (2.38) must also satisfy the

discretized form of the solution, equation (2.18). Substitution of equation (2.38) into

equation (2.18) produces

ȳ(t) = Φ(t, t0)ȳ0 ,

Gξ̄(τ) = Φ(t, t0)Gξ̄0 ,

ξ̄(τ) = G−1Φ(t, t0)Gξ̄0 . (2.42)
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Consequently, equation (2.42) yields the following relation

Φ(τ, t0) = G−1Φ(t, t0)G , (2.43)

denoted here as the time-invariance property of the state transition matrix. The

relationship in equation (2.43) satisfies all the differential equations corresponding

to the linear system. This is easily verified, after some matrix manipulation, by

substituting equations (2.43) and (2.40) into the matrix differential equation (2.19).

Note that, since Φ(t0, t0) = In and Φ(t0, t)Φ(t, t0) = Φ(t0, t0), the state transition

matrix is related to its inverse by

Φ(t, t0) = Φ(t0, t)
−1 . (2.44)

Equations (2.43) and (2.44) are true in general for all t given any t0. Since the system

is time-invariant, consider the case t0 = 0. Without loss of generality, let t correspond

to one period of the motion, that is, t = T . Then, equation (2.43) states that

Φ(−T, 0) = G−1Φ(T, 0)G . (2.45)

Also note that, Φ(−T, 0) = Φ(0, T ) and hence, from equation (2.44), Φ(−T, 0) =

Φ(T, 0)−1. Thus, equation (2.45) can be rewritten as

Φ(T, 0) = GΦ(T, 0)−1G−1 . (2.46)

Since G is a constant nonsingular matrix, equation (2.46) suggests that Φ(T, 0) is

similar to Φ(T, 0)−1. Thus, both matrices share the same eigenvalues. This suggests

that the structure of the eigenvalues is not arbitrary, as established by the following

theorem from Yakubovich and Starzhinskii [39].

Theorem 2.6 (Lyapunov’s Theorem) If λ is an eigenvalue of the monodromy matrix

Φ(T, 0) of a t-invariant system, then λ−1 is also an eigenvalue, with the same structure

of elementary divisors.

The geometry of the stable and unstable subspaces is determined by the structure

of the eigenvalues established in Theorem (2.6) and the time-invariance properties in

equations (2.45)-(2.46). This fact will become apparent when the symmetry properties

between the stable and unstable manifolds are discussed.
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2.3.7 Eigenvalue Structure of the Monodromy Matrix

As established by Lyapunov’s Theorem (2.6), the eigenvalues of the monodromy

matrix corresponding to a time-invariant system must appear in reciprocal pairs.

Also, since Φ(T, 0) is a real matrix, the characteristic multipliers must either be real

or appear in complex conjugate pairs. However, in general, complex conjugate pairs

are not reciprocal pairs. This suggests that the eigenvalues of Φ(T, 0) can only exist

in predetermined configurations in the complex plane.

In general, for a periodic orbit to exist, at least one eigenvalue of Φ(T, 0) must

equal one. However, in the CR3BP, for a periodic orbit to exist a minimum of two

eigenvalues must equal one, because of their reciprocal nature. This fact implies that

isolated periodic orbits cannot exist in the CR3BP. Let the eigenvalues at one be

denoted λ1 and λ2. Suppose λ3 and λ4 are both real while λ5 and λ6 are complex

conjugates. From Lyapunov’s Theorem (2.6), it is clear that λ3 = 1/λ4. Hence, if

λ5 = a + bi then, for λ5 and λ6 to be both reciprocals and a complex conjugate pair,

the modulus of the complex conjugate pair must be equal to one (a2 + b2 = 1). Thus,

the complex conjugate pair lies on the unit circle as illustrated in Figure 2.12a.

Consider the case when λ3, λ4, λ5, and λ6 are complex, λ3 = λ∗
4 and λ5 = λ∗

6,

where the superscript [∗] denotes the complex conjugate. Recall, Lyapunov’s Theorem

stipulates that the characteristic multipliers exist in reciprocal pairs; it does not

require that reciprocal pairs also be complex conjugate pairs. However, both of these

conditions must still hold true for the remaining four eigenvalues. Clearly, both

conditions are satisfied if all the eigenvalues lie on the unit circle. The only other

possible structure is depicted in Figure 2.12c. Here, the eigenvalues split off the unit

circle and are symmetrically arranged with respect to the real axis and the unit circle.

2.3.8 Stable/Unstable Manifolds and the Associated Symmetries

In a nonlinear system, only the instability of a periodic orbit can be determined

from linear analysis. That is, if any of the characteristic multipliers have modulus

greater than unity, the periodic solution, Γ, is unstable. In the Sun-Jupiter-comet

system, halo orbits in the vicinity of L1 and L2, with Az < 30× 106 km, are unstable
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Figure 2.12. Eigenvalue Structure

with a four-dimensional center manifold and one-dimensional stable and unstable

manifolds. Linear stability analysis can also provide further insight into the geometry

of the stable and unstable manifolds associated with this subset in the SJL1 and SJL2

halo families. Let Γ denote a halo orbit of period T and note that any state, x̄(t),

along Γ can represent the orbit as a fixed point, x̄∗, in a Poincaré map.

As previously stated, the monodromy matrix associated with x̄∗, Φ(T, 0), has two

real eigenvalues that do not equal unity, one stable, λs, and one unstable, λu, such

that λu = 1/λs. Let v̄s(x̄
∗) and v̄u(x̄

∗) denote the corresponding stable and unstable

eigenvectors. Then, the eigenvalue problem is stated as follows,

Φ(T, 0)v̄s(x̄
∗) = λsv̄s(x̄

∗) , (2.47)

Φ(T, 0)v̄u(x̄∗) = λuv̄u(x̄
∗) . (2.48)

The six-dimensional vectors v̄s(x̄
∗) and v̄u(x̄

∗) satisfy equations (2.47)-(2.48) and span

the stable and unstable subspaces of x̄∗. Hence, the stable and unstable manifolds

associated with x̄∗ can be numerically determined by propagating initial states that

are computed by perturbing the state at x̄∗ along v̄s(x̄
∗) and v̄u(x̄

∗), respectively.

The resulting trajectories lie on the stable and unstable manifolds of Γ but do not

completely represent the motion on W s(Γ) and W u(Γ). A phase portrait of W s(Γ)

is represented by a collection of trajectories that describe the flow along the stable

manifold associated with Γ. For instance, consider a discrete set of N states, x̄∗
j =

x̄(jΔt), along Γ that are measured at equally spaced time intervals (Δt), where
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Δt = T/N . The construction of a phase portrait for W s(Γ) is accomplished in one of

two ways. One approach requires that the monodromy matrix associated with each

x̄∗
j (j = 0, . . . , N − 1) be determined numerically. Note that the N th state is not

included in the sample since x̄∗
0 = x̄∗

N . Then, the stable and unstable eigenvectors

associated with each fixed point x̄∗
j , v̄s(x̄

∗
j ) and v̄u(x̄∗

j), are computed. Alternatively,

a single integration is performed to obtain the monodromy matrix associated with

x̄∗
0, through equation (2.19), and the corresponding stable and unstable eigenvectors,

v̄s(x̄
∗
0) = Ȳ Ws(0) and v̄u(x̄

∗
0) = Ȳ Wu(0), are computed. Then, the stable and unstable

eigenvectors associated with all other sample states, Ȳ Ws(jΔt) and Ȳ Wu(jΔt), are

determined by mapping Ȳ Ws(0) and Ȳ Wu(0) from x̄∗
0 to x̄∗

j via the state transition

matrix as follows

Ȳ Ws(jΔt) = Φ(jΔt, 0)Ȳ Ws(0) , (2.49)

Ȳ Wu(jΔt) = Φ(jΔt, 0)Ȳ Wu(0) . (2.50)

In either approach, the phase portrait corresponding to W s(Γ) is formed by nu-

merically integrating, in negative time (Δt < 0), initial state vectors in the stable

subspace, Es(x̄∗
j ), associated with each sample state, x̄∗

j . For the unstable manifold,

W u(Γ), the initial states in the unstable subspace Eu(x̄∗
j ), are integrated forward,

Δt > 0. The geometry of the flow is unaffected by the method that is selected to

compute the stable and unstable eigenvector directions.

A comparison of the phase portrait of W s(Γ) to that of W u(Γ) reveals a natural

symmetry between the flows along the stable and unstable manifolds. This symmetry

is rooted in the time-invariance properties of the state transition matrix. Consider,

the statement of the eigenvalue problem in equations (2.47)-(2.48) but for Δt < 0

Φ(−T, 0)v̄′
s(z̄

∗) = λsv̄
′
s(z̄

∗) , (2.51)

Φ(−T, 0)v̄′
u(z̄∗) = λuv̄

′
u(z̄

∗) . (2.52)

where v̄′
s(z̄

∗) and v̄′
u(z̄

∗) are the stable and unstable eigenvectors associated with

z̄∗ = Gx̄∗ and the prime notation indicates integration such that Δt < 0. Substitution
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of equation (2.45) into (2.51) and (2.52) yields

Φ(T, 0)Gv̄′
s(z̄

∗) = λsGv̄′
s(z̄

∗) , (2.53)

Φ(T, 0)Gv̄′
u(z̄

∗) = λuGv̄′
u(z̄

∗) . (2.54)

Hence, the stable and unstable eigenvectors associated with x̄∗ for Δt > 0, v̄s(x̄
∗) and

v̄u(x̄
∗), are related to the eigenvectors associated with z̄∗ corresponding to Δt < 0,

v̄′
s(z̄

∗) and v̄′
u(z̄

∗), through the constant matrix G as follows

v̄s(x̄
∗) = Gv̄′

s(z̄
∗) , (2.55)

v̄u(x̄∗) = Gv̄′
u(z̄

∗) . (2.56)

The results presented in equations (2.55)-(2.56) are applicable for any fixed point

x̄∗
j along Γ. For the stable manifold, this is easily verified by direct application of

equations (2.55) and (2.45) to the mapping in equation (2.49) where Ȳ Ws(0), = v̄s(x̄
∗
0).

