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There is a theory that if ever anybody discovers exactly what

the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.
— Douglas Adams, “The hitchhiker’s guide to the galaxy”






Abstract

Several nucleosynthesis processes are responsible for the production of the chemi-
cal elements in the universe. Explosive ejecta in core-collapse supernovae typically
produce intermediate-mass elements up to the iron-group nuclei, although the ex-
act compositions depend on the parameters of the supernova, such as the structure
of the pre-supernova progenitor, the explosion energy and neutrino luminosities.
Understanding the connection between these parameters and the nuclear compo-
sition of the ejecta is an ongoing field of research in nuclear astrophysics. Open
questions also remain surrounding the late-time ejecta (the neutrino-driven wind),
which could host either a weak r-process or the vp-process.

Research on the rapid neutron-capture process requires the knowledge of the prop-
erties of exotic nuclei far from stability. Since these nuclei cannot be produced
under laboratory conditions, we have to rely on theoretical predictions (e.g., mass
models), introducing large uncertainties. In addition, the astrophysical environ-
ment of the r-process is still unknown, although recent observational data support
mergers of two neutron stars as a promising site. Furthermore, observations of
metal-poor stars enriched with r-process material suggest a robust abundance pat-
tern for the strong r-process, which provides a solid benchmark to test our models
against.

In this thesis, several aspects of explosive nucleosynthesis are studied. In the first
part, the theoretical framework of nucleosynthesis calculations is discussed, with a
focus on the r-process and fission reactions. The second part highlights the role of
fission on r-process calculations. Finally, we report on nucleosynthesis calculations
for core-collapse supernova models, on the one hand in spherical symmetry in
order to contrain the so-called PUSH method, as well as in axisymmetric models.
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Chapter 1

Introduction

The four fundamental forces in our universe are gravity, the electromagnetic force,
the weak force and the strong force. Although they operate at very different scales,
both in terms of coupling strengths and distances, they are all brought together in
the field of nuclear astrophysics: For instance, gravity is the driving force behind
stellar core collapse (the stage immediately preceding a core-collapse supernova)
and the reason for the energy loss of binary neutron star systems via emission of
gravitational waves, ultimately leading to a collision of the two neutron stars. The
strong force is highly attractive but only operates on extremely small distances, en-
abling the formation and existence of hadrons and nuclei of higher complexity. In
a fissioning nucleus, the electromagnetic Coulomb repulsion between protons be-
comes too strong for the strong force to counteract, and the nucleus splits into frag-
ments. It is also responsible for the potential barrier in reactions between charged
particles. Finally, nuclear S-decays and interactions with leptons have a lasting
effect on nuclear compositions and are described by the weak force.

One of the main goals of nuclear astrophysics is to explain the elemental and iso-
topic compositions observed in stars. Of course, the abundance distribution of the
solar system is particularly well studied, and we understand that it is the result of
a complicated interplay of different nuclear processes that occurred in our galac-
tic neighbourhood before the sun was born. Since the elements around iron are
the tightest bound elements, the synthesis of the heavier elements with Z > 28 is
non-trivial and their origin is of special interest. The production of the majority of
these elements are attributed to two nucleosynthesis processes: the slow (s-) and
the rapid (r-) neutron capture process. Due to its nature, the s-process reaction path
proceeds along the stable nuclei in the nuclear chart. Therefore, the nuclei that are
involved are well studied, and the biggest remaining challenge surrounding it is the
supply of free neutrons over a large enough period of time. R-Process studies re-
quire the knowledge of nuclear properties far from stability, where no experimental
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data are available. This means that theoretical predictions of nuclear masses and
reaction rates have to be used. In addition, the astrophysical sites of the r-process
have not yet been found, all of which means that r-process calculations are still
bearing large uncertainties, both from the nuclear and the hydrodynamical side.
Within the scope of this thesis, we address some of these uncertainties and explore
the sensitivities of our results to some aspects of nuclear theory.

In Chapter 2 we will discuss the ingredients for nuclear networks, the computa-
tional tools utilized in nucleosynthesis calculations, with a chapter dedicated to
nuclear mass models. Chapter 3 will give a short overview on Galactic Chemi-
cal Evolution, the study of stellar compositions and their change in time due to
(explosive) nuclear processes.

One main focus of this thesis lies on the r-process. Its operating mechanism will be
discussed in chapter 4. Moreover, possible astrophysical sites will be introduced
and briefly discussed, before moving on to the description of fission and its treat-
ment in nuclear networks in chapter 5. After covering these points, we will be able
to tackle the issues connected with neutron star mergers as a probable r-process
site (chapter 6). In chapter 7 we will present our results from nucleosynthesis
calculations in core-collapse supernovae (in both spherical symmetry and multi-
D simulations), the second main focus of this thesis. Finally, we will end with a
summary and some conclusive remarks in chapter 8.



Chapter 2

Nuclear Networks

The origin of chemical elements and their isotopes is an issue that has kept as-
trophysicists busy for centuries. As of today, we know that a complex interplay
of many different nucleosynthesis processes have been operating at various stages
and environments in our universe. Our understanding of these processes (and their
working sites) continually grows, not least because of our efforts to develop theo-
retical models and learn from the comparison of our results to observations. This
chapter gives a short overview on the theoretical description of nuclear reactions
and their implementation into a nuclear network, a tool that can be used for nu-
cleosynthesis calculations. For more detailed explanations see, e.g., Iliadis (2007);
Cowan et al. (in preparation).

2.1 Towards a Nuclear Network — Nuclear Reaction Rates

2.1.1 Transmission probabilities

Forces generated by nucleons and nuclei are usually described by potential fields,
where the gradient of the potential is equal to the vector force. When a particle
hits a potential barrier (e.g., a nucleus), it can either overcome the potential (corre-
sponding to forming a compound state in a nuclear reaction) or be reflected by it.
In a classical treatment these two cases can easily be distinguished by comparing
the energy of the particle E with the height of the potential barrier V:

E >V — penetration

. (2.1.1)

E <V — reflection.
In quantum mechanics, however, there is a possibility for penetration even when
E < V or for reflection when E > V (even though it is exponentially decreasing).

3
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In nuclear physics, it is therefore necessary to define a transmission coefficient that
describes the penetration probability. Considering a particle beam hitting a target,
it can be defined as the ratio of the outgoing and ingoing plane wave fluxes:

2
= M , (2.1.2)
kilpil?

where ky, k; are the wave numbers (kr; = +/2my Ey;/h) and ¢, ¢; are the wave
functions of the outgoing (f) wave and the initial (i) wave, respectively. Consid-
ering a central collision of a neutron with energy E and a nucleus with a simple
one-dimensional square well-potential, continuity requirements at the edge of the
potential lead to

dkiky 4k

=—71 ~ 2.1.3
|ki+kf|2 kf ( )

The last relation comes from the fact that in a nuclear reaction, ky > k; due to the
large negative potential within the nucleus. Note that equation (2.1.3) is only valid
for neutrons. Charged particles will have to overcome a Coulomb potential first,
leading to the expression

T = exp(—2nn), where
m\\2 Z,7,e* (2.1.4)
= (E) n

is the so-called Sommerfeld parameter. The mass and energy of the projectile are
denoted as m and E, while Z; and Z, are the charge numbers of the nucleus and
the projectile, respectively. A detailed derivation of equation (2.1.4) can be found
for example in Iliadis (2007). Note that these expressions are only valid for central
collisions, i.e., without any transfer of angular momentum.

2.1.2 The nuclear cross section

When a projectile particle hits a target particle (here we assume the target particle
is at rest), there is a possibility that a nuclear reaction occurs. The probability for
an occurrence of the reaction depends on many factors, as we will see later. As a
starting point, we define the cross section as follows:

number of reactions per target per second
o= — - . (2.1.5)
flux of projectile particles

In the following, we will focus on possibilities to theoretically predict the nuclear
cross section. It can be shown that the cross section for the production of a com-
pound nucleus is the sum of transmission coefficients over all possible angular
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momenta [:

7T (o)
o= Z(zz + DT, (2.1.6)
)

The wave number £ is that of the incoming projectile particle. For target and pro-
jectile particles with spins /; and /;, we can define the channel spin S=I+ I?, with
possible values ranging from |I; — ;| to I; + I;. The number of allowed channel spin
orientations is equal to the product of the individual spin orientations, i.e.,

I[+Ij
Z Q2S +1) = QL+ DI+ 1). 2.1.7)
S:|1,'—1_,'|

If target and projectile are identical particles, only even channel spins are allowed,
i.e., the amount of possible orientations are halved. We therefore include a factor
(1 + 6;j), such that the Eq. (2.1.7) becomes

[i+[j
2L+ D21+ 1
Z (25+1):( ‘ 1)(6f ). (2.1.8)
S={l-1I] +0ij

The channel spin and the angular momentum determine the spin J of the compound
nuclear state (J = § + I). By replacing the summation over / in Eq. (2.1.6) with a
sum over J, we can write for the cross section
li+l;  J+S
Pl 2J, + DA +6;))

= —2 : .
k= A s Gli+ DRE+ 1

o Tis(E)

Ity g+
U 2J, + DA +6;;) j
=G DA 2 2 Ts®) (2.1.9)
7 I s nATs)

7 20, + 1)(1 +6;))
= ,Z T(E, J,7).
T

QI+ 1)Q2I; + 1)

The factor (1 + 6;7)/(21; + 1)(2I; + 1) is needed to ensure that the cross section
is the average over all possible initial spin states of target and projectile. In the
last transformation we replaced the sums over all Tys, i.e., the transmission coef-
ficients for all possible spin and angular momentum configurations, with one total
transmission coefficient T'(E, J, ), which describes the probability to produce the
compound nuclear state with energy E, spin J, and parity 7.

2.1.3 Resonances

In a two-body reaction i + j, a compound nucleus in an excited state is formed,
which after a short time decays into the end products o + m. The probability for
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the reaction to occur is a function of the energy of the incoming particle and also
depends on the positions of the excited states in the compound nucleus. In other
words, if the total energy of the particle-target system matches the energy level of
an excited state in the compound nucleus, the probability for the reaction to take
place can increase by several orders of magnitude. This phenomenon is called
resonance.

In a quantum-mechanical description, each excited state has a certain energy width
against decay I', which is a measure of the state’s stability against decay. The
energy width of the state and the lifetime of the compound nucleus 7 are connected
via the Heisenberg uncertainty principle, I' = /7. Often, the nucleus can decay
via different decay channels (e.g., deexcitation via y- or neutron emission). In this
case the total width of the resonance state n is given by the sum of all the individual
partial widths:

I,=T,+T,+.. (2.1.10)
Therefore, an energy width f(E) can be associated with each state:

L,
(E = En)* + ([n/2)

fE) = (2.1.11)

where E, is the mean energy of the state. The resonance cross section can now be
constructed based on the following considerations:

o the closer the energy of the incoming particles to the resonance energy E,,
the larger the cross section: o o< f(E)

e the probability to produce the exact compound state is I';,,/T’,

o the probability for the compound nucleus to decay into the products o + m is
1—‘o,n/l—‘n

e the theoretical upper limit to the nuclear reaction cross section is
(see Eq. (2.1.9))
o Q2+ D +6;)
TR N2
where k is the wave number of the projectile, J,, is the total angular momen-
tum of the compound state, and /; and I; are the total angular momenta of
the target and projectile nuclei, respectively.

(2.1.12)

This leads to the Breit-Wigner resonance formula:
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L 2J, + D(1 +6;)) Ljnlon
K2 QL+ DRI+ 1) (E-E,)?+{,/2)?2°

oin(j,0) = (2.1.13)

Most resonances are so narrow that the (E — E,)? term in the denominator effec-
tively acts as a delta function around the resonance energy E,.

2.1.4 Hauser-Feshbach Theory

At low energies, a single resonance can dominate the transition probabilities com-
pletely. Knowledge of the low-energy resonances is therefore very important. At
higher excitation energies, however, the level density in the compound nuclei is
usually much larger and resonances become broader and more frequent. Single
resonances can even overlap, causing the cross section to appear as a smooth func-
tion of energy. In this case, a good description of the averaged cross section can
be achieved by a statistical approach, e.g., the Hauser-Feshbach Theory (Gadioli
& Hodgson, 1992), which is based on the assumption that the formation of the
compound nucleus and its decay are independent from each other. Cross sections
derived by this model have the form

O-HF = O-formbdec s (2.1.14)

where o ¢, 18 the cross section for the formation of the compound nucleus, and
bgec 1s the branching ratio for the specific decay channel. The cross section for the
formation of the compound nucleus is given by Equation (2.1.9):

T 1+ (5,’j
k2 2L + D(2I;

7 form(E) = T3 2L+ DTHE, L), (2.1.15)
Jr

The branching probability for the decay channel o is bgee = To/T 101, Where Ty
is the sum over all possible decay channels. This leads to the Hauser-Feshbach
formula:

HF — l (1 +6ij) Z(ZJ + l)TJ(E’ J’ﬂ-)TO(Ea]’ﬂ)
K2 Q2L+ D@L+ 1) 4407 Tii(E, J, )

(2.1.16)
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2.1.5 The S-factor

Charged particle reaction cross sections are highly energy-dependent due to the
Coulomb repulsion of the reacting nuclei. In particular, they drastically drop to
very low values at low energies. This makes comparisons of theoretical and ex-
perimental values very difficult, since small uncertainties in the nuclear structure
can translate to large uncertainties in the theoretical derivation of nuclear cross sec-
tions. At low energies, central collisions with no angular momentum transfer are
dominant (! = 0 for the incoming projectiles). In this case, the transmission coeffi-
cient (for charged particle reactions) is Tj=g = e~ (see section 2.1.1). Thus, we
get for the cross section

hZ
- k%T,ZO = L o 2 o (2.1.17)

v 12 2UE

Note that we are using center-of-mass coordinates, thus u is the reduced mass of
the projectile-target system and E is the center-of-mass energy. In this case, the
astrophysical S-factor, defined as S (E) = o/(E)Ee*™, is a constant. Moreover, it
varies much less with energy than the cross section also at higher energies, making
it a useful tool for theoretical extrapolations to low and high energies. The cross
section can then be written in the form

o(E) = %ezm] .

(2.1.18)

2.1.6 Velocity integrated cross section

Let us consider a reaction i + j — o + m, where the nuclei i and j react to produce
the nuclei o and m. If we denote the number densities of particles i and j as n; and
nj, respectively, we can rewrite Eq. 2.1.5 as

oo i (2.1.19)

njv

Here v is the relative velocity between the projectile j and the target i, [v; —vjl, and r
is the reactivity (i.e., number of reactions per volume and time, usually in cm 3 s71).
In reality, nuclei in an astrophysical plasma do not all have the exact same (kinetic)
energy, but their energies instead follow a Maxwell-Boltzmann distribution, and
therefore the number densities n; & n; have to be replaced by the expressions
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4np? p2
dnx = e i P\~ 2 | 4P

my \3/2 myv? (2.1.20
=1y (—27rl:T) exp(— u x)d3vx )
= nx¢(‘7)x)d3 Vx .

Rewriting Eq. (2.1.19) and using (2.1.20) we get for the number of reactions in
-3 -1
cm™’s

ey = nin; f ol = V= Vv

= I’lﬂ’lj(O'V),‘;j .

If the projectile particle species is identical to the target species, a factor of 1/2 has
to be introduced in order to avoid double counting:

n?
Tisi = 71(0'V>i;i , (2.1.22)

leading to the general expression

_ ninj<0'v>i;j

L= 2.1.23
Tij 1+ 6ij ( )

The term (ov);; is the velocity integrated cross section. A better understanding of
its meaning can be obtained by replacing the individual coordinates of particles i
and j with center-of-mass and relative coordinates. To that end, we introduce the
center-of-mass velocity V and the relative velocity v as follows:

-

‘_/) _ mi\_)’,- +m]'Vj
a M ’ (2.1.24)
V=vi+7;

j-

The total kinetic energy E of the system can be written as

2 2
mivy  mive 1
E=—t 4 20 _ Z V2% + —u?. 2.1.25
5 5 5 2,uv ( )
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Here M = m; + m; is the total mass and u = (m;m;)/(m; + m;) is the reduced
mass of the two-particle system. The velocity distributions can now be expressed
as follows:

Lo (M) MV? +
f )= - . 2.1.26
BT} = s e o (2.1.26)
Finally this leads to
~ u 32 w2\ s
(ov) = fo-(v)v(zﬂkT) exp( T d’v
(2.1.27)

8\'"* 1 o0 E
:(,E) T fo Eo-(E)exp(—k—T)dE.

