Accompanying Text
for
On Logo Videotape
Hurdles 2

Naming and Variables

Copyright 1986 Media MicroWorlds, Inc.

by Wyn Snow

Names and Variables page i

’ Table of Contents
1. Direct and Indirect Inputs 2
2. The Inputs to NAME 3
3. Using and Teaching NAME 4
4. Reasons for Using Names 5
5. Name Calling 6
6. Names on Loan 19
7. Appendix A: State Transparent Procedures 23
8. Appendix B: Names for Turtles and Names for Shapes 25
9. Appendix C: The Muffin Bug 26
10. Appendix D: Things of Names 28
11. Appendix E: About Numbers 29

12. Appendix F: Making Muffins 32

Names and Variables page 1

The tape uses muffins as a metaphor for the ways Logo procedures can get their
inputs. If you are hungry for some muffins, there are three Logo-like things I can
do: I can give you a muffin, I can tell you the name MUFFINS so you can find the

MUFFINS jar, or I can give you the recipe so you can make your own.

We can think of Logo procedures as being “hungry for” their inputs. (Some
procedures, like FORWARD and REPEAT, are very finicky about what sorts of
inputs they will accept, just as some people are choosy about the flavors of muffins
they will eat. Other procedures, like PRINT and SE, will take anything you give

them.) There are three different ways you can provide these inputs.

Directly: This is like taking a freshly-baked muffin and handing it to the
procedure with your fingers. So we can say that the quote marks
are like two fingers that take a word and give it directly to a

procedure. PRINT "MUFFIN.

When there’s more than one word, two fingers aren’t enough.
Then the words must be put into a list. That’s what the
brackets are for: they package a list for direct input. PRINT

(MUFFINS BAGELS COOKIES|. If you like, you can call the
[| brackets an envelope for the list.

There are two ways to give an input indirectly:

Using a name: This is like saying, “They're called MUFFINS.” When you
know the name, you can find the muffin jar by reading the
labels. PRINT :MUFFINS. Even though computers and Logo
don’t have “real muffin jars” inside them, the process of finding
a real input by using its name is very similar to using a pair of
eyes to read the labels on the jars.

Using a procedure:
This is like giving a recipe for making muffins, something like

Names and Variables page 2

TO MUFFINS

COMBINE [FLOUR MILK EGGS BUTTER [BAKING
SODA]]

BAKE 350 30

IF DONE? [OP "MUFFINS]

BAKE 350 5

OP "MUFFINS

END

Notice that this recipe is a reporter. PRINT MUFFINS. Any
procedure that provides an input for another must be a reporter.

A procedure like MUFFINS that mimics a “real recipe” is also an excellent starting
point for student projects and class discussions. We will come back to this idea in

Appendix F, where we describe several kinds of next steps one can take.

1. Direct and Indirect Inputs
The underlying structure of inputs is quite simple. There are only 4 ways that a

word can appear in Logo:

PRINT "SQUARE SQUARE is quoted

PRINT [A SQUARE] A SQUARE is packaged in a list
PRINT :SQUARE SQUARE is dotted

PRINT SQUARE SQUARE is unadorned

PRINT gets its input directly in the first two instructions. In PRINT "SQUARE,
the quotes give the word SQUARE directly to PRINT. In PRINT |A SQUARE],
the brackets give a list of the words A and SQUARE directly to PRINT. PRINT
“SQUARE and PRINT [A SQUARE] are predictable. You can walk up to any

version of Logo, type either instruction, and know exactly what will happen.

The other two are indirect inputs -- neither a specific word nor a specific list are
given. Thus, we cannot predict what will happen. If you walk up to any Logo and
say PRINT :SQUARE or PRINT SQUARE, the result depends on what the user

has been doing.

An unadorned word is always treated as a procedure. If no SQUARE procedure
has been defined, Logo will say something like I DON'T KNOW HOW TO

Names and Variables page 3

SQUARE. Or SQUARE itself might need some input: NOT ENOUGH INPUTS
TO SQUARE. If SQUARE simply draws REPEAT 4 [FD 50 RT 90|, it’s not a
reporter; the square will be drawn, but then: SQUARE DIDN’T REPORT TO
PRINT. Or, as you saw in the DRAW A RED SQUARE sequence, SQUARE

might be a reporter and the instruction would work.

The fourth possibility is PRINT :SQUARE. A dotted word is always treated as a
name, but it might be the name of anything -- or of nothing. So again, we cannot

predict what will happen.

2. The Inputs to NAME

Just as a clergyman “needs two inputs” for a christening -- a baby and a name --

NAME needs two inputs: a thing and a name.

As the “high priest of naming” on the Hurdles 2 videotape, Dr. Papert illustrated
how to use these two terms when he named the dog FIDO. The dog is the thing of
the name FIDO, and FIDO is the name of the thing dog. These two terms thing

and name are important keys to understanding names in Logo.

Logo doesn’t have dogs or babies or ships or people. Instead, there are words and
lists. Nothing else. Every Logo-thing is either a word or a list, so the things we can

NAME in Logo are words and lists.

Did you just ask, “What about numbers?” Numbers are
words. They are “special” and slightly unusual words, but

words nonetheless. PRINT WORD? 2 will confirm this.
Appendix E gives more information about this.

Names and Variables page 4

3. Using and Teaching NAME

One of the earliest opportunities for using NAME is with colors. Some people
don’t like to bother remembering that green is 2 and red is -- whatever. Searching
for the color number chart becomes a nuisance. Luckily, computers are very good

at this. All we need to do is give names to the numbers.

