Accompanying Text
for
On Logo Videotape
Hurdles 1

Logo Grammar

Copyright 1986 Media MicroWorlds, Inc.

by Harry Nelson and Wyn Snow

Logo Grammar

Table of Contents
1. The Transactional Model
2. Remodelling Primitives

3. DRAW A RED SQUARE

page i

12

Logo Grammar page 1

1. The Transactional Model

When most people begin to learn Logo, they make use of a linguistic model of
Logo. They think about “talking” to the turtle, about “making requests” or
“giving instructions” to Logo. One “asks” or “tells” the turtle to go forward 50
steps (FD 50). One asks or tells Logo to clear off the screen in preparation for new

work.1)

This linguistic model for thinking about Logo can take us quite far into Logo, but
sooner or later we begin encountering situations -- usually certain bugs -- that

require a new model for how we think about Logo.

On the tape, PRINT CS is used to introduce the need for this new transactional
model. From the linguistic point of view, this is not a grammatical Logo
instruction -- as “ain’t ain’t English,” PRINT CS just isn’t Logo. But if that’s all
there was to say on the matter, how would it be possible for Logo to do anything at
all with the instruction? Remember (or even better, test it yourself) that the
screen is cleared before the error message appears that PRINT didn’t get an input

from CS. If PRINT CS is not a proper Logo instruction, how does this happen?

The answer is that Logo does not “look” at the whole instruction to see whether or
not it is a grammatically proper Logo instruction. Logo simply starts trying to do

what the instruction says and continues until a problem arises.

The linguistic model would lead one to view Logo as saying, “That’s nonsense. [t
can’t be done.” With the transactional model, one does not think of Logo having
such global concerns. Instead, one views Logo as calling up a PRINT agent or
actor who needs an input. PRINT sees a procedure name in place of its input and
calls up a procedure actor (CS in this case). CS does its job of cleaning any
graphics from the screen and returning the turtle to its home position (in most
versions of Logo). But CS does not output anything that PRINT can write on the

screen. With the transactional model, one views Logo as starting a process which

ICLEARSCREEN or CS in IBM Logo and Apple Logo; DRAW in Terrapin Logo; CG in
LogoWriter.

Logo Grammar page 2

goes as far as it can. When CS finishes without giving an input to PRINT, things

have gone as far as they can -- and the error message is then displayed.

Try a few different exercises. Enter the instruction PRINT HT and see what
happens. Now use the transactional or actor model to think about and explain

what took place.

The explanation should go something like this: When Logo got the instruction, it
called the PRINT actor to do its job. The PRINT actor looked for its input but
found the HT command in its place, so it called the HT actress. She did her job
and told the PRINT actor when she had finished -- but she didn’t give him any
input. PRINT, who can’t do anything worthwhile without an input, complains
that he didn’t get an input from HT or, more precisely, that HT did not output
anything to PRINT.

Try to do the same thing with each of the following instructions -- you might try to

predict what Logo will do before you enter them:

PRINT SETBG 4
PRINT HT + CS
PRINT 1 + CS

The following story about a bug involving the Logo READLIST instruction? also
shows the difference between the linguistic and the transactional ways of thinking

about Logo.

A young programmer wanted her new game program to begin by asking the user if
he or she wanted to play. The plan was that if the user entered YES, the PLAY
program would be run. If the user entered NO, a GOODBYE procedure would be

run. Here is her procedure:

2REQUEST in Terrapin, READLISTCC in LogoWriter.

Logo Grammar page 3

TO GAME
PRINT [DO YOU WANT TO PLAY?]

IF RL = [YES] [PLAY]
IF RL = [NO] [GOODBYE]
END

The programmer showed off her program by first typing YES and the appropriate
thing happened. The computer played the game. She then showed what happened
if you answered NO. Nothing happened, so she typed NO again, saying with a
smile, “It doesn’t want to take no for an answer.” You see a bug here that you can

almost live with, at least in this case.

But try to imagine what was in the child’s mind. She thought about the program
linguistically; “If you type YES it will play the game but if you type NO it will say
goodbye.” The point is that if you read Logo as if it were English, you might read

it incorrectly.

The transactional model asks you to imagine a process rather than to translate
Logo into English. The GAME procedure will run three separate lines of
instructions. The first, the PRINT instruction, contains nothing relevant to the
present discussion. GAME then runs the first conditional (IF) instruction. Note
that this instruction refers only to YES. READLIST makes the computer wait
until the user types something and then the procedure checks to see if what was
typed is YES. If it was not YES, the procedure goes on to the next line, the second
conditional instruction. This instruction refers to NO. READLIST waits for the

user to type something and the instruction checks to see if what was typed is NO.

