Accompanying Text
for
On Logo Videotape
Hurdles 3

Recursion

Copyright 1986 Media MicroWorlds, Inc.

by Wyn Snow

Recursion

O 00 3O Ov & W -

bk ek
- O

Table of Contents
. Introduction

. The Actor Model

. Forever Programs

. Spirals

. A Different Route: Recursion with Print
. Printing Inputs

. STOP Rules

. Two-way Movement

Passing the Buck

. Using OP in Recursive Reporters
. Strategies for Recursion

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Appendix A: Smooth Spirals
Appendix B: Beyond Addition
Appendix C: Seashells

Appendix D: Another Angle on Spirals
Appendix E: Graphic Words and Lists
Appendix F: More Words and Lists
Appendix G: Word Games

Appendix H: Oops!

Appendix I: Making a Tree

Appendix J: Polygons

Appendix K: Reverse

Appendix L: Piglatin

page i

Ut QO o = =

CO W N NV Y NN NN = e e
O © 00 ~1 O Ut b WN O~ U o O

(V]
b

Recursion page 1

1. Introduction

TO wow
HAND.UP
HAND .DOWN
wow

END

Recursion is a simple idea -- which makes it deceptive, too. Like an iceberg, it has
depths and subtleties which a beginner cannot see. Sometimes people who are sure
they understand WOW become confused when they see a procedure with changing

inputs, or one that juggles several different actions.

The problem is that their mental model of what happens in WOW doesn’t explain
these other procedures, so they throw up their hands in frustration. Since Logo
often sounds like English, people expect it to behave like English. But English is a
language for people -- who are smart -- and Logo is a language for computers --

who are, as children put it, “completely dumb.”

To understand what’s happening in recursion, we turn to our old friend -- playing
turtle - in slightly different form. We use it to help you build a model for thinking

about what happens inside the computer when a program uses recursion.

Since this mental model is so important for understanding recursion, we present it
first in this text. Descriptions of recursive procedures -- and suggestions for writing

your own -- will then be easier to follow.

2. The Actor Model

In the videotape, a group of children play turtle and draw a spiral. Since it has 90

degree “corners” like a square, let’s call it a SQUIRAL:

TO SQUIRAL :SIDE
FD :SIDE

RT 90

SQUIRAL :SIDE + 10
END

Recursion page 2

As they explain to the teacher, Laura draws the first line, turns and calls Alex --
who draws the second line, turns and calls Matt -- and so on. We could write each

child’s actions as a separate procedure:

TO LAURA :SIDE TO ALEX :SIDE TO MATT :SIDE
FD :SIDE FD :SIDE FD :SIDE

RT 90 RT 90 RT 90

ALEX :SIDE + 10 MATT :SIDE + 10 EMILY :SIDE + 10
END END END

Here it is quite clear that ALEX is a sub-procedure of LAURA, and that MATT is
a sub-procedure of ALEX. This is the entire secret of recursion. When Laura
performs SQUIRAL 10, she calls a new actor to perform the instruction SQUIRAL
:SIDE + 10. Laura then “goes to sleep” until Alex completes his job and nudges

her back awake again.

Remember how Mark’s HOUSE procedure called FRAME and then ROOF in the
first videotape? Mark didn’t know what FRAME and ROOF actually do. Here,
too, Laura doesn’t know what Alex is going to do when she gives him SQUIRAL
:SIDE + 10. She’s just following a set of instructions, line by line. The fact that
both actors perform a procedure named SQUIRAL is only “coincidence” -- even

though we can use that coincidence deliberately for our own purposes.

We encourage everyone to “play turtle” with recursion -- to recruit several friends
and act out each instruction. It’s an important experience for anyone who is
learning recursion, as well as a powerful debugging tool for seeing how a particular

program works.

The point to emphasize is that each new actor is performing a subprocedure. And

just like any other subprocedure, that new actor has its own set of inputs.

3. Forever Programs

Recursion isn’t an isolated mathematics daydream -- it’s all around us. Seashells
are an especially beautiful example: each tiny chamber is a slightly bigger version
of the one before it. Another example is children on a see-saw going up and down

and up and down and up and down and up They probably would go on forever

Recursion page 3

if they didn’t get hungry first!

Many people enjoy turtle geometry, so drawing spirals has already become Logo’s
“traditional” route into recursion. It’s not the only one, however, and we will show

vou some different ideas in section 5.

Like WOW, these procedures can be called “forever programs” because they never
stop. They are like Jack taking his picture of Jill taking her picture of Jack taking
his picture of Jill taking her picture ... and so on. To stop them, use the STOPIT!
keystroke for your machine. (IBM PC: CTRL-BREAK. IBM PCjr: FCTN-
BREAK. Apple: CTRL-G. Maclntosh: “curly-CTRL"-S. Etc.) We will soon

show you how to put stop rules into your procedures so they will stop themselves.

4, Spirals
“Forever” programs are easy to write. Just put a recursion line at the end of the

procedure.

TO SILLY :SIDE

FD :SIDE

RT 90

SILLY :SIDE recursion line
END

SILLY takes an input and draws a square: one side and another side and another
side and another ... and so on. To make a spiral, change SILLY so that each new

actor gets a bigger input for :SIDE.

TO SPIRAL :SIDE
FD :SIDE

RT 90

SPIRAL :SIDE + 10
END

This is what Laura and Alex and Matt and the other children drew on the
videotape. SPIRAL is a good starting point for experimentation. Change the 10

to other numbers and see what happens. What do you think will happen if you
change SPIRAL :SIDE + 10 to SPIRAL :SIDE - 10?

