Dual curve: Difference between revisions

Content deleted Content added
Degree: added "in the" as a grammatical correction
Line 46:
Further, both curves above have a reflectional symmetry: projective duality preserves symmetries a projective space, so dual curves have the same symmetry group. In this case both symmetries are realized as a left-right reflection; this is an artifact of how the space and the dual space have been identified – in general these are symmetries of different spaces.
==Degree==
If {{mvar|X}} is a plane algebraic curve, then the degree of the dual is the number of points in the intersection with a line in the dual plane. Since a line in the dual plane corresponds to a point in the plane, the degree of the dual is the number of tangents to the {{mvar|X}} that can be drawn through a given point. The points where these tangents touch the curve are the points of intersection between the curve and the [[polar curve]] with respect to the given point. If the degree of the curve is {{mvar|d}} then the degree of the polar is {{math|''d'' − 1}} and so the number of tangents that can be drawn through the given point is at most {{math|''d''(''d'' − 1)}}.
 
The dual of a line (a curve of degree 1) is an exception to this and is taken to be a point in the dual space (namely the original line). The dual of a single point is taken to be the collection of lines though the point; this forms a line in the dual space which corresponds to the original point.