In fact, the computer’s use of numbers and human use of
names can be a good starting point for discussion about the
differences between human and computational thinking.

NAME 2 "GREEN

NAME is a command. Its first input is any Logo-thing. Its second input -- the
name -- must be a word. In this case, the Logo-thing is the number 2, and the

name is the word GREEN. Both inputs are given directly.

Now that 2 has been given a name, we use : (called “dots”) to say. “Go get the

thing of this name.”

PRINT :GREEN

That’s why : is like two eyes. It goes and looks through Logo’s workspace for the
thing with that name, and reports this thing to the procedure that asked : for an

input. In fact, you can call : a retriever since it behaves just like a dog that is told,

"Go fetch.”

NAME is highly syntonic, rich in connections to everyday life situations. We
christen babies, launch ships, and give individual names to pets and rivers and

countries and towns. In fact, whenever we need a way of saying “that particular

whatzit over there,” we give it a name.

Names and Variables page 5

NAME is not the only Logo primitive that gives names to things, however. You

can also say:

MAKE "GREEN 2

MAKE feels more like algebra -- but if you don’t know or didn’t like algebra, that
can sound as foreign as Latin. NAME “LION “SEYMOUR is very much like
English: “We name this lion Seymour.” There is the lion, and we give it the name

Seymour.

People who are comfortable with the MAKE idiom find it more natural in some

situations. Which of the following do you find most natural?

TO CIRCLE :DIAMETER

MAKE "STEP PI = :DIAMETER / 360
REPEAT 360 [FD :STEP RT 1]

END

TO CIRCLE :DIAMETER

NAME PI * :DIAMETER / 360 "STEP
REPEAT 360 [FD :STEP RT 1]

END

TO CIRCLE :DIAMETER
REPEAT 360 [FD PI * :DIAMETER / 360 RT 1]
END

Use whichever form you prefer in your own work. But when you are trying to help
children, NAME is usually better -- it is usually more syntonic to their own

thinking and experience.

4. Reasons for Using Names
There are many reasons and opportunities for using names in Logo. Here are a few

of them. You and your students can probably come up with even more.
Color-numbers So Logo will remember and we can forget.

Positions So we can move the turtle to them.

Names and Variables page 6

Headings So we can control the direction the turtle faces.

Turtles So we can talk to particular turtles or groups of them.

Long lists So we don’t have to type them over and over and over again.
RL and RC So Logo will remember what the user types at the keyboard.

You now have many ideas for thinking about names. The next section describes

different kinds of projects that use names, including the kinds of ideas listed above.

5. Name Calling

To use an idea, you must understand it -- and to understand an idea, you must use
it. So learning is a spiral art that builds upon a learner’s existing skills and
understandings. The key for teaching something new is to find understandings
that are simple enough to be accessible - yet rich enough to support real uses.

From real uses, fuller understanding will grow.

Naming is a good example of this. In Logo, the only things that can be named are
words and lists. But a beginner doesn’t have to know this in order to start using

names and naming. When you use the instruction

NAME POS "HERE

you can think of this as saying “name the turtle’s position HERE.” You don’t

really need to know that POS is a reporter that reports a list.

Some Logo-things have that “touchable” quality that makes them real and
concrete, and thus easy to name. We can point to a position on the screen. We
can point a finger in the same direction as a heading. Colors are so important to
our experience that we “see red” and have “green thumbs.” And our entire

language of nouns is built upon the principle of naming shapes. So giving names to

things is a natural step, even for beginners.

Names and Variables page 7

. Names for POS:

The videotape showed how naming can be used for drawing. One names the

turtle’s position, then uses this name later on as the input to SETPOS.

TO CHURCH
FRAME
STEPS
WINDOWS
TOWER
SPIRE

END

TO SPIRE
NAME POS "LBASE The place where the turtle happens
RT 90 FD 20 to be is given a name.
NAME POS "RBASE This new place is also given a name.
BK 10 LT 90 PU FD 65
NAME POS "PEAK And so is this last place.
PD
SETPOS :RBASE
. SETPOS :LBASE
SETPOS :PEAK
HT
END

Notice that with SETPOS, the turtle’s heading does not
change. It doesn’t turn to face the new position before it
moves. It “jumps” - just like in checkers or chess or
hopscotch -- to the new position.

So POS can be used by people who don’t know that POS reports a list, or that the
two numbers in the list are the the turtle’s x and y coordinates. Fuller

understanding can come through use much sooner than you think.

The main reason for naming a position is so you can move the turtle to that

. position later on. It is an excellent way of drawing the last side of an unusual or

Names and Variables page 8

. irregular shape.

TO BOAT

NAME POS "HERE
LT 50 FD 25

RT 140 FD 100
RT 140 FD 25
SETPOS :HERE
END

TO ROCK

NAME POS "HERE
FD 25 RT 70

FD 15 RT 60

FD 30 RT 80

FD 20 RT 50

FD 10 RT 40
SETPOS :HERE
END

Naming POS can also create a starting place for a procedure. Perhaps you want to
. draw lots of castles -- or cats or stars or squiggles -- at different points on the
screen. You can move the turtle around to different places and name these

positions as you go.

BK 25 LT 90 FD 125
NAME POS "ONE

BK 75 RT 90 FD 50
NAME POS "TWO

BK 60 RT 90 FD 130
NAME POS "THREE

Maybe you decide that you want to put the third castle in a different place. Just
move the turtle and NAME this new position “THREE.