Ȳ Ws(jΔt) = Φ(jΔt, 0)v̄s(x̄
∗
0) ,

= Φ(jΔt, 0)Gv̄′
s(z̄

∗
0) ,

= G
[
G−1Φ(jΔt, 0)Gv̄′

s(z̄
∗
0)

]
,

= G [Φ(−jΔt, 0)v̄′
s(z̄

∗
0)] ,

= GȲ W ′
s(−jΔt) .

A similar relationship exists for the unstable eigenvector, Ȳ Wu(jΔt), associated with

x̄∗
j along the periodic orbit. The normalized set of equations in terms of unit eigen-

vectors is represented by

Ŷ Ws(jΔt) = GŶ W ′
s(−jΔt) ,

Ŷ Wu(jΔt) = GŶ W ′
u(−jΔt) .

(2.57)

Note that, Ȳ W ′
s(jΔt) and Ȳ W ′

u(jΔt) are associated with z̄∗j , not with x̄∗
j . However,

it is possible to identify an expression relating the stable eigenvector v̄s(x̄
∗
j ) to the
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unstable eigenvector v̄′
u(x̄∗

j) by inverting equations (2.47) and (2.48). For example,

Φ(T, 0)v̄s(x̄
∗
j ) = λsv̄s(x̄

∗
j ) ,

1

λs

v̄s(x̄
∗
j ) = Φ−1(T, 0)v̄s(x̄

∗
j ) ,

λuv̄s(x̄
∗
j ) = Φ(0, T )v̄s(x̄

∗
j ) ,

λuv̄s(x̄
∗
j ) = Φ(−T, 0)v̄s(x̄

∗
j ) . (2.58)

Comparison of equation (2.58) to the statement of the eigenvalue problem, for Δt < 0,

and associated with x̄∗
j ,

λuv̄
′
u(x̄

∗
j ) = Φ(−T, 0)v̄′

u(x̄∗
j ) , (2.59)

results in the following relationship between the stable and unstable eigenvector di-

rections under time reversal

v̄s(x̄∗
j ) = v̄′

u(x̄
∗
j ) , (2.60)

v̄u(x̄∗
j ) = v̄′

s(x̄
∗
j) . (2.61)

That is, in negative time, a state on Eu′
(x̄∗

j ) asymptotically departs x̄∗
j with each

iteration of the map, Φ(−T, 0). However, in real time, Δt > 0 and, as a result,

states on Eu′
(x̄∗

j ) asymptotically approach x̄∗
j for Δt > 0. In essence, the unstable

eigenvector for Δt < 0 is also the stable eigenvector for Δt > 0. A similar statement

is applicable to the stable eigenvector for Δt < 0. This results extends to W s(Γ) and

W u(Γ). That is, W s′(Γ) = W u(Γ) and W u′
(Γ) = W s(Γ). Since equations (2.60)-

(2.61) are true for all x̄∗, substitution into equations (2.55)-(2.56) results in

v̄s(x̄
∗) = Gv̄u(z̄

∗) , (2.62)

v̄u(x̄∗) = Gv̄s(z̄
∗) . (2.63)

The implications of equations (2.62)-(2.63) are easily visualized when applied to sim-

ply symmetric periodic solutions, such as halo orbits. In configuration space, a halo

orbit is symmetric about the xz-plane. Thus, if G is the constant matrix defined

in equation (2.41) and x̄∗
j = x̄(jΔt) = [x y z ẋ ẏ ż]T represents a state along the
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halo orbit, then z̄∗j = x̄(T − jΔt) = [x −y z −ẋ ẏ −ż]T also represents a state

on the same orbit. Now, suppose that equations (2.10)-(2.12) as well as (2.19) are

numerically integrated with Δt < 0 and initial conditions x̄∗
0, corresponding to the

maximum xz-plane crossing along the periodic solution Γ. The statement in equations

(2.62)-(2.63) implies that the xz-plane symmetry also applies to the stable eigenvector

associated with x̄(jΔt) and the unstable eigenvector corresponding to x̄(T−jΔt). Let

Ȳ Ws(jΔt) = [v̄
(pos)
s v̄

(vel)
s ]T and Ȳ Wu(jΔt) = [v̄

(pos)
u v̄

(vel)
u ]T where v̄

(pos)
s and v̄

(pos)
u de-

note three-dimensional vectors whose components coincide with the position elements

of Ȳ Ws(jΔt) and Ȳ Wu(jΔt), respectively. Similarly, the elements of v̄
(vel)
s and v̄

(vel)
u

correspond to the velocity elements of the stable and unstable eigenvectors. Then,

as stated in equations (2.62)-(2.63), given any two fixed points, x̄∗
1 and x̄∗

2, mirrored

across the xz-plane on Γ, the position elements corresponding to the stable/unstable

eigenvector associated with x̄∗
1 are also the elements of the unstable/stable eigenvector

corresponding to x̄∗
2, but the y components are of opposite sign. Furthermore, the ve-

locity components are also the same in magnitude, but the ẋ and ż velocity elements

are of opposite sign. This is illustrated in Figure 2.13 for a state at the the maximum

xz-plane crossing along an L2 northern halo orbit, and in Figure 2.14 for two states

mirrored about the xz-plane on the same orbit. Note that the data represented in

Figures 2.13 and 2.14 is centered at L2. If τ = −t and z̄(τ) = Gx̄(t) is substituted

into the nonlinear equations (2.10)-(2.12), it is apparent that the xz-plane symme-

try extends to the global stable and unstable manifolds associated with x̄(jΔt) and

x̄(T − jΔt). For the states, x̄∗
1 and x̄∗

2, in Figure 2.14, an arc along a trajectory that

lies on the stable manifold, associated with x̄∗
1, and an arc on the unstable manifold,

corresponding to x̄∗
2, are illustrated in Figure 2.15 in terms of Joviocentric rotating

coordinates in the CR3BP.

2.3.9 Computation of the Global Stable/Unstable Manifold

Computation of the global stable and unstable manifolds associated with x̄∗ =

x̄(ti) relies on the availability of initial conditions that lie in the subspaces Es(x̄∗)

and Eu(x̄∗). An estimate of these conditions is determined through a perturbation



41

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

x [108 km]

y 
[1

08  k
m

]

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

x [108 km]

z 
[1

08  k
m

]

x*
1
 

v
s
 (vel)

v
s
 (pos)

v
u
 (vel)

v
u
 (vel)

v
s
 (vel)v

s
 (pos), v

u
 (pos)

v
u
 (pos)

x*
1
 

Figure 2.13. Stable/Unstable Eigenvector Symmetry
at Maximum xz-Plane Crossing

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

x [108 km]

y 
[1

08  k
m

]

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

x [108 km]

y 
[1

08  k
m

]

v
s
 (pos)

1 

x*
2
 

v
s
 (vel)

1 

v
u
 (vel)

2 

v
u
 (pos)

2 

x*
1

x*
2
 

x*
1

v
s
 (vel)

1 
v

s
 (pos)

1 

v
u
 (pos)

2 

v
u
 (vel)

2 

Figure 2.14. Stable/Unstable Eigenvector Symmetry
for States Mirrored Across the xz-Plane

to the state at any fixed point, x̄∗ = x̄(ti), along the periodic orbit, by some small

scale factor (d), along the stable or unstable directions associated with x̄∗. Suppose

Ŷ Ws(ti) = [xs ys zs ẋs ẏs żs]
T and Ŷ Wu(ti) = [xu yu zu ẋu ẏu żu]

T . Let V̄ Ws(ti) and

V̄ Wu(ti) be defined as

V̄ Ws(ti) =
Ŷ Ws(ti)√

x2
s + y2

s + z2
s

, (2.64)

V̄ Wu(ti) =
Ŷ Wu(ti)√

x2
u + y2

u + z2
u

, (2.65)
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and

X̄s = x̄(ti) + d · V̄ Ws(ti) , (2.66)

X̄u = x̄(ti) + d · V̄ Wu(ti) . (2.67)

The global stable manifold (W s) is approximated by numerically integrating X̄s for

Δt ≤ 0, where X̄s is defined by equation (2.66). Similarly, the global unstable

manifold (W u) is estimated by numerically integrating X̄u for Δt ≥ 0, where X̄u

is defined in equation (2.67).

For application to the Sun-Jupiter system, a value of d = 1000 km is appropriate.

This value is small enough to preserve the accuracy of the linear estimate, yet it

allows for reasonable integration times. For instance, recall that trajectories on the

stable manifold asymptotically approach the halo orbit as t → ∞. The magnitude

of d determines the length of time required for trajectories on W s(Γ) to leave the

immediate vicinity of the orbit as t → −∞. If d is too small, the integration time

required for trajectories to encounter Jupiter increases; consequently, the accuracy

of the solution degrades. Other values within a reasonable range of d = 1000 km

are acceptable as well. Given the limits of a numerical procedure, the “linear” range

of d is defined such that, when propagated with Δt > 0, initial states along Es(x̄∗)

result in trajectories that resemble the associated halo orbit and complete at least
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two revolutions. Naturally, the stable and unstable manifolds are theoretical surfaces

in IRn and, in practice, solutions initiated in the stable subspace with Δt > 0, or

in Eu with Δt < 0, eventually diverge from the periodic solution due to integration

errors.

Recall, from the discussion on equilibrium points, that the local stable and un-

stable manifolds are formed by the union of two half-manifolds. A similar definition

is applicable for the stable and unstable manifolds associated with the fixed points

of a map. The local stable manifold, W s
loc(x̄

∗), is formed by the union of W s+
loc (x̄∗)

and W s−
loc (x̄∗). In this study, the symbol W s+

loc (x̄∗) is defined such that solutions in

W s+
loc (x̄∗), for some state x̄∗ along Γ, depart the periodic orbit and evolve towards the

vicinity of Jupiter, that is, the capture region. For an L1 halo orbit, trajectories in

W s−
loc (x̄∗) shift towards the interior region of the corresponding zero-velocity surface.