The last transformation follows from using the relations d°v = 4mv?dv and E =
wv?/2 (assuming that the center of mass of the system is in rest; V = 0). In this
final form, it becomes obvious that (ov) is only dependent on the temperature 7.

Between the cross section of a reaction i(j, 0)m and its inverse (backwards) reac-
tion m(o, j)i a relation can be found using the Hauser-Feshbach formalism (see
equation (2.1.16)):

oi(j,o)y _ 1+6; (21, + D@L, + 1) k2
Tw(0, s 1+ 0om QLi+ DQLi+1) k2

(2.1.28)

where the subscript J denotes a single populated state in the compound nucleus
with spin J. Equation (2.1.28) is also known as the principle of detailed balance.
As this relation holds true for all individual states in the compound nucleus, we
easily obtain an expression for the total cross sections at energies E;; and E,p,
where E;; = E,;, + Q, j with O, ; being the Q-value of the reaction m(o, j)i:
0il0:Eyj) _ 1+ 8o8m ks (2.129)
om(0, J; Eom) 1+ 6om 8i8j kf

The g, = 2I, + 1 are the ground state degeneracy factors. In an astrophysical
plasma, g; and g,, have to be replaced by Gy = ., gxn exp(—E,/kT), the so-called
partition functions, which also account for thermally populated excited states n (see
Fowler et al. 1967). Equations (2.1.27) and (2.1.29) lead to

I+ 51] g()Gm (Hom
I+ Som ngi Mij

3/2
<O'V>ij = ) exp(_Qo,j/kT)<0'V>mo . (2.1.30)

This relation is immensely useful in nuclear networks, since many unknown reac-
tion rates can be determined from the (known) inverse reaction. It also warrants a
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proper balance of forward and reverse rates, which is not guaranteed when different
predictions or even different sources are used.

2.1.7 Decays, photodisintegrations, lepton captures

So far, we have only looked at reactions of the type i(j, 0)m, where both projectile j
and target i are nuclei. Before we can perform full nucleosynthesis calculations, we
have to derive terms for the reactivity in nuclear decays, reactions between nuclei
and leptons, and photodissociations. In the classical picture, a nucleus can decay
to a state in a neighbouring nucleus lower than its initial state and emit an electron,
positron, or a-particle in the process (note: y-decays are included as part of capture
reactions which populate excited states in the compound nucleus, such as (n, y) or
(p,y) reactions). The Q-value again is the difference between the energy levels
of the initial and final states and is always positive for decays. The reactivity is
inversely proportional to the half-life:

ri = Mrzi:lini, (2]31)

T1/2
where i denotes the decaying nucleus. Under laboratory conditions, i.e., for decay
from the ground state only, A; is constant. However, in a stellar plasma, excited
states n with individual decay constants 4;, can be thermally populated, leading to

a temperature-dependent total decay “constant”

S a1 exp(=E,JKT)
) = = T+ Dexp—En/kT) (21.32)

For photodisintegrations, too, a temperature-dependent decay term can be intro-
duced, similarly to equation (2.1.32):

Tiy = diy,o(T)n; , with

1 © i(y,0, Ey)ES (2.1.33)
n2c2h3 fo exp(E,/kT)— 17"

This expression can be found by taking into consideration that photons follow a
Planck distribution and the relative velocity between target and projectile is the
speed of light. The photodisintegration cross section o;(y,0) can be determined
via detailed balance (see equation (2.1.28)) from the capture cross section of the
reverse reaction m(o, y)i. Finally, under special circumstances, nuclei will capture
electrons, positrons, or neutrinos. As those leptons have a smaller mass than nuclei
by several magnitudes, the nucleus can be considered at rest and the relative veloc-
ity becomes the velocity of the lepton. In the case of electron capture, the reaction
ise” +(Z,A) = (Z—-1,A) + v and the reactivity can be expressed as

ﬂi;y,o(T) =

Fie =N fa'e(ve)vedne
= Ai,e(pYe, T)n; .

(2.1.34)
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This time, the term 4;.(oY,, T) is temperature- and density-dependent, since n, =
PN4Y., where Y, denotes the number of electrons per baryon or electron fraction.
If the temperature is high enough for photons to produce electron-positron pairs
viay+y — e*+e7, then the positrons are in thermal equilibrium with photons and
electrons and a similar treatment can be utilized for positron capture (Fuller et al.,
1980, 1982, 1985):

et +(ZA) > (Z+1,A)+7. (2.1.35)

At very high densities, e.g., close to the proto-neutron star in a supernova, the
neutrino scattering cross section becomes large enough for neutrinos to become
thermalized. In this case, also neutrino and antineutrino captures can occur, which
are the reverse reactions of electron and positron captures, respectively. As such,
the neutrino capture rate A, 5(0Y., T') can be determined via detailed balance.

2.2 Nuclear Networks and Their Numerical Implementa-
tion

As stated before, the reactivity r is the number of reactions per volume and time. It
is therefore directly related to the change in number densities of the participating
nuclear species:

: on;
ri;j:_(%) :_(ﬂ) :+(‘9””) :+(‘9”_m) . 2.2.1)
ot b ot o ot o ot o

The above relation is valid for the reaction i(j, o)m, if the density stays constant,
i.e., the only change in number densities n; is due to the reaction. However,
for most astrophysical applications it is impossible to assume constant density,
especially for explosive events. Equation (2.2.1) then must be modified using
n; = pN,Y;, with Avogadro’s constant Ny = 6.022 x 10?* mol~:

(5]
C\ar), \or),

(2.2.2)
= pN A Y i+ nie .
Je
It is much more practical to use the abundance Y;, defined as
Yi=—0 pi= AP (22.3)

T pNiT ' pNa pNap’
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The balance equations (2.2.2) then become

1 6?11' Ti:j
= — || ==L =- Nalovyi VY,
A ( ot )p pNi  1+0;" AoV Vi
. 1
Y= 1 6iijA<0'V>i;jYin, (2.2.4)
Y,=Y, = T 6iijA(0'v)i;jYin.

The same procedure can be applied to decays, photodisintegrations, and lepton
captures which destroy nucleus i and produce nucleus m:

oo (31) __ i
PNy \ Ot P PNy
__ /ll‘n,' — LY (225)
pNA 151>
Y, = A4Y;.

Equations (2.2.4) and (2.2.5) describe the change in abundance due to a two-
particle reaction and a decay-type reaction, respectively. In a full nuclear network,
the nuclear species i can be affected by many different reactions, which are all
treated simultaneously. Therefore, Y; is the sum of all decays, two-particle and
three-particle reactions destroying or producing the species i:

i

N
’ z: i z: Jk
Y, = . N;-/lej+ s 1 +6jkpNA<O'v>j;ijYk
J J»

,~ (2.2.6)
Nj,k,l

202
N 1Y Y Y.
1+Ajkzp V) Y YY)

okl

In order to account for reactions where more than one nucleus of the same species is
involved, the coefficients N’ are introduced. Their sign also specifies if the reaction
destroys or produces species i. The last term in equation (2.2.6) describes three-
particle reactions. The factor A j; prevents multiple counting and is defined as

Ajkl = 6jk + 0 + (Sﬂ + 25ij . (2.2.7)

In a nuclear network, equation (2.2.6) needs to be solved for each isotope at each
timestep. Rewriting the set of differential equations in vector notation and replac-
ing the time derivatives with finite steps (Euler’s method) leads to

Vot = Vo hf(tnst, V) (2.2.8)

where n is the iteration index and & denotes the timestep. Nuclear rates usually
span over many different orders of magnitude, making the system of differential
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equations extremely stiff (Hix & Thielemann, 1999). Therefore, it is advantageous
to use the implicit method, i.e., evaluate the function f at #,; instead of #,. The
solution to this equation can now be found by moving all terms on the left-hand
side and finding the zeroes of the resulting term via the Newton-Raphson method,
which eventually requires the inverse of the Jacobian matrix

J= 1 w . (2.2.9)
At HY(r + Ar)

This is computationally the most time-consuming process while solving a nuclear
reaction network. However, a few considerations can help simplify the Jacobian
matrix substantially. In particular, any given nucleus will not react with all other
species, but will instead have only a few possible reaction channels, such as neutron
captures, proton captures, alpha captures, or photodisintegrations. Consequently,
the vast majority of matrix entries are zeroes, and the matrix is called sparse (see
figure 2.1). In our network (Winteler, 2011), we use the PARDISO matrix solver
(Schenk & Girtner, 2004), which in addition also makes use of the so-called com-
pressed sparse column format in order to store only the non-zero entries of the
Jacobian matrix.

Columns
0 100 200 300

Rows

Figure 2.1: Example of a sparse Jacobian matrix for a network with 300 nuclear
species. The black dots mark the non-zero entries. Figure from Hix & Thielemann
(1999).
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2.3 Nuclear Statistical Equilibrium

At large temperatures, the photons carry high energies and photodissociations be-
come so efficient that they establish an equilibrium with their respective inverse
capture reaction. If this condition is met throughout the nuclear chart, the whole
composition is in a state of nuclear statistical equilibrium (NSE). In such a global
equilibrium, the added chemical potentials of target and projectile are equal to
those of the reaction products, i.e.,

A(Z,N) = i, + A(Z,N = 1) = i, + i(Z - 1, N). 2.3.1)

Similarly, assembling a nucleus (Z, N) can be considered in equilibrium to com-
plete photodissociation into protons and neutrons. Therefore, its chemical potential
is equal to the added potentials of Z protons and N neutrons:

i(Z,N) = Zji, + N, . (2.3.2)

Since nuclei and nucleons obey Maxwell-Boltzmann statistics, the chemical poten-
tials are given by

d; = kT In +mic? (2.3.3)

pNA Y,’ 27Th2 312
G,’ m,'kT

which together with Eq. (2.3.2), and solved for the abundance Y(Z, N) gives

32 2\34-D
Y(Z,N) = Gzn(pNa)A™! AZ—A (i"ZT) exp (%) YNYZ. (234
For simplification, the proton and neutron masses are set to m,, in Eq. (2.3.4). The
factor Gz denotes the partition function and Bz is the binding energy of nucleus
(Z,N). Additional relations for the determination of Y, and Y, can be introduced,
namely the conservation of mass and the charge neutrality (i.e., the assumption that
the proton density n,, is equal to the electron density 7,):

ZA,-Y,- =1

i

ZZ,-Y,- -7,.
i

The second relation also serves as the definition of the electron fraction Y,. Us-
ing Equations (2.3.4) & (2.3.5), the individual NSE abundances can therefore be
directly calculated in dependence of temperature, density, and electron fraction
(provided that the partition functions and binding energies are known), and it is
not required to solve the full reaction network. Furthermore, some trends can be
seen in Eq. (2.3.4): in high temperature conditions, the term (kT)~2“~D dom-
inates, and nuclei with small mass numbers are preferred. High densities, on the

(2.3.5)
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other hand, favour nuclei with large mass number because of the p~! term. When-
ever these two terms are equally strong, the term exp(Bzyk~'T~!) guarantees that
tightly bound nuclei are most abundant. Those are found around Z = 26 (generally
referred to as iron group nuclei).

2.4 Nuclear Mass Models

Nuclear masses are an important ingredient for nuclear networks, as the Q-value
can be determined solely by comparing the summed-up binding energies of the
products with those of the initial reactants. For neutron captures, for example,
the neutron separation energy S, corresponds to the difference in binding energies
between the isotopes (Z, N) and (Z, N + 1). The binding energy B is directly linked
to the nuclear mass mzy in the following way:

B(Z,N) = (Zmy, + Nm, — mzy)c* . (2.4.1)

Wherever possible, experimentally determined values are taken for the nuclear
masses. However, most of the neutron-rich isotopes that lie on the r-process path
cannot (yet) be produced under laboratory conditions, and no experimental data
are available for them. For these nuclei, theoretically predicted masses have to be
used. Nuclear mass models usually comprise several free parameters which are
fitted on existing (experimental) mass data. From there, an extrapolation is made
for the nuclei with unknown masses. Moreover, mass models make predictions
for the internal nuclear structure of nuclei which cannot be studied experimentally.
Approaches for the development of mass models include:

e parametrized models with empirical shell terms whose parameters are fitted
to experimentally known masses

e macroscopic-microscopic theories including corrections for shell closures
and pairing

o fully self-consistent microscopic theories derived from nucleon-nucleon in-
teraction.

2.4.1 The Bethe—Weizsicker Mass Formula

The Bethe—Weizsdcker mass formula (Bethe & Bacher, 1936) provides a method
to derive the binding energy (and with it, the effective mass) of all nuclei by means
of some basic physical considerations. First, consider the bound nucleons sitting
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in a potential well with depth vy. If the nucleus is in its ground state, the energy
of the least bound nucleon corresponds to the Fermi energy Ef. It can be shown
that the average energy of the bound nucleons in a nucleus is £ = 3/5Er. Thus,
each nucleon has an average binding energy of vy — E, and in order to unbind an
ensemble of N nucleons, a total energy of E = N(vo — E) is required. This means
that for a nucleus with A = N + Z nucleons, the first and most important term for
the total binding energy can be written as

By=(o-E)A=ayA. (2.4.2)

Note that ay is an approximate constant for all nuclei. The next term is a correction
for the nucleons close to the surface of the nucleus. They are not surrounded by
other nucleons and are therefore less bound. The surface term reduces the total
binding energy accordingly:

Bs = —a,A*? . (2.4.3)

Since the mass number A is proportional to the volume of the nucleus (A o V),
the surface term is proportional to the surface of the nucleus. So far, Coulomb
repulsion between the protons has been neglected. Obviously, this effect decreases
the effective binding strength. We can treat the nucleus as a uniformly charged
sphere with electrostatic energy Ecoy = 3/5 Q?/R, where Q = Ze and R o« A!/3.
This gives

Bc =3/572°A7' (2.4.4)

for the Coulomb term. In fact, since every proton only experiences the repulsion of
the other Z— 1 protons, Z> should be replaced by Z(Z—1). However, for the purpose
of obtaining an approximative mass formula, usually the simpler expression Z? is
used. The next term describes the quantum-mechanical notion that a nucleus with
N = Z is energetically more bound than an asymmetric one. In Equation (2.4.2)
we assumed that all nucleons have an average energy of £ = 3/5 Er. For N # Z,
however, the Fermi energy is not the same for neutrons and protons. Instead, we
should rewrite Equation (2.4.2):

By = N(vo — En) + Z(vo — Ez)
=Nvo—-E)+NE -En)+Z(vo— E)+ Z(E — E»)
=ayA+ AE — NEy - ZE,
=avA + By, .

(2.4.5)

Plugging in the expressions for Ey = 3/5 EFy and E; =3/5 EFz and expanding
in a Taylor series at A/2 one gets

N —Z)?
Bsym:_asym—( 2 ) , with

52 ( 3\
aSyng_mu(E) .