The reason that the programmer had to type NO twice was not that Logo really
didn’t want to take no for an answer. Rather, the two READLISTSs each got their
own responses from the user. The first was used only to check for YES; anything
else was ignored. The second READLIST is used to check for NO. Think about it

or, even better, act it out.

Here is a version of GAME that eliminates the "double negative” bug. Can you

explain why this is so with the help of the transactional model of Logo?

Logo Grammar page 4

TO GAME

PRINT [DO YOU WANT TO PLAY?]
NAME RL "REPLY

IF :REPLY = [YES] [PLAY]

IF :REPLY = [NO] [GOODBYE]
END

If you are unsure of the proper use of NAME -- of using Logo naming and names --
don’t worry! The second Hurdles tape deals with naming; for now it’s enough to

know that the line

NAME RL "REPLY

will give the correct :REPLY (whatever the user types) to the = testor.

* * k

The COMPASS procedure (acted out on the tape to demonstrate the transactional
model) could be useful in a “microworld” in which the turtle can only turn 90
degrees at a time. In constructing such a microworld, we might define the

following R and L procedures for right and left turns.

TO R
RT 90
END

TO L
LT 90
END

Try to extend this idea to allow turns that are multiples of 90 degrees -- 0, 90 180,
270, etc. degrees. The R and L procedures could be modified to take inputs. For
example, R 3 would make the turtle do the equivalent of three 90-degree right
turns. L 2 would turn the turtle left 180 degrees -- two 90-degree left turns. Our

procedures could look like this:

Logo Grammar page 5

TO R :NUMBER
RT :NUMBER #* 90
ENIID

TO L :NUMBER
LT :NUMBER * 90
END

In such a microworld, PRINT COMPASS would show us the turtle’s heading as
NORTH, SOUTH, EAST or WEST.

TO COMPASS

IF HEADING = O [OP "NORTH]
IF HEADING = 90 [OP "EAST]
IF HEADING = 180 [OP "SOUTH]
IF HEADING = 270 [OP "WEST]
END

Use the transactional model to describe what the following procedure will do before
running it, then compare your predictions with what actually happens when you

run it. Try to account for any discrepencies.

TO SQU

FD 60

R 1

IF COMPASS = "NORTH [STOP]
SQU

END

Try the same exercise with this procedure:

TO SQUIRAL :SIDE

IF :SIDE > 100 [STOP]
FD :SIDE

R 1

SQUIRAL :SIDE + 10
END

Other exercises you might try are extending the microworld to allow turns that are

multiples of 30 degrees and writing more procedures in this microworld similar to

Logo Grammar page 6

SQU and SQUIRAL. What would happen to procedures like SQU if COMPASS
had been written with PRINT in place of OUTPUT?

¥ & %

Describe the transactions that take place when you run:

SETBG BG + 1

In most cases, the background color of the screen should change to a new color. In
some versions of Logo, there are instances in which SETBG BG + 1 will result in
an error message instead of a new background color. The following procedure

guarantees that this will not happen.

TO NEXTCOLOR

IF BG = 15 [OP O]
OP BG + 1

END

NOTE: In this procedure, the assumption has been made
that there are 16 background colors numbered 0 through 15.
If that is not the case for your Logo, replace the 15 in the
procedure with the highest color number used in your Logo.

What will happen when you run these next instructions?

SETBG NEXTCOLOR
PR NEXTCOLOR

SETH NEXTCOLOR
PR NEXTCOLOR + 10

You might enjoy trying and thinking or acting the following:

Logo Grammar page 7

TO FLASHBG
SETBG NEXTCOLOR
WAIT 10
FLASHBG

END

NOTE: In the actor or transactional model, we sometimes
make certain assumptions about the actors’ abilities. In its
purest form, the actor model should result in a new actor
appearing every time a procedure call is made -- regardless
of whether that procedure is a Logo primitive or a user-
defined procedure. However, this easily becomes tedious
and often distracts from the points at issue.

In these tapes, we have adopted the view that it is best to
be precise on the issues at hand and loose on others. So, for
example, we often assume that actors can “make primitives
happen” without bothering to call a separate actor for each
primitive. Also, in an effort to avoid being overly pedantic,
we have given actors a certain liberty or dramatic license.
While Logo procedures are “dumb” and follow exactly the
text of the procedure definition, important points are often
made by allowing the actors the freedom to express their
views of given transactions.