Conversely, for an L2 halo orbit, trajectory arcs along W s−
loc (x̄∗) immediately depart

the vicinity of Jupiter and approach the exterior region of the associated zero-velocity

surface. Thus, given initial conditions from equations (2.66) and (2.67), a numerically

integrated path evolves along W
s/u+
loc (x̄∗) or W

s/u−
loc (x̄∗); the sign of d is selected to

specify one of these particular segments along W
s/u
loc . The trajectories that appear in

Figure 2.15 represent the stable and unstable manifolds and correspond to d = 1000

km.

2.3.10 Heteroclinic and Homoclinic Trajectories

The intersection of the stable and unstable manifolds corresponding to an unstable

fixed point (x̄∗) in phase space, is the union of all the trajectories that approach the

fixed point x̄∗ both in positive time (Δt ≥ 0) and negative time (Δt ≤ 0). A

trajectory Γ that lies on W s(x̄∗) ∩ W u(x̄∗) is called a homoclinic trajectory. An

example of a homoclinic trajectory for a second order system is illustrated in Figure

2.16a. Now, let x̄∗
1 and x̄∗

2 be two distinct non-stable fixed points. A trajectory Γ1

that lies on W u(x̄∗
1)∩W s(x̄∗

2) or a trajectory Γ2 that lies in W s(x̄∗
1)∩W u(x̄∗

2) is called

a heteroclinic trajectory. Figure 2.16b depicts a sample heteroclinic trajectory for a

second order system. As discussed in the following chapter, the concept of homoclinic
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Figure 2.16. Homoclinic and Heteroclinic Trajectories – Adapted from Perko [32]

and heteroclinic trajectories has important applications in the mathematical modeling

of TSC in the CR3BP.

2.3.11 Transition of the Solutions to the Ephemeris Model

In configuration space, the paths of Oterma and Helin-Roman-Crockett, that are

available from ephemeris information, exhibit features that are geometrically simi-

lar to those representing the path of a particle evolving along the stable or unstable

manifolds associated with members of the SJL1 and SJL2 halo families. A “position

match” is defined as a segment of a trajectory arc that lies on either the stable or un-

stable manifold, resembles the capture geometry in the vicinity of Jupiter, and flows

in the same direction as the known path of the comet. The goal of this study is the

identification of a match in both position and velocity for Oterma and Helin-Roman-

Crockett. Although the circular restricted model yields solutions that resemble the

path of the comet in configuration space, numerical analysis suggests that the as-

sumption of circular primary motion is too restrictive when a match of the velocity

states is sought as well. To improve the accuracy of an existing match, the solution

identified in the CR3BP is transitioned to the ephemeris model.

In the “ephemeris” model, as defined here, primary motion is specified from

planetary state information available from the Jet Propulsion Laboratory DE405

ephemeris. The comet trajectories are also generated from the DE405 ephemeris.

The mathematical model is consistent with the equations of relative motion (A.E.
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Roy [40]), where the comet is the particle of interest, the Sun represents the central

body for integration, and Jupiter is defined as the perturbing gravitational field. All

measure numbers in the equations of motion are associated with the inertial reference

frame. For this analysis, the inertial XY -plane is defined as the plane of the Earth

Mean Equator and the X-axis is directed along the vernal equinox (J2000) direc-

tion. Although the equations of motion are expressed in terms of measure numbers

associated with the inertial reference frame, the comparison between the numerically

integrated trajectory and the available cometary ephemeris is performed in the ro-

tating frame to better assess the impact of the model. Since no assumptions about

the motion of the primaries is enforced, the transformation from inertial to rotating

coordinates is based on the instantaneous position of the primaries, as determined

from the available ephemeris information. That is, although the definition of the

rotating frame remains unchanged, the unit vectors x̂, ŷ, and ẑ are re-evaluated at

each epoch. The details of this coordinate transformation are outlined in Wilson [41].

In the CR3BP, a position match corresponds to an arc along a trajectory that

represents a solution on a stable or unstable manifold that is associated with a par-

ticular reference solution, x̄ref . The reference solutions of interest here are periodic

halo orbits. Since the stable and unstable manifolds are, by definition, associated

with a reference solution, the transition to the ephemeris model requires a new ref-

erence solution and recomputation of the stable/unstable manifolds for the region of

interest. Ultimately, the goal is an arc that preserves the overall geometry of the

existing match (identified in the CR3BP) and minimizes the difference between the

ephemeris state associated with the comet and the state determined from the numer-

ically integrated solution. To preserve the geometrical features of the existing match,

it is possible to identify a reference solution, in the ephemeris model, that resembles

the halo orbit in the CR3BP. The simplest approach, one that ensures preservation

of the essential features, is the use of the reference solution from the CR3BP as the

initial guess to a differential corrections process. A two-level differential corrector,

developed by Howell and Pernicka [42], is implemented to compute a Lissajous tra-
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Figure 2.17. Lissajous Trajectories

jectory in the ephemeris model that resembles, in this case, the original halo orbit, as

illustrated in Figure 2.17. Alternatively, the Richardson and Cary [25] approximation

is also available for the computation of quasi-periodic trajectories. However, as is true

for any approximation, the range of validity is limited. As previously discussed, the

halo orbits of interest possess an out-of-plane amplitude near 30× 106 km. Although

it is still possible to obtain an initial guess for the differential corrector, based on

the Richardson and Cary approximation, the parameters that typically result in a

“halo-type” orbit do not yield a Lissajous trajectory that resembles a halo. This

approximation is better suited for Az amplitudes under 200, 000 km.

Quasi-periodic motion is, essentially, a mixture of different, incommensurate, fun-

damental frequencies. Thus, a Lissajous trajectory, though not periodic, is bounded

and exists on an n-D torus. Of course, as defined, stable and unstable manifolds
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are associated with periodic orbits; the advantages of periodicity no longer exist for

quasi-periodic solutions. However, numerically, it is possible to identify solutions that

exhibit the features characteristic of stable and unstable manifold flow. Furthermore,

although the classical method for globalizing the stable and unstable manifolds for

periodic orbits does not explicitly extend to quasi-periodic motion, in practice, some

of the numerical concepts can be successfully adapted to produce results (Gómez, et

al. [27], Howell and Barden [32]) to an acceptable degree of accuracy. Ultimately,

computation of trajectories that represent motion on the “stable” or “unstable” mani-

fold associated with a quasi-periodic orbit still requires an approximation of the initial

state.

For periodic orbits, the initial conditions to globalize the manifolds are approxi-

mated by perturbing a six-dimensional state on the periodic orbit and shifting it into

the corresponding stable or unstable subspace. The stable and unstable eigenvec-

tors of the monodromy matrix span these linear subspaces. Hence, initial states are

straightforward to generate and the stable and unstable manifolds for periodic orbits

are relatively simple to globalize, unlike their quasi-periodic counterparts. Quasi-

periodic solutions have, in essence, an infinite period. However, since the orbit is not

periodic, within reasonable time intervals, the stability analysis based on Floquet the-

ory is not applicable. Even if the orbit is assumed to be nearly periodic with period

T̃ , the corresponding monodromy matrix is ill-conditioned; the columns of the STM

become unbounded in magnitude as time increases. Hence, conventional methods for

the solution of the eigenvalue/eigenvector problem are rendered useless for large T̃ .

However, numerical analysis [32] suggests that, in the ephemeris model, a periodicity

assumption is still a viable option, assuming that T̃ is not excessively large and that

the initial and final states are sufficiently close. Howell and Barden [32] successfully

approximate the stable and unstable “eigenvectors” associated with quasi-periodic

solutions through this approach. The goal is a relatively short pseudo-period T̃ , and

minimization of the difference between the initial and final states. According to How-

ell and Barden, the periodicity assumption in the methodology produces the best
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results when a “period” encompasses two revolutions on the orbit. That is, if x̄0

denotes the initial state and x̄f denotes the state at the end of the second revolu-

tion, then T̃ = tf − t0. The robustness of this assumption is rooted in the relative

location of the bodies every T̃ time units. Specifically, in the time it takes P3 to com-

plete two revolutions along the orbit, P2 completes roughly one revolution around

P1. This particular configuration minimizes the error between the initial and final

states used to define a period along the Lissajous trajectory. The stable and unstable

eigenvectors associated with the corresponding monodromy matrix are then utilized

to approximate the eigenvectors at other locations along the orbit via the state tran-

sition matrix.

It is necessary to note that the accuracy of the eigenvector propagation decays

towards the end of the first revolution because the orbit is not truly periodic. Also, for

the purpose of estimating T̃ , the determination of the end of the second revolution is

somewhat arbitrary; therefore, the computation of the stable and unstable directions

is affected by the definition of the period. To accurately compute the eigenvectors

along the second revolution, the period is redefined to consider the desired revolu-

tion as the first of a sequence of two revolutions. The disadvantage of this method

is a small discontinuity that exists at the shift point between revolutions since the

definition of the period changes accordingly. This discontinuity can be avoided by

considering an alternative approach, that is the power method (Gomez et al. [27]).

The power method takes advantage of the properties of the STM to compute the

stable and unstable eigendirections along the trajectory. An additional advantage of

the power method over the standard approach is the lack of any dependence on a

“period” so it is not necessary to explicitly define one. To discuss the basis of this

approach consider, once again, a periodic orbit. As previously stated, the stability

of a periodic orbit is determined by the modulus of the characteristic multipliers, λj .