(2.4.6)
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Finally, as both neutrons and protons are fermions with spin 1/2, they can form
pairs with a total spin of 0 or 1, with the former case increasing the total binding
energy. Therefore, nuclei with an even number of protons and an even number of
neutrons have all their nucleons stored in pairs and, as a consequence, are stronger
bound. In contrast, a nucleus with an odd-odd configuration has a decreased sta-
bility, since one proton as well as one neutron do not find a pairing partner. The
pairing term B,,;, contributes around 12/ VA MeV. Thus,

[P
+3 if N even & Z even
Bpuir =10 if A odd (2.4.7)
1 .
~Va if Nodd & Z odd .
The sum of all these terms generally gives a good estimate for the binding energy
of all nuclei:

(N -2y

B(A,Z) = ayA — asA* — acZ* A7 — ay, N

+ Bpair - (2.4.8)
The coefficients are determined by comparing to experimentally known binding
energies. A common choice for the coefficients is

ay = 16 MeV, ag = 18.5MeV, ac =0.72MeV, ayy, =23.4MeV. (2.4.9)

Equation (2.4.8) demonstrates several fundamental characteristics of nuclei through-
out the nuclear chart. First of all, the symmetry term establishes that N = Z nuclei
are energetically favoured. However, as Z increases, there is a deviation from the
N = Zrule as the Coulomb term becomes more important (since Z increases pro-
portional to A, therefore B¢ o A3, while the leading term By o A). This means
that stable nuclei with higher masses generally have more neutrons than protons.
Furthermore, from the pairing term we can see that nuclei with even proton and
neutron numbers are stronger bound than those with odd Z and N. In fact, above
Z = 7 most odd-odd nuclei are S-unstable, decaying into an even-even nucleus.
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2.4.2 The Finite—-Range Droplet Model

The Bethe—Weizsicker model introduced in the last section is useful to discuss
the basic terms that have an influence on the binding energy (and thus the mass)
of a nucleus. In reality, however, many more structural effects need to be taken
into account in order to obtain an accurate mass model. For instance, shell effects
have a large influence on the nuclear potential energy. Moreover, the shape of the
nucleus is also important, and for many nuclei the ground-state configuration is not
spherical. Mass models that are used in nowadays nucleosynthesis calculations are
therefore much more complex than the formalism discussed in the last section.

The Finite-Range Droplet Model (FRDM) is a macroscopic-microscopic approach.
Here the macroscopic potential energy term is based on an improvement of the
droplet model (Myers & Swiatecki, 1969, 1974), while the microscopic corrections
are calculated using Strutinsky’s method (Strutinsky, 1967, 1968) in a realistic,
diffuse-surface, folded Yukawa single-particle potential. The total nuclear potential
energy can be written as the sum of the macroscopic and the microscopic energy
terms:

Epol(Z,N, shape) = Epuc(Z, N, shape) + Eni(Z, N, shape) . (2.4.10)

For a given deformation &, it is convenient to define the microscopic term as fol-
lows:

Enic(Z,N, &,) = Es+p(Za N,&4) + Epnac(Z,N, £4) — Epac(Z, N, Ssphere) , (241D

where E, ), is the term accounting for the shell and pairing corrections. This allows
equation (2.4.10) to be rewritten as

Epot(Z, N, &4) = Enac(Z, N, 8sphere) + Epic(Z,N, &) . (2.4.12)

The terms introduced in the Bethe—Weizsidcker mass formula (in section 2.4.1)
reappear in the macroscopic term of the FRDM in slightly different form, but with
the same dependencies from A. In its current form (Mdller et al., 2016) it reads
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ZM, + NM, summed-up mass excess of protons and neutrons
- 1
+|-a1 +J6 - EKE A volume energy
9J2 2B
+ (azBl +7 56 B—S)Az/ 3 surface energy
1
+a;A'P By, curvature energy
+ apA° A° energy
Z2
+c Im& Coulomb energy
—,Z*A'PB, volume redistribution energy
7413
- a;m Coulomb exchange correction
B,B
- ¢5Z? IV; . surface redistribution energy
1
22
+ fOX proton form-factor correction to the Coulomb energy
—c,(N-2) charge-asymmetry energy

+ W(|I| + {l/A

0

, Z and N odd and equal
, otherwise

Wigner energy

+A, + A, —6,, ,ZandN odd

+A
D R
+A,

+0

— a, 2%

,Z odd and N even
,Z even and N odd
,Z and N even

average pairing energy

energy of bound electrons

(2.4.13)
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Here M), and M, are the proton and neutron mass excess, ai, a2, a3, ap, d.;, K, J, Q,
and ¢, are all coefficients and constants that are determined from experimental data,
while ¢y, ¢2, ¢4, and ¢5 are physically motivated constants:

3 2
= 5r0
. :L(Lﬁ)cz
27 336\7 k)7
s (2.4.14)
C4=z(§) 1,
cszécﬁ

Furthermore, W is the Wigner constant (with a value of 30 MeV) and I = (N-Z2)/A
is the relative neutron excess. The form factor coefficient fj is defined as

1(145\ 1
Jo=-3 (—) —, (2.4.15)
g\48)

where r, = 0.80 fm is the proton root-mean-square radius and ro = 1.16 fm is the
nuclear-radius constant. The average bulk nuclear asymmetry ¢ is given by

-1
- 3¢ Z BB 9J 1 B?
5—(1 60 A" B, )(1+————) (2.4.16)

and the average relative deviation in the bulk of the density € by

_oAl/3 B Z _
8_(Ce ¥A —2a 2m+L(5 +C1A4/3B4)K (2.4.17)
The density-symmetry constant L, the constant C, and the range constant y in the
exponential term are again adjusted to experimental data. The quantities B and
B3 are the relative generalized surface energy and the relative Coulomb energy,
respectively:

2/3 - —lr-r’|/a
ff Ir =) ¢ &Erd’r,
772 2(14 a |lr-rl/a
-5/3 3.3 ’
B3 = 152A / ff d d [ (1 + lu)e_lr_rll/aden] s
32n I’ v Ir—r'| 2 Agen

where a is a range constant for the Yukawa potential and the diffuseness constant
agen 18 a constant with a slightly different value than a used for the diffuse-surface
nucleus. Both B and Bj are calculated for a spherical volume with nuclear radius
Ry = roA'/3. In order to describe the response of the nucleus to a change in size

(2.4.18)
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(e.g., compression), the derivatives of B; and Bz have already been introduced
above as B, and B4. They are defined as

|
By = —

2x0

—(x 2Bl)] ;x=R/aand x¢ = roAl/g’a_1
dx X=Xxq

J (B (2.4.19)
3 -
By = yz[ ( ):| ;¥ = R/agen and yo = r0A1/3adeln .
dy y=Yo
Further energy terms used in Eq. (2.4.13) are
A 2/3
B = f as surface energy,
47rr
154748 ,
B, = o 4 f W(r)dsS neutron skin energy,
225A72
B, = f [W( ) dS surface redistribution energy,  (2.4.20)
64r3r 6
A3 1
By = Sare f (1?1 + R_z)dS curvature energy,
157547713
B, = — [W(r) d3r volume redistribution energy,
647°r]
where
1
W(r) = f ~d’r
vir—r| (2.4.21)
W)= W) -Ww
with
W= f W(r)dr . (2.4.22)
47rr
The pairing energy terms in equation (2.4.13) are given by
- TmacBs
An = N1/3 s
- TmacBs
A= (2.4.23)
_h
o = BAT

where 7, = 4.80 MeV is the average pairing-gap constant and & = 6.6 MeV is
the neutron-proton interaction constant.

The microscopic correction term Ej, ,(Z, N, shape) from equation (2.4.11) can be
split up into individual shell terms and pairing terms for neutrons and protons,
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respectively:

Eg,,(Z,N, shape) =E, (N, shape) + E' (Z, shape)

shell
+E:l)air(N’ Shape) + Ep (Z, Shape) .

pair

(2.4.24)

For the shell correction terms Strutinsky’s method is used (Strutinsky, 1967, 1968):

N
ESyen(N, shape) = Z ei — E"(N, shape) , (2.4.25)
i=1

where ¢; are the calculated single-particle energies for all neutrons and E(N, shape)
is the smooth single-particle energy sum obtained by means of Strutinsky’s method.
The shell correction term for the protons is calculated analogously. The pairing
correction term has a similar form, as it is the difference between the pairing cor-
relation energy and the average pairing correlation energy, the detailed formula of
which can be found in Moller et al. (2016).

The FRDM is not well-suited to describe large deformations, and therefore cannot
give reliable predictions on fission data (e.g., fission barriers, scission points, etc.).
In order to obtain these data (consistent with the FRDM), it is necessary to make
use of the related finite-range liquid-drop model (FRLDM) which has a larger av-
erage error through the nuclear chart, but is designed to treat deformed nuclei due
to a different parametrization within the folded Yukawa potential.

The FRDM(2012) has a substantially lower theoretical error compared to previous
versions, as it has seen a decrease in error from o = 0.6140 MeV in 1992 to
o =0.5595 MeV (Moller et al., 2016) when both are compared to the atomic mass
data set AME2003 (Audi et al., 2003). If not specified, our results are obtained
using reaction rates based on the FRDM (1992) model.

Figure 2.2 shows a comparison of the FRDM(2012) (top) and FRDM(1992) (bot-
tom) mass predictions compared to the AME2012 atomic mass evaluation. It is
evident that the error has decreased for the newer model, especially for the heavier
nuclei above the N = 50 neutron shell closure.

2.4.3 The Extended Thomas Fermi Model with Strutinsky Integral

The Extended Thomas Fermi Model with Strutinsky Integral (ETFSI) model is
an approximation of the Hartree-Fock-Bogoliubov (HFB) model. Like HFB, it
assumes a Skyrme-like nucleon-nucleon interaction. The shell corrections are
derived from single-particle levels corresponding to a Skyrme force by use of a
Strutinsky integral method, and the pairing correction is calculated for a §-function
pairing interaction by use of the Bardeen-Cooper-Schrieffer (BCS)-approximation



24 CHAPTER 2. NUCLEAR NETWORKS
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Figure 2.2: Theoretical mass predictions from the FRDM(2012) (top) and the pre-
vious FRDM(1992) version (bottom) compared to the experimental mass database
AME2012. Note that the parameters of the FRDM(2012) have been adjusted to
the AME2003 evaluation, and for the FRDM(1992) an even earlier version (i.e.,
AME1989) was used. Figure from Moller et al. (2016).



2.4. NUCLEAR MASS MODELS 25

(Bardeen et al. 1957; in contrast to the Bogoliubov approximation which is used in
the HFB model). For the initial model, the reported error was 0.736 MeV (Abous-
sir et al., 1995). The ETFSI model was established specifically to predict masses
of r-process nuclei and although it is an approximation to the HFB model, it is not
significantly less accurate, but much more efficient. The Skyrme force describes
the interaction between two nucleons and has the form

vij = to(1 + xoP5)(F; — F})

+ 1(1 + X1 Py) —={p;,6(7i = 7}) + h.c.}

1
2h2
1 - > N
+ (1 + szg)ﬁplj - O(ri — r)pij (2.4.26)
l - e —> b d
+ 613(1 + X3P Moy, (7h) + pg; PY (77 = 1))

+ %WO((E +0)) - Pij X 6(F; — 7)) pij-

Here p;j = —(il/2)(v; — V) is the relative momentum, P, = 1/2(1 + o - 02)
is the two-body spin-exchange operator, ¢ is the index for n or p, depending on
whether the term in question relates to neutrons or protons, and p,(7) is the density
of the corresponding species at 7. The quantities #;, x;, y and Wy are parameters that
are fitted to existing mass data, although a physically motivated relation between
(t1, x1) and (f2, x2) can be found.

The pairing force is described by the following equation:

Vpair(’_')ij) = Vﬂé‘(’_}ij)’ (2.4.27)

The single pairing-strength parameter V; is also fitted to mass data, thus leading
to nine independent parameters in the whole model. The initial ETFSI model has
also been updated, with the newer version called ETFSI-2.

2.4.4 Quenching Effect at Shell Closures: the ETFSI-Q Model

It has been found in HFB calculations that the shell effects associated to magic
neutron numbers are quenched, as the drip line is approached. This can of course
have large consequences for r-process calculations, as the r-process path runs close
to the neutron drip line. In order to account for this effect, the ETFSI model has
been modified and the result has been labelled ETFSI-Q (Pearson et al., 1996).
Here, instead of

Eior = EETF + Enic (2.4.28)

the total energy is calculated by

Etot = EETF + (2429)

——FE,ic,
q(N,z) ™
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where 4 c
d(N,Z) = 1 +exp [(Z + b)N +o+ d] (2.4.30)

is a quenching factor with fitting parameters a, b, c and d. The introduction of a
quenching factor effectively reduces the deformation energy of highly neutron-rich
nuclei, smoothing out troughs in the abundance distribution that arise from highly
deformed neutron-rich nuclei in the ETFSI mass model.

2.4.5 The Hartree-Fock-Bogoliubov Model

The ETFSI model discussed in the previous section is based on the Hartree-Fock-
Bogoliubov (HFB) model (see Goriely 2015b and references therein), which also
relies on the skyrme force presented in equation (2.4.26). The exact HF energy Egp
depends on both the kinetic-energy density 7, and the spin-current density J_;, both
of them in turn depending on the diagonal (p,(7)) and the off-diagonal (p,(7, 7))
entries of the density matrix pyr. While the ETF method approximates 7, and

J_ZI by expressions 7, and J_ZI that only depend on the diagonal parts of the density
matrix, the off-diagonal terms are included in the HFB approach, rendering this
method more precise, but also computationally much more expensive. Although it
is labelled a fully microscopic model, it also makes use of some phenomenological
terms that are fitted to existing experimental data in order to decrease the average
error. The HFB model is updated and improved regularly. The newest updates are
called HFB-28 and HFB-29 (Goriely, 2015b), but in this work we will make use
of the openly available version HFB-14 (Goriely et al., 2007). A comparison of

30

M(FRDM)-M(HFB-14) .
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Figure 2.3: Differences in mass predictions between the FRDM and the HFB-
14 model in dependence of neutron number (left) and neutron separation energy

(right). The discrepancies grow as the neutron-drip line is approached. Figure
from Goriely et al. (2007).
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mass predictions between the FRDM and HFB—14 models is shown in Figure 2.3,
revealing huge differences for nuclei far from stability and underlining the large
uncertainties that are still present in r-process calculations.
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Chapter 3

Galactic Chemical Evolution
(GCE): A Short Overview

Whenever baryonic matter is ejected in an explosive astrophysical event, the (lo-
cal) interstellar medium (ISM) becomes enriched with chemical elements that have
been synthesized either during stellar evolution or in the explosion itself. New-
forming stars in that region will then inherit the composition of the ISM at the time
of their birth and therefore carry in their atmospheres a signature of the local nu-
cleosynthesis history. By observing and analysing their stellar spectrum, we can
obtain evidence of past events in the vicinity of the star and an estimate of its age.
Stars of the first generation started with a composition originating from primordial
nucleosynthesis, i.e., hydrogen, helium, as well as small amounts of lithium and
beryllium. Elements with higher mass numbers are products of stellar evolution or
explosive events (Burbidge et al., 1957; Cameron, 1957), and are mixed into the
ISM after a star’s death. The relative abundance of these heavier elements in a star
is therefore an indication of the number of explosive events that happened prior to
the star’s birth in its vicinity. Historically, the added mass fraction of all elements
with Z > 2 is called metallicity. Since iron is produced abundantly in many events
and is easily detectable in most stars, often the star’s iron-to-hydrogen ratio is used
as a measure for its metallicity. We will introduce here a notation that is commonly
used:

Y, Y,
[A/B] = log,, (Y—z) — log; (Y—’;) , (3.0.1)
star o

where A and B are any two elements (or isotopes) whose abundances are known
both for the observed star and the sun. Stars with [Fe/H] = O are considered to have
solar metallicity, and older (earlier-born) stars generally have a negative [Fe/H]
value. Note, however, that [Fe/H] is not a perfect measure of a star’s age, as it is
also dependent on the frequency of explosive events in the star’s galactic neigh-
bourhood.

29
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3.1 Linking the Different Astrophysical Nucleosynthesis
Sites to Observations

Iron is produced in large amounts in supernovae (SNe) type la and core-collapse
supernovae (CCSNe), which makes it a suitable representative of metallicity. Simi-
larly, europium (Eu) is often used in order to identify the level of r-process material
concentration in a star’s atmosphere, as it is almost exclusively produced in the r-
process. Plotting [Eu/Fe] against [Fe/H] therefore reveals the history of r-process
material enrichment in the galaxy, leading to valuable insights concerning the fre-
quency and appearance timescale of r-process sites.