FD 15
NAME POS "THREE

Now you have inputs for SETPOS in CASTLES:

Names and Variables page 9

TO CASTLES

PU SETPOS :0NE PD CASTLE
PU SETPOS :TWO PD CASTLE
PU SETPOS :THREE PD CASTLE
END

A similar strategy will name points for different parts of one picture.

NAME POS "CASTLE
LT 90 FD 256
NAME POS "MOAT

Then each procedure can “know” where to start.

TO CASTLE
PU SETPOS :CASTLE PD
TOWER BATTLEMENTS TOWER

SETPOS :CASTLE | Ly I (\-FUJ

END

TO MOAT

PU SETPOS :MOAT PD
CIRCLE 150

PU LT 90 FD 25 RT 90 PD
CIRCLE 200

END

It’s a very short step from NAME POS "HERE and SETPOS :HERE to
understanding the list that POS reports.

CS SHOW POS

We see that the turtle’s “starting” position -- the center of the screen -- is [0 0.

Then we can move the turtle and SHOW POS again.

Names and Variables page 10

If you say PRINT POS, only the numbers appear. Using
SHOW helps demonstrate that POS reports a list because it
“shows” the brackets of the list envelope. In fact, whenever
you’re looking for a bug that is doing something strange
with lists, SHOW can be a very useful way of tracing what
happens to the lists.

FD 50 SHOW POS
BK 70 SHOW POS

(0 50] and [0 -20] tell us that the second number in the list is the "up-down”

number. Now if we say

HOME SHOW POS

we see [0 0] again. So HOME is similar SETPOS [0 0. Now we can turn and look
at the left-right dimension. A pretty obvious guess is that this will be the first

number in the list POS reports.

RT 90
FD 50 SHOW POS

Bingo! (50 0]. And if we go back ...

BK 80 SHOW POS

[-30 0]. Going BACK 50 from [0 0] is like going FORWARD -50. So using and
understanding points on the screen becomes a strong bridge to ideas like negative
numbers and decimals. Moving the turtle to these points on the screen also makes

these z and y coordinates syntonic and real instead of foreign and abstract.

lin some versions of Logo, HOME also sets the turtle’s heading to 0.

Names and Variables page 11

Names for HEADING:

[t’s easy to lose track of which way the turtle is facing after doing even a short
series of FDs and RTs. Also, adding a new subprocedure may change the way the
turtle is facing for the next subprocedure, and everything that follows can wind up
tilted.

These problems can be fixed with HEADING and SETHEADING. You can write
all your subprocedures to start with SETH 0 (the turtle points straight up), and
then simply turn the turtle LEFT or RIGHT to whatever direction you want.

Another strategy is to name the four “compass points” so that you have more than
one possible starting direction. Naturally, there’s no reason you have to stop at

four.

TO COMPASS

SETH O

RT 45 NAME HEADING "lNE

RT 45 NAME HEADING "EAST
RT 45 NAME HEADING "SE

RT 45 NAME HEADING "SOUTH
RT 45 NAME HEADING "SW

RT 45 NAME HEADING "WEST
RT 45 NAME HEADING "NW

RT 45 NAME HEADING "NORTH
END

Names like SOUTH and NW are fairly easy to understand -- and thus accessible to
very young students. Of course, some people prefer numbers like 270 and 135;

others prefer names like WEST and SE. The name is then used as an input for
SETHEADING:

TO TILT.SQUARE :SIZE
SETHEADING :NE
SQUARE :SIZE
SETHEADING :NORTH
END

Names and Variables page 12

Appendix A describes how you can make state-transparent
procedures. By giving a name to the turtle’s position and
heading at the beginning of a procedure, it becomes easy to
restore them at the end.

Names for Colors:

Earlier, NAME 2 “"GREEN put the name GREEN into the workspace. When you
SAVE your workspace, many -- but not all -- versions of Logo will save the names
as well as the procedures. If the names do get saved, LOAD will put them back

into the workspace together with your procedures.

But there are still two ways you might lose these names. You might NAME
something else “GREEN, perhaps the list TREES GRASS JEALOUSY|. And as
Dr. Papert explained in the videotape, two things can’t have the same name at the
same time. Also, you might erase all the names from the workspace.?

The only foolproof way of making sure you have names for the colors is to write a
procedure. Then you can run this procedure whenever you LOAD (or READ or

GP) your file, and you can put it into any file you want.

IBM: APPLE:

TO NAME.COLORS TO NAME.COLORS
NAME O "BLACK NAME O "BLACK
NAME 1 "BLUE NAME 1 "WHITE
NAME 2 "GREEN NAME 2 "GREEN
NAME 3 "CYAN NAME 3 "VIOLET
NAME 4 "RED NAME 4 "ORANGE
and so on NAME 5 "RED
END END

2Apple & IBM Logo: ERNS, ERALL; Terrapin: ER NAMES, ER ALL; LogoWriter:
CLEARNAMES.

Names and Variables page 13

You may also want to NAME 0 "INVISIBLE. Naturally, if
your machine is neither IBM nor APPLE, use your own
machine’s color numbers.

A bug that often crops up here is that defining the procedure does not finish the
job. One must also run the procedure. Just as the turtle doesn’t move if you say
FD 50 when you're defining a procedure, putting NAME 2 "GREEN into a
procedure doesn’t create the name. You have to run the procedure, either at top

level:

NAME.COLORS

or by running a STARTUP procedure that has this instruction. When the names

have been put into the workspace, then you can use the dotted names as inputs.