That is, the eigenvalues of the monodromy matrix associated with the fixed point, x̄∗,

that represents the orbit in a Poincaré map. The growth of any initial perturbation,
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ȳ(0), over an integer multiple of the period, is governed by

ȳ(nT ) = Φ(nT, 0)ȳ(0)

=
6∑

j=1

cjλ
(n)
j v̄(j) , (2.68)

where v̄(j) represents the eigenvector corresponding to λj . If at least one eigenvalue

‖λj‖ > 1, then, with every revolution, nearly every perturbation lies in the unstable

subspace. That is, the columns of the state transition matrix align with the unstable

subspace as t → ∞. For the halo orbits of interest, ‖λj‖ � 1. Hence, this alignment

occurs within the first revolution along the orbit. The power method exploits this

natural alignment to compute vectors along the stable and unstable subspaces of the

orbit.

A Lissajous orbit appears as an invariant curve on a Poincaré map, not a fixed

point. However, for the purpose of estimating the stable and unstable directions,

consider x̄∗ as the state that defines the end of the desired number of revolutions

along the Lissajous trajectory. Let the initial state along the orbit be defined by the

position and velocity vectors r̄0 and v̄0, respectively. Define the crossing plane b̂1 − b̂2

such that

b̂1 =
r̄0

‖r̄0‖ (2.69)

b̂3 =
r̄0 × v̄0

‖r̄0 × v̄0‖ (2.70)

b̂2 = b̂3 × b̂1 (2.71)

The states along the orbit that intersect the crossing plane define consecutive revo-

lutions. An enlarged view of each crossing is illustrated in Figure 2.18. The initial

state is denoted as “0” and defines the crossing plane. Figure 2.18 depicts a total of n

crossings. Consider now the computation of the unstable direction at any point along

a Lissajous trajectory with n revolutions. Let v̄u(x̄
∗
0) represent a six-dimensional vec-

tor aligned with some arbitrary initial perturbation. Recall, from equation (2.18),
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that this vector can be mapped to x̄∗
n through the state transition matrix as follows

v̄u(x̄
∗
n) = Φ(tn, t0)v̄u(x̄

∗
0) ,

= Φ(tn, tn−1)Φ(tn−1, tn−2) · · ·Φ(t2, t1)Φ(t1, t0)v̄u(x̄
∗
0) . (2.72)

Let v̄u(x̄
∗
j ) = Φ(tj , tj−1)v̄u(x̄

∗
j−1), such that equation (2.72) can be restated in terms

of a set of n equations, one for each revolution along the orbit (j = 1, . . . , n). To

avoid numerical overflow, the state transition matrix, Φ(tj , tj−1), is reinitialized to

the identity matrix at the commencement of each revolution, during the numerical

integration process. That is, Φ(tj , tj) = I6 (j = 0, . . . , n − 1). Furthermore, v̄u(x̄
∗
j ) is

normalized for all j such that ũu(x̄
∗
j ) = v̄u(x̄

∗
j )/‖v̄u(x̄

∗
j )‖ to yield to following set of

equations,

v̄(k)
u (x̄∗

1) = Φ(t1, t0)ũ
(k)
u (x̄∗

0) ,

v̄(k)
u (x̄∗

2) = Φ(t2, t1)ũ
(k)
u (x̄∗

1) ,

... (2.73)

v̄(k)
u (x̄∗

n) = Φ(tn, tn−1)ũ
(k)
u (x̄∗

n−1) .

Since the columns of the state transition matrix become aligned with the unstable di-

rection within one revolution, the system of equations (2.73) can be solved iteratively

to determine all the vectors v̄u(x̄
∗
j ). In equation (2.73), the superscript k denotes
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the kth iteration. This iteration is based on the assumption that v̄u(x̄
∗
n) = v̄u(x̄

∗
0),

hence v̄
(k)
u (x̄∗

0) = v̄
(k−1)
u (x̄∗

n). Of course, a Lissajous orbit is not actually periodic.

This equality is only enforced for the purpose of completing the necessary iterations.

Thus, ũ(x̄∗
0) is not truly aligned with the unstable subspace of x̄∗

0. Consequently, the

unstable directions associated with the first revolution cannot be accurately deter-

mined based on the present iteration scheme. The condition for convergence is that

‖ũ(k)
u (x̄∗

n) − ũ
(k−1)
u (x̄∗

n)‖ < ε, where ε represents the desired tolerance. The converged

directions, v̄u(x̄∗
j), are aligned with the unstable subspace associated with x̄∗

j . To

accurately determine the unstable directions at other locations, x̄∗
q , along the Lis-

sajous orbit, except those along the first revolution, the vector v̄u(x̄
∗
j ) is utilized to

approximate the unstable directions associated with the jth revolution. That is, for

tj−1 ≤ tq ≤ tj , the unstable direction associated with x̄∗
q is defined as

v̄u(x̄
∗
q) = Φ(tq, tj−1)Φ

−1(tj , tj−1)v̄u(x̄∗
j) . (2.74)

Note that this propagation proceeds backwards from x̄∗
n towards x̄∗

1 rather forward

from x̄∗
1 to x̄∗

n as might be expected. This is to further ensure that any errors in-

troduced, due to the assumption that v̄u(x̄
∗
n) = v̄u(x̄

∗
0), do not propagate beyond the

first revolution.

To compute the stable directions, consider the inverse form of equation (2.68), for

T = −T , that is,

ȳ(−nT ) = Φ(−nT, 0)ȳ(0) ,

= Φ−1(nT, 0)ȳ(0) ,

Φ−1(nT, 0)ȳ(0) =
6∑

j=1

cj
1

λ
(n)
j

v̄(j) . (2.75)

Hence, if any eigenvalues ‖λj‖ < 1, almost any initial perturbation, under the map-

ping in equation (2.75), becomes aligned with the stable subspace of Φ(T, 0). The
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corresponding system of vector equations that must be solved is defined as follows,

v̄(k)
s (x̄∗

n−1) = Φ−1(tn, tn−1)ũ
(k)
s (x̄∗

n) ,

... (2.76)

v̄(k)
s (x̄∗

1) = Φ−1(t2, t1)ũ
(k)
s (x̄∗

2) ,

v̄(k)
s (x̄∗

0) = Φ−1(t1, t0)ũ
(k)
s (x̄∗

1) .

Note that, for the stable directions, the initial guess now applies to v̄s(x̄
∗
n) and the it-

eration process relies on the assumption that v̄
(k)
s (x̄∗

n) = v̄
(k−1)
s (x̄∗

0). Hence, the stable

directions associated with the last revolution on the orbit cannot be accurately deter-

mined. Naturally, for periodic orbits and nearly periodic Lissajous trajectories, the

power method yields accurate results for all revolutions. Either approach presented

here, the power method or the approach using a two-revolution period (2REVP), is

suitable for approximating the stable and unstable directions associated with quasi-

periodic orbits in the ephemeris model. Aside from the discontinuity in the 2REVP

approach, both methods yield almost identical results.
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3. Numerical Analysis

The goal of this investigation is the identification of some arc along a particular

trajectory, as computed in the R3BP, that resembles the path of a particular Jupiter

family comet, such as Oterma (OTR) or Helin-Roman-Crockett (HRC), during TSC.

Since no closed-form analytical solution exists in the R3BP, identifying such a trajec-

tory segment requires a numerical search in the phase space. A particular trajectory

arc is defined as a “match” if a segment along the trajectory exhibits the most no-

table features of the comet’s TSC path. Before a search is initiated, it is necessary to

observe the known dynamical evolution of the comet, as described by the available

ephemeris information, and note the TSC features. For instance, consider the helio-

centric inertial path of HRC as illustrated in Figure 3.1. The bold line highlights the

time during which the comet was captured between 1966 and 1985.
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Figure 3.1. TSC of Helin-Roman-Crockett – Heliocentric Inertial Frame
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Since solutions in the R3BP are typically represented in terms of the synodic ro-

tating frame, as defined in Chapter 2, analysis of a particular comet’s motion begins

by transforming the available comet ephemeris information from the heliocentric in-

ertial frame to the Sun-Jupiter synodic rotating frame (Wilson [41]). For HRC, the

TSC path, as observed in the rotating frame, is illustrated in Figure 3.2. It is clear

from Figure 3.2 that, during TSC, the comet completed several revolutions around

Jupiter before it escaped. The path of HRC during capture is best described by

three-dimensional chaotic motion in the vicinity of Jupiter. This is true of TSC in

general.
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Figure 3.2. TSC of Helin-Roman-Crockett – Synodic Rotating Frame

In the CR3BP, three-dimensional chaotic motion is characteristic of trajectory

arcs on the stable and unstable manifolds associated with three-dimensional periodic

and quasi-periodic solutions in the vicinity of the collinear libration points L1 and

L2. Hence, the search for a matching trajectory arc is initiated in the phase space of

the CR3BP. The stable and unstable manifolds associated with the L1 and L2 halo

families that are illustrated in Figure 2.3, serve as an initial basis for the numerical

search. To optimize the search process, a priori knowledge of the geometry of the flow

offers an advantage. Insight concerning the structure of the solution space, such as the

general symmetry of solutions and the dynamical regions of exclusion, is applied to
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minimize the volume of the phase space that must be searched. Further observations

obtained through numerical explorations concerning the evolution of the flow along

the stable and unstable manifolds associated with the L1 and L2 halo families also

prove valuable. The following sections detail this additional investigation.

3.1 Temporary Satellite Capture and Regions of Exclusion

In astronomy, the more commonly accepted definition of TSC requires only that

the Joviocentric energy become negative at some instance during the comet’s orbital

evolution. However, the Joviocentric energy of a comet can become negative near

Jupiter without forcing the comet to transition between regions. Thus, a more specific

definition of TSC is employed in this investigation.

For any temporary satellite capture, the comet must first enter the capture region

as defined in terms of the zero-velocity surfaces. The comet will eventually exit the

capture region, but its heliocentric orbit will be affected by its encounter with Jupiter.

The extent of this effect depends on the type of encounter. There are two possible

types of encounters. Suppose that the comet path originates in the interior region.