Figure 3.1 shows observed [Mg/Fe] and [Eu/Fe] values in dependence of metallic-
ity for stars from several large-sample surveys. Magnesium is chosen as a repre-
sentative of a-elements because its abundance is known for many metal-poor stars.
It is evident that [Mg/Fe] has only a small star-to-star scatter even at low metal-
licities, indicating that magnesium and other a-elements are often ejected in the
same events as iron, namely CCSNe. The dip close to [Fe/H] = 0 is attributed to
the emergence of SNe Ia, which appear late in the galactic history and eject a large
amount of iron. While the low scatter in the Mg data advocates for a simultane-
ous production of Mg and Fe, this is clearly not the case for Eu, as the lower part
of Figure 3.1 shows. At low metallicities ([Fe/H] ~ —3) there is a large scatter
with only a few stars rich in r-process material, which argues for a rare r-process
site. Only with increasing metallicity the range of [Eu/Fe] values (indicated by the
black dashed lines) becomes narrower. Again, the dip towards [Eu/Fe] = 0 as the
metallicity increases is related to SNe Ia. Models of GCE attempt to reproduce the
observed abundance ratios over the history of the galaxy, testing many parameters
such as star formation rates, individual frequencies of different explosive events,
etc. Most models, however, use a simplified approach assuming instantaneous
mixing of the ISM in the whole galaxy (see, e.g., Chiappini et al. 2001; Spitoni
et al. 2009; Matteucci et al. 2014). As a consequence, stars born at the same time,
but in different locations in the galaxy are always treated as if they inherit the exact
same composition of the ISM and these models can only be used to study trends
(such as the red line in Figure 3.1b). Argast et al. (2004) introduced a model using
an inhomogeneous mixing treatment of the ISM. Further developed by Wehmeyer
et al. (2015), this model is also able to successfully reproduce the star-to-star scat-
ter at low metallicities (see Figure 3.2). By varying the frequency and the Eu yield
of r-process events in these models, a lot can be learned about the nature of the
r-process site(s). Neutron star mergers, in particular, are expected to appear rel-
atively late in the galactic history, as they require both stars in a binary system
to explode as a supernova (polluting the surrounding ISM with their SN ejecta in
the process) and the remaining neutron stars to spiral inwards, losing energy by
means of gravitational wave emission, until they finally collide. Therefore, it is
difficult to explain the high europium yields in some metal-poor stars with nucle-
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Figure 3.1: Values for (a) [Mg/Fe] and (b) [Eu/Fe] in dependence of [Fe/H] for stars
observed in large-sample surveys. The different colours indicate different sources
(see caption for Figure 14 in Sneden et al. 2008). The red line in (b) is the least-
square fit to the [Eu/Fe] data and the black dashed lines represent the approximate
maximum and minimum values for the stars.

osynthesis in NSMs. A possible solution to this problem is an additional r-process
site which contributes primarily in the young galaxy. Magneto-hydrodynamically
driven (MHD) SNe seem to fulfil these requirements: Simulations have shown that
the successful ejection of material in the typical polar jets needs a high rotational
velocity and large magnetic fields in the progenitor, conditions which are more eas-
ily realized in stars with low metallicity (Woosley & Heger, 2006). MHD SNe and
their credentials as r-process site candidates are discussed further in section 7.3.
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Figure 3.2: GCE model calculations by Wehmeyer et al. (2015) for [Eu/Fe]. The
red crosses indicate values for observed stars with their error bars. The model stars
are represented by the blue dots. Here, MHD SNe and NSMs are assumed to be the
only r-process sites, with probabilities of Pys = 3.8 X 1074, and Pypp = 1073,
respectively (i.e., the corresponding fractions of massive stars end up in NSMs or
MHD SNe). The delay time needed for the two neutron stars in a binary system to
spiral inwards is assumed to be 10 Myr.



Chapter 4

The r-Process

About half of the heavy elements beyond iron are produced by the rapid neutron
capture process (r-process). It is known to operate in an environment with ex-
tremely high neutron densities and therefore proceeds along a path in the nuclear
chart close to the neutron-drip line. Due to the high neutron density, it is charac-
terized by fast neutron captures in comparison to S-decays. When the supply of
free neutrons is depleted, the extremely neutron-rich isotopes undergo a series of
B-decays to stability. The basic mechanism was already suggested by Burbidge
et al. (1957) and Cameron (1957), who recognized that, in order to produce some
of the stable nuclei on the neutron-rich side in the nuclear chart, fast neutron cap-
tures with subsequent 8~ -decays are the only possibility. Figure 4.1 demonstrates
this concept on the example of a small excerpt of the nuclear chart. The contri-
butions from the different nucleosynthesis processes towards the abundances of
isotopes are indicated by the letters p, s, and r for each isotope. On the left-hand
side the chemical elements are given and the mass number is also shown for each
isotope. The well-known path of the slow neutron capture process (s-process) is
indicated by blue arrows. The neutron-rich isotopes '**Xe and '*6Xe are not pro-
duced by the s-process, because '3*Xe is unstable against 8~-decay with a half-live
of the order of a few days, much shorter than the average neutron-capture timescale
in the s-process. In fact, 3*Xe and '3°Xe can only be produced when extremely
neutron-rich nuclei decay towards stability, illustrated by the red dotted arrows.
As a consequence, '3*Ba and '3®Ba are shielded from the decaying neutron-rich
isotopes and are therefore s-only isotopes, i.e., they are produced exclusively by
the s-process. The isotopes '*°Ba, 13?Ba, and '3®La cannot be produced by either
the s- or the r-process. Instead, they are synthesized in a process operating on
the neutron-deficient side of the nuclear chart (see e.g., Woosley & Howard 1978;
Rauscher et al. 2002; Arnould & Goriely 2003; Frohlich et al. 2006; Travaglio et al.
2011 for the synthesis of p-nuclei).
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Figure 4.1: Schematic illustration of the working mechanisms of s- and r-process.
Isotopes that are produced exclusively from one neutron capture process (p-only,
s-only or r-only isotopes) play an important role in disentangling the contributions
from each process. See text for further explanations (Figure from Sneden & Cowan
2003).

The r-process path proceeds through the very neutron-rich regions of the nuclear
chart. Depending on the neutron density 7, and the temperature, it can even reach
the neutron drip-line, i.e., where the neutron separation energy S, becomes nega-
tive and neutron saturation is reached. Whenever a neutron shell is closed, however,
both neutron capture cross sections as well as S-decay rates become significantly
slower. As a consequence, the reaction flux is held up at the closed neutron shells
and matter accumulates in the isotopes closest to stability, which act as waiting
points along the reaction path. As the supply of free neutrons decreases, the 1-
process breaks down and the isotopes decay to stability. Since S-decays do not
change the mass number A of a nucleus and r-process yields are often shown in
dependence of A, the abundance distribution does not change greatly after this mo-
ment, which is referred to as the freeze-out of the r-process. In the abundance
pattern of nuclei produced in the r-process, distinct peaks are visible which can be
attributed to the closed shell waiting points. Figure 4.2 shows the correlation of the
abundance peaks with the points where the reaction path (magenta line) meets the
closed neutron shells (at N = 50, 82, 126).
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Figure 4.2: Timescales in [s] for §~-decays in the nuclear chart according to the
FRDM (1992). Stable nuclei are coloured in black, stable nuclei that are produced
by the r-process in magenta, and a typical r-process path is indicated by the ma-
genta line. The observed solar system r-process abundances are plotted in the inset
(scaled such that Si = 10°). Figure from Moller et al. (1997).

4.1 Hot and Cold r-Process

In an isotopic chain, S, becomes smaller with increasing neutron number N (not
accounting for the odd-even staggering). This means that, for large enough temper-
atures, photons are energetic enough to dissociate neutrons and establish (n,y) —
(y,n) equilibria in each isotopic chain. For this hot r-process scenario, it is rel-
atively simple to determine the isotopic abundances, since the abundance ratio
Y(Z,A+1)/Y(Z, A) depends only on the (velocity-integrated) neutron capture cross
section (ov),(A) on nucleus (Z, A) and the photodisintegration term 4, ,,(Z, A + 1)
as well as the neutron density n,,:

Y(Z,A+1)  {0viny(A)
YZA) L. ZA+D) "

4.1.1)

A relation between (ov),,(A) and A, ,(Z, A+1) can be found using equation (2.1.30):

Ayn(A+1) =

2G(Z, A) ( A )3/2 my kT
GZA+D\A+1 2nh2

(4.1.2)

3/2
) (TVIny(A) exp[=S (A + 1)/kT],
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which together with equation (4.1.1) gives
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Y(YZ(’?’Z)D = Gz(é’(‘;’;)l) (AZ 1) (i”ZT) 1y expIS w(A + 1/KT]. (4.13)
Using the above relation, isotopic abundances can be calculated if n,, T, and the
neutron separation energies S, are known. The most abundant nuclei in each iso-
topic chain are so-called waiting points, as their S-decay half-lives determine at
which timescale the next isotopic chain is populated. Following the prescriptions
above, i.e., assuming (n, y) — (y, n) equilibrium for each isotopic chain with subse-
quent S-decays of the most abundant nuclei leads to the waiting point approxima-
tion, which had been applied in early r-process calculations. If the temperature is
not high enough to establish an (n, y) — (y, n) equilibrium, the r-process is catego-
rized as cold.

4.2 Possible Sites of the r-Process

Although the basic mechanism of the r-process and its requirements are known,
we still lack direct observations of an astrophysical event as a confirmed r-process
site. One of the key properties in r-process calculations is the initial neutron-to-seed
ratio Y,/ Yseeq, where all nuclei above a certain mass number (e.g., A > 16) carry
the label “seed”. Knowing the average mass number of the initial composition
(A);, it is possible to estimate the final average mass number (A); using only the
neutron-to-seed ratio:

<A>f =(A)i+ Yn/Yseea - “4.2.1)
Note that nucleons and nuclei up to A = 4 do not count towards (A).

Several factors have an impact on Y,/ Y..s. Obviously, in order to obtain a large
ratio, a high neutron abundance is beneficial. Since we always assume charge neu-
trality for our nucleosynthesis calculations, a high Y,, corresponds to a low electron
fraction Y,. On the other hand, Y4 is low in environments with high entropy S
(as the photons dissociate some of the existing seed nuclei into nucleons and -
particles) and/or short dynamical timescales 74y,, resulting in an a-rich freeze-out.

It has long been thought that the neutrino-driven wind in core-collapse supernovae
could provide the conditions needed for the operation of the r-process. In addi-
tion to the high entropies encountered in such winds, interactions of material with
neutrinos have an effect on Y, via

Vo.+n—-p+e
¢ p 4.22)

Ve+p—on+e'.
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Otsuki et al. (2000) calculated the r-process requirements with respect to entropy
per baryon and the dynamical timescale of the expansion (see Figure 4.3) for v-
driven winds and the combinations that would result in the production of the second
and the third r-process peak material, respectively. They define 74y, as the time it
takes for the expanding material to cool down from a temperature of 7 = 5x10° K
toT> = T /e ~ 1.84x 10° K, which they correlate to the time span where new seed
nuclei can be produced via the triple-a reaction and subsequent a captures:

T dr
Tdyn = f I (423)
T

.U

where u is the radial component of the four-velocity in the Schwarzschild geom-
etry. However, more recent hydrodynamic simulations suggest that the required
conditions cannot be met in this scenario (see e.g., Arcones et al. 2007; Fischer
et al. 2010; Hiidepohl et al. 2010; Arcones & Janka 2011).
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Figure 4.3: Conditions necessary to synthesize the second (lower band) and the
third r-process peak (upper band) with respect to entropy per baryon and the dy-
namical timescale 74y, according to Otsuki et al. (2000). The lines connecting the
grid points refer to cases with equal neutrino luminosity L (vertical lines) and equal
neutron star mass (horizontal).

Other sites related to regular core-collapse supernovae have been proposed, among
them shocked surface layers in an O-Ne-Mg progenitor (Ning et al., 2007; Eichler
et al., 2012) and a neutrino-induced r-process in the He shell at low metallicities
(Epstein et al., 1988; Banerjee et al., 2011), both of which could host an r-process
in only slightly neutron-rich conditions due to the low amount of seed nuclei. There
are however considerable problems associated to these sites, as the conditions are
not realized in hydrodynamical simulations (high velocities in the shocked surface
layers), or the site is only viable for low metallicities and does not lead to a good
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reproduction of the solar r-process abundance pattern (in the case of the v-induced
r-process in the He shell).

Magneto-hydrodynamically driven (MHD) SNe (Winteler et al., 2012; Képpeli,
2013) are a rare class of CCSNe, which eject matter in two relatively neutron-
rich polar jets. This scenario looks promising, especially as an early producer of
r-process material in a young galaxy. It is discussed further in section 7.3.

A natural r-process site seem to be binary neutron star mergers (NSMs) and merg-
ers between a neutron star and a black hole, since a lot of neutron-rich material
becomes gravitationally unbound in these high-energetic collisions. Hydrodynam-
ical simulations of these events confirm that the dynamical ejecta are extremely
neutron-rich ((Y,/Yseeq)i = 1000). In this environment, the reaction path runs
along the neutron drip-line and the resulting abundance pattern is very robust with
respect to the exact hydrodynamic evolution. Figure 4.4 illustrates this fact on the
example of a few trajectories of a NSM with two 1.4 Mg neutron stars from the set
of Rosswog et al. (2013).

abundance

120 140 160 180 200
A

Figure 4.4: Final abundance distributions from different trajectories belonging to a
neutron star merger of two 1.4 Mg neutron stars from Rosswog et al. (2013). The
robustness of the nucleosynthesis results are caused by the extremely high neutron-
to-seed ratios, which guarantee that the reaction path runs close to the neutron drip-
line. The black dots represent the solar r-process abundances reported in Sneden
et al. (2008)

While the high neutron-to-seed ratio guarantees the reliable production of r-process
nuclei up to the heaviest stable nuclei, it also poses some challenges to nucleosyn-
thesis network calculations. In particular, there are large uncertainties still concern-
ing the masses of the neutron-rich nuclei involved in the reaction path, and some of
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the features in the abundance pattern are sensitive to the choice of theoretical mass
model. Furthermore, the nature of nuclear fission for these highly neutron-rich nu-
clei is not yet fully understood and there exist large differences in predictions of
the fission products.

In addition to the dynamical ejecta which become unbound during the collision,
neutron-rich material can be ejected from the accretion disk in the aftermath of a
NSM by a neutrino-driven mechanism. Although Y, appears to be larger, simula-
tions show that it is still sufficiently low to account for an r-process producing at
least the r-nuclei with small mass numbers.

The robustness of nucleosynthesis results in NSMs agrees very well with obser-
vations of metal-poor stars, which show that the heaviest r-elements are produced
in a pattern that is remarkably similar from star to star. A breakdown of r-only
abundances in six metal-poor stars from the galactic halo is shown in Figure 4.5.
Different symbols are used for the different stars and their abundances are vertically
offset for display purposes. The solar system r-only abundances are represented by
the blue lines. In the lower parts of Figure 4.5 the individual abundance offsets (b)
and offsets averaged over all six stars (c) are shown. In all cases the offsets are cal-
culated with respect to the solar system abundances and normalized to zero at Eu.
For Z > 56 the relative abundances are in very good agreement to the solar abun-
dances, arguing for the robust nature of the r-process producing these elements,
and consequently supporting neutron star mergers as a viable r-process site.

However, four of the stars discussed here have metallicities [Fe/H] ~ —3, which
means that they must have formed very early in the history of the galaxy. Neutron
star mergers appear relatively late in the timeline of nucleosynthesis events, posing
a problem to explain r-process abundances in these old stars.