2. Remodelling Primitives

When you understand how to remodel a Logo primitive, you understand how that
primitive works. You also gain a deeper understanding of how Logo primitives
interact with one another. This remodelling -- or reworking -- personalizes Logo as

well. It’s a way of making Logo uniquely your own.

Your Hurdles 1 diskette has 11 procedures that were illustrated on the videtape:
RTT and LTT (TURN), HOP, APPEAR, VANISH, RPT, HDG, QUIT,
WANDER, SILLY and SILLIER. Play around with these procedures so you can

see how they work, and then make some of your own.

Logo Grammar page 8

Commands:

There are 4 different types of primitives. Everyone meets commands (or doers)

first, so we’ll start with those.

FORWARD 50
CLEARSCREEN
PRINT [THESE WORDS]

Each of these is a complete instruction. When you type them at the keyboard or

put them into a procedure, Logo and the turtle know exactly what to do. We call
FORWARD and CLEARSCREEN and PRINT commands or doers because they
say what to do.

One of them, CLEARSCREEN, can stand alone. It doesn’t need any additional
information; it knows how to clear the screen. But FORWARD and PRINT need
an input. We have to say how far to move the turtle, or what to print on the
screen. So a command -- together with whatever input(s) it needs -- is a complete

Logo instruction.

In remodelling a command, you may want to change the way it handles its input.
This is one reason for creating RTT, LTT and HOP. Or you may simply want to
use a different name, either an abbreviation or something you prefer. APPEAR,
VANISH and RPT were created for these reasons.

Reporters:

VANISH is an excellent model for reworking a command because it is so simple,
straightforward, and clear. But when we tackle reporters, the footprints of a

distinctive "hot potato” bug quickly appear.

TO VANISH TO HDG
HT HEADING
END END

When we run VANISH, all is well. The turtle disappears. But if we use VANISH

Logo Grammar page 9

as a pattern for remodelling HEADING, an error message appears when we run
HDG -- something that shows that the turtle’s heading is a "hot potato”. A
similar message appears when we try PRINT HDG.

Naturally, we could “fix” this bug by putting PRINT in HDG. Let’s use a
different title for this modified procedure, say PR.HDG.

TO PR.HDG
PR HEADING
END

This procedure will run, but it is limited. The only thing PR.HDG can do with the
heading is print it. HEADING is a reporter. It reports a number back to

whomever called it, so we can say:

PRINT HEADING or
LEFT HEADING * 18 and even
BACK HEADING or

SETHEADING RANDOM HEADING

So PR.HDG is not as versatile as HEADING. Substituting either HDG or
PR.HDG for any of these HEADINGs will result in an error message.

The problem is quite simple. Any Logo instruction must start with a command. A
reporter cannot stand alone; it must have someone to give its report to. In HDG,
HEADING needs a procedure to report to, and the procedure it needs is OUTPUT,
OP for short.

TO HDG
OP HEADING
END

OP needs one input. Here, HEADING provides that input, so OP HEADING 1is a
complete Logo instruction. OP takes the report from HEADING and tells HDG to
give that number to whomever called HDG -- perhaps PRINT or LEFT or BACK
or SETHEADING.

Logo Grammar page 10

Reporters are powerful because of this versatility; they can be used in conjunction
with many different procedures. Remodelling Logo’s reporter primitives and
creating one’s own reporters are important avenues for understanding how Logo
procedures work -- both the built-in primitives and the ones you create. Roughly

half of Logo’s primitives are reporters.
Controllers:

As you saw on the videotape, however, OP is much more than simply a command.
Whenever OP becomes active in a procedure, it takes charge of what happens next.
We call it a controller. OP says, “Drop everything else and do what I say.” This
was illustrated by the actors who did COMPASS in the first section of the

videotape.

TO COMPASS

IF HEADING = 90 [OP "EAST]
IF HEADING = 180 [OP "SOUTH]
IF HEADING = 270 [OP "WEST]
IF HEADING = O [OP "NORTH]
END

When the heading is 180, = reports TRUE and IF runs [OP “SOUTH]|. This OP
tells COMPASS to ignore the rest of its instructions and to hand the word SOUTH
to whomever called COMPASS. This changed the usual “flow of control.”
Normally, a procedure goes through its instructions line by line, instruction by
instruction, until it reaches the END. OP and STOP both interrupt this process,
telling the procedure they are in to “drop everything else.”