The simplest type of capture (type 1) occurs when the comet crosses into the capture

region and immediately exits to the exterior region. This type also applies to an

immediate crossover from the exterior to the interior region. Thus, a type 1 capture

is denoted as a “flythrough” of the capture region. The comet Oterma experienced

two type 1 captures as illustrated in Figure 3.3. If, instead, the comet enters the

capture region and experiences more than one close encounter with Jupiter before

it exits the capture region, the encounter is defined as a type 2. A type 2 capture

is apparent in Figure 3.4 which illustrates the evolution of the comet Helin-Roman-

Crockett. The structure of the search for a match to represent the capture path of

a particular comet depends on the type of capture that is reflected in the ephemeris

data for the comet.

The first step in the search process is an examination of the phase space of the

CR3BP to determine if it is possible for the type of motion associated with capture to

exist. If so, it is then necessary to identify the subset of the phase space to commence
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the search. These issues are addressed simultaneously by comparing the ephemeris

path of the comet to the regions of exclusion in the CR3BP. As a reference, consider

the zero-velocity contours associated with the libration points. From the discussion in

Chapter 2, it is clear that, in the CR3BP, a type 1 capture can only exist for C < C2,

when the regions interior and exterior to Jupiter’s orbit are bridged by the capture

region. Furthermore, the paths of OTR and HRC seem to closely follow the bounds

imposed by the “C”-shaped zero-velocity contours associated with C3 < C < C2, as

illustrated in Figure 3.5. Thus, the search for a match to HRC and OTR is initiated

by a focus on solutions within this range of values for the Jacobi constant. Near

Jupiter, halo families in the vicinity of L1 and L2, as well as the associated stable

and unstable manifolds, exist within this subset of the phase space. Since the overall

path of these comets is characterized by three-dimensional chaotic motion, the search

procedure is initiated by examining the stable and unstable manifolds associated with

the SJL1 and SJL2 halo families.

3.2 Parameterizing the Search Space

To characterize the evolution of trajectories on the stable or unstable manifolds

that are associated with a particular halo family, and to provide some structure to
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the search process, it is necessary to establish a set of parameters to identify: (a) the

desired halo orbit along the family; (b) the desired fixed point, x̄∗, along the orbit;

and, (c) the local stable (W s
loc) and unstable manifold (W u

loc) associated with x̄∗.

Consider the subset of the SJL1 and SJL2 halo families presented in Figure 2.3. Each

member of this subset is associated with a particular value of the Jacobi constant

(C) as observed in Figure 3.6. In turn, a particular value of C defines a zero-velocity

surface that bounds the regions of configuration space where solutions corresponding

to this specified value of C can dynamically evolve. As discussed in Chapter 2, and

across the range of C values that appear in Figure 3.6, the out-of-plane excursion

along any solution within this C range is bounded by the closed, inner spheroid of

the corresponding zero-velocity surface. Extensive numerical explorations of the flow

representing the stable and unstable manifolds associated with this range of C, for

both SJL1 and SJL2 families, indicate that any trajectory computed to evolve on

the stable or unstable manifold, and associated with a specific halo orbit, is loosely

bounded by the Az amplitude of that same periodic orbit, Γ. Thus, the Az amplitude

is used to parameterize the halo orbits in a given family. This parameterization is

only admissible for Az amplitudes below a value of 60 × 106 km. Beyond this value
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Figure 3.5. Ephemeris Path of Oterma and Helin-Roman-Crockett
Compared to Zero-Velocity Contours in CR3BP

of Az, more than two orbits can be determined with the same value of the Jacobi

constant, as observed in Figure 3.6. For OTR and HRC, the maximum out-of-plane

excursion is well below 60 × 106 km. Since the Jacobian and the Az amplitude are

in a one-to-one correspondence within this range, the Az amplitude is an admissible

parameter for this study.

For Az < 60 × 106 km, the eigenvalue structure of the monodromy matrix indi-

cates that a fixed point, x̄∗, that represents either an L1 or an L2 periodic halo orbit,

Γ, has one-dimensional stable and unstable subspaces spanned by the corresponding

eigenvectors. Since the computation of trajectories that represent motion on the sur-

faces W s(Γ) and W u(Γ) relies on these eigenvectors, the associated trajectories are

parametrized in terms of the spatial orientation of the stable and unstable eigendi-

rections and the corresponding fixed point. For example, consider the northern L2

halo orbit, represented in Figure 3.7 in the form of a projection onto the yz-plane.

Since halo orbits are symmetric about the xz-plane, let (x, y, z) denote the position

elements for every state along this orbit such that (xmax, 0, zmax) corresponds to

the maximum out-of-plane excursion, (xmin, 0, zmin) corresponds to the minimum

out-of-plane excursion, and Ax = xmax − xmin is the maximum amplitude along the

x-axis. For small Ax, it is reasonable to characterize a fixed point along the orbit

by its (y, z) position elements. Halo orbits with large Ax amplitudes have small Az
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amplitudes. Hence, this particular parameterization is not as effective for members of

the halo family that are close to the xy-plane. However, the magnitude of the maxi-

mum out-of-plane component of the position vector corresponding to either HRC or

OTR is not insignificant; thus, for this study, this parameterization is acceptable. To

collapse the (y, z) pair into one parameter, let

α = tan−1(σ1y/σ2z) , (3.1)

where σ1 is defined as +1 for an L1 halo and −1 for an L2 halo orbit. The value

of the integer σ2 equals +1 for a northern halo and −1 for a southern orbit. This

convention ensures that α always increases in the direction of motion along the orbit.

Furthermore, α is constrained to a range between 0◦ and 360◦. This parameterization

is convenient because it eliminates time as the independent variable and introduces

a common element that relates each orbit in a given halo family. That is, at a given

value of the Jacobi Constant, each state on the corresponding orbit can be represented

as x̄(α) for 0 ≤ α < 360◦.

Consider the fixed point characterized by the angle α on a specified halo orbit. In
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Chapter 2, it was established that the stable and unstable manifolds associated with a

given halo orbit are mirrored about the xz-plane, as illustrated in Figure 2.15. Thus,

to investigate the geometry of the flow on the stable and the unstable manifolds, it

is only necessary to consider either the stable or unstable flow; the behavior of the

alternate flow can be deduced. In addition, from the northern/southern symmetry

of solutions, the geometry of the stable and unstable manifolds associated with the

southern halo families is a mirror image, about the xy-plane, of the flow on the man-

ifolds associated with the corresponding northern halo families. Thus, the analysis

that follows is based on the stable manifold associated with the northern SJL1 and

SJL2 halo families.

The stable eigenvector that is computed from the monodromy matrix, and asso-

ciated with a fixed point x̄(α), is six-dimensional with three position elements (xs,

ys, zs) and three velocity elements (ẋs, ẏs, żs). Thus, the six-dimensional unit sta-
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ble eigenvector, Ŷ Ws(α), can be expressed in terms of two three-dimensional vectors,

Ȳ Ws
p (α) = [xs ys zs]

T and Ȳ Ws
v (α) = [ẋs ẏs żs]

T . Note that Ȳ Ws
p (α) and Ȳ Ws

v (α) are

not unit vectors. Since Ȳ Ws
p (α) and Ȳ Ws

v (α) are three-dimensional vectors, each can

be represented in configuration space in terms of an equivalent unit direction, relative

to the Sun-Jupiter rotating frame, and associated with the fixed point x̄(α) along the

halo orbit. The stable manifold associated with x̄(α) can be parameterized in terms

of Ȳ Ws
p or Ȳ Ws

v . For example, the unit vector along Ȳ Ws
v (α) can be expressed in terms

of azimuth relative to the rotating x-axis (αd) and elevation relative to the xy-plane

(βd). These definitions are pictorially represented in Figure 3.8.

i(t  )
sW

Y

βd

αd
x

ŷ

ẑ

^

v
^

Figure 3.8. Characterization of Stable/Unstable Eigenvector Directions

The azimuth is measured in the positive sense when ẏs > 0; the elevation angle

is measured as positive when żs > 0. The azimuth angle (αd) is constrained to be

evaluated between ±180◦ and the elevation angle (βd), then, always possesses a value

between ±90◦. For the range of Az amplitudes considered in this study, numerical

analysis demonstrates that every fixed point along an unstable L1 or L2 halo orbit

corresponds to a unique (αd, βd) pair. This numerically observed trend is supported

by Figure 3.9. Each curve in Figure 3.9 illustrates the relationship between αd and

βd for a subset of the SJL2 northern halo family, for members of the halo family with

out-of-plane amplitudes under 60× 106 km. The dashed lines correspond to the (αd,

βd) pairs for the stable manifold and the (αd, βd) pairs for the unstable manifold
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appear as dotted curves. The size of each curve is proportional to the ratio of the

Ay and Az amplitudes of the corresponding halo orbit. Hence, halos close to the

xy-plane are represented by an αd-βd curve that resembles a horizontal line; that is,

over one revolution of the orbit, the eigenvectors essentially possess azimuth but no

elevation. This is consistent with the expected result since, in the limiting case, the

stable and unstable manifolds corresponding to a planar halo orbit are themselves

planar. The numerically determined uniqueness of the (αd, βd) pair, as observed in

Figure 3.9, over the range of Az amplitudes useful here, supports the validity of the

parameterization.

To better visualize the state, x̄(ti), associated with a particular (αd, βd) pair, it

is convenient to consider contours of αd and βd on a surface defined by the position

elements along each halo orbit in a family. This is illustrated in Figure 3.10 for the

SJL2 northern halo family. Contours of constant αd and βd appear as nonlinear,

smooth, three-dimensional curves along the halo family, in contrast to contours of

constant α which appear as two-dimensional rays originating from the central point,

(y, z) = (0, 0), in Figure 3.7.