Recursion page 4

For now. we are ignoring the PRINT "WOW! part of their
SPIRAL procedure. We will come back to it in section 8.

You can change the shape of the spiral by changing the angle the turtle turns.
Instead of RT 90, two familiar possibilities are RT 120 and LT 144. Naturally, if
you don’t want to write a zillion procedures for these different spirals, or spend half
your time changing the procedure, you can give SPIRAL a second input for the

angle.

TO SPIRAL :SIDE :ANGLE
FD :SIDE

RT :ANGLE

SPIRAL :SIDE + 10 :ANGLE
END

This makes it easy to see what happens with many different angles.

You can start with some “obvious” :ANGLE inputs -- numbers like 90 and 120 and

60. One that may surprise you is 180. Several other interesting angles are:

SPIRAL 10 72
SPIRAL 10 360 / 7
SPIRAL 10 144
SPIRAL 10 200

A completely different strategy is to try “silly” numbers, like 66 or 137 or 189.

Another is to give inputs that are close to familiar numbers.

SPIRAL 10 93
SPIRAL 10 122
SPIRAL 10 177

Recursion page 5

There are many more ways of “messing around” with
spirals, and we have put several of these into appendices:
e A: Smooth Spirals -- making curves.
¢ B: Beyond Addition -- multiplying instead of adding.
e C: Seashells -- spirals with shapes.

e D: Another Angle on Spirals -- changing the angle.

Some of their results can be quite spectacular, so we
encourage you to spend as much time as you like with them.

The next section explores a completely different avenue for learning recursion:
using PRINT with words and lists.

5. A Different Route: Recursion with Print

Once upon a time, Logo didn’t have turtle graphics. (Yes, Logo is older than the
turtle.) And even though many people -- both adults and children -- enjoy making
designs with the turtle, some do not. Some prefer using PRINT to “mess around”

with Logo words and lists.

The simplest “forever program” with PRINT must surely be BABBLE:

TO BABBLE
PR [I LOVE TO TALK]
BABBLE recursion line

END

How can we write a procedure that will endlessly print things like CATS BARK
and DOGS LAUGH and CHILDREN MEOW? We can use RANDOM to select

one of the items in a list.!

"For LogoWriter, use INSERT instead of TYPE; for Terrapin, use PRINT1.

Recursion page 6

TO CHAT

TYPE ITEM (1 + RANDOM 3) [CATS DOGS CHILDREN]
TYPE "\

PRINT ITEM (1 + RANDOM 3) [MEOW BARK LAUGH]
CHAT

END

Notice that we must add 1 to RANDOM'’s output. There’s no such thing as the
zero-th ITEM of a list -- and we would never get the last item since RANDOM

always reports a number smaller than its input.

Writing a few reporters will help us clear up the clutter. NOUN and VERB will be
subprocedures of CHATTER. PICK.ONE will randomly choose one item from a
list.

TO CHATTER
TYPE NOUN
TYPE CHAR 32
PRINT VERB
CHATTER

END

TO NOUN
OP PICK.ONE [CATS DOGS CHILDREN]
END

TO VERB

OP PICK.ONE [MEOW BARK LAUGH]
END

NOUN and VERB make it easy to simplify CHATTER even further.

TO TALK

PR SE NOUN VERB
TALK

END

Recursion page 7

You may want to try writing your own PICK.ONE before
seeing how we did it. (Hint: we used RANDOM, ITEM and
COUNT. A different strategy would use only RANDOM
and ITEM. You could also use RANDOM and COUNT to
give an input to a recursive subprocedure.)

ITEM needs two inputs. The first must be a number; the second can be either a
word or a list. ITEM reports the number-th element of that word or list. So to

pick randomly from a list, we need to give ITEM a random number and a list.

The COUNT reporter says how many elements are in a list? So COUNT can do the
work of giving an input to RANDOM -- and makes it easy to add more things to
the list.

TO PICK.ONE :LIST
. OP ITEM (1 + RANDOM COUNT :LIST) :LIST
END

Naturally, you can expand TALK to create all sorts of patterns. For example, you
can include an ADVERB or ADJECTIVE or whatever else you like -- even a

question to make it interactive!

Appendices F and G show two different ways of expanding
on TALK. Since they don’t use inputs, you can explore
them now if you want and come back to this next section
later.

. 2]n most versions of Logo, it will also report the number of characters in a word.

Recursion page 8

6. Printing Inputs
The next step is to look at recursion with inputs. A typical starting place with
PRINT is a procedure like SHOWDOWN:

TO SHOWDOWN :WORD
PRINT :WORD
SHOWDOWN BF :WORD
END

You may already have a vivid idea of what SHOWDOWN “"RUMPLESTILTSKIN
will do. Try it anyway -- and see if you can predict what sort of error message you

will get.

Remember to keep the actor model clearly in mind:

Laura runs SHOWDOWN “RUMPLESTILTSKIN. Her first instruction is
PRINT :WORD, which is simple and straightforward. Her next instruction
is SHOWDOWN BF :WORD, so she calls Alex.

Alex gets his input from BF and runs SHOWDOWN
"UMPLESTILTSKIN. His first instruction is to PRINT his input.
Then he reaches SHOWDOWN BF :WORD and calls Matt.

Matt runs SHOWDOWN "MPLESTILTSKIN. First, he PRINTSs
MPLESTILTSKIN. Then he reaches SHOWDOWN BF :WORD

and calls a new actor ...

and so on, until ...

Yvette is called to run SHOWDOWN BF “N. BF
reports the empty word, so Yvette has her input and

PRINTs “ . (PRINT will accept both empty words

and empty lists). Now she calls Zach.