TO WANDER

FD 10

RT RANDOM 30

IF HEADING = O [STOP]
WANDER

END

WANDER is recursive. It will go on forever unless the turtle’s heading becomes 0.

(Recursion and “forever programs” are dealt with in the Hurdles 3 tape.) The flow

LLogo Grammar page 11

of control starts with the first line: FD 10. When this instruction has been carried
out, WANDER goes on to the next line. When RT RANDOM 30 is done,
WANDER goes on to I[F HEADING = 0 [STOP|. Note that = is a reporter.

The odds are 359 to 1 that = will report FALSE. Most of the time, IF will not run
its instruction list. WANDER will then run the next line -- which is WANDER.
Sooner or later, however, = will report TRUE and IF will run [STOP|. STOP will
tell WANDER to “Drop everything! You're done.” So when STOP becomes
active, WANDER doesn’t reach that next line and the WANDERing STOPs. It’s
just like the FD 1000 in SILLIER.

TO SILLY TO SILLIER
RT 90 RT 90

0P 90 STOP

FD 1000 FD 1000
END END

Controllers cannot be remodelled. QUIT is a perfectly legitimate procedure, but it
cannot stop either WANDER or SILLIER.

TO QUIT
STOP
END

When QUIT is run, it starts with the first line of instructions and calls STOP.
STOP says “Okay, QUIT, drop everything. You are done.” QUIT then tells
WANDER or SILLIER that it is done, so they proceed to their next lines of
instruction: WANDER or FD 1000. STOP can only stop the procedure it is in.

Chameleons:

A few procedures can be called chameleons because they can act either like
commands or like reporters, depending on the context. What they do is
determined by their instruction list. We have already seen the chameleon flavor of

[F. Let’s take it one step further.

Look at the following whimsical instruction:

Logo Grammar page 12

IF 1 = 1 [PRINT "HI]

Here, IF does not output anything. It is not a reporter. But you can do

PRINT IF 1 = 1 [HI]

A more serious example is the following:
PR IF 1 = RANDOM 1 [YES] [NO] Apple & IBM Logo
PR IFELSE 1 = RANDOM 1 [YES] [NO] LogoWriter

PR IF 1 = RANDOM 1 THEN YES ELSE NO Terrapin Logo

The other chameleon is RUN. If RUN is an obstacle for your students, you can tell
them it is just like REPEAT 1 [sundry actions|. RUN also takes an instruction list,
but it performs that list only once. And like IF, the instruction list will determine

whether RUN behaves like a reporter or a command.

3. DRAW A RED SQUARE

DRAW is a primitive in Terrapin Logo, so Terrapin users
must use another word (such as SKETCH) for the following
project.

Part III of the tape introduces a way to make Logo understand a few words of
everyday English. Developing and extending this project encourages thinking
about how the computer handles the Logo language -- and, perhaps, how we

handle our own language.

As you have seen, the Logo line DRAW A SQUARE uses the following procedures:

TO DRAW :INPUT
RUN :INPUT
END

Logo Grammar page 13

DRAW needs a list of instructions as input which will be run (executed or made to

happen). DRAW looks to the next procedure in the Logo line (A) for its input.

TO A :INPUT
OP :INPUT
END

A needs an input from the procedure to its right. When it gets this input, A
outputs it to the procedure to its left (DRAW).

TO SQUARE
OP [REPEAT 4 [FD 50 RT 90]]
END

SQUARE simply outputs the list of instructions needed to draw a square. It
outputs this list to the procedure to its left (A). Using a color adjective, as in the
instruction DRAW A RED SQUARE, requires another procedure:

TO RED :INPUT
OP SE [SETPC :RED] :INPUT
END

RED gets an input from the procedure to its right and it outputs a sentence (list)
made up of the SETPC instruction and its input. RED modifies SQUARE'’s
output and hands the modified list to its left (to A).

Different versions of Logo have different commands to
change the turtle’s pen color: SETPC or SETC or PC. If
you are not sure, check to see which your Logo uses. Also,
few Logos have built-in color names like :RED; this has
been used because the actual color number for red is
different in the various Logos. Use your color number for
red in place of :RED or, if you know how, create names for
your color numbers and use :RED. (The topic of naming is
treated in the next tape in this series.)