PRINT :RED
SETBG :GREEN
SETPC :BLUE
TO FLASH

REPEAT 5 [SETBG :GREEN WAIT &
SETBG :BLUE WAIT 5]
END

Sometimes a student will ask if 2 is “Logo’s name” for green, since procedures that
use colors must get numbers (or lists of numbers) as inputs. The answer is no. The
colors themselves are not Logo-things -- and neither are turtles or shapes. Only
words and lists are Logo-things, so only words and lists can be given names in

Logo.
Names for Lists:

Another opportunity for introducing naming comes up when students are using

long lists. Just as hunting for the chart of color numbers is a nuisance, so is typing

Names and Variables page 14

'CAT DOG LION FISH FROG ROBIN| more than once. It's much simpler to

name the list.

NAME [CAT DOG LION FISH FROG ROBIN] "ANIMALS

The thing is the list [CAT DOG LION FISH FROG ROBIN|. The name is the
word ANIMALS. When you say :ANIMALS, : goes and gets the thing named
ANIMALS.

Now you can use the list as often as you want, and all you have to type is the

dotted name.
NAME [MACAVITY FIDO JELLYLORUM SEYMOUR GREEN] "FRIENDS

TO RECOGNIZE? :SOMEQNE
OP MEMBER? :SOMEONE :FRIENDS
END

Names for READCHAR and READLIST:

Naming is very often necessary when using READCHAR and READLIST. These
reporters take input from the keyboard and give it to the procedure that called
them. This allows a program to “interact” with the user and take different actions

based on what the user types.

Some versions of Logo also have READWORD, which is
useful for reading numbers larger than 9. If yours does not,
you can make one with OP FIRST READLIST.

READCHAR makes it simple to give choices. One way is to ask for a yes-or-no

answer to each question.

Names and Variables page 15

TO ASK.YES.NO

PR [DO YOU WANT TO SEE MY FLOWER? Y OR N]
IF READCHAR = "Y [FLOWER]

PR [DO YOU WANT TO SEE MY BIRDS? Y OR N]
IF READCHAR = "Y [BIRDS]

END

After each question. = checks to see if the letter typed at the keyboard is the same
as its second input. If the user types Y, ASK.YES.NO will draw the picture. If the
user types anything else, ASK.YES.NO simply goes to the next line.

CHOICES tries a different strategy. It wants the user to select one of three
possibilities. But CHOICES has a bug.

TO CHOICES
PR [WHICH PICTURE DO YOU WANT TO SEE?]
PR [A = FLOWER]

PR [B = BIRDS]

PR [C = CITY]

IF READCHAR = "A [FLOWER]
IF READCHAR = "B [BIRDS]
IF READCHAR = "C [CITY]

END

CHOICES carries out the first four instructions without a hitch, then reaches

IF READCHAR = "A [FLOWER]

Here it is important to use the actor model in visualizing what happens. IF calls =
, and = calls READCHAR. READCHAR watches for a letter from the keyboard
(let’s say the user types a C), then reports it back to = . = now has one input, the
letter C. The second input is given directly, the letter A. Since the two are not the
same, = reports FALSE to IF.

Now CHOICES goes to its next line

IF READCHAR = "B [BIRDS]

Just as HOUSE called an actor to run FRAME and then another to run ROOF in

Names and Variables page 16

the Hurdles 1 Tape, CHOICES now calls a new actor to run this next instruction.
This new IF calls a new = actor, which calls a new READCHAR actor, which
watches for a letter from the keyboard -- and watches, and watches, and watches.
The user’s C was “swallowed up” by the first READCHAR.

Flow of control is the key to understanding this bug. Every procedure is

“completely dumb” about what it does. It only follows instructions, line by line.

We could call this a Disappearing Bug since the C seems to vanish. As we’ll see in
the next section, the solution is to name READCHAR’s report. Then it can be

used as many times as you want.
Chocolate and Chocolate:

In the videotape, the computer sounds “really dumb” when it says, “Let’s get both
kinds, some chocolate ice cream and some chocolate ice cream.” What happened?

The procedure started with a greeting.

TO GREET
PR [HI, MY NAME IS LOW GO.]
PR [WHAT’S YOURS?]
PR SE

FIRST READLIST

[IS A NICE NAME.]
ICE.CREAM
END

So far, so good. If someone types SANDY PITT, GREET will just say SANDY IS A
NICE NAME. If it typed the entire name, GREET might sound very stilted and

formal. But now the fun begins.

TO ICE.CREAM

PR [WHAT KIND OF ICE CREAM DO YOU LIKE?]

(PR [MY FAVORITE IS CHOCOLATE. LET’S GET BOTH KINDS, SOME]
READLIST
[ICE CREAM AND SOME CHOCOLATE ICE CREAM.])

END

Names and Variables page 17

The parentheses are used because PRINT is getting more
than one input.

This is fine if the reply is STRAWBERRY or VANILLA or FUDGE SWIRL. But when
Lauren says CHOCOLATE, the ICE.CREAM procedure looks dumb. At first, the
solution seems obvious. If the user types CHOCOLATE, we want to do something
different -- something like ME.TOO.

TO ME.TOO

PR [THAT’S MY FAVORITE TO0O0!]

PR [LET’S GO GET ENOUGH CHOCOLATE]
PR [ICE CREAM FOR BOTH OF US!]
END

A first attempt at fixing the “chocolate and chocolate” bug is often something like
BETTER.ICE.CREAM.