Zach tries to run SHOWDOWN BF “ . He

needs an input -- but BF complains: it doesn’t

like the empty word as input!

Recursion page 9

So SHOWDOWN isn’t really a “forever” program. It’s more of an “until you run
out of input” program. COUNTDOWN doesn’t have this problem. It won’t run

out of numbers for a very, very, very long time.

TO COUNTDOWHN :NUM

PRINT :NUM
COUNTDOWN :NUM - 1
END

SECRET.CODE is a slightly different example of this same idea:

TO SECRET.CODE :WORD

TYPE CHAR (3 + ASCII FIRST :WORD)
SECRET.CODE BF :WORD

END

Two of these primitives may be new to you. ASCII and CHAR are reporters. Just

as Logo uses a number for each color, each character also has its own number.

These numbers are called ASCIlI -- the acronym for
American Standard Code for Information Interchange, a
system developed many years ago when computers first
needed a way of translating back and forth between
numbers and the alphabet.

ASCII reports the number of a character, and CHAR reports the character of a
number. ASCII “A reports 65, and CHAR 65 reports “A. SECRET.CODE uses

these ASCII numbers to type a word that is “three letters up” from its input.

A good project for seeing if you understand how these procedures work is to write a
REVERSE procedure that will TYPE a backwards version of its input. (Look in
Appendix K if you get stuck.)

Recursion page 10

There are many ways of expanding upon these ideas.
Several of them have been put into appendices:

e [i: Graphic Words and Lists -- using lists to
flash background colors. This is an especially
good project for “dissolving the graphics/word-
list barrier.”

e F: More Words and Lists -- shows how to make

TALK interactive and create its own replies.

e G: Word Games -- builds upon NOUN to make
noun predicates and a recursive SUBJECT.

The procedures in these appendices do not “run out of
input” -- so they do not need the STOP rules that we will
be looking at next.

The error messages we've seen are annoying, but they haven’t yet interrupted a
procedure before it finished the work we wanted it to do. In order to explore

recursion further, however, we need the control that STOP rules provide.

7. STOP Rules

Letting a procedure go on forever can get kind of messy, or boring, or both. Also,
it’s hard to hit that STOPIT! key at exactly the right time for the effect you want.
If you have already tried the SHOWDOWN and SECRET.CODE procedures, you
probably wished they didn’t complain when they got to the end of their input.

Using a stop rule will solve both these kinds of problems.

What’s needed in this situation is something that can change the flow of control.
(“Flow of control” means the way that Logo normally carries out a procedure: line

by line, procedure by procedure.) And that’s exactly what a controller is designed

to do. Perhaps you remember the way we used STOP in Hurdles Tape 1:

Recursion page 11

TO WAIIDER

FD 10

RT RAIIDOM 30

IF HEADING = O [STOP]
WANDER

END

Naturally, different procedures need different criteria. You might want to stop
SPIRAL before it gets too big for the screen.

TO SPIRAL :SIDE :AlIGLE
IF :SIDE > 100 [STOP]
FD :SIDE

RT :ANGLE

SPIRAL :SIDE + 5 :AlIGLE
END

You may be wondering why the stop rule is at the beginning. You could put it in
other places -- which would give you slightly different effects. Try moving the stop

rule and see what happens.

In some cases, however, the change is more drastic. The complaint in
SECRET.CODE was from FIRST, so we must STOP the flow of control before it

reaches FIRST “ . Some stop rules must be placed at the beginning.

TO BETTER.CODE :WORD

IF EMPTY? :WORD [STOP]

TYPE CHAR (3 + ASCII FIRST :WORD)
BETTER.CODE BF :WORD

END

EMPTY? is often a good tester to use in stop rules with lists or words, but it’s not

the only one. Notice that which tester you use determines where the stop rule goes.

TO DIFFERENT.CODE :WORD

TYPE CHAR (3 + ASCII FIRST :WORD)
IF 1 = COUNT :WORD [STOP]
DIFFERENT.CODE BF :WORD

END

Recursion page 12

Which you prefer is really a matter of taste. Many Logo programs do have the
STOP rule at the beginning -- a style that develops when EMPTY? is used often.
This placement also makes it easy to find the STOP rule. But the essential part is
to put STOP where it is needed. Look at WANDER again. What would happen if
the STOP rule were moved to the top?

Appendix H shows you how recursion can make “goof-
proof” procedures. This is an important strategy for
interactive programming.

8. Two-way Movement
Perhaps you've been wondering what happened to PRINT "WOW! in the SPIRAL
procedure on the videotape? This instruction shows how the flow of control

returns back through the line of waiting actors.

TO SPIRAL :SIDE

IF :SIDE > 50 [STOP]
FD :SIDE

RT 90

SPIRAL :SIDE + 10
PRINT "WOW

END

Let’s see how this works. From Laura through Zach, the process is already pretty
familiar. Notice, however, those easily glossed-over words: “and goes to sleep.”

This is the crucial part of understanding the two-way movement of recursion.

Laura is given the instruction SPIRAL 10. She runs IF; > reports FALSE so
[STOP] is ignored. Then she moves the turtle FORWARD 10 and RIGHT
90. Her next instruction is SPIRAL :SIDE + 10, so she calls Alex and goes to
sleep. (The + reporter takes Laura’s :SIDE of 10, adds 10, and reports 20.)