Recently, a high-energetic gamma-ray burst event has been observed, followed by
a light curve that can be attributed to the radioactive decay of nuclei produced in
an r-process (Tanvir et al., 2013; Piran et al., 2014; Grossman et al., 2014). This
discovery of a ‘macronova’ (or ‘kilonova’), together with the very recent first-
time measurements of gravitational waves (Abbott et al., 2016), pushes the door
wide open for future observations of binary neutron star mergers and a possible
confirmation of NSMs as an r-process site.
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Figure 4.5: (a) Abundances of r-only elements in six galactic halo stars and com-
parisons to the solar system r-only abundances (blue lines), scaled to the respective
Eu value. The vertical offset is for display purposes only. (b) Individual deviations
of the stellar abundances from the solar r-only abundances reported in Simmerer
et al. (2004). (c) Average deviations with respect to the Arlandini et al. (1999) so-
lar abundance predictions. All the data in (b) & (c) are scaled to Alog e(Eu) = 0.
Figure from Sneden et al. (2008).



Chapter 5

Fission

When moving up the nuclear chart to higher proton and neutron numbers, nuclei
not only become more massive, but also increase in volume. As the strong force
that holds the nucleons together has a very limited range (one to a few femtome-
ters), it only acts between neighbouring nucleons. The Coulomb repulsion of the
protons, however, has a long range and gains in influence with increasing proton
number. Therefore, heavier nuclei are generally less bound and can easily de-
form. Some deformations lead to the formation of a neck (see Figure 5.4), and
eventually to the splitting into two lighter fragments. For most nucleosynthesis
events in the universe fission can be neglected, because the required mass num-
bers are not reached. In an r-process scenario with a large neutron-to-seed ratio
(Yn/ Yseeqd = 200), however, fissioning nuclei are produced, and a realistic treatment
of fission is necessary to determine the final abundances of the ejecta in such an
event. If Y,/ Y..q exceeds 200, freshly produced fission fragments can proceed to
capture neutrons until they themselves become unstable and undergo fission. This
is called fission cycling. The presence of fission cycling can be verified by tracking
the average mass number (A) or, similarly the average proton number (Z). Each
notable decrease in (A) or (Z) can be attributed to a fission cycle (see Fig. 5.1). If
the initial Y,/ Y eeq, (A)i, and (A); are known, the number of fission cycles Nrc
can be estimated by

(5.0.1)

NFC - 10g2 (<A>l + (Yn/Yseed)i) ,

Ay

where the indices i and f denote the initial and final values.

The fission process is still far from being fully understood, despite many decades of
dedicated research. The first discovery of fission was reported in 1939, when bar-
ium isotopes were detected as products of the irradiation of natural uranium with
neutrons (Hahn & Strassmann, 1939). At the same time this was also the first in-
dication for asymmetric fission (i.e., fission fragments with different proton and/or
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Figure 5.1: Average proton number (Z) for four different trajectories in a neutron
star merger simulation from Rosswog et al. (2013). The fission cycles are recog-
nisable by the decreases in (Z).

neutron numbers), which could not be explained by the liquid-drop model. The
introduction of the spherical-shell model 10 years later (Mayer, 1949) helped solve
this problem. Soon after, the mass distribution of fission fragments was linked to
shell closures in the daughter nuclei (Fong, 1956). It was still a long way, however,
to the development of successful theoretical models. The first quantitative predic-
tions of fission products were made by Wilkins et al. (1976), using a statistical
scission-point model (see Steinberg & Wilkins 1978 for the impact on r-process
nucleosynthesis). Their model was able to explain the dependence of fission on
the nuclear structure remarkably well. Some global characteristics of fissioning
nuclei can be observed in experiments (Fig. 5.2). The light nuclei (A < 226) show
a symmetric fission behaviour, while fission of heavier nuclei (226 < A < 256)
produces an asymmetric fragment distribution. Close to A = 260 fission again
becomes symmetric, with both fragments around A = 132.

A potential energy barrier prevents a stable nucleus from decay, and in the case of
fission, the barrier is usually referred to as fission barrier. For some nuclei two
potential barriers are between the bound state and the scission point. Such a shape
in the potential energy landscape is called double-humped barrier. For fissioning
nuclei there are three possibilities (modes) to overcome the fission barrier. First,
quantum mechanics allows the nucleus to tunnel through. This mode is called
spontaneous fission. Another possibility involves the caption of a neutron, which
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excites the compound nucleus to an energy level above its fission barrier. In order
to determine which nuclei undergo neutron-induced fission, one can compare the
neutron separation energy S, with the fission barrier By. If the fission barrier is
lower than §,,, the compound nucleus (after neutron capture) is in an excited state
higher than the fission barrier and fission occurs. A comprehensive comparison
of the fission barrier with S, has been done in Petermann et al. (2012) for two
mass models and their corresponding fission barrier predictions: FRDM (1992)
and ETFSI (see Figure 5.3). It shows considerable differences for the two mass
models. In particular, for the FRDM the reaction path is ended by n-induced fission
(negative values for By — §,) around Z = 95, while for ETFSI a narrow bridge of
positive By — S, values may allow the reaction path to proceed to larger masses and
the production of superheavy elements (SHE). Finally, a -decay can also leave the
nucleus in an excited state higher than the fission barrier, which results in §-delayed
fission. An extensive discussion on the individual fission modes can be found in
Petermann et al. (2012).

5.1 Understanding Fission: The Multi-Dimensional Potential-
Energy Surface

A good understanding of the fission process can be obtained by calculating the
potential-energy landscape as a function of several deformation parameters de-
scribing the shape of the fissioning nucleus (e.g., Moller et al. 2001) within the
framework of a theoretical mass model. The features of the landscape (peaks, val-
leys, saddle-points) are shaped mainly by the microscopic corrections to the energy
potential due to shell effects in the nuclear structure. On the transition from parent
nucleus to two or more separated fragments, ridges in the landscape correspond to

258[m

Figure 5.2: Positions of nuclei in the nuclear chart for which fission fragment distri-
butions have been experimentally determined, either as a function of proton num-
ber (crosses) or mass number (circles). The insets show the mass distributions of
the fission fragments. Figure from Schmidt et al. (2008).
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Figure 5.3: Difference between fission barriers By and S, for the FRDM (top) and
ETFSI (bottom) mass models, both with corresponding fission barrier predictions.
The values are given in MeV. Negative By — S, values mark the regions where
neutron-induced fission is expected upon neutron capture. Figure from Petermann
et al. (2012).

potential energy barriers that have to be overcome, the highest of which is usually
referred to as the fission barrier. Magic neutron or proton numbers in the nascent
fragments can be seen as valleys long before the actual scission point, which ex-
plains why fragments with magic numbers are often preferred. Moller et al. (2001)
calculate the potential-energy landscape as a function of five independent shape
parameters: elongation (expressed by the charge quadrupole moment Q;), neck
diameter d, left and right nascent fragment deformation &7y and &7, and mass
asymmetry a, (see Figure 5.4). In their chosen resolution, this leads to a grid with
2 610 885 grid points.

Features of the potential-energy landscape and the most likely path from ground
state to scission can be found using the so-called flooding algorithm (Mdller et al.,
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Figure 5.4: Shape parameters of fissioning nuclei used in Moller et al. (2001). See
text for explanation.

2001), where imaginary water flows are applied. When a state of separation is
beginning to fill with water, the corresponding fission barrier can be identified by
comparing with the global water level at this time. Their calculations are based
on the FRLDM (Moller et al., 1995), and they successfully reproduce various ex-
perimental observations, such as fission fragment distribution yields, multi-modal
fission in nuclei around A = 230, and kinetic energies of the fragments.

5.1.1 Calculating ETFSI fission barriers

A similar approach has been used in Mamdouh et al. (1998) for the determination
of fission barriers compatible with the ETFSI model. The left-right symmetry con-
dition that has been used in the mass formula is relaxed here, allowing for a better
description of deformations. However, axial symmetry is preserved. The so-called
(c, h, @) parametrization is used (see Brack et al. 1972), allowing for all deformed
shapes of a given nucleus, including total break-up, to be described continuously,
starting from a spherical configuration.

First, a reference surface S is introduced. It more or less corresponds to the actual
surface of the fissioning nucleus or the surfaces of the two fragments resulting from
fission. The reference surface always encloses the same volume, regardless of the
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deformation. Its radius in the spherical configuration is

N Zz

R = 't ——
N+Z7Z N+Z7Z

C,, (5.1.1)

with N and Z the number of neutrons and protons, respectively. The general shape
of S is described by

2 2p2 2 a B 2)
— R — A+ —74+ —— . B > 0 5.1.2
= ¢ )( R°T 2R’ (>1.2)
and 3
a c
n2 = (Csz - zz) (A + az) exp(ﬁzz), B<0, (5.1.3)

where 17 and z are cylindrical coordinates with the symmetry axis along the z-axis
and a determining the left-right asymmetry (with @ = 0 denoting symmetry). A and
B are additional deformation parameters. The elongation parameter c is defined in
a way that the length of the nuclear system in the direction of z is always 2¢R, so
S lies in the interval —cR < z < cR. The exact shape of S now depends on the
factor

_ @ 2
fr=A+ it St (5.14)
for B > 0 and on N
f-=A+—2Z (5.1.5)

cR

for B < 0, respectively. If fi > 0 throughout the interval —cR < z < cR, then
S consists of one single piece (= one nucleus), however when f, has two zeroes
inside the interval, S is split into two separate closed pieces, meaning the nucleus
has fissioned. Meanwhile f_ can never have two zeroes, as it is no quadratic factor,
so for B < 0 there will never be more than one closed piece in the interval.

Under the condition that S always encloses the same volume 47R3/3, expressions

for ¢ can be found:

c= (A ; ?)_]/3 (5.1.6)

for one single nucleus, and

c:(A+§—%{A(l—az—1’3—2)+B(a2+%2—a4—2a2b2—1’5—4)

. (5.1.7)
raa(l - - )
for two fragments, where a and b are defined as
a
a=-—
2B

2B
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A further second parameter 4 can be introduced as

B 1-c¢
h=—-+ ,
2 4

(5.1.9)
allowing the deformation to be described by the parameters (c, &, @).

To determine the fission barriers one first has to calculate the deformation energies
of the nucleus depending on the deformation parameters. For instance, for the
two parameters (c, h) one can determine the energy values at certain grid points
in the (c, h) plane and then interpolate. A contour plot of the energy will reveal
the positions and the heights of the fission barriers. If there are more than two
deformation parameters, things are more complicated. The procedure applied can
be compared to water dripping from an open tap into the ground-state minimum
(which has to be located first). By slowly increasing the water level the water will
pour into other (local) minima. As soon as the so-called valley of fission is reached
by the water, the fission barrier has been overcome and the height of the water
level at that time (measured from the ground-state minimum) corresponds to the
height of the highest fission barrier. Only for Z > 90 more than one barrier can
be observed. For the lighter elements only one barrier is observed, and it is safe
to assume that it is the outermost, as the inner barrier(s) are effectively concealed.
According to Mamdouh et al. (1998), however, only the primary (i.e. the highest)
fission barrier is relevant for r-process nucleosynthesis. Overall the agreement of
the ETFSI barrier calculations with observations is quite good if the barrier does
not exceed 10 MeV. For higher barriers the deviations are larger, but since the
neutron separation energy of r-process nuclei usually is around 4 MeV, a fission
barrier in excess of 10 MeV means that the nucleus in question does not undergo
fission but will rather eject a neutron.

5.2 Fission in Nuclear Networks: Fission Fragment Dis-
tribution Models

The content of this section is part of the publication Eichler et al. (2015a). In our
nuclear network, fission reactions are included in a similar way to other decays
(spontaneous and -delayed fission) and neutron-induced processes (n-induced fis-
sion). However, to account for the fact that each fissioning nucleus can split in
many different possible fragments, we additionally make use of fission fragment
distribution models. These models statistically predict the fragment yields for each
fission reaction. Over the years, a multitude of fission fragment distribution mod-
els has been developed. We compare four different models and their impact on
the final abundance distribution in section 6.2. The fission fragment distribution
depends on the nuclear structure of the fissioning nucleus as well as that of the
fission products, e.g., the shell structure of nuclei far from stability. The fission
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products can be predicted statistically by assigning a pre-determined probability
to each possible fission channel. Rates for the various fission channels considered
and the associated yield distributions are crucial for r-process studies in NSMs. In
each fission reaction there is a possibility of several fission neutrons to be emitted.
While the number of fission neutrons has been measured to be 2 — 4 for experi-
mentally studied nuclei, it is known to increase with mass number as heavy nuclei
become more neutron-rich (Steinberg & Wilkins, 1978). Additional neutrons can
be emitted as the fission fragments decay towards the r-process path (Martinez-
Pinedo et al., 2006). Recent advances are discussed in Tatsuda et al. (2007), Panov
et al. (2008), Kelic et al. (2008), Goriely et al. (2013), and Goriely (2015a), with
differences for the predicted mass distributions revealing the remaining uncertain-
ties in present fission calculations.

For our NSM nucleosynthesis calculations we employ four different fission frag-
ment distribution models: (a) Kodama & Takahashi (1975), (b) Panov et al. (2001),
(c) Panov et al. (2008), and (d) ABLAO7 (Kelic et al., 2008, 2009). The first one is a
relatively simple parametrization that does not take into account the release of neu-
trons during the fission process. The second and third are parametrizations guided
by experimental data. The number of released neutrons in Panov et al. (2008)
has been estimated as a function of charge and mass number of the fissioning nu-
cleus and can reach 10 per fragment for nuclei near the drip line. The ABLAO7
model is based on a statistical model considering shell effects in the fragments
from theoretical predictions and has been tested to provide an accurate description
of known fission data including the number of released neutrons (Benlliure et al.,
1998; Gaimard & Schmidt, 1991; Kelic et al., 2009). It also includes the reproduc-
tion of fragment distributions from extended heavy ion collision yields (Kelic et al.,
2008), and therefore goes much beyond the areas in the nuclear chart where spon-
taneous, 8-delayed or neutron-induced fission yields are known experimentally. In
Fig. 5.5 (and the related caption) we provide the fission fragment distributions as a
function of A as well as the number of released neutrons for 2’*Pu (Z = 94). Note
that the model by Kodama & Takahashi (1975) does not lead to any neutron release
and Panov et al. (2008) predicts the largest number of released neutrons. It can also
be seen that the predicted fragments in the Panov et al. distributions do not extend
beyond A = 140, which will be important in section 6.2.2.

Other applications of recent fragment distribution models (called GEF and SPY)
are employed in Goriely (2015a). However, these models have either been re-
stricted so far to not very neutron-rich nuclei (A/Z < 2.8 and N < 170; GEF), or
have not yet been the subject of the same severe tests as ABLAO7 (both GEF and
SPY). Based on NSM simulations of Rosswog et al. (2013), we present a compari-
son of the abundance features resulting from utilizing the different fission fragment
models in section 6.2 (see also Eichler et al. 2016).
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Figure 5.5: Fission fragment distributions for the models introduced in the text,
here for the case of neutron-induced fission of 2’#Pu. For this reaction Panov et al.
(2008) predicts 19, ABLAQO7 7 released fission neutrons. Kodama & Takahashi
(1975) do not predict any fission neutrons. For Panov et al. (2001) neutrons can be
released if the fragments would lie beyond the neutron dripline. The distribution
for Panov et al. (2001) consists only of two products with A; = 130 and A; = 144.
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Chapter 6

Neutron Star Mergers as
R-Process Site: Accomplishments
and Issues!

As of today, the astrophysical site(s) of the r-process remain(s) uncertain, but
metal-poor stars with enriched r-process material offer valuable clues about the
nature of the r-process source(s). Observations reveal that the [Eu/Fe] ratios of
the oldest stars are scattered over several orders of magnitude, while the scatter
decreases for younger and correspondingly less metal-poor stars (see Figure 3.1).
Europium is exclusively produced by the r-process and is therefore used as an
indicator of r-process material enrichment. On top of that, the overall element
abundance pattern of heavy (“strong”) r-process nuclei follows the solar one with
remarkable accuracy (Figure 4.5). In combination with the large scatter in [Eu/Fe]
for low-metallicity stars, this points to a rare event, responsible for the produc-
tion of heavy r-process material (Sneden et al., 2008; Roederer et al., 2012). On
the other hand, various intermediate-mass r-process elements up to Europium are
observed in almost all stars, albeit at lower levels (Honda et al., 2007; Roederer,
2013). This argues for an additional frequent event which can account for such a
“weak” r-process signature. Regular core-collapse supernovae may be the origin,
as the neutrino wind could generate a slightly neutron-rich environment (Roberts
et al., 2012; Martinez-Pinedo et al., 2012), but does not provide the entropies re-
quired for the operation of a strong r-process in slightly neutron-rich conditions.