63

-4E+07 -2E+07 0 2E+07 4E+07

y [km]

-2E+07

0

2E+07

4E+07

z
[k

m
]

63.3

52.8

42.2

31.7

21.2

10.6

0.1

-10.5

-21.0

-31.5Contours of constant αd

-4E+07 -2E+07 0 2E+07 4E+07

y [km]

-2E+07

0

2E+07

4E+07

z
[k

m
]

19.6

10.8

2.1

-6.7

-15.5

-24.3

-33.1

-41.8

-50.6

-59.4Contours of constant βd

Figure 3.10. Evolution of Stable Eigenvector Along SJL2

3.2.1 Search Approach

Once the desired subset of the phase space is parameterized, the search for a

match can be initiated. As previously stated, the goal is the identification of a

trajectory arc along some stable or unstable manifold, one that is associated with a

periodic or quasi-periodic solution and resembles the path of HRC and OTR during

TSC. Determination of such an arc is defined as a “match”. Initially, the search

is focused on the phase space in the CR3BP; in particular, a match is sought by

examining trajectories representing motion on the stable manifolds associated with

three-dimensional halo orbits. A segment along a particular solution is considered a

full “match” only if both the position and velocity states of the comet are comparable

to those on the matching arc. For simplicity, the search initially proceeds to attain

a match for the position elements. This can be accomplished visually by comparing

projections of the comet path onto the xy- and xz-planes, to trajectory arcs along

the stable manifold. Since a match in the xy-plane is necessary for a full state match,

the initial search is further concentrated on the xy-plane.

The next step in the search process is the determination of an initial guess for

the target halo orbit. The initial guess is based on a measurement of the comet’s

maximum out-of-plane excursion as it passes through either the interior or the capture
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region. The Az amplitude of the halo orbit is based on this measurement. Whether

the measurement correlates to the maximum excursion in the interior or capture

region is ultimately an arbitrary choice. It is important to note that this only results

in an initial guess and does not necessarily yield the best match. However, extensive

numerical explorations reveal that this is typically a good approximation and a match

can usually be isolated amongst the stable and unstable manifolds associated with

a periodic orbit that is near the initial halo orbit. Given an estimate for the Az

amplitude, it is not immediately apparent whether an L1 or an L2 halo is the best

choice. However, numerical analysis reveals that the initial choice is not critical. Since

either L1 or L2 orbits will ultimately produce a match, the following analysis is based

on the northern SJL2 halo family.

The search proceeds by numerically propagating trajectories on the stable mani-

fold that are associated with various states, x̄(α), along the orbit, for α defined over

the full range, 0◦ ≤ α ≤ 360◦. From this set, it is likely that a trajectory can be

isolated that exhibits at least some of the desired features that are observed in the

projection of the comet’s capture path onto the xy-plane. It is not necessary that

the match be exact. Some of the features may appear inverted or mirrored about an

axis or a plane. For example, consider a collection of trajectories on a surface that

reflects the stable manifold associated with x̄(α), for 0 ≤ α ≤ 180◦. Suppose that arcs

along these trajectories resemble the comet path during capture, but, in the xy pro-

jection, the computed trajectories appear mirrored about the x-axis. From equations

(2.62)-(2.63), it is deduced that the unstable manifold associated with x̄(360◦ −α) is

a mirror image – about the xz-plane – of the stable manifold associated with x̄(α).

Hence, for a match, the xy projection is better represented by the unstable manifold

associated with x̄(360o − α). Clearly, this is a geometric match and, thus, it is also

necessary to ensure that the flow proceeds in the same direction for both the comet

and the matching trajectory. Provided the direction of motion is consistent between

the comet and the computed arc that renders a position match, consider the pro-

jection of the integrated arc onto the xz-plane. If the arc along the manifold also
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matches the comet path in the xz projection, then a position match is achieved and

the next step is a match of the velocity states as well. On the other hand, if the pro-

jection onto the xz-plane appears inverted about the xy-plane, it is then clear, from

the northern/southern symmetry of solutions (SP1), that the position match is more

accurately represented by the unstable manifold associated with the corresponding

southern halo orbit. It is possible that, at this point, the position match is still not

sufficiently close to the path of the comet. Nonetheless, a closer match might exist in

a neighborhood of this solution. Thus, it is necessary to determine if it is possible to

improve the match without loosing the overall character of the matching arc. Natu-

rally, the geometry of the stable and unstable manifolds associated with neighboring

periodic orbits share similar features. Recall that the stable and unstable manifolds

associated with x̄(α) are characterized by a particular (αd, βd) pair. The search for

a match in the neighborhood of x̄(α) is facilitated by this parameterization. That is,

the search for a neighboring match can proceed along contours of constant α, αd, or

βd.

Consider the sections of the surfaces W s(Γ) and W u(Γ) that exist in the vicinity

of Jupiter, between L1 and L2. Each trajectory along these manifolds includes at

least one close approach to the planet (r̄P2P3 · V̄ P2P3 = 0). Of particular interest

is the first encounter. Since the global unstable manifold is numerically integrated

with Δt > 0, the “first” encounter occurs after the trajectory departs the immediate

vicinity of the halo orbit. The definition for the stable manifold is similar, except

that Δt < 0. The subsequent features along each trajectory depend on the configu-

ration of the first encounter: (a) distance to Jupiter (|r̄P2P3|); (b) azimuth (AZ) and

elevation (EZ) angles relative to the rotating frame; and, (c) the inertial velocity

relative to the planet, V̄ P2P3 , as illustrated in Figure 3.11. Examining the evolution

of trajectories in the neighborhood of x̄(α) and along contours of constant α, αd, or

βd, is equivalent to varying the configuration of the first encounter, particularly the

azimuth and elevation angles. The sensitivity of the trajectory to changes along any

of these contours varies according to the location on the orbit (α) and the energy level
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ŷP2

P3

P P
2 3V

−

P P
2 3−r

EL

AZ

Figure 3.11. Configuration of Close Encounter

(C). For instance, consider a contour of αd = 60◦ for 25×106 km < Az < 44×106 km.

For a halo orbit with Az = 25.2× 106 km, αd = 60◦ is equivalent to α = 270◦. Then,

the evolution of the azimuth of the first encounter, across other halo orbits in the

family, along a contour of αd = 60◦ appears in Figure 3.12. This curve is compared to
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Figure 3.12. Evolution of First Close Encounter: αd = 60◦ and α = 270◦

a second result in the same figure, that is, shifting across the family on a contour of

α = 270◦. Note that, unlike the curve reflecting the αd contour, moving along the α

contour produces a range of values of Az for which the azimuth of the first encounter
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results in |r̄P2P3 | ≤ 10RJ (the numerical stopping condition) where RJ represents the

radius of Jupiter. In this region of the halo family, trajectories are more sensitive to

changes in α than to changes in αd. Hence, trajectory features are better preserved

along the αd contour. This observation is even more apparent in Figures 3.13 and

3.14. In these figures, trajectories representing arcs on the stable manifolds corre-
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Figure 3.14. Evolution of Stable Manifold Along α = 270◦

sponding to different halo orbits are plotted over a range of out-of-plane amplitudes,

Az, such that 25 × 106 km < Az < 36.1 × 106 km. In Figure 3.13, the trajectories

are selected along contours of constant αd; in Figure 3.14, the trajectories result from

a shift along constant α contours. The observation that characteristics are better
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maintained along contours of constant αd depends once again on C and α. In the

previous example, for the results in Figures 3.13-3.14, the range of orbits identified in

terms of Az amplitudes, is relatively small. Consider instead a contour corresponding

to αd = 43◦, for the range 0.92 × 106 km < Az < 18.3 × 106 km; almost double

the range of Az amplitudes that are available in the previous example. For a halo

orbit with Az = 18.3 × 106 km, αd = 43◦ is equivalent to α = 305◦. Both curves are

generated and appear in Figures 3.15 and 3.16. Once again, it is obvious that the
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features are better preserved along the αd contour. The observation that contours of

αd better preserve the characteristics of a trajectory arc is most useful once a candi-

date match for a segment or arc along a particular comet path is identified. Suppose



69

a candidate match for the path of HRC in the capture region is identified among the

trajectories representing the stable manifold associated with SJL2. The comet HRC

experiences several close approaches to Jupiter during TSC. Examine the numerically

generated trajectory. If the flyby altitude of the close approaches along the poten-

tial trajectory are too low, the match can be improved, without losing the essential

features, by selecting a neighboring trajectory with the same αd. Since the (αd, βd)

pairs are unique along a family, the new computed trajectory – one that constitutes

an improved match – is associated with a different member of SJL2.

3.2.2 Numerical Near-Symmetry Across Halo Families

Numerical observations on the evolution of the stable/unstable manifolds asso-

ciated with orbits that belong to the SJL1 halo family, compared to the manifold

surfaces associated with the SJL2 family of orbits, reveal some qualitative similarities

across the halo families. For instance, consider the stable manifold associated with

the state x̄1(α1) = [x1 y1 z1 ẋ1 ẏ1 ż1]
T on a northern L1 halo orbit and compare

it to the unstable manifold corresponding to a state x̄2(α2) = [x2 y2 z2 ẋ2 ẏ2 ż2]
T

along a southern L2 halo orbit. Choose these orbits such that y1 ≈ y2 and z1 ≈ −z2

as illustrated in Figure 3.17 for an L1 halo of Az ≈ 26 × 106 km and L2 orbit with

Az ≈ 24 × 106 km. Note that this selection is not arbitrary since, as previously
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discussed, the evolution of the (αd, βd) pair is proportional to the ratio of y : z. Com-

parison of the corresponding αd-βd diagrams reveals some numerical near-symmetries.
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These symmetries are easily observed from the α-αd-βd diagram in Figure 3.18. Note

that the βd curve representing the elevation of the stable eigenvector along the north-

ern L1 halo orbit (dashed red line) appears mirrored about α = 180◦ when compared

to the elevation of the unstable direction along the southern L2 halo orbit (dashed

blue line). Also, the αd curve representing the azimuth of the stable eigenvector

along the L1 halo orbit (solid red line), appears mirrored about both αd = 0◦ and

α = 180◦ relative to the azimuth of the unstable direction along the L2 halo orbit.