Alex runs SPIRAL 20. IF’s first input is again FALSE. Alex moves
the turtle FD 20 and RT 90. Then he calls Matt to do SPIRAL :SIDE

Recursion page 13

+ 10 and goes to sleep. (The + reporter now takes Alex’s :SIDE of 20,
adds 10, and reports 30.)

Matt runs SPIRAL 30. 30 > 50 reports FALSE to IF, he moves
the turtle FD 30 and RT 90, calls Emily for SPIRAL 30 + 10 and

goes to sleep.

Emily runs SPIRAL 40. She does IF, FD 40 and RT 90,
then calls Yvette for SPIRAL 40 + 10 and goes to sleep.

Yvette runs SPIRAL 50. After doing IF, FD 50 and
RT 90, she calls Zach to do SPIRAL 50 + 10 and goes

to sleep.

Zach runs SPIRAL 60. Since his :SIDE is 60, >
reports TRUE and IF runs the instruction list
[STOP|. So Zach nudges Yvette awake and says

“I'm done.”

Yvette goes to her next instruction and PRINTSs
“WOW! Her next line is END, so she nudges Emily

awake and says "I'm done.”

Emily PRINTs "WOW!, then reaches END and nudges
Matt awake.

Matt PRINTs “WOW!, reaches END and nudges Alex awake.
Alex PRINTs “WOW!, reaches END and nudges Laura awake.

Laura also PRINTs “"WOW!, reaches END and tells Logo that she’s done.

All recursion has this two-way movement. Someone appoints you (your boss), and
you appoint a subordinate. When the subordinate is done, you are woken up. You
proceed from the same point in your script and continue with your instructions.

When you are done, you wake up your boss.

Procedures are literal-minded. They don’t end until they reach END -- unless a

Recursion page 14

controller stops them. All the procedures you've seen up to now have been “tail
recursive” (the recursion line is just before END) so the return motion was
invisible. PRINT "WOW! lets you see it.

Another procedure that shows this two-way motion is DOWNUP.

TO DOWNUP :WORD

IF EMPTY? :WORD [STOP]
PRINT :WORD

DOWNUP BF :WORD

PRINT :WORD

END

The turtle can use this two-way flow to create unusual
branching designs. See the TREE procedure in Appendix I.

9. Passing the Buck

When you understand this return movement -- that each “not finished” actor is
only snoozing and waiting until the subordinate’s job is done -- then you
understand the way recursion works. We can use this return motion deliberately to
solve a problem. Since this strategy gets somebody else to do most of the work, we

can call it “passing the buck.”

Suppose we want to add up a series of numbers. The easy way is to keep the first
number, then get someone else to add up the rest. Adding that first number to this

result is a simple task. Here is the ADDUP procedure:

TO ADDUP :NUMBERS
IF 1 = COUNT :NUMBERS
[OP FIRST :NUMBERS]
OP SUM
FIRST :NUMBERS
ADDUP BF :NUMBERS

END

Recursion page 15

. The return movement is the heart of the stategy for solving the problem. Use the

actors to see what happens.

Laura is given ADDUP [1 2 3|. COUNT 1 2 3| is not 1, so she goes to the
next instruction. OP calls SUM which needs two inputs. FIRST reports 1.
SUM now calls Alex to do ADDUP BF [1 2 3].

Alex is given ADDUP |2 3|. = again reports FALSE, so he goes to his
next instruction. OP calls SUM which gets a 2 from FIRST [2 3| and
calls Zach to do ADDUP BF (2 3.

Zach runs ADDUP [3]. COUNT |[3] is 1, so = reports TRUE and
Zach runs the instruction list [OP FIRST :NUMBERS|. OP gives
FIRST (3] -- the number 3 -- back to Alex’s SUM.

Alex’s SUM now has both inputs, 2 and 3, and reports 5 to OP. OP

tells Alex to give the number 5 back to Laura.

. Laura’s SUM now has both inputs, 1 and 5, and reports 6 to OP -- which tells

Laura to give the number 6 to whomever called her.

Notice that each actor needed an OP in order to give a report to its boss.
Providing this OP is the most common “hurdle” that people experience when they
start writing recursive reporters. This next section shows you a typical bug in

using OP with recursion.

10. Using OP in Recursive Reporters
All reporters need OP in order to give a report. And all recursive procedures need

a stop rule. “Aha!” many people say at this point, “What I need to do is substitute
OP for STOP in the stop rule.”

To illustrate what happens next, let’s pretend that you don’t have a COUNT
primitive -- and we’ll write one “from scratch.” This is a very different kind of

exercise from the remodelling we did in Hurdles 1, and is equally valuable for

understanding how a Logo primitive works.

Recursion page 16

We will use the pattern for stop rules from section 7 and substitute OP for STOP.
COUNT.EM will use a subprocedure to do the recursive counting. The idea is that
with each new recursion call, it will BF :THESE and :NUM will become :NUM —
1. When it reaches the end of :THESE, the subprocedure will report the :NUM it
has reached.

TO COUNT.EM :THESE

0P BUGGY :THESE O

END

TO BUGGY :THESE :NUM

IF EMPTY? :THESE [OP :NUM] stop rule with OP
BUGGY BF :THESE :NUM + 1
END

The error message will tell you that BUGGY didn’t report to BUGGY. We’ll use
the actors to help us find the bug, and we’ll start with the instruction PR
COUNT.EM “OOPS. PR calls COUNT.EM which calls OP which calls Laura to
do BUGGY “"OOPS 0.

Laura runs BUGGY “OOPS 0. Since OOPS is not empty, she goes to her
next instruction and calls Alex to do BUGGY BF "OOPS 0 — 1.