TO BETTER.ICE.CREAM
PR [WHAT KIND OF ICE CREAM DO YOU LIKE?]
IF READLIST = [CHOCOLATE]
[ME.TO00]
(PR [MY FAVORITE IS CHOCOLATE. LET’S GET BOTH KINDS, SOME]
READLIST
[ICE CREAM AND SOME CHOCOLATE ICE CREAM.])
END

While this is a good step in the right direction, it also creates two bugs. Use the

actor model to visualize the flow of control.

First let’s see what happens when the user does type CHOCOLATE. IF calls = and =
calls READLIST. READLIST reports CHOCOLATE| to = and = reports TRUE,
so IF runs the instruction list [ME.TOO|. When ME.TOO is done, ICE.CREAM

runs the next line:

Names and Variables page 18

(PR [MY FAVORITE IS CHOCOLATE. LET’S GET BOTH KINDS, SOME]
READLIST
[ICE CREAM AND SOME CHOCOLATE ICE CREAM.])

But that’s not what we want it to do. When the user types CHOCOLATE, we want
BETTER.ICE.CREAM to do ME.TOO and then stop! So IF’s instructionlist
needs to be [ME.TOO STOP|.

The other bug appears when the user doesn’t type CHOCOLATE but something else,
say STRAWBERRY. At first, all is well. IF calls = and = calls READLIST.
READLIST reports [STRAWBERRY| to = and = reports FALSE to IF. So
BETTER.ICE.CREAM runs the next line:

(PR [MY FAVORITE IS CHOCOLATE. LET’S GET BOTH KINDS, SOME]
READLIST
[ICE CREAM AND SOME CHOCOLATE ICE CREAM.])

Now PR looks for its inputs. [MY FAVORITE ... SOME] is a list given directly.
But the parenthesis told PR continue looking for input -- and the next one is a
procedure. So PR calls a new actor to do READLIST in the hope of getting an
input. Now READLIST waits for input from the keyboard -- and waits, and waits,

and waits.

This is our old friend, the Disappearing Bug. [STRAWBERRY| disappeared after
the first READLIST reported it to = .

Naming the report from READLIST will fix this bug. So we NAME READLIST
“FLAVOR, and then use that name to retrieve [STRAWBERRY].

Names and Variables page 19

TO BEST.ICE.CREAM
PR [WHAT KIND OF ICE CREAM DO YOU LIKE?]
NAME READLIST "FLAVOR
IF :FLAVOR = [CHOCOLATE]
[ME.TOO0 STOP]
(PR [MY FAVORITE IS CHOCOLATE.
LET’S GET BOTH KINDS, SOME]

:FLAVOR

[ICE CREAM AND SOME CHOCOLATE ICE CREAM.])
END

Notice that :FLAVOR is needed in two different places: with the = testor, and
where the original ICE.CREAM had its READLIST.

6. Names on Loan
Things with Two Names, Names with Two Things:

Can one thing have two names? People do. They have first names and last names
-- sometimes nicknames as well. If I name this cat Macavity, you know which thing

I mean. If it is also called Jellylorum, you still know which thing I mean.

NAME 2 "GREEN
NAME 2 "DUO

PRINT :GREEN
PRINT :DUO

But two things having the same name is a problem. Suppose the lion wants to be
named Seymour. How will we know which thing you mean when you say

“Seymour”? This me-thing or this lion-thing?

If there are two boys named John in one class, you invent a way of distinguishing
between them. One becomes John and the other Johnny -- or a nickname is used
or a last name or middle name. Sometimes these “temporary” solutions stick --

and they become a person’s name for life.

In a sense, one of these boys has “lost” his name. In Logo talk, the thing of John

has become the other person. An event like this will have certain psychological

Names and Variables page 20

consequences. The boy’s identity will shift and expand, like the cat with two
names, but in most cases, he will not feel that he no longer exists. In Logo,

however, losing one’s name is a very serious matter.

NAME "LION "SEYMOUR
NAME "HEDGEHOG "SEYMOUR

The thing of SEYMOUR is now HEDGEHOG, not LION. LION’s name has been
given to HEDGEHOG, and it is as if LION no longer exists. Logo gets a lot of its

power from being able to protect its Logo-things from losing their names.

It does this by creating two ways for HEDGEHOG to borrow the name
SEYMOUR for a little while. One of these is the command LOCAL (which can
only be used inside a procedure and is not available in some versions of Logo). The
other is through the implicit naming of inputs to procedures. Either of these can
be used to protect LION from losing the name SEYMOUR.

Inputs to Procedures:

We have seen how the command NAME attaches a name to a Logo-thing. When
you run NAME, it “does a naming.” But in Logo, namings are sometimes done
automatically. This happens whenever a procedure has inputs. Look at this

simple example:

TO GREET :SEYMOUR
PRINT SE "HI :SEYMOUR
END

The title line says that GREET needs one input, and it should name this input
SEYMOUR. So when we say GREET "HEDGEHOG, an implicit naming is done.
HEDGEHOG becomes the thing of SEYMOUR. This automatic naming that is
done for a procedure’s inputs is only a loan. The names are returned to the

previous owner when the procedure is done.

We can watch this happen on the computer screen. First we’ll make sure LION

has his name:

Names and Variables page 21

IAME "LION "SEYMOUR

Then we’ll see what happens when we run GREET -- and when we PRINT SE “HI
‘SEYMOUR, the instruction inside GREET.

GREET "HEDGEHOG
HI HEDGEHOG

PR SE "HI :SEYMOUR
HI LION

The term of the loan is the duration of the procedure. When the procedure gets to

END, the names of these inputs revert to their previous owners.