Compact object mergers have long been suspected to be a possible site for r-process
nucleosynthesis (Lattimer & Schramm, 1974; Meyer, 1989; Freiburghaus et al.,
1999; Roberts et al., 2011; Goriely et al., 2011; Korobkin et al., 2012; Bauswein

'The content of this chapter has been published in Eichler et al. (2015a).
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et al., 2013; Rosswog et al., 2014). For recent results see also Just et al. (2015),
Mendoza-Temis et al. (2015), Wanajo et al. (2014), and Martin et al. (2015). As
discussed above, the combination of very low-Y, material and rapid expansion of
the ejecta guarantees the occurrence of a strong r-process. Several studies (Goriely
et al., 2011; Korobkin et al., 2012; Bauswein et al., 2013) uncovered remarkable
astrophysical robustness of the abundance yields produced in the dynamical ejecta
of neutron star mergers (NSM) and mergers of a neutron star with a black hole
for a given nuclear input (see also Figure 4.4). This insensitivity of the abundance
pattern to the parameters of the merging system is explained by an extremely low-
Y, environment, which guarantees the occurrence of several fission cycles before
the r-process freezes out. However, recent NSM simulations that also account for
the neutrino-driven wind and/or viscous disk ejecta at a later stage of the merger
find a much broader range of Y,-values for the ejecta (Rosswog et al., 2014; Just
et al., 2015; Perego et al., 2014; Wanajo et al., 2014).

Here, we revisit the nucleosynthesis in the dynamical ejecta of NSMs of Korobkin
et al. (2012), by using the ETFSI-Q (Aboussir et al., 1995; Pearson et al., 1996)
and HFB-14 (Goriely et al., 2008, 2009) mass models in addition to the FRDM
(Moller et al., 1995). Our main focus is the effect of fission on the r-process path
through the very neutron-rich, unstable nuclei, utilizing corresponding fission bar-
riers (Myers & Swiatecki 1999 for FRDM and Mamdouh et al. 1998 for ETFSI-Q
and HFB-14, as discussed in Panov et al. 2010) and the four fission fragment dis-
tribution predictions introduced in section 5.2. We also follow the decay back to
stability during the r-process freeze-out and the competition between late neutron
captures and neutron release by fission and -decays of heavy nuclei (see similar
discussions of freeze-out effects without including fission in Mumpower et al. 2012
and references therein). Late neutron captures have a direct effect on the final posi-
tion of the third r-process peak (also seen in Goriely et al. 2013 and Goriely 2015a).
To study the dependence of the final abundance distribution on the freeze-out char-
acteristics, we pick a typical trajectory from the same database of trajectories? that
was used in Korobkin et al. (2012). We include the following three fission modes:
spontaneous, S-delayed and neutron-induced fission, as described in detail in Panov
et al. (2008, 2010) and Petermann et al. (2012).

6.1 Nucleosynthesis Calculations

6.1.1 Basic Input and Conditions in Ejecta Trajectories

We utilize the extended nuclear network WINNET (Winteler, 2011; Winteler et al.,
2012) with more than 6000 isotopes up to Rg. Our sets of reaction rates utilized

2http://compact-merger.astro.su.se/
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are based on masses from the FRDM (Moller et al. 1995), the ETFSI-Q model
(Aboussir et al. 1995; Pearson et al. 1996), both in combination with the statistical
model calculations of Rauscher & Thielemann (2000) for Z < 83, and on the
HFB-14 model (Goriely et al., 2008, 2009), respectively. Theoretical §-decay rates
are taken from Moller et al. (2003), experimental data from the nuclear database
NuDat2 (2009). The neutron capture rates on heavy nuclei (Z > 83) as well as
the neutron-induced fission rates are from Panov et al. (2010), while the S-delayed
fission rates are taken from Panov et al. (2005). In our calculations, we refer to
the combined application of these basic sets of reaction rates as original. We also
test the effect of very recent advances in S-decay half-life predictions by Marketin
et al. (2015) and Panov et al. (2015).

We have performed r-process calculations for a neutron star merger scenario with
two 1.4 Mg neutron stars (Rosswog et al., 2013; Korobkin et al., 2012). We use
30 representative fluid trajectories, covering all the conditions in the ejected matter
and providing the temperature, density and electron fraction within the ejected
material up to a time of #p = 13 ms. We start our nucleosynthesis calculations
after the ejecta have begun to expand and the temperature has dropped to 10 GK.
For t > 1y we extrapolate, using free uniform expansion for radius, density and
temperature:

r(t) = ro + tvg (6.1.1)
-3
p(1) = po (f) 6.1.2)
0
T(1) = TLS. p(2). Yo(0)). 6.1.3)

with radius r, time ¢, velocity v, density p, temperature T, entropy S and electron
fraction Y, of the fluid element. The index 0 denotes the values at 7. The tempera-
ture is calculated at each timestep, using the equation of state of Timmes & Swesty
(2000).

Our network accounts for heating due to nuclear reactions (Freiburghaus et al.,
1999), using

kT% = eng (6.1.4)
to calculate the entropy increase caused by thermal heating, where ¢ is the energy
generated due to nuclear reactions. We choose a heating efficiency parameter of
&n, = 0.5 (introduced in Metzger et al. 2010a), corresponding to about half of
the B-decay energy being lost via neutrino emission. The efficiency for neutron
captures and fission processes should be higher, as none of the released energy
escapes. However, the energy release in neutron captures is small due to small
neutron-capture Q-values along the r-process path (compared to large S-decay Q-
values), and the abundances of heavy fissioning nuclei are small in comparison
to the majority of nuclei in the r-process path. Thus, while the heating via beta-
decays dominates, the exact value of ¢ is difficult to determine. In the case of
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extremely neutron-rich dynamic NSM ejecta, the final abundances are, however,
quite insensitive to its value (Korobkin et al., 2012).

6.2 Results

This section focuses on several aspects entering r-process nucleosynthesis in NSM
ejecta: a comparison of different fission fragment distribution and mass models and
their impact on the second r-process peak (section 6.2.1), a discussion of the late
capture of fission neutrons and the impact on the position of the r-process peaks
(section 6.2.2), and the overall combined effect of mass models, fission, and 8-
decay half-lives on the abundance distribution for A > 120 , i.e., including the
second and the third peak (section 6.2.3).

6.2.1 The Effect of Fission Fragment Distributions

The effect of adopting different fission fragment distribution models, all in combi-
nation with the FRDM mass model for the r-process calculations, is illustrated in
Fig. 6.1. It shows final abundances of the NSM ejecta in the atomic mass range
A = 110 — 210 for the four models introduced in section 5.2. Two of the fragment
distributions (Panov et al., 2001; Kodama & Takahashi, 1975) have already been
used for NSM calculations before (Korobkin et al., 2012) (see also Bauswein et al.
2013, utilizing the latter of the two, but with fragment mass and charge asymme-
try derived from the HFB-14 predictions; see Goriely et al. 2011), while the other
two (Panov et al., 2008; Kelic et al., 2008) have been newly implemented for the
present calculations. All our results are compared to the solar r-process abundance
pattern (Sneden et al. 2008).

For the fissioning nuclei produced in the present r-process simulations, our fission
models mainly result in fission fragments in the mass range 100 < A < 160.
Therefore, it is no surprise that the largest differences between the models are
found around the second peak. The results obtained with the two Panov models
(Fig. 6.1a) show a drastic underproduction of the mass region beyond the second
peak (A ~ 140 — 170) by a factor of 10 and more, due to the dominance of the
symmetric fission channel and a large number of released neutrons. The Kodama
& Takahashi model, in contrast, shows an overproduction of these nuclei and fails
to produce a distinct second peak. The ABLAO7 model (dashed line in Fig. 6.1b)
shows the best overall agreement with the solar r-process abundance pattern (for the
chosen mass model FRDM), leading only to an underproduction of A = 140 — 170
nuclei by a factor of about 3. The predicted fragments in the Panov et al. distribu-
tions do not extend beyond A = 140 (see Figure 5.5) and thus lead to the strongest
underproduction in the mass range A = 140 — 170.
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Figure 6.1: Final abundances of the integrated ejecta around the second and third
peak for a NSM (Rosswog et al., 2013; Korobkin et al., 2012) at a simulation time
t = 10% s, employing the FRDM mass model combined with four different fission
fragment distribution models (see text). For reasons of clarity the results are pre-
sented in two graphs. The abundances for Th and U are indicated by crosses. In the
left-hand panel the lower crosses belong to the Panov et al. (2008) model (dashed
line), while the lower crosses in the right-hand panel belong to the ABLAO7 dis-
tribution model (dashed line). The dots represent the solar r-process abundance
pattern (Sneden et al., 2008).

Figure 6.2 demonstrates the importance of fission in our calculations, indicating the
fission rates from two fission modes (neutron-induced and -delayed fission) at r =
Is. It is obvious that the mass region with Z = 93—-95 and N = 180—-186 dominates.
In Fig. 6.2c we show the corresponding (combined) fragment production rates for
ABLAO7 in the nuclear chart.

Some of the deficiencies beyond the second peak can also be attributed to the
FRDM mass model, which is known to predict rather low or even negative neu-
tron separation energies for nuclei beyond the N = 82 shell closure around N = 90
(A ~ 138) (e.g., Meyer et al. 1992; Chen et al. 1995; Arcones & Martinez-Pinedo
2011). As a consequence, material is piled up in and slightly above the second
peak, while the mass region beyond A = 140 is underproduced. This effect might
be reduced when applying the new FRDM version (Moller et al., 2012, 2016), see
e.g., Kratz et al. (2014). Thus, in order to explore the full dependence on uncer-
tainties due to the combination of mass models and fission fragment distributions,
we also performed reference calculations, employing the ETFSI-Q mass model
(Pearson et al., 1996) and the HFB—14 model (Goriely et al., 2008, 2009) for the
set of fragment distributions Kodama & Takahashi (1975), Panov et al. (2008), and
ABLAOQ7 (Kelic et al., 2008). They show less or no underproduction for A > 140,
even for the Panov et al. (2008) fragment distribution. The results are displayed in
Fig. 6.3.
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Figure 6.2: Fission rates (at t = 1s) in s~ for (a) B-delayed and (b) neutron-
induced fission at freeze-out from (n,y)—(y,n) equilibrium for one representative
trajectory when utilizing the FRDM mass model and Panov et al. (2010) fission
rates. (c) Corresponding fission fragment production. The distribution model here

is ABLAO7.
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Figure 6.3: Similar to Fig. 6.1, several fission fragment distributions are tested for
the mass models ETFSI-Q (Fig. 6.3a) and HFB-14 (Fig. 6.3b). It can be realized
that in both cases the ABLAO7 fragment distribution leads to a good fit to solar r-
abundances in the mass region A = 140 — 170. In addition, these mass models also
avoid the still (to some extent) existing underproduction due to FRDM, apparent in
Fig. 6.1 also for the ABLAO7 fragment distribution. The second peak in HFB—-14
is slightly shifted to higher masses, a feature also seen in Bauswein et al. (2013).
Whether this is due to different fission fragments or late neutron captures after
fission will be discussed later.
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Figure 6.4: Comparison of nuclear mass models FRDM, ETFSI-Q, and HFB—
14. The underproduction of 140 < A < 160 nuclei apparent in the FRDM model
does not occur in the ETFSI-Q or HFB-14 model cases. The fission fragment
distribution model used here is ABLAO7.

A comparison of all different mass models with the fragment distribution ABLAQ7
is shown in Fig. 6.4. ETFSI-Q suffers from a sudden drop of the neutron separation
energy for A ~ 140, causing the formation of a small peak around this mass num-
ber. The distinctive trough in the ETFSI-Q abundance distribution before the third
peak was subject of a detailed discussion in Arcones & Martinez-Pinedo (2011).
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While the extent of the underproduction in the mass range 140 — 160 is due to a
combination of the fission fragment distribution and the mass model used (see also
Fig. 6.3), the results for all mass models utilized here show a shift of the third peak
to higher mass numbers by up to 5 units, which will be a topic of the following
sections.

While the position of the third peak is similar for all the mass models considered
here, the abundance patterns around the second peak and the rare-earth peak show
some diversity. For these mass regions, the final abundances are strongly influenced
by fission close to the freeze-out and also possible final neutron captures thereafter.
Therefore, different final abundance patterns can be an indicator of different fission
progenitors. Figure 6.5 shows the predominant fission reactions at the time of
freeze-out for the HFB—14 model. A comparison with Figure 6.2 reveals that for
the HFB—14 model the fission close to freeze-out tends to happen at higher mass
numbers (up to A = 300), while for the FRDM model the fission parent with the
highest mass is found at A = 287. As a consequence, fragments with higher mass
can be produced (Fig. 6.5¢). However, the bulk of fragments lies between A = 125
and A = 155, very similar to the FRDM case. Therefore, the aforementioned shift
of the second peak in the HFB model calculations cannot be due to the fission
fragment distribution lacking fragments with mass numbers at the lower flank of
the second peak. The main cause must be reactions occurring after fission, which
will be discussed in the following section.

6.2.2 The Impact of Late Neutron Captures

In our NSM calculations, the third peak is shifted towards higher mass numbers
compared to the solar values (Figures 6.1 , 6.3, & 6.4), regardless of the nuclear
mass model utilized in the present investigation. This phenomenon has appeared
in various calculations of NSMs before (Freiburghaus et al., 1999; Metzger et al.,
2010b; Roberts et al., 2011; Korobkin et al., 2012; Goriely et al., 2013). We find
that the position of the third peak in the final abundances is strongly dependent on
the characteristics of the conditions encountered during/after the r-process freeze-
out, which are characterized by a steep decline in neutron density and a fast in-
crease in the timescales for neutron captures and photodissociations, leading to
different stages (timescales): (1) freeze-out from an (n,y)—(y,n) equilibrium, (2)
almost complete depletion of free neutrons (¥,/ Yseeq < 1), and (3) the final abun-
dance distribution. In the following, we use the term freeze-out in the context of
definition (1).

Figure 6.6 shows a comparison of our abundances on the r-process path resulting
from detailed nucleosynthesis calculations at + = 1 s for the FRDM mass model
with those which would result from an (n,y)—(y,n) equilibrium in each isotopic
chain (as first discussed by Seeger et al. 1965) for the temperature and neutron
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Figure 6.6: Comparison of abundances from our calculations with (n,y)—(y,n) equi-
librium abundances on the r-process path for the FRDM mass model. The colours
show the factor Yo,/ Yqc. Only the most abundant nuclei are shown for each iso-
topic chain. See text for details.

density at that time (7 = 9.5x 108 K, n,, = 7.44 x 10%° cm™3). The plot displays the
most abundant nuclei in each isotopic chain, i.e., those on the r-process path. The
colours indicate the factor between the equilibrium abundances and the abundances
in our calculation. The highest discrepancies can be observed around N = 100
and N = 140, but only few nuclei show a factor larger than 2. This leads to the
conclusion that at this time the r-process still proceeds in (n,y)—(y,n) equilibrium
with (n,y) and (y,n) timescales much shorter than S-decays, characteristic of a hot
r-process.