Alex runs BUGGY "OPS 1. EMPTY? reports FALSE, so he goes to
his next line and calls Matt to do BUGGY BF "OPS 1 + 1.

Matt runs BUGGY “PS 2. :THESE is not empty, so he goes to
his next line and calls Yvette to do BUGGY BF "PS 2 + 1.

Yvette runs BUGGY “S 3. Since S is not empty, she goes
to her next line and calls Zach to do BUGGY BF “S 3 + 1.

Zach runs BUGGY “ 4. EMPTY? now reports
TRUE, so IF runs the instruction list [OP :NUM].
OP tells Zach to give 4 to Yvette.

And there’s the bug. Yvette has no idea what to do with Zach’s report. It has

become a “hot potato” -- just like the one we saw with HDG in the Hurdles 1 tape.

Recursion page 17

Notice that in ADDUP, there were two OPs: in the stop rule and in the recursion
line. The stop rule OP exerts control when the recursive process has “reached the
end of the line” -- and starts the flow-back. The recursion line OP allows the
“middle actors” to hand their reports “back up the line.” Both OPs are needed

whenever you write a recursive reporter.

TO COUNT.UP :THESE

IF EMPTY? :THESE [OP O]
OP 1 + COUNT.UP BF :THESE
END

The next section uses the BIGGEST procedure shown on the videotape to describe
the process of writing a recursive procedure. Since the process is a flexible one, the

steps don’t need to be followed in an exact, one-two-three sequence.

11. Strategies for Recursion
The “buck-passing” technique was used in the videotape to find the largest of a set
of blocks. Our project here is to write a BIGGEST procedure that will find the

longest word in a list.

STRATEGY 1: Simplify the task. What’s the simplest case -- when does “the
buck stop here”? And what action needs to be done recursively by a series of new

actors “passing the buck”?

In BIGGEST, the simplest case for people is when there are two. Then it is
obvious which is the larger. But for computers, the simplest case is when there is
only one (or in some cases, none). So that will become our stop rule, and since
BIGGEST will be a reporter, we need to use OUTPUT:

TO BIGGEST :LIST

IF 1 = COUNT :LIST [OP FIRST :LIST]

OP recursive-BIGGEST-action-of-some-sort
END

The recursive action is a comparison -- which of two inputs is BIGGER. Each

actor will output the result of BIGGER, so BIGGER needs to compare the

Recursion page 18

COUNT of its two inputs, and that’s pretty straightforward.

TO BIGGER :THIS :THAT

IF (COUNT :THIS) > (COUNT :THAT)
[OP :THIS]

OP :THAT

END

TO BIGGEST :LIST

IF 1 = COUNT :LIST [OP FIRST :LIST]
OP BIGGEST first-word second-word
END

This time, the parentheses are needed around COUNT
:THIS. What would happen without them?

Now we use the buck-passing and return-motion to finish the recursion line. What

we need to do is create the two inputs for BIGGER.

In the blocks version of BIGGEST, each person took one stick and passed the rest.
The last person had only one stick, so that was the biggest and was returned to the

previous person -- who now had two sticks, compared them, and returned the
BIGGER one ... and so on, back up the line.

So we have the first input for BIGGER -- FIRST :LIST. The second will be
whatever comes back. This “whatever comes back” will be the BIGGEST of the

BF :LIST. So our recursion line is now complete:

TO BIGGEST :LIST
IF 1 = COUNT :LIST [(OP FIRST :LIST]
OP BIGGER
FIRST :LIST
BIGGEST BF :LIST
END

STRATEGY 2: Anthropomorphize! Play turtle. Recruit friends to act out what

Recursion page 19

vou want the procedure to do. “Translate” these actions into a first draft
procedure. See what sort of error message yvou get, and get your actors to be

“completely dumb” and literal-minded until you find the bug(s).

STRATEGY 3: Find something similar. Use the procedures here as starting points
and blueprints for other procedures. Unless you're writing a “forever” program,
you will need a stop rule -- with either STOP or OP. If the procedure is a reporter,

it must have OP in both the stop rule(s) and the recursion line(s).

A nice project for applying these principles is making a
PIGLATIN reporter. We show you the result in Appendix
L.

Are you still wondering how children on a see-saw is an example of recursion?

TO SEE

IF FEET.ON.GROUND? [PUSH.UP]
SAW

END

TO SAW

IF FEET.ON.GROUND? [PUSH.UP]
SEE

END

One child does SEE, the other does SAW, then SEE, then SAW, then SEE ... and
so on. In this variety of recursion, one event triggers another. Juggling also has
this kind of recursive action. Dr. Papert describes this on pages 105-113 of

Mindstorms, and a TIC TOC project of this type is presented in Hurdles 4.

So, the next time you see a spider web, “think recursion.” The next time you get
hungry, “think recursion.” The next time you watch waves at the beach, “think

recursion.” It’s not just seashells. It’s any process of growth or motion that has

this “calls another actor to perform the same procedure” quality.

Recursion page 20

12. Appendix A: Smooth Spirals

Making spirals with smooth curves is an interesting project.

When we wanted the turtle to draw a circle, playing turtle showed that it needed
to go forward a little, turn a little, go forward a little, turn a little, and so on. A
spiral is sort of like a circle, except the turtle goes forward a little more each time.
And in your experiments with SPIRAL, you saw that the smaller turns were closer

to a smooth curve. So a first attempt at a smooth spiral might be:

TO CURVE :STEP

FD :STEP

RT 1

CURVE :STEP + 1
END

But the results of CURVE 1 are a little disappointing. What kinds of changes are

needed here?