This protective device of names on loan means that you don’t need to worry about

input names interfering with any other names that may have been set up.
Local Names:

These names on loan are also called local names. This means they are “local to”

that particular procedure (and any of its subprocedures).

Here's a little teaser that shows how local names work. Notice the switch that
occurs when WATCH.INPUT gives :CAT as input to SHOW.ME. SHOW.ME
promptly names this input DOG!

Names and Variables page 22

NAME [CAT] "CAT
NAME [DOG] "DOG
NAME ([LION] "LION

TO WATCH.INPUTS :CAT :DOG

PR [THIS IS WATCH.INPUTS AND MY]
PR SE [:CAT IS] :CAT

PR SE [:DOG IS] :DOG

PR SE [:LION IS] :LION

SHOW.ME :CAT

END

TO SHOW.ME :DOG

PR [THIS IS SHOW.ME AND MY]
PR SE [:CAT IS] :CAT

PR SE [:DOG IS] :DOG

PR SE [:LION IS] :LION

END

Use actors to WATCH.INPUTS [MACAVITY| [FIDO|. Have each actor put a
sign on the bulletin board when it does its automatic naming -- and then take that
sign down when it is finished. Then you can see how the names of the inputs

change as they are passed from one actor to another.

Names and Variables page 23

. 7. Appendix A: State Transparent Procedures
A procedure is state transparent when the turtle ends up in the same position and
facing the same direction as it started. Naming makes this easy to do. One names

both the position and the heading.

TO FOOT

NAME POS "HERE

NAME HEADING "AHEAD

FD 50 RT 5

REPEAT 4 [TOE FD 2 LT 90]
TOE

RT 95 FD 50

RETURN :HERE :AHEAD

END

TO RETURN :POS :HDG
SETPOS :POS

SETH :HDG

END

. RETURN uses two inputs: the position and the heading. But we can simplify this.
We can combine them into one list -- which will be the input for RESTORE.?

. 3RESTORE is a primitive in LogoWriter; use a different name, such as RESTOR.

Names and Variables page 24

TO RESTORE :STATE
SETH LAST :STATE
SETPOS BL :STATE
ElID

TO VANE

NAME SE POS HEADING "START
FD 100 NAME POS "VAINE

BK 100 RT 25

FD 100

SETPOS :VANE

RESTORE :START

END

TO WINDMILL

REPEAT 4 [VANE RT 90]
TOWER

END

But it’s easy to forget: “Did I say POS HEADING, or HEADING POS?” So it’s
useful to have a turtle-state reporter. TST (short for “Turtle STate”) lets you
NAME TST "START -- just as you NAME POS "HERE -- and now you don’t
need to worry about whether POS or HEADING came first. TST will remember.

TO TST
OP SE POS HEADIING
END

TO SQUIGGLE

NAME TST "START

PD

FD 50 RT 33 FD 20 RT 68 FD 20
PU

RESTORE :START

END

A bug that often creeps into RESTORE is SETPOS FIRST :STATE. It’s very
easy to make this mistake. One simply thinks, “The :STATE input is the POS and
the HEADING, so RESTORE should set the position to FIRST and the heading to
LAST of the :STATE.”

Names and Variables page 25

SHOW :START lets you see the bug. :START is a list of three numbers -- the x
coordinate, y coordinate, and heading -- something like [-125 40 355/. In order to
SETPOS FIRST :START, the first element of :START would have to be a list

instead of a number -- something like [[-125 40| 355|. If you prefer, you can make
this kind of list for TST. Just use LIST instead of SE.

8. Appendix B: Names for Turtles and Names for Shapes

Several versions of Logo allow the turtle to take on new shapes, and some also have
more than one turtle. Both of these abilities are ripe with opportunities for
naming. A project that illustrates both uses is making a flock of birds fly across

the screen.

Two shapes are needed: wings up and wings down. Perhaps something like this:

T ey

L i

Trying to remember shape numbers can be just as frustrating as remembering color

numbers, so we’ll name them.

NAME 11 "UP
NAME 12 "DOWN

TO FLAP
SETSHAPE :UP
REPEAT 3 [FD 1]
SETSHAPE :DOWN
REPEAT 3 [FD 1]
END

Now we need a group of turtles to be the birds. And we can TELL them to fly.

Names and Variables page 26

NAME [0 1 2] "BIRDS

TO FLY

TELL :BIRDS
SETSHAPE :UP

ST

PU SETPOS [0 50]
RT 90

EACH [FD 20 * WHO]
REPEAT 50 [FLAP]
END

9. Appendix C: The Muffin Bug

Sooner or later, everyone who learns Logo meets the Muffin Bug. It crops up when
the learner thinks, “Aha! The way to do this is to put a name into a list.” This list
may be the input for SETPOS or SETPEN or SETTC or FIRST or BL or LPUT
or = or MEMBER? or SETCURSOR -- or perhaps a procedure written by the

learner. But sooner or later, everyone does something like

SETPOS [50 :UP]

and then becomes frustrated when Logo complains. “But I did too give it the

inputs it needs. See? It’s right there -- :UP!”

The problem is quite simple. The basic idea is a good one, but the method

overlooks one significant detail.

Suppose someone hands you a freshly-baked muffin, butter melting on its top, the
aroma wafting towards your nostrils, and you eagerly pop it into your mouth --
only to discover that you are crunching down on this wad of paper that tastes like
glue and sawdust and ink. When you spit out this paper in disgust, it says
:INGREDIENTS. That’s not what the packaging led you to expect, so of course

you complain.