Logo Grammar page 14

Creating other shape nouns is not very difficult if you know the instructions needed

to make the shapes. For example, CIRCLE could output the list

[(REPEAT 180 [FD 1 RT 2]]

and TRIANGLE could output the list

[REPEAT 3 [FD 50 RT 120]]

But what about other shapes or figures? What lists of instructions would be

needed for a star, a house, or other shapes you may want to draw?

K ok ok

Creating other color adjectives is even easier. Try making BLUE, GREEN and
WHITE procedures that act like RED.

You can tell Logo to draw a red square, then a blue circle. If you next tell it simply
to draw a triangle, what color triangle will appear? Blue, of course. But why? To
someone who hasn’t seen the program, it might look like you taught Logo to
remember the last color used. That is just what you did. When you set the

turtle’s pen color it keeps that color until a new pen color is set.

Because you can use DRAW followed a different number of other procedure
names, someone who hasn’t seen the entire project could think that you have done
the impossible. It might look like you've written a procedure that takes a variable
number of inputs, two or three or whatever. But that cannot be done in Logo. (In

fact, one reason DRAW was developed was to get around this impossibility.)

On the tape you saw a position or direction specified. In the instruction

DRAW A TILTED BLUE SQUARE
all the procedures are familiar except TILTED. What does it do?

It should get an input from BLUE and hand its output to A. TILTED should also

Logo Grammar page 15

put a command to turn the turtle into the instruction list that it outputs. The
color procedures are the model to use here. TILTED will output a sentence (list)

of the command RT 45 and its input.

TO TILTED :INPUT
OP SE [RT 45] :INPUT
END

If TILTED gets the input list

[SETPC :BLUE REPEAT 4 [FD 50 RT 90]]

it will output the list

[RT 45 SETPC :BLUE REPEAT 4 [FD 50 RT 90]]

There is a small bug in here which you may want to find on your own. If so, spend

some time playing with the vocabulary that you have already created.

* K Kk

If you use TILTED for one figure, all of the following figures that you draw will be
tilted even though you don’t specify it. Having Logo remember the “tilt” may
seem all right; a little like its remembering a color. But try using TILTED in two

successive instructions -- or in three, four, or five new instructions.

Progressive tilting is probably not what you have in mind if you ask for a tilted
square, a tilted star and then a tilted triangle. One way to fix the progressive
tilting is simply to replace the RT 45 with SETHEADING 45. This is a sensible
change to make and a good opportunity to think about the differences between the
primitives RT and SETHEADING.

The other issue, of having everything tilted after using the word once, is also easily
fixed. You can change DRAW so that the turtle always returns to its home

position and heading after the input list has been run.

Logo Grammar page 16

TO DRAW :INPUT
RUN :INPUT
PENUP HOME PENDOWHN The effect of this new line should be clear.

END

This change in DRAW will be helpful in the next phase of extending the project as

well as for clearing up the “tilt” bug.

In order to introduce number words like TWO and THREE into the project
vocabulary in a meaningful way, it will be necessary for the turtle to change its
position before drawing each new figure. If it doesn’t move, the turtle will simply

retrace its steps two or three times -- only one figure will be seen.

A procedure that sets a random position for the turtle can be a helpful “tool” at

this point.

TO SET.RANDOM.POS

PENUP

SETPOS SE (150 - RANDOM 300) (100 - RANDOM 200)
PENDOWN

END

This command will set the turtle’s position somewhere
between 150 and -150 right or left and between 100 and
-100 up or down.

One way to use this is to make SET.RANDOM.POS the first command in the
instruction list output by each shape procedure. SQUARE, for example, would
then output the list [SET.RANDOM.POS REPEAT 4 [FD 50 RT 90||.

It might be more interesting to add RANDOMLY PLACED to the vocabulary,

making possible a line like

DRAW A RANDOMLY PLACED BLUE CIRCLE

Logo Grammar page 17

PLACED can just output its input like A does:

TO PLACED :INPUT
OP :INPUT
END

RANDOMLY would add SET.RANDOM.POS to the instruction list:

TO RANDOMLY :INPUT
OP SE [SET.RANDOM.POS] :INPUT
END

You might try your hand at making a few procedures that have the figure drawn at
a specified place. For example, HIGHLY and LOWLY would cause either a highly
placed or a lowly placed figure to be drawn. (Hint: HIGHLY could add the

following list of commands

(PU SETPOS [75 0] PD]
to the instruction list.)

After the turtle draws a randomly placed (or any other placed) blue circle, it
should almost certainly return to the home position. By fixing the tilt bug, you’ve

already seen to that.