Two strategies work well for making a more satisfying CURVE. The turtle needs
to add a very tiny number to :STEP -- or to turn farther. And you don’t have to

limit yourself to one possibility or the other. You can try both.

If you want to do several experiments, it’s a nuisance to spend half your time

changing the procedure.

TO FANCY.SPIRAL :STEP :ANGLE :MORE

FD :STEP

RT :AlNGLE

FANCY.SPIRAL :STEP + :MORE :ANGLE :MORE
END

Naturally, you can simply change your SPIRAL or CURVE
procedure; you don’t have to call it FANCY.SPIRAL. We
use different names to make it easier to distinguish among
them.

Recursion page 21

"Help!” many people say when they see this recursion line. And at first glance, it

does look rather formidable.

FANCY.SPIRAL has three inputs. :STEP is the input for FORWARD, and
:ANGLE is the input for RIGHT. These are familiar. even old friends from the
work you've already done with POLYGONs. But :MORE is a new idea. (If you
haven’t worked with POLYGON, you can find four varieties in Appendix J.)

Just as :ANGLE replaced the 90 degrees we used in SQUIRAL, :MORE is
replacing the 10 that is added to :STEP for each new actor. Thus, :MORE is an

input for the + reporter in the recursion line.

Many people try a recursion line of FANCY.SPIRAL :STEP + :MORE :ANGLE.
Since all three names -- :STEP, :MORE and :ANGLE -- are there, they feel
convinced that FANCY.SPIRAL has gotten the three inputs it needs. When they
get an error message that FANCY.SPIRAL needs more inputs, they become

frustrated.

Playing turtle -- or “playing computer” if you prefer -- shows the bug clearly:

Laura is called and given the instruction FANCY.SPIRAL 1 15 0.1. She
needs an input for :STEP and finds the 1. Now she needs an input for
:ANGLE and uses the 15. Finally she needs an input for :!MORE and takes
0.1. Since she has all her inputs, she can do her work. She goes FORWARD
1, turns RIGHT 15, and calls Alex to do FANCY.SPIRAL 1 + 0.1 15.

Alex runs FANCY.SPIRAL and starts looking for his inputs. The +
reporter gives him 1.1 for :STEP. Then he needs an input for :ANGLE,
and there it is: 15. Now he needs an input for :MORE, but nothing is
there. So he complains back to Logo: “"Hey! I didn’t get all my inputs.”

People are smart: they can see that the third input is :MORE. It doesn’t matter to
them that it came earlier in the instruction. But computers can only see one thing

at a time. They really are “completely dumb.” That’s why the actor model is so

important. It’s a tool that helps us be just as literal-minded as a computer so we

Recursion page 22

can understand what it’s doing.

Parentheses make the recursion line easier to read -- FANCY.SPIRAL (:STEP +
:MORE) :ANGLE :MORE. Now the three inputs stand out clearly. Even though
Logo doesn’t need these parentheses, you can go ahead and put them in. It’s

important to use any tool that helps you read and understand a program.

Which do you think will give you the kind of spiral you want?

FANCY.SPIRAL 1 5 0.1
FANCY.SPIRAL 1 5 0.01
FANCY.SPIRAL 1 5 0.001

13. Appendix B: Beyond Addition

Addition is only one of the tools available for changing :SIDE. Subtraction is
another, of course, but it’s not really very different from addition. What about

multiplication?

TO MULTI.SPI :SIDE :ANGLE :BIGGER

FD :SIDE

RT :AlGLE

MULTI.SPI (:SIDE * :BIGGER) :ANGLE :BIGGER
END

MULTI.SPI also takes three inputs. Each new actor’s :SIDE input is now created
by * instead of by +.

What kinds of numbers do you want to try for :BIGGER? What do you think will
happen with these:

MULTI.SPI 10 90 5
MULTI.SPI 10 90 2
MULTI.SPI 10 90 1.1
MULTI.SPI 10 90 1.001
MULTI.SPI 10 90 0.5

Or you might want to keep :BIGGER the same, and experiment with the angle:

Recursion page 23

MULTI.SPI 5 90
MULTI.SPI 5 120
MULTI.SPI 5 72

[
[T,

MULTI.SPI 5§ 20 1.01
MULTI.SPI 5 10 1.01

14. Appendix C: Seashells

To draw the seashell that you saw on the videotape, you need a triangle with two
equal “legs” (also called an isosceles triangle). This one is state transparent -- it
starts and ends with the same position and heading -- which is always an

advantage when you are putting subprocedures together.

TO ISOSCELES :SIDE :ANGLE

FD :SIDE NAME POS "POINT draws one side, names point
BK :SIDE RT :ANGLE goes back and turns

FD :SIDE draws second side

SETPOS :POINT draws third side

LT :ANGLE BK :SIDE returns to original state
END

This triangle names a position and uses SETPOS to draw the third side. That
makes it easy to draw ISOSCELES triangles with many different angles. You
don’t need to go through the trial and error of figuring out the size of the third

side, or calculate its angle to get the correct turn.

TO SHELL :SIDE
ISOSCELES :SIDE 30
RT 30

SHELL :SIDE + 5
END

SHELL can also serve as a blueprint for exploring spirals. Again, you can use

different angles in the procedure. Or you could use a SQUARE or other
POLYGON instead of ISOSCELES, and let them overlap. You can also move the

turtle to a different position:

Recursion pa

TO SURREAL :SIZE
SQUARE :SIZE

RT 90

FD :SIZE / 2
SURREAL :SIZE + 10
ElNID

15. Appendix D: Another Angle on Spirals
Changing :SIDE is only one strategy for “messing around” with SPIRALs. Have
you considered changing :ANGLE instead?