That is, the (αd, βd) pair associated with the stable eigenvector along the northern L1

halo orbit exhibits some inverse near-symmetry properties compared to the (αd, βd)

pair associated with the evolving unstable eigenvector along the southern L2 halo

orbit. Since the geometrical features of a trajectory depend on the (αd, βd) pair, this
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suggests some similarities between the geometry of the flow along the stable and un-

stable manifolds across the halo families, at least in the capture region. This trend

is confirmed by globalizing the stable manifold associated with x̄1(α1) as well as the

unstable manifold associated with the state x̄2(α2), as identified in Figure 3.17. The

resulting trajectories appear in Figure 3.19. These trajectories, corresponding to the

stable and unstable manifolds, appear as near mirror images on the xy-plane and
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their out-of-plane components are apparently inverted. The converse also appears

valid for a southern L1 halo and a northern L2 halo, due to the natural symmetry

across the xy-plane in the CR3BP (SP1). This observation, based on numerical anal-

ysis, suggests that the initial choice of an L1 or an L2 halo orbit is arbitrary when

initiating the search process. Once a match is identified or isolated, one that exhibits

the most notable features of the known comet trajectory in the capture region, then

the most appropriate halo family, that is, L1 or L2, for the best match to the comet

trajectory can be determined.

3.2.3 Critical Energy Level for TSC

Recall that the goal of the search process is the identification of an arc along a

stable or unstable manifold that resembles the path of the comet during capture.

The search is then structured to seek the segment along the manifold that is most

likely to yield trajectories with the desired characteristics. The evolution of the global

stable and unstable manifolds, as |t| → ∞, associated with a particular halo orbit, is

bounded by the corresponding zero-velocity surface. Since the available interior and

exterior regions that are bounded by the zero-velocity surfaces are joined by capture

region between L1 and L2, all trajectories on either the stable or unstable manifolds

can move across these regions an infinite number of times, as |t| → ∞. For example,
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consider a trajectory representing motion on the stable manifold associated with x̄(α)

along an L1 northern halo orbit. The local stable manifold, W s
loc, associated with x̄(α)

is formed as the union of two half-manifolds, W s+
loc and W s−

loc , as previously defined

in Figure 2.9. For an SJL1 halo orbit, let W s+
loc be the half-manifold that approaches

x̄(α) from Jupiter and W s−
loc the half-manifold that approaches x̄(α) from the general

direction of the Sun. If W s+
loc is globalized such that Δt < 0, the resulting trajectory

eventually either escapes the vicinity of Jupiter, after one or more close encounters

with the planet, or collides with Jupiter. Of particular interest are the trajectories

that escape the vicinity of the planet. Note that trajectories on W s−
loc escape the

vicinity of Jupiter faster than those on W s+
loc because they do not encounter Jupiter

after they depart the immediate neighborhood of the halo orbit. In both cases, as

t → −∞ these trajectories can return through the opening of the zero-velocity surface

and move across regions an infinite number of times. In theory, as the trajectory is

numerically propagated, each return represents a potential match for the TSC path

of a particular comet. However, in practice, the range of possibilities is limited by the

numerical error associated with the required length of the integration. This error is

compounded by the chaotic nature of the dynamics in the CR3BP. That is, “given two

initial conditions, arbitrarily close to one another, the trajectories emanating from

these initial conditions diverge at a rate characteristic of the system, until for all

practical purposes, they become uncorrelated.”1 For trajectories associated with W s+
loc ,

the onset of this sensitivity is advanced by close encounters with Jupiter. Trajectories

associated with W s−
loc are more sensitive to the integration time. In either case, it is

desirable to keep the integration time as short as possible to maintain the reliability

and accuracy of the match. A reliable match can be reproduced in the presence of

perturbations. In this study, reliability is essential when transitioning the match from

the CR3BP to the ephemeris model.

To maintain the reliability of a given match, the search process is structured

according to the type of capture that is observed along the path of the comet of

1Parker and Chua [20]
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interest. For a type 2 capture, where multiple close encounters are incorporated,

the integration time is reduced by searching for heteroclinic connections among the

trajectories that represent the stable and unstable manifolds corresponding to the

SJL1 and SJL2 halo families. Thus far, identifying these connections in the three-

dimensional R3BP is based on numerical techniques that combine Poincaré maps with

differential correction schemes, such as that proposed by G. Goméz and J. Masdemont

[43]. In the planar CR3BP, Koon, Lo, Marsden and Ross [17] developed a semi-

analytical process to establish the existence of heteroclinic connections in the planar

model, but the actual identification and computation of these connections still relies

on numerical techniques similar to those employed by Goméz and Masdemont. Since

the goal is restricted to the identification of arcs along a stable or unstable manifold

that incompass the most notable features of the capture path of the comet, precise

heteroclinic connections are not necessary. It is sufficient to identify a combination

of trajectory arcs that exhibit the desired features.

For a type 1 capture, isolation of a match is simpler. The significant features

of a type 1 capture are best represented by trajectories that return to the capture

region after their first escape. To maintain the reliability of the match, only first

return trajectories, associated with W s−
loc , are considered. That is, for the SJL1 halo

family, the particle (with motion represented by the simulated trajectory) must be

re-captured by Jupiter after one revolution in the interior region. For the SJL2 halo

family, trajectories on W s−
loc move beyond the zero-velocity surface. Since the time

required to complete one revolution in this region is much longer, first returns are rare

and very sensitive to changes in initial conditions. Hence, only the stable and unstable

manifolds associated with the SJL1 halo family are considered when searching for a

match to incorporate a type 1 capture.

The results of extensive numerical studies suggest that, for a type 1 capture, a

specific energy level, that is, one less than or equal to −2.5 km2/sec2, is apparently

required (in the CR3BP) for trajectories associated with the SJL1 halo family to

experience a TSC, as defined here. Along the SJL1 family of periodic halo orbits,
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trajectories are generated to approximate the stable manifold, and those that also

experience a crossover after one revolution in the interior region, are identified in

Figure 3.20. Each orbit is represented by its out-of-plane Az amplitude; orbits that

satisfy the crossover condition are noted as a function of the critical angular location

(α). The shaded regions in the figure indicate the range over α for which a trajectory
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Figure 3.20. Capture Condition for SJL1 Stable Manifold Trajectories
After One Revolution in the Interior Region

defined along the stable manifold crosses into the capture region from the interior

region. This critical angle α is crucial in identifying a match for OTR in the CR3BP.

As illustrated in Figure 3.20, if the trajectories representing the stable/unstable man-

ifolds, and associated with orbits in the SJL1 halo family, are propagated towards

the interior region, only a handful will return through the capture region after one

revolution.

3.3 Transfer of Solutions to the Ephemeris Model

The ultimate goal of this investigation is to match the six-dimensional state of

the comet during capture. Initially, the search is focused on matching the position el-

ements in the CR3BP. Once a position match is isolated among the stable or unstable
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manifolds associated with the SJL1 and SJL2 halo families in the CR3BP, it is not

unusual to observe that the velocity states are not sufficiently close to justify a com-

plete match. This problem is corrected by transferring the solution to the ephemeris

model. In the ephemeris model, the differential equations are numerically integrated

using actual ephemeris information for Jupiter. That is, no assumptions are imposed

about the motion of the primaries. Since the trajectory is not periodic, neither are

the stable/unstable directions or, consequently, the αd-βd diagrams. However, for a

Lissajous trajectory that resembles a halo orbit, the relationship between αd, βd, and

α does not change significantly as observed in Figure 3.21. Although the trajectory
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Figure 3.21. αd-βd Diagram for Northern SJL1 Lissajous Trajectory
over Seven Revolutions

(or trajectory arc) that is generated as a match in the ephemeris model does not

originate from the same angular location (αC) as in the CR3BP, typically the match

can be reacquired by considering trajectories associated with ‖α − αC‖ < δ, for δ

small. As the Lissajous orbit expands around the halo orbit, so do the αd-βd dia-

grams. Furthermore, the small changes in αd and βd across each revolution on the

Lissajous trajectory introduce new opportunities for identifying a match to a comet’s

TSC path. That is, in some cases a small change in αd or βd can result in significant
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changes to the trajectory, particularly in the case of a type 1 capture where the stable

and unstable manifolds are propagated towards the Sun and the integration time is

longer.

3.4 Identification of a Match for Oterma

In the past, OTR was captured by Jupiter on two separate occasions; once from

1935 to 1939, and, later, from 1962 to 1964. Both encounters with Jupiter resulted in

a type 1 TSC. The search for a match to reflect these flythroughs begins by measuring

the maximum out-of-plane excursion along the path of the comet while it orbits the

Sun in the interior region or Jupiter in the capture region. Based on the distance

corresponding to this maximum out-of-plane excursion, an initial guess for the Az

amplitude of the halo orbit can be obtained. From the plot in Figure 3.20, states

along this halo orbit that result in a trajectory which shadows the stable manifold

and returns through the opening of the zero-velocity surface after one revolution in the

interior region can be determined. If a candidate match is identified, but the direction

is inverted, or the trajectory itself appears inverted, the symmetry properties (SP1

and SP2) can be applied to improve the match for a given Az amplitude. If, for

the initial Az amplitude, a candidate match exists but is not sufficiently close to

the path of the comet, the features of the trajectory can be adjusted by examining

nearby trajectories along lines of constant αd. Thus, the essential characteristics of

the trajectory will be preserved by changing the Az amplitude of the halo orbit, while

maintaining a constant direction for the azimuth angle of the stable (or unstable)

eigenvector.