The problem with SETPOS [50 :UP| is exactly the same. When “ or | | are used,

the procedure is expecting a real muffin -- not the name of some other Logo-thing,

and not a recipe. SETPOS expects a list of numbers, and it did get a list -- but of

Names and Variables page 27

a number and a name. It doesn’t matter that the thing of that name may well be a

number. What you gave it was the name.

The solution is to use one of the list-making reporters to create a list from the
inputs 50 and :UP.

SETPOS SE 50 :UP

Notice that SETPOS :MOAT worked just fine because MOAT is the name of the
entire list. SETPOS [:MOAT)| is the Muffin Bug -- and will also produce a

complaint.

But what about REPEAT 4 [FD :SIDE RT 90|? Isn’t this a name inside a list?

Shouldn’t this give us the same complaint?

No, because [FD :SIDE RT 90| is an instruction list. The name SIDE is used to
give an input to FD, not to REPEAT. So you can put a name inside an

instruction list when it is the input to a procedure inside the instruction list.
REPEAT 4 [FD :SIDE RT 90] REPEAT gets both inputs directly.

NAME [FD :SIDE RT 90] "SQUARE

REPEAT 4 :SQUARE REPEAT gets its list indirectly,
with the dotted word SQUARE.

TO SQUARE

OP [FD :SIDE RT 90]

END

REPEAT 4 SQUARE REPEAT gets its list indirectly,
with the unadorned word SQUARE.

A procedure can get its input either directly or indirectly. If you give an input
directly, use the * or [|. The procedure will expect a “real muffin,” a word or list
that it can use exactly as is. If you don’t have a direct input, you must use either a

name or a procedure that will “make the muffin.”

Names and Variables page 28

10. Appendix D: Things of Names
Soomner or later, everyone also encounters another kind of problem. Suppose you
can’t just put the : in front of the name, but you still want to retrieve the thing of

that name.

For example, let’s suppose you want to make a quiz to see if your students know
the parts of a flower. (This example is based on a teacher’s work at the Hennigan

School in Boston.) You can name the turtle’s position as it draws each part.

TO PETAL

LT 30 REPEAT 30 [FD 2 RT 3]
NAME POS "PETAL

RT 90 REPEAT 30 [FD 2 RT 3]
RT 30

END

And now you do the same with STEM and LEAF. These names -- PETAL, STEM
and LEAF -- can be the inputs to another procedure. The idea is to move the
turtle to a particular position, ask what part the turtle is on, and then see if the
student’s answer is the same as the name of that position. A first attempt would

be something like this

TO PLANT.QUIZ
DRAW.PLANT
ASK.FOR "PETAL
ASK.FOR "STEM
ASK.FOR "LEAF
END

TO ASK.FOR :PART

PU SETPOS :PART

PRINT [WHAT PART IS THE TURTLE ON?]

IF :PART = READWORD [PR [THAT’S RIGHT.] STOP]
PRINT [SORRY, TRY AGAIN.]

IF :PART = READWORD [PR [THAT’S RIGHT.] STOP]
PRINT SE [THE ANSWER IS] :PART

END

This idea almost works. But on the first run-through, SETPOS doesn’t like the

Names and Variables page 29

word PETAL as input. What we need is the thing of PETAL -- the position that
was named PETAL -- but we can’t just put the dots in front and say :PETAL.

There is, however, a primitive that works just like : but doesn’t have to be “glued”
to the name like dots. This primitive is the reporter THING.

PRINT THING "GREEN PRINT :GREEN
SETCOLOR THING "GREEN SETCOLOR :GREEN
SETBG THING "GREEN SETBG :GREEN

THING lets us fix the bug in ASK.FOR. What we need is :PETAL and :STEM
and :LEAF -- which is the same as THING “PETAL and THING “STEM and
THING “LEAF -- and these are the same as THING :PART.

TO ASK.IF :PART

PU SETPOS THING :PART

PRINT [WHAT PART IS THE TURTLE 0N?]

IF :PART = READWORD [PR [THAT’S RIGHT.] STOP]
PRINT [SORRY, TRY AGAIN.]

IF :PART = READWORD [PR [THAT’S RIGHT.] STOP]
PRINT SE [THE ANSWER IS] :PART

END

So you can think of THING as being just like : or you can think of : as a short
form of THING. Both do the same job -- they go and get the thing of the name.

THING does have one big advantage over : however. THING can use reporters to
get its input, : cannot. PRINT THING WORD “"PET “AL. When you use dots,
you must also have the name. PRINT :PETAL.

11. Appendix E: About Numbers

We’ve said that in Logo, a number is a special kind of word. This is not really a
strange idea, because in English, a number is also a special kind of word. It can be
spelled with the characters 0 through 9 as well as with the alphabet. Nineteen and
19. Three thousand four hundred eighty-seven and 3487. And in both languages,

numbers have special properties.

Names and Variables page 30

They can of course be added and subtracted, multiplied, divided, and so on --
which words like hedgehog and christening cannot. Two plus two in English and 2
+ 2 in Logo do essentially the same thing. And if we NAME 2 "TWO, we can even
get the same result with :TWO + " TWO.

In Logo, numbers are “self-quoting” words. This means that you don’t have to put

quotes in front of them.

PRINT 4
PRINT "CAT
NAME 4 "FOUR

NAME "CAT "FUZZY

When a word like CAT or FOUR or FUZZY is given as input, it must be quoted.
Any unadorned word is treated as a procedure, so if we said NAME CAT FUZZY,
NAME would run CAT to get its first input. But Logo “knows” that any word
that is made up only of the digits 0 to 9 (it can also have a decimal point) is a

number -- and it acts as if the quote marks were already there.