Now for the numbers. What should an instruction like

DRAW TWO RANDOMLY PLACED RED SQUARES

do? Well, first of all, SQUARES should output the same list as SQUARE. That’s
easy:
TO SQUARES

OP SQUARE
END

Plurals for the other shapes are just as easily created.

Logo Grammar page 18

The next thing that the line should do is make sure that the instruction list is, in
effect, run twice. The easiest way to do that is to give DRAW a list that contains

two sets of instructions for drawing a randomly placed blue square. So, TWO can
look like this:

TO TWO :INPUT
OP SE :INPUT :INPUT
END

TWO outputs a list that contains its input list twice. THREE, as you may
imagine, outputs a list that contains three sets of instructions for drawing the

figure.

TO THREE :INPUT
OP (SE :INPUT :INPUT :INPUT)
END

Remember that SE expects two inputs -- so if you give SE either more or less than

two inputs, you must also put parentheses around both SE and its inputs.

Notice that the squares in DRAW TWO SQUARES will be
drawn on top of one another. If you say DRAW TWO
RANDOMLY PLACED SQUARES, they will be in
different places. One way of fixing this bug in TWO and
THREE is to use REPEAT instead of SE -- and to insert a
RT 180 or RT 120 at the end of REPEAT’s instruction list.
This strategy was used on the diskette.

Yet another extension of the DRAW project is to add size words so you can say:

DRAW THREE RANDOMLY PLACED SMALL GREEN STARS

A few changes will accomplish this. First, the input to FD in each shape definition
will be changed to the name :SIZE. SQUARE, for example, will look like this:

LLogo Grammar page 19

TO SQUARE
OP [REPEAT 4 [FD :SIZE RT 90]]
END

(:SIZE replaces the number 50.) Note that it will not be necessary to do anything

to the plural shape nouns. Only the singular nouns need be changed.

Where will the value of :SIZE be specified since SQUARE will not be given an
input? You probably guessed that this will be done with adjectives like SMALL:

TO SMALL :INPUT
OP SE [NAME 20 "SIZE] :INPUT
END

SMALL inserts the command that gives 20 the name SIZE into the instruction list.
BIG and MIDSIZED could, similarly, assign the name SIZE to 80 and 50.

Now instructions containing size adjectives -- such as the example above -- will
work nicely. However, there is a little bug here. You might spend some time

trying to find the bug before going on.

The bug, as you may have found, is a simple one. If the first line you enter does
not contain a size adjective, you will see an error message because :SIZE does not
have a value. Of course, you could live with this by being sure that you always use
a size. But it’s not hard to fix the bug so you don’t have to worry about it. In

fact, you have your choice of two ways to fix it.

The first way to fix the bug is to specify a “default” size in the DRAW procedure

that will always take effect if another size is not specified.

TO DRAW :INPUT
NAME 50 "SIZE

RUN :INPUT

PENUP HOME PENDOWN
END

Logo Grammar page 20

This will give :SIZE the value 50. But if a size is specified in the instruction list,
this value will be overridden. In this way, a size is always specified and the error

message will not appear. You will note, however, that whenever a size adjective is

not used in the draw line, :SIZE will revert to its default value.

If you want Logo to remember the last size that you specified until you change it,
try this way to fix the bug: Specify the default size in a STARTUP list instead of
in DRAW. Leave DRAW as it was (without the NAME line) but enter this line,

all by itself, before you save your procedures:

NAME [NAME 50 "SIZE] "STARTUP

Now when you load your DRAW project, this STARTUP list will be run
automatically. :SIZE will have the value 50 until you change it with a size
adjective. This new value will remain until you use another size adjective.

(Remember that names and naming are covered in detail in the next tape.)

Finally, notice that redefining CIRCLE to accept size changes presents some
interesting challenges. Using 80, 50 or even 20 as input to FD in CIRCLE will not
be acceptable. Try to find a way for your CIRCLE procedure to modify :SIZE in
order to produce appropriately sized circles for each value of :SIZE. Here is a

sample:

TO CIRCLE
OP [REPEAT 180 [FD :SIZE / 50 RT 2]]
END

From here, you can continue to extend the DRAW vocabulary, create a whole new
project using these ideas in another area, or you may wish to leave the project as is
and use it as a basis for thinking about computer language and human language,
about computer behavior and human behavior. Or you may just want to leave it

for now and return to it some time in the future.