This changes at t = 1.34 s (see Fig. 6.7), when the timescales for neutron capture
and photodissociation become larger than the S-decay timescale. Here both reac-
tion timescales become larger than S-decays, and also neutron capture wins against
photodissociations. Note that the timescales of 5-decay also become larger as the
material moves closer to stability. As can be seen in Fig. 6.7, there is a short period
after the freeze-out where (n,y) dominates over both (y,n) and S-decay. Figure 6.8
shows the second and third peak abundances at r-process freeze-out and the final
abundances for a representative trajectory for the FRDM, ETFSI-Q, and HFB-14
mass models. It is evident that the position of the third peak is still in line with the
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Figure 6.7: Averaged reaction timescales vs. time for S-decays, (y,n) reactions,
and (n,y) reactions for one trajectory with the FRDM mass model.

solar peak at freeze-out, but is shifted thereafter for all mass models. The position
of the second peak behaves differently. For all mass models, the final abundances
for A < 120 nuclei are larger than the abundances at freeze-out, because fission
fragments with these mass numbers are still produced after freeze-out. Neverthe-
less for the HFB—14 model the (final) second peak seems shifted to higher mass
numbers, similar to its position at freeze-out. This might indicate that, for the astro-
physical conditions encountered here, this mass model leads to a path running too
close to stability. The shift in the third peak as described above is a generic feature
in our NSM calculations. It is caused by the continuous supply of neutrons from
the fissioning of material above A =~ 240. Fig. 6.9 shows that after the freeze-out
the release of neutrons from fission dominates over 8-delayed neutrons.

To further illustrate the importance of fission neutrons after the freeze-out, we have
run several calculations with both FRDM and HFB-14 where we have switched off
certain types of reactions after the freeze-out. (1) The dashed lines in Figure 6.10
(labelled “only decays”) represent the cases where only decay reactions are al-
lowed after the (n,y)—(y,n) freeze-out (without fission). In this artificially created
scenario the only possibility for nuclei after the freeze-out is to decay to stability,
without the option to fission or capture neutrons. In fact, a small shift of the third
peak to lower mass numbers can be observed during this phase (compare Fig. 6.10
& 6.8), as S-delayed neutrons cause the average mass number to decrease. In addi-
tion, since fission is not allowed either, the second peak consists of just the material
that was present there at freeze-out, but the composition is (slightly) modified due
to the combined effects of S-decays and S-delayed neutrons. (2) If we also allow
for fission in addition to the decay reactions (dot-and-dashed lines in Fig. 6.10),
the second peak is nicely reproduced by fission fragments for both mass models
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Figure 6.8: (a) Second and third peak abundances at the time of r-process freeze-
out (where 7(y ) > T(ny) ort = 1.34 s; solid line) compared to the final abundances
(dashed line) for one trajectory employing the FRDM mass model. (b) Same for
the ETFSI-Q mass model, where the freeze-out occurs at r = 1.36 s. (¢) Same for
the HFB-14 mass model. Here the freeze-out occurs at # = 1.24 s. Notice that the
third peak position is still consistent with the solar r-abundances at freeze-out, but
that for all mass models a shift takes place afterwards. For none of the mass models
the features of the second peak at freeze-out are perfect. However, the FRDM and
ETFSI-Q models show a decent agreement for the final abundances, while for the
HFB-14 mass model the second peak is shifted for the time at freeze-out as well
as for the final abundances.
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The plotted quantity is the neutron production rate (per second). After the time of
freeze-out (shaded area) fission neutrons dominate over S-delayed neutrons.
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Figure 6.10: Final abundance distribution for cases where only certain types of
reactions are allowed to proceed after freeze-out (dashed line: only decays except
for fission; dot-and-dashed line: decays including fission) for (a) FRDM and (b)
HFB-14. The solid line represents the original calculation where neutron captures
are also allowed after freeze-out. All cases use ABLAO7.

and the third peak is still not affected. (3) However, a notable difference between
the two mass models can be seen for the final abundance distribution including
also final neutron captures (denoted as “original” in Fig. 6.10), indicating that for
HFB not only the position of the third peak is influenced by late neutron captures,
but also the position of the second peak. On the other hand, the behaviour is re-
versed for the mass region 140 < A < 160, where large deviations can be observed
compared to the original calculation for FRDM, since in the original case neutron
captures move material up to higher masses, creating the underproduction we have
discussed in chapter 6.2.1. This indicates that when also neutron captures and all
other reactions are permitted after freeze-out (i.e., the original calculation), major
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changes in the abundance pattern can still occur. The third peak moves to higher
masses for all mass models discussed here. In the HFB case, the second peak
moves to the position it had at freeze-out, resembling abundance features result-
ing from an r-process path too close to stability for the astrophysical conditions
encountered here.

It can be seen in Figures 6.1 , 6.3 & 6.8 that the shift of the third peak is indeed
related to the amount of released neutrons. The shift is smallest for the Kodama
& Takahashi (1975) model, which does not assume any neutron emission during
fission, and largest for the Panov et al. (2008) model, which assumes the largest
amount of neutrons produced. It should be noted, however, that the differences
are smaller than expected from the numbers of released neutrons as in addition to
the neutrons directly released during fission also those released from the neutron-
rich fission fragments can be important as they move back to the r-process path.
These in turn depend on the fission yields used. Since the position of the third peak
does not coincide with the third peak of the solar abundance pattern, we explore
in the following under which conditions such a shift to larger mass numbers can
be avoided. In a first test we artificially increase the temperature throughout the
expansion by setting the heating efficiency parameter €, = 0.9 instead of our de-
fault value of 0.5 (see section 6.1). This change does not affect the final abundance
distribution significantly, in particular the position of the third peak, because more
vigorous heating simply prolongs the (n,y)—(y,n) equilibrium until the temperature
drops to a similar value due to expansion. Therefore, the r-process freeze-out hap-
pens later, at a temperature that is comparable to the reference case (¢, = 0.5). Our
finding that the exact value of the heating efficiency parameter €, does not greatly
affect the final abundances, provided that it is above some threshold value, is in
agreement with Korobkin et al. (2012).

We have further explored the effect of modified neutron capture rates. Slower
rates could arise as the statistical model might not be applicable for small neutron
separation energies S, and not sufficiently high level densities in the compound
nucleus. Faster rates could be attributed to the rising importance of direct capture
contribution far from stability (Mathews et al., 1983; Rauscher, 2011). We real-
ized that artificially varying the neutron capture rates across the nuclear chart does
not have an effect on the position of the third peak. However, some minor local
effects on the final abundance distribution can be observed. Reduced rates slow
down the reaction flux and, as a consequence, lead to a reduced underproduction
of 140 < A < 165 and a slight overproduction of 180 < A < 190 nuclei, the
former due to fission fragments, the latter caused by S, predictions of the FRDM
mass model. Accelerating the rates has an opposite, but still minor effect.

As the shift is related to the continuous supply of neutrons from fission of heavy
nuclei, any mechanism that affects the timescale for this supply can potentially
influence the position of the third r-process peak. As an example, we have artifi-
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Figure 6.11: (a) Neutron density (n,) and temperature (green lines in the bottom
part of the graphs; the linestyles correspond to the individual calculations), and
(b) final abundances for a NSM calculation with artificially acccelerated S-decays
(dashed and dotted line) compared to the original calculation (solid line) with the
FRDM nuclear mass model. The calculations were repeated using the HFB-14
model ((c) & (d)). The dots in (b) and (d) represent the solar r-process abundance
pattern (Sneden et al., 2008). Here we use the ABLAO7 fission fragment distribu-
tion model (Kelic et al., 2008). See text for further explanations.
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cially increased all the S-decay rates for nuclei with Z > 80 (which corresponds
roughly to A > 220) by exploratory factors of 2.5 and 6, respectively. This change
of rates has been motivated by recent calculations (Panov et al., 2015; Marketin
et al., 2015). These latest predictions underline that especially the heavy nuclei
with Z > 80 may have shorter half-lives by a factor of up to 10 and more. This
is exactly the mass range tested in the present calculations. The results are shown
in Figure 6.11 for the example of one trajectory with two nuclear mass models
(FRDM and HFB). As a consequence of the increased S-decay rates, the reaction
flux for the heavy nuclei is accelerated, which increases both the heating rate and
the temperature at around 0.1 s in the calculation (Figures 6.11a & 6.11c). Addi-
tionally, the release of neutrons by fission of heavy nuclei is accelerated, providing
neutrons before freeze-out (when the third r-process peak is still located close to
solar values). The evolution after freeze-out proceeds faster and consequently the
period of time where a combination of neutron captures and S-decays can move
nuclei to higher mass numbers becomes shorter. As a consequence, the shift in the
third r-process peak is reduced.

We have also tested the effect of an overall increase of (experimentally unknown)
[-decay rates by constant factors across the nuclear chart. In this case the effect
discussed above vanishes again, as the matter flux feeding the abundance of fis-
sioning nuclei continues on a faster pace and thus leads to an extended release of
fission neutrons.

In summary, neutron capture after (n,y)—(y,n) freeze-out changes composition fea-
tures which originate from classical r-process patterns related to an r-process path
at a given neutron separation energy. This can be realized by combining the find-
ings in Figures 6.8, 6.10, & 6.11, but is complicated by a complex interaction of
freeze-out, final neutron captures, and the feeding due to fission (combined with
neutron release). Fig. 6.8 demonstrates (for all mass models) that the third peak is
shifted to higher masses during/after freeze-out, caused by the final neutron cap-
tures from neutrons which are released during fission of the heaviest nuclei in the
final phases of nucleosynthesis (whereas the third peak is still located at the correct
position in the last moments when (n,y)—(y,n) equilibrium holds). This feature is
underlined by the results of Fig. 6.11, which show the effect of accelerating the
beta-decays of the heaviest nuclei (Z > 80), i.e., accelerating the feeding of fission
parents, which causes fission (and the related neutron release) to occur at different
phases (before/during/after) of the freeze-out. An early neutron release (coming
with the fastest S-decays of heavy nuclei) still tends to permit (n,y)—(y,n) equi-
librium and reduces the effect of late neutron capture, although the effect is not
sufficient to prevent the move of the third peak completely. We see a similar ef-
fect in the A = 140 — 160 mass region for the FRDM mass model, slowing down
the movement of matter to heavier nuclei and partially avoiding the trough which
appears in the final abundance pattern for the original calculation with unchanged
nuclear input. A more complex behaviour causes the final abundance pattern of
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the second r-process peak with a complex interaction of fission feeding and final
neutron processing. In Fig. 6.10 we see that for the FRDM as well as the HFB
mass model (when utilizing ABLAO7) we have an almost perfect fragment distri-
bution in order to reproduce the second r-process peak (see the entry “decays and
fission” in Fig. 6.10 and Fig. 6.2c¢ & 6.5c). However, the final (“original”) distri-
bution in the case of FRDM fits the second peak nicely, while for the HFB mass
model the peak is shifted by several mass units. From Fig. 6.8 it becomes clear that
(not the overall abundance shape, but) the peak positions are in both cases close
to the average peak position at (n,y)—(y,n) freeze-out. This seems to indicate that
even in these final phases an r-process path is again established which is closer to
stability for the HFB than for the FRDM mass model, leading to a peak shifted to
higher masses (for the conditions obtained in the dynamical ejecta of neutron star
mergers). This effect can only be avoided either by a change of the nuclear mass
model or by different environment conditions.

6.2.3 Testing the Global Fit via Variations in Mass Models and Beta-
Decay Rates

Having shown the impact of a simple (and artificial) change in S-decay half-lives
in the previous chapter, we now employ the newly calculated sets of half-lives
of Panov et al. (2015) and Marketin et al. (2015). Both new sets predict shorter
half-lives for the majority of neutron-rich nuclei in the nuclear chart compared
to the previously used Moller et al. (2003) half-lives. However, there are some
decisive differences. In Figure 6.12 we present a comparison of the new -decay
rates with the Moller et al. (2003) rates that we have used before. The Panov
et al. (2015) set does not predict significantly faster rates far from stability, but in
fact even noticeably slower rates (marked in blue) around N = 162 close to the
neutron drip line. The faster rates (red) closer to stability only come into effect
after freeze-out. The Marketin et al. (2015) calculations, on the other hand, predict
faster rates for all nuclei on the r-process path beyond N = 126. The impact on
the final abundances can be seen in Figure 6.13, where we present calculations
performed using the Marketin et al. (2015) rates combined with both the FRDM
and HFB-14 reaction sets as well as the Panov et al. (2015) rates together with
the FRDM model. Note that the Marketin et al. (2015) rates have been calculated
using a different mass model, so they are not fully consistent with neither FRDM
nor HFB-14. The Panov et al. (2015) rates are based on FRDM, therefore we do
not show a calculation with HFB-14.

The Marketin et al. (2015) rates show a similar effect on the final abundances as our
artificial study in Fig. 6.11, broadening the low-mass flank of the third peak and
increasing the abundances around the rare-earth peak. In fact, the broadening of the
peak to lower mass numbers strongly improves the shape of the peak and (at least
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for the HFB—14 mass model) even a shift of the position to lower masses can be
observed. The Panov et al. (2015) rates have a different effect. Here the S-decays
are faster for nuclei with N = 126 along the r-process path (before the freeze-
out). Therefore the reaction flux proceeds faster in this region before it is held up
afterwards at higher mass numbers, which means that less matter is accumulated in
the peak. As a result, the height and shape of the third peak matches the solar peak
very well (Fig. 6.13c). However, as the abundances of the nuclei in the peak are
lower by roughly a factor of 2, each nucleus in the third peak can capture double the
amount of neutrons and the effect of the third peak shift is increased. Furthermore,
the Panov et al. (2015) rates show strong odd-even dependencies in the mass region
140 < A < 170 (Fig. 6.12b), a quality which is reflected in the final abundances in
this mass region.

6.3 Summary and Outlook

In this Chapter we have tested (for a given set of astrophysical conditions related to
the dynamic ejecta of neutron star mergers) the effects of the complex interplay of
the nuclear input, including mass models, fission and fission fragment distributions
as well as beta-decay half-lives.

We have shown that the r-process yields are strongly affected by fission and the
adopted model for fission fragment distributions. In general, we find that more
sophisticated fission fragment distribution models (ABLAO7) improve the overall
agreement with the solar r-process abundances. Similar studies with different fis-
sion fragment distribution models have been performed recently (Goriely et al.,
2013; Goriely, 2015a). Not surprisingly, the most significant variation is in the
mass region A = 100—160, where the majority of the fission fragments is produced.
This includes the second r-process peak and the rare-earth subpeak. Variations in
nuclear mass models applied are decisive as well and we find that the combination
of the applied mass model and the fission fragment distribution is essential for re-
producing this mass region. In extreme cases of mass models which lead to fission
only for A > 300 nuclei, the second r-process peak might not be produced at all
(Shibagaki et al., 2015).

In neutron-rich NSM nucleosynthesis, the third peak in the final abundance distri-
bution shifts towards higher masses, if after the (n,y)—(y,n) freeze-out the condi-
tions for further neutron captures of neutrons released during fission prevail. If the
neutron density is still sufficiently high, several neutron captures after freeze-out
can shift the peak. It is possible that for mass models not utilized in this study,
which have the third peak shifted to lower masses in (n,y)—(y,n) equilibrium (see
e.g. Mendoza-Temis et al. 2015), the final neutron captures shift the peak to its
correct position.
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Figure 6.12: (a) Comparison of the new Marketin et al. (2015) S-decay rates with
the old Moller et al. (2003) rates. A red square means that the Marketin et al. (2015)
B-decay rate (Apsarkerin) Of the corresponding nucleus is more than two times faster
than the Moller et al. (2003) rate, while a blue square signifies that the Marketin
et al. (2015) rate is slower than the Moller et al. (2003) rate by more than a factor
of 2. If the two rates are within a factor of 2 to each other, the square is coloured
yellow. (b) Same for the new Panov et al. (2015) rates.
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Figure 6.13: (a) Final abundance distribution for a calculation using the Marketin
et al. (2015) rates together with the FRDM mass model and ABLAO7. As a ref-
erence the FRDM, ABLAOQ7 calculation from Fig. 6.1b is included. (b) Same, but
using the HFB—14 mass model. (c¢) Same as (a), but with the Panov et al. (2015)
rates.
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We have also tested the effect of increased S-decay rates for the heaviest nuclei
in our network (Z > 80), in which case the reaction flux is accelerated, leading
to an earlier release of the fission (and -delayed) neutrons which are recycled in
the (n,y)—(y,n) equilibrium that is present before the freeze-out, and leaving less
matter in the fissioning region during freeze-out. This effect was further tested
for new sets of theoretical S-decay half-lives (Panov et al., 2015; Marketin et al.,
2015), which can lead to very different results concerning the shape and position
of the third peak. It should be noted that apparently the faster S-decay rates tested
here can reduce the amount of late neutron captures and the shift of the third peak,
but (at least in the present calculations) the shift of the third peak would not be
prevented completely.