The reason for this is that instructions like FORWARD “50 and PRINT "3 + “8
would look strange to a beginner’s eye. Of course, one could simply explain that
the quotes must always be used to give a word directly as input, but then one also
has to explain about numbers being words. This would create two extra and

unnecessary steps to understanding these otherwise simple instructions.

There are three testers that can distinguish among numbers, words and lists. They
are especially helpful in creating procedures like a PIG.LATIN reporter --
something that can take any word or list as input, then test to see what sort of

input it got and send it on to different subprocedures that take different actions

with words and lists.

Names and Variables page 31

PRINT NUMBER? 5
PRINT NUMBER? "CAT
PRINT NUMBER? [CAT]

PRINT WORD? 5
PRINT WORD? "CAT
PRINT WORD? [CAT]

PRINT LIST? &
PRINT LIST? "CAT
PRINT LIST? [CAT]

There are only two exceptions to the rule that a word given as direct input must be
quoted. The first is numbers, which are self-quoting words. The primitive TO is
the second exception. When we say TO SQUARE, TO’s first action is an
“automatic quoting” of its input, SQUARE.*

Of course, a price must be paid for these inconsistencies. They create an
opportunity for confusion in learning about quotes. Some people prefer to bypass
this potential confusion by using a “pure form” of Logo. So if you want, you can
say FORWARD “50 and PRINT “3 + "8 and TO "SQUARE. All of these
instructions will work. (In most versions of Logo, however, TO 3 will not work.

One cannot use numbers as names of procedures.)

In Logo, CAT and 123 are both words. You can also make words in which
numerals and letters are mixed. In English, R2D2 and C3PO are familiar and
acceptable only because they are names -- and names of futuristic science-fiction
robots at that. We can puzzle out the meanings of 2MORROW and DE4MED and
L8, but these “words” look very strange. Indeed, the numbers here are only
substitutions for the sounds of the names of the numbers, and in fact play havoc

with the phonetics of usual English spellings.

4In Terrapin Logo, ED and PO and ER also “automatically quote” their input when it is a word.

Names and Variables page 32

12. Appendix F: Making Muffins

Writing procedures like MUFFINS can help the learner build bridges between “the
real world” and Logo programming -- and such bridges are crucial for syntonic
learning. MUFFINS also has three subprocedures -- COMBINE, BAKE, and
DONE? -- that suggest a variety of different procedures and can stimulate class

discussions.

DONE? is clearly a reporter that tests to see if something is true or false. But it

doesn’t take an input. How does it know what to test?

One strategy is to re-write MUFFINS so that it gives DONE? an input.

TO DONE? :FOOD
OP (TEMPERATURE :F0OD) > 155
END

Another strategy is to write DONE? so that it “knows” what to test, just as
HEADING has a built-in knowledge of how to find out what direction the turtle is

facing.

TO DONE?
OP (TEMPERATURE :F0O0D) > 155
END

Some people prefer to give DONE? an input. Then they can be sure that
TEMPERATURE will get the input it needs. If you know that :FOOD will exist
when MUFFINS reaches DONE?, then you can use the second version.

Neither strategy is “better” than the other. Both have advantages and
disadvantages. The second is useful for minimizing “clutter” in your procedures.
It can also get you into trouble. You must make sure that you create :FOOD --
and not :BATTER or :STEW or nothing at all -- before MUFFINS reaches
DONE?.

Since COMBINE is already doing something with the ingredients [FLOUR MILK
EGGS BUTTER [BAKING SODA]|, this would be a good place to create :FOOD.

Names and Variables page 33

TO COMBINE :INGREDIENTS

PRINT SE [MIX TOGETHER THE] FIRST :INGREDIENTS
PRINT SE [WITH THE] BF BL :INGREDIENTS

PRINT SE [AND THE] LAST :INGREDIENTS

PRINT [UNTIL WELL BLENDED.]

PRINT [POUR INTO MUFFIN TINS.]

NAME :INGREDIENTS "FOOD

END

A slightly different strategy is to make COMBINE a reporter. It would still
PRINT the instructions for combining the ingredients into a batter and pouring
this batter into the muffin tins. But instead of NAME :INGREDIENTS “"FOOD,
it would then OP :INGREDIENTS, and :FOOD would be created in the
MUFFINS procedure.

TO MUFFINS

NAME COMBINE [FLOUR MILK EGGS BUTTER [BAKING SODA]]
"FOOD

BAKE 350 30

IF DONE? [OP "MUFFINS]

BAKE 350 5

OP "MUFFINS

END

TO BAKE :TEMP :TIME
SET.OVEN.TEMPERATURE :TEMP

WAIT :TIME
SET.OVEN.TEMPERATURE O
END

In a sense, this is a first step towards making a robot that would bake real muffins.
Many questions can arise from a project like this. Would testing the temperature
be enough for a real DONE? procedure, or would a chemical analysis of the crumb
be required? What about the COMBINE procedure? This one simply PRINTed
the steps, but a real robot would need a BLENDED? tester and a POUR
procedure. It would need to know how to MIX its different kinds of ingredients so

that the egg shells are not mixed into the batter as well as the yolk and white.

Projects like MUFFINS can start class discussions about how procedures are like

Names and Variables page 34

real-world recipes -- either for baking muffins or building bridges or researching
quasars or learning tennis. There are many steps in writing a procedure that are

like the steps in building a new habit. But people forget, and computers

remember. So there are important differences too.