TO ANGLE.SPI :SIDE :AlNGLE
FD :SIDE

RT :ANGLE

ANGLE.SPI :SIDE :ANGLE + 10
END

Are you ready for a surprise? Try ANGLE.SPI 10 90. Don’t even try to guess
what it will do. Now CLEARSREEN and try ANGLE.SPI 10 45. Try different

numbers for :ANGLE and see how many different shapes you can draw.

ANGLE.SPI 10 90 gives the same result as ANGLE.SPI 10
10. The interesting numbers for :ANGLE are 0 through 9.

Soon you will want to try adding a different amount to the angle:

TO SWIRL :SIDE :ANGLE :MORE

FD :SIDE

RT :ANGLE

SWIRL :SIDE (:ANGLE + :MORE) :MORE
END

Some interesting :MORE inputs to try are numbers between 1 and 25. Budding

mathematicians in your class will probably be intrigued by seeing what happens

with the prime numbers 7, 11, 13, 17 and so on. When :MORE is larger than 13 or

Recursion page 25

‘ so, you will need to give SWIRL some help, because the inputs to :ANGLE can get
very big indeed.

TO PRIME.SPIRALS :SIDE :ANGLE :PRIME
IF :ANGLE > 5000
[PRIME.SPIRALS :SIDE (REMAINDER :ANGLE 360) :PRIME STOP]
FD :SIDE
RT :ANGLE
PRIME.SPIRALS :SIDE (:ANGLE + :PRIME) :PRIME
END

16. Appendix E: Graphic Words and Lists
Many people see graphics and “that word and list stuff” as two separate and
distinct parts of Logo. DRAW A RED SQUARE (in the Hurdles Tape 1) showed

one way of dissolving this barrier. FLASH.BG shows another way.

TO FLASH.BG :COLORS
SETBG THING FIRST :COLORS
WAIT &
. FLASH.BG LPUT (FIRST :COLORS) (BF :COLORS)
END

At first glance, this procedure may look rather complex. It takes a list of color
names, uses the FIRST of that list to create an input for SETBG, then moves that
name to the end of the list for the next FLASH.BG actor.

If we FLASH.BG [RED WHITE BLUE| for example, FIRST reports RED to
THING, and THING “RED is our old friend :RED.

THING “THIS and :THIS both report the thing named
THIS. The main difference is that THING is more versatile

than : since it can get its input from reporters like WORD
and FIRST.

‘ So SETBG gets the input it needs. WAIT 5 is completely straightforward.

Recursion page 26

The recursion line is different from the others seen so far. FLASH.BG needs a list
of names as input. We could have used BF, but then we would have run out of
colors rather quickly. Saying FLASH.BG 'RED WHITE BLUE RED WHITE
BLUE] only postpones the problem. Instead, LPUT takes the FIRST of :COLORS
and puts it into the end of the list of BF :COLORS.

If your version of Logo has sprites (multiple turtles, changable shapes, sometimes
SETSPEED), this area is especially fruitful for dissolving the boundary between
graphics and “that word/list stuff.” For example, one can create lists of turtles
and lists of shapes, both of which can be manipulated with FIRST and BF for all

sorts of intriguing results.

17. Appendix F: More Words and Lists

The simplest way to expand on TALK is to put more “pieces” into the pattern.
One could PRINT (SE “THE NOUN VERB), for example, or include other kinds
of words. Another strategy is asking a question to make it interactive, then using
READCHAR and RANDOM to generate a reply:

TO SILLY.TALK
(PRINT [DO YOU KNOVW THE]
noun
"THAT
VERB
"?)
REPLY READCHAR 2
SILLY.TALK
END

Don’t let yourself get overwhelmed by (PRINT [DO YOU KNOW THE| NOUN
“THAT VERB “?). The parentheses here tell PRINT that it’s getting more than

one input.

If your version of Logo cannot use parentheses to “override” a primitive’s usual

number of inputs, use

lecursion page 27

PRINT SE [DO YOU KNOW THE]
SE lloul
SE "THAT
SE VERB

n?

Or if you prefer, you can put the four SE reporters together -- PRINT SE SE SE
SE [DO YOU KNOW THE| NOUN “THAT VERB “?

Eliminating the space in front of the question mark can be a
nice challenge. Simply saying WORD VERB “? may not
work if VERB reports a list like [HAVE EATEN].

REPLY uses READCHAR (which supplies the input for :ANSWER) together with
RANDOM in order to choose among four possible replies. The parentheses around
WORD and its inputs are not necessary here. However, they do make it easier to

see the two inputs for NAME.

TO REPLY :ANSWER :1IUM
NAME (WORD :ANSWER RANDOM :NUM) "KEY

IF :KEY = "N1 [PRINT [GEE, THAT’S A SHAME.]]

IF :KEY = "NO [PRINT [GOSH, I THOUGHT YOU DID.]]
IF :KEY = "Y1 [PRINT [WOW, SO DO I.]]

IF :KEY = "YO [PRINT [I WISH I DID.]]

END

If you want to create more replies, don’t forget to give REPLY a larger input for

:NUM in SILLY.TALK, perhaps REPLY READCHAR 12.

18. Appendix G: Word Games

We can use recursion in a slightly different way to make a rich variety of sentences.

These examples build upon the NOUN and VERB procedures in section 5.

Recursion page 28

TO 1P
OP SE NOuUl [OF THE]
END

NP (for NounPhrase) is very straightforward.> It’s used with PRINT SE NP
NOUN to create lists like TREE OF THE CAT|.