In the CR3BP, one available arc that matches the first capture of Oterma is

illustrated in Figure 3.22. Since the two captures experienced by Oterma are roughly

mirrored about the xz-plane, once a segment is identified, one that resembles the

first capture, an arc that resembles the second capture of Oterma is easily isolated by

making use of the stable/unstable manifold symmetry (SP2). A possible matching

arc for the second capture is illustrated in Figure 3.23. The best match obtained in

the CR3BP can be further improved by transferring the solution into the ephemeris
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Figure 3.22. Position and Velocity Match for Oterma
in the CR3BP (1935-1939)

model. The match for the first capture of OTR, as it is developed and computed in

the ephemeris model, is plotted in Figure 3.24. The red curve in this figure represents

the stable manifold that is associated with a northern SJL1 quasi-periodic Lissajous

trajectory, computed in the ephemeris model. The blue curve represents an arc along

the unstable manifold of the same Lissajous trajectory. The black curve represents a

segment along the comet’s orbital path available directly from comet ephemeris data.

3.5 Identification of a Match for Helin-Roman-Crockett

HRC experienced a type 2 capture by Jupiter from 1966 until 1985. Since HRC

remained in the vicinity of Jupiter for an extended period of time, the search for
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Figure 3.23. Position and Velocity Match for Oterma
in the CR3BP (1962-1964)

a match is simplified by considering possible heteroclinic connections between the

stable and unstable manifolds associated with the SJL1 and SJL2 halo families [17].

The search process is similar to that implemented for OTR, except that, in this case,

the near symmetry across halo families offers a significant advantage in establishing

a match. A possible match is illustrated in Figure 3.25 as a combination of the stable

and unstable manifolds associated with a southern SJL1 halo orbit. The trajectories

corresponding to the stable and unstable manifolds originate from the same halo

orbit, and hence, both arcs share the same Jacobi constant. Once again, to improve

the accuracy of the match, the trajectories are transferred from the CR3BP into the
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Figure 3.24. Position and Velocity Match for Oterma
in the Ephemeris Model (1935-1939 and 1962-1964)

ephemeris model. The match, as computed in the ephemeris model, is plotted in

Figure 3.26. The red curve represents an arc along the stable manifold for a southern

SJL1 quasi-periodic Lissajous trajectory. The unstable manifold appears as a blue

curve corresponding to the same SJL1 Lissajous trajectory. The orbital path of the

comet HRC is directly plotted from ephemeris data as a black curve.



80

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [108 km]

TSC Stop

TSC Start

y 
[1

08  k
m

]

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [108 km]
z 

[1
08  k

m
]

−5 0 5 10
−10

−5

0

5

V
x
 [kps]

V
y [k

ps
]

−5 0 5 10
−10

−5

0

5

V
x
 [kps]

V
z [k

ps
]

Figure 3.25. Position and Velocity Match for Helin-Roman-Crockett
in the CR3BP (1966-1985)
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Figure 3.26. Position and Velocity Match for Helin-Roman-Crockett
in the Ephemeris Model (1966-1985)
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4. Conclusion

The natural symmetries in the CR3BP and the observed near-symmetries between

the L1 and L2 halo families – based on numerical analysis – provide the basic un-

derstanding necessary to begin the search process and ultimately identify a match in

the CR3BP, for a particular Jupiter family short-period comet. A dynamical systems

perspective has provided significant insight into the geometry of solutions in the Sun-

Jupiter system and offered a simple model to account for the most notable features

of the TSC phenomena observed in Jupiter family short-period comets. Furthermore,

the fact that the observed motion of these comets can be explained in the context of

dynamical systems suggests further applications to the motion of natural bodies in the

solar system. This dynamical insight also extends to potential applications in support

of interplanetary mission design for spacecraft. The next step in this investigation

is the application of this modeling approach to the capture of other short-period

Jupiter family comets, such as Gehrels 3. Although the search strategy discussed

here is successfully applied to the capture motion of HRC and OTR, a slightly differ-

ent approach might be necessary in modeling other Jupiter family comets. Since the

three-dimensional, chaotic nature of TSC results in distinct types of motion during

capture, modeling other comets might require consideration of the stable and unstable

manifold solutions associated with other types of periodic and quasi-periodic orbits

in the Sun-Jupiter system, aside from the SJL1 and SJL2 halo solutions. Since the

dimensions of the orbits of interest in this study lie outside the range of validity of the

available analytical approximations, it might also be necessary to consider alterna-

tive approaches to generate the necessary initial guess for the trajectory if other types

of reference solutions are to be considered. Furthermore, comets such as Gehrels 3,
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that experience low altitude approaches to Jupiter might also require a more complex

model that incorporates additional perturbing forces. Nevertheless, the modeling of

the TSC phenomena has generated additional understanding of the natural dynamics

in this R3BP regime.



84

List of References

[1] G. W. Kronk, “http:// www.comets.amsmeteors.org/ comets/ pcomets/
039p.html,” Historical Notes for 39P/Oterma, 1995.

[2] E. I. Kazimirchak-Polonskaya, “The Major Planets as Powerful Transformers of
Cometary Orbits,” The Motion, Evolution, and Origin of Comets, pp. 373–397,
International Astronomical Union: Symposium No. 45, 1972.

[3] A. Carusi and F. Pozzi, “Planetary Close Encounters Between Jupiter and About
3000 Fictitious Minor Bodies,” The Moon and the Planets, Vol. 19, 1978, pp. 71–
87.

[4] A. Carusi and G. B. Valsecci, “Numerical Simulations of Close Encounters Be-
tween Jupiter and Minor Bodies,” Asteroids (T. Gehrels, ed.), pp. 391–415,
Arizona: The University of Arizona Press, 1979.

[5] A. Carusi and G. B. Valsecci, “Planetary Close Encounters: Importance of Nearly
Tangent Orbits,” The Moon and the Planets, Vol. 22, 1980, pp. 113–124.

[6] A. Carusi and G. B. Valsecci, “Temporary Satellite Capture of Comets by
Jupiter,” Astronomy and Astrophysics, Vol. 94, 1981, pp. 226–228.

[7] A. Carusi, L. Krésak, and G. B. Valsecci, “Perturbations by Jupiter of a Chain of
Objects Moving in the Orbit of Comet Oterma,” Astronomy and Astrophysics,
Vol. 99, 1981, pp. 262–269.

[8] A. Carusi, E. Perozzi, and G. B. Valsecci, “Low Velocity Encounters of Minor
Bodies with the Outer Planets,” Dynamical Trapping and Evolution in the Solar
System, pp. 377–395, Holland: D. Reidel Publishing, 1983.

[9] A. Carusi, L. Krésak, E. Perozzi, and G. B. Valsecci, “First Results of the Integra-
tion of Motion of Short-Period Comets Over 800 Years,” Dynamics of Comets:
Their Origin and Evolution (A. Carusi and G. B. Valsecchi, eds.), pp. 319–340,
Holland: D. Reidel Publishing, 1983.

[10] A. Carusi and G. B. Valsecci, “Dynamics of Comets,” Chaos, Resonance, and
Collective Dynamical Phenomena in the Solar System, pp. 255–268, International
Astronomical Union: Symposium No. 152, July 1991.

[11] G. P. Horedt, “Capture of Planetary Satellites,” The Astronomical Journal,
Vol. 81, August 1976, pp. 675–678.



85

[12] T. A. Heppenheimer, “On the Presumed Capture Origin of Jupiter’s Outer Satel-
lites,” Icarus, Vol. 24, 1975, pp. 172–180.

[13] T. A. Heppenheimer and C. Porco, “New Contributions to the Problem of Cap-
ture,” Icarus, Vol. 30, 1977, pp. 385–401.

[14] M. A. Murison, Satellite Capture and the Restricted Three-Body Problem. Ph.D.
Dissertation, University of Wisconsin-Madison, Madison, Wisconsin, August
1988.

[15] M. A. Murison, “The Fractal Dynamics of Capture in the Circular Restricted
Three-Body Problem,” The Astronomical Journal, Vol. 98, December 1989,
pp. 2346–2386.

[16] M. W. Lo and S. D. Ross, “Surfing the Solar System: Invariant Manifolds and
the Dynamics of the Solar System,” Jet Propulsion Laboratory, Technical Report
JPLIOM 312/97,2-4, Pasadena, California, 1997.

[17] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Heteroclinic Connections
Between Periodic Orbits and Resonance Transitions in Celestial Mechanics,”
Society for Industrial and Applied Mathematics, May 1999. Conference Paper.

[18] K. C. Howell, B. G. Marchand, and M. W. Lo, “Temporary Satellite Capture
of Short-Period Jupiter Family Comets from the Perspective of Dynamical Sys-
tems,” AAS/AIAA Astrodynamics Specialists Conference, Clearwater, Florida,
January 23-26 2000. AAS Paper 00-155.

[19] J. J. O’Connor and E. F. Robertson, “http:// www-history.mcs.st-and.ac.uk/
history/ HistTopics/ Orbits.html,” History Notes on Orbits and Gravitation,
1996.

[20] T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Sys-
tems. New York: Springer-Verlag, 1989.

[21] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos.
New York: Springer-Verlag, 1990.

[22] J. J. O’Connor and E. F. Robertson, “http:// www-history.mcs.st-and.ac.uk/
history/ Mathematicians/ Lagrange.html,” Biography of Joseph-Louis Lagrange,
1999.

[23] R. W. Farquhar and A. A. Kamel, “Quasi-Periodic Orbits About the Translunar
Libration Point,” Celestial Mechanics, Vol. 7, 1973, pp. 458–473.

[24] D. L. Richardson, “Analytic Construction of Periodic Orbits About the Collinear
Points,” Celestial Mechanics, Vol. 22, 1980, pp. 241–253.



86

[25] D. L. Richardson and N. D. Cary, “A Uniformly Valid Solution for Motion
About the Interior Libration Point of the Perturbed Elliptic-Restricted Prob-
lem,” AIAA/AAS Astrodynamics Specialists Conference, Nassau, Bahamas,
July 1975. AAS Paper 75-021.

[26] C. Marchal, “Study on the Analytic Representation of Halo Orbits,” ESA Con-
tractor Final Report, Contract Report No. 5647/83/D/JS(SC), Technical Re-
port, Châtillon, France, July 1985.
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