It also gives us three ways of building a subject for a sentence. SUBJECT picks
one of them for us. Since one possibility is recursive, it could indeed go on forever

(although the odds are rather slim).

TO SUBJECT
OP RUN PICK.ONE [[NOUN] [SE NP NOUN] [SE NP SUBJECT]]
END

First let’s see why we needed RUN, even though we didn’t need it before. Suppose
we had said something like OP PICK.ONE [NOUN [SE NP NOUN/ instead.

PICK.ONE would report either NOUN or [SE NP NOUN| to OP, which would tell
SUBJECT to give NOUN or [SE NP NOUN]| to PRINT. So PRINT would get its
input directly: the word NOUN or the list [SE NP NOUN] -- and neither would be
run as a procedure or as a list of instructions. To do that, we need RUN -- and
RUN needs a list. So the list given to PICK.ONE in SUBJECT must be a list of

instruction-lists.

19. Appendix H: Oops!

Recursion can be used to make “goof-proof” procedures. This is a good technique

for interactive procedures.

TO PLAY.GAME

PR [DO YOU WANT TO PLAY A GAME?]
NAME READCHAR "ANSWER

IF :ANSWER = "Y [ASK.WHICH.GAME]
IF :ANSWER = "N [MORE.TALK]

END

3SNPHR on the LogoWriter diskette.

Recursion page 29

If the user types an M by mistake, PLAY.GAME has no leeway. It ends without a
“match” for :ANSWER. If we make it recursive, it will continue to call new actors

until it gets an answer it recognizes.

TO KEEP.ASKING

PR [DO YOU WANT TO PLAY A GAME?]

NAME READCHAR "ANSWER

IF :ANSWER = "Y [ASK.WHICH.GAME STOP]

IF :ANSWER = "N [MORE.TALK STOP]

PR SE [I DUNNO WHAT YOU MEAN BY] :ANSWER
PR [PLEASE TYPE N OR Y.]

KEEP . ASKING

END

A bug that often creeps into this kind of procedure is forgetting to put STOP into
the instruction list for IF. Let’s suppose the user types an N -- so IF runs
MORE.TALK. Use the actor model to see what happens when MORE.TALK is

done. (It makes a nice joke, but that’s not what you meant.)

20. Appendix I: Making a Tree

The following rather tricky procedure uses recursion to draw a tree, complete with
branches. TREE shows very clearly the differences between recursion and

iteration.

TO TREE :SIZE :NUM

IF :NUM = O [STOP]

FD :SIZE

LT 30

TREE (:SIZE * 0.75) (:NUM - 1)
RT 60

TREE (:SIZE x 0.75) (:NUM - 1)
LT 30

BK :SIZE

END

Putting a little RANDOMness into this procedure is also an interesting challenge,

and one that can generate very realistic-looking trees.

(Believe it or not, a day will come when you can write TREE from scratch!)

Recursion page 30

21. Appendix J: Polygons
There are different strategies for drawing polygons. For example, you can say the

number of sides:

TO POLYGON.1 :NUM :SIDE
REPEAT :NUM [FD :SIDE RT 360 / :NUM]
END

or you can say the size of the angle:

TO POLYGON.2 :SIDE :ANGLE
REPEAT 360 / :AlNGLE [FD :SIDE RT :ANGLE]
END

Both of these have recursive equivalents:

TO POLYGON.3 :NUM :SIDE
FD :SIDE

RT 360 / :NUM
POLYGON.3 :NUM :SIDE
END

TO POLYGON.4 :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLYGON .4 :SIDE :AllGLE
END

22. Appendix K: Reverse
To write a REVERSE command, you can use TYPE, LAST and BUTLAST:

TO REVERSE :SOMETHIING
TYPE LAST :SOMETHIIG

REVERSE BL :SOMETHING
END

To write a REVERSE reporter, you will need OP and something to “glue” the
pieces together: WORD for words, and LPUT for lists.

Recursion page 31

TO REVERSE.1 :%ORD

IF EMPTY? :WORD [OP :WORD]

OP WORD LAST :WORD REVERSE.1 BL :WORD
EIID

TO REVERSE.2 :LIST

IF EMPTY? :LIST [OP :LIST]

OP LPUT LAST :LIST REVERSE.2 BL :LIST
END

Naturally, you may also want to write a REV.ANY procedure that would take

both words or lists.

23. Appendix L: Piglatin

You will need four procedures:
e PIGLATIN will take different actions for words and lists.
e PL.1 will glue SAY to the end of words starting with a vowel.

e PL.2 will recursively strip consonants from the front of words and glue
them to the back until it reaches a vowel.

e VOWEL? will detect vowels at the beginning of a word (or anywhere
else, for that matter).]

Recursion page 32

TO PIGLATIN :ENGLISH

IF EMPTY? :ENGLISH [OP :ENGLISH]

IF WORD? :ENGLISH [OP PL.1 :ENGLISH]

OP FPUT (PIGLATIN FIRST :ENGLISH) (PIGLATIN BF :ENGLISH)
END

TO PL.1 :ENGLISH

IF VOWEL? FIRST :ENGLISH [OP WORD :ENGLISH "SAY]
OP PL.2 WORD (BF :ENGLISH) (FIRST :ENGLISH)

END

TO PL.2 :ENGLISH

IF VOWEL? FIRST :ENGLISH [OP WORD :ENGLISH "AY]
OP PL.2 WORD (BF :ENGLISH) (FIRST :ENGLISH)

END

TO VOWEL? :LETTER
OP MEMBER? :LETTER [AE I 0 U Y]
END