In summary, we explored the complex interplay of mass models, fission, and beta-
decay half-lives for a variety of nuclear inputs and their impact on the resulting
overall r-process abundances. Further changes can be expected with new versions
of the FRDM model (Kratz et al., 2014; Moller et al., 2016) and many improved fu-
ture nuclear structure predictions will be needed to settle these aspects completely.

Independent of the nuclear aspects/uncertainties studied here, it should also be
realized that the astrophysical conditions matter as well. Here we utilized only the
conditions for the dynamical ejecta of neutron star mergers within the treatment
of Korobkin et al. (2012) or Bauswein et al. (2013). However, these dynamical
ejecta can also be affected by neutrino interactions and NSM ejecta include, apart
from the dynamical channel, also matter ejected via neutrino-driven winds (e.g.,
Dessart et al. 2009; Rosswog et al. 2014; Perego et al. 2014; Just et al. 2015) and
matter from unbinding a substantial fraction of the late-time accretion disk (e.g.,
Metzger et al. 2008; Beloborodov 2008; Lee et al. 2009; Ferndndez & Metzger
2013a,b; Just et al. 2015). These additional channels yield larger electron fractions,
since matter stays substantially longer near the hot central remnant and therefore
positron captures and neutrino absorptions are likely. A number of recent studies
(Just et al., 2015; Perego et al., 2014; Wanajo et al., 2014) find a broader range of
Y,.-values that may be beneficial for the production of r-process elements and may
also contain substantial “weak” r-process contributions (for a parametric study of
possible neutrino and antineutrino luminosities and average energies see Goriely
et al. 2015). These would be closer to conditions from investigations for matter
ejected in the jets of magneto-rotationally powered core-collapse supernovae (see
Winteler et al. 2012 and section 7.3), leading to less fission cycling and less final
neutron captures from fission neutrons. Both aspects, improvements in the nuclear
structure input as well as the complete description of the astrophysical conditions
encountered in NS-NS and also NS-BH mergers should be followed in the future.
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Chapter 7

Nucleosynthesis in Core-Collapse
Supernovae

Core-collapse supernovae (CCSNe) mark the end of massive stars’ (M > 8 Mg)
lives. A pre-supernova star is constantly held up against its own gravitational force
by radiation pressure resulting from burning nuclear fuel into products with larger
total binding energy. At the end of Si burning (the last burning stage), the core
consists mainly of iron group nuclei. Since these nuclei have the largest binding
energy per nucleon, no further energy can be generated via nuclear fusion. By the
time most Si is consumed, the radiation pressure decreases and the core begins to
contract, as there is nothing to oppose the gravitational force. Initially, the electron
pressure slows down the contraction, but as the central density increases, so does
the electron Fermi energy and electron captures on nuclei are accelerated, reduc-
ing the electron pressure and turning the core contraction into a collapse. Electron
captures continue to occur until the density reaches p ~ 10'? gcm™ (Bethe, 1990).
At this point, neutrinos cannot escape freely anymore and scatter off nuclei and
electrons via neutral-current interactions, which eventually leads to an equilibrium
between neutrinos and matter. As the neutrinos scatter, they lose energy, facilitat-
ing their escape from the trapping region (because the mean-free path is inversely
proportional to the square of their energy). However, between the trapping radius
and the neutrinosphere radius (i.e., the radius from where the neutrinos will es-
cape freely from the star), they have to cover a large distance where they can still
scatter off matter. At the same time, the neutrino scattering leads to an increase in
entropy. Eventually, the density in the core exceeds nuclear density, and the low-
range repulsive component of the strong interaction becomes dominant, resulting
in core bounce and an initial outward shock. As this prompt shock moves out-
wards, however, it quickly loses energy, since it dissolves the nuclei into nucleons
and a-particles at a cost of 8.8 MeV per nucleon, and eventually stalls at a radius of
a few hundred kilometres. The origin and nature of the mechanism that leads to a
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successful explosion and ejection of material into the interstellar medium has still
not been conclusively found, but the most promising approach involves a shock-
revival by means of absorption of neutrinos (Colgate & White, 1966). During the
collapse, an enormous amount of gravitational energy is released, leading to a very
high temperature in the center. After core bounce, high-energy neutrinos are emit-
ted, deleptonizing and cooling the core. Wilson (1985) found that at a distance
r = 100 — 200 km to the center, these neutrinos can efficiently be absorbed, if the
(predominant) 160 nuclei are dissociated into nucleons beforehand. This would
lead to additional heating in this region and a revival of the stalled shock, result-
ing in a successful supernova explosion. For a more detailed description of the
supernova mechanics, see e.g., Bethe (1990).

In hydrodynamic simulations of CCSNe, special emphasis is laid on the treatment
of neutrinos. Up to this day, however, only the lowest-mass progenitor models lead
to an explosion. In addition, the consideration of general relativity and multi-D
effects such as convection or turbulences can have a great impact on the evolution
of the shock and the chemical composition of the ejecta.

Until recently, large studies of CCSNe comprising many different progenitor masses
could only be performed in spherical symmetry due to computational power con-
straints. These studies do not only serve the purpose of investigating the explo-
sion characteristics of the different progenitors, but also help understand the explo-
sive nucleosynthesis of a-elements beyond Si and their distribution in the galaxy
through space and time.

CCSNe appear much earlier in the galactic history than the other main contribu-
tors to explosive nucleosynthesis (i.e., Type I SNe and neutron star mergers). This
means that metal-poor stars can give us valuable clues about the typical composi-
tions of the ejecta in CCSNe. In addition, direct observations of type II supernova
light curves are a very good indication of the amount of certain radioactive iso-
topes produced in such an event. In particular, from SN 1987A reliable numbers
are available for the ejected masses of Y°Ni and **Ti. The progenitor of SN
1987A was identified to be around 20 M (Podsiadlowski et al., 2007).

In the past, many studies have been conducted to gain a better understanding of the
nucleosynthesis associated with CCSNe and their role in enriching the interstel-
lar medium with a-element and Fe group nuclei (e.g., Woosley & Weaver 1995;
Thielemann et al. 1996). As CCSNe have been the first explosive events to occur
in the young galaxy, the compositions of very metal-poor stars can be interpreted
as the results of several nearby CCSNe, without any contributions from type I SNe
Or neutron star mergers.

A correlation between some supernova characteristics (such as the explosion en-
ergy or the amount of ejected nickel) and a progenitor-dependent property called
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compactness parameter has been found in several recent studies (O’Connor & Ott,
2011; Ugliano et al., 2012; Nakamura et al., 2015; Perego et al., 2015). The com-
pactness parameter is usually defined as the ratio of an arbitrarily chosen enclosed
mass M and its corresponding radius inside the progenitor,

B MM
"~ R(M)/1000 km’
in line with the definition of O’Connor & Ott (2011), who introduced it first.

ém (7.0.1)

7.1 Reproducing SN 1987A Yields in Spherical Symmetry
Using the PUSH Method

The PUSH method (Perego et al., 2015) is a new mechanism to explode supernovae
in spherical symmetry that relies on an additional energy-deposition term. The
basic idea is that a certain fraction of the heavy-flavour neutrinos (v, vz, v~ and
vz) is absorbed in the regions where neutrino-driven convection is possible and
where the net energy gain from electron-neutrino interactions is positive. The local
heating term Q* _ (¢, R) is given by

push
Q;ush(t, r)=4G(@) fo qgush(r, E)dE, (7.1.1)
where )
1 E 1 [dL
t (rE)= E). 7.1.2
unsh(r ) go 4mh (mecz) 47'[]"2 ( dE )7:(’” ) ( )

Here, my, is the average baryon mass and (dL, /dE)/ (4nr?) is the spectral energy
flux for any single v, neutrino species with energy E. Since all four heavy neu-
trino species are treated equally, equation (7.1.1) contains a factor 4. The typical
neutrino cross section oy is given by

~ 4G12F (mecz)2

— ~ 1.759 x 10"*em?, (7.1.3)
7 (hic)

g0

with G being the Fermi coupling constant. The already mentioned criterion that
determines where Q;ush is active is represented by the term

0 if ds/dr>0 or é,5 <0

exp(—1,,(r, E)) otherwise 714

T(r,E):{

This term is zero for all zones where neutrino-driven convection is ruled out (ds/dr >
0 with s being the matter entropy) or where the net specific energy gain rate due
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Figure 7.1: The function G(f) determines the temporal behaviour of the heating
due to PUSH. The quantity ¢, is robustly set by multi-dimensional models. We
consider a value of 80 ms in our calculations and a value of 120 ms for testing.
tise and kpysh are set by our calibration procedure, spanning a range from 50 ms
to 250 ms, and from 0 (PUSH off) to ~4, respectively. Since we assume that the
explosion takes place within the first second after core bounce, we use fof = 1s.

to electron neutrinos and anti-electron neutrinos ¢, 5, is negative, i.e., where the
neutrinos do not heat the matter. For all other zones the factor takes the value
exp(—T,,(r, E)), where 7,, is the radial optical depth of the electron neutrinos.

In addition, Q;ush(t, R) is active only for a certain amount of time which can be
controlled by means of a few parameters. The time-dependence is regulated by the
factor G(¢) in equation (7.1.1) which is defined as

0 t < fon
(t - ton) /trise fon <1t < fon + tiise
G = kpush xq 1 fon + trise < < toff (7.1.5)
(toff + Irise — t) /trise foff <1< Ioff + Iise
0 t > toff + tise

where kg, 1s @ measure of the maximum strength and 7oy, frise, and o determine
the time evolution of the heating term Q;;ush(t, R). The time-dependence of G(¢) is
illustrated in figure 7.1.

PUSH provides a new, physically motivated framework for CCSN studies in spher-
ical symmetry, and enables more reliable predictions with respect to the explosion
energy, the mass cut and, consequently, the composition of the ejecta than the previ-
ously used piston (e.g., Woosley & Weaver 1995; Limongi & Chiefti 2006; Chiefhi
& Limongi 2013) or thermal bomb methods (e.g., Thielemann et al. 1996; Umeda
& Nomoto 2008). In a first step, the free parameters are calibrated on the observed
properties of SN 1987A (such as explosion energy, *°~%Ni and **Ti yields) for a
progenitor mass between the 18.0 and 21.0 Mg range, in which the expected mass
of the progenitor of SN 1987A lies. Figures and text from the sections 7.1.1 to
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7.1.6 are from Perego et al. (2015), with the exception of Figure 7.5, which has
been used in Eichler et al. (2015b).

7.1.1 Nucleosynthesis network

To predict the composition of the ejecta, we perform nucleosynthesis calculations
using WiNNET (Winteler et al., 2012). We include isotopes up to 2!'Eu covering
the neutron-deficient as well as the neutron-rich side of the valley of S-stability.
The reaction rates are the same as in Winteler et al. (2012). They are based on
experimentally known rates where available and theoretical predictions otherwise.
The n-, p-, and alpha-captures are taken from Rauscher & Thielemann (2000), who
used known nuclear masses where available and the Finite Range Droplet Model
(Moller et al., 1995) for unstable nuclei far from stability. The S-decay rates are
from the nuclear database NuDat2!.

We divide the ejecta into different mass elements of 1073 Mg, each and follow the
trajectory of each individual mass element. As we are mainly interested in the
amounts of 2°Ni, >’Ni, 38Ni, and **Ti, we only consider the 340 innermost mass
elements above the mass cut, corresponding to a total mass of 0.34 M. The con-
tribution of the outer mass elements to the production of those nuclei is negligible.

For t < tana (fana being the simulation time of PUSH), we use the temperature and
density evolution from the hydrodynamical simulations as inputs for our network.
For each mass element we start the nucleosynthesis post-processing when the tem-
perature drops below 10 GK, using the NSE abundances (determined by the current
electron fraction Y,) as the initial composition. For mass elements that never reach
10 GK we start at the moment of bounce and use the abundances from the approxi-
mate a-network at this point as the initial composition. Note that for all tracers the
further evolution of Y, in the nucleosynthesis post-processing is determined inside
the WINNET network.

At the end of the simulations, i.e., t = fgnq1, the temperature and density of the
inner zones are still sufficiently high for nuclear reactions to occur (' = 1 GK
and p ~ 2.5 x 103 g cm™3). Therefore, we extrapolate the radius, density and
temperature up to feng = 100 s assuming an expansion with constant velocity:

r(f) = Tfinal + Vfinal (7.1.6)
_ 7(tfinal) :

P(1) = p(thinar) 0 (7.1.7)

T (1) = T Sfinal, p(0), Yo(D)], (7.1.8)

thttp://www.nndc.bnl.gov/nudat2/
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where r is the radial position, v the radial velocity, p the density, T the tempera-
ture, s the entropy per baryon, and Y, the electron fraction of the mass zone. The
temperature is calculated at each timestep using the equation of state of Timmes &
Swesty (2000).

7.1.2 Observational constraints from SN 1987A

The analysis and the modelling of the observational properties of SN 1987A just
after the luminosity peak have been the topics of a long series of works (e.g.,
Woosley, 1988; Arnett et al., 1989; Shigeyama & Nomoto, 1990; Kozma & Frans-
son, 1998a,b; Blinnikov et al., 2000; Fransson & Kozma, 2002; Utrobin & Chugai,
2005; Seitenzahl et al., 2014, and references therein). They provide observational
estimates for the explosion energy, the progenitor mass, and the ejected masses of
36Ni, >’Ni, >8Ni, and **Ti, all of which carry rather large uncertainties. In Table 7.1,
the reference values used for the calibration of the PUSH method are summarized.

The zero-age main-sequence (ZAMS) progenitor mass is assumed to be between
18 Mg and 21 Mg, corresponding to typical values reported in the literature for the
SN 1987A progenitor, see, e.g., Woosley (1988); Shigeyama & Nomoto (1990).
For the explosion energy we consider the estimate reported by Blinnikov et al.
(2000), Eexpr = (1.1 £0.3) x 103! erg (for a detailed list of explosion energy esti-
mates for SN 1987A, see for example Table 1 in Handy et al. 2014). This value was
obtained assuming ~14.7 Mg, of ejecta and a hydrogen-rich envelope of ~10.3 Mg,
The uncertainties in the progenitor properties and in the SN distance were taken
into account in the error bar. The employed values of the total ejecta and of the
hydrogen-rich envelope are compatible (within a 15% tolerance) with a significant
fraction of our progenitor candidates, especially for Mzams < 19.6 Mg. Explosion
models with larger ejected mass (i.e., less compatible with our candidate sam-
ple) tend to have larger explosion energies (see, for example, Utrobin & Chugai
2005). Finally, we consider the element abundances for **3’Ni and **Ti provided
by Seitenzahl et al. (2014), which were obtained from a least squares fit of the de-
cay chains to the bolometric light curve. For ®Ni we use the value provided by
Fransson & Kozma (2002).

7.1.3 Fitting procedure

We calibrate the PUSH method by finding a combination of progenitor mass, Ky
and t,;5c which provides the best fit to all the observational quantities of SN 1987A
mentioned above. The weight given to each quantity is related to the uncertainty.
For example, due to the large uncertainty in the **Ti mass, this does not provide a
strong constraint on selecting the best fit.
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Figure 7.2: Ejected mass of “®Ni (top left), >’Ni (top right), 3¥Ni (bottom left),
and **Ti (bottom right) and explosion energy for four representative HC progeni-
tor models. Five combinations of kg, and #,, are shown, each with a different
symbol. The error bar box represents the reported error range for *°>’Ni and **Ti
(Seitenzahl et al., 2014) and for the explosion energy (Blinnikov et al., 2000). No
error bars are reported for ®Ni.
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Figure 7.3: Same as Figure 7.2, but assuming 0.1 Mg, fallback. Note the different
scale for *°Ni and ®Ni compared to Figure 7.2.
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Eexpl (1.1 £0.3) x 107! erg
Mprog 18-21 Mg
m(*Ni) (0.071 + 0.003) Mg,
m(’Ni)  (0.0041 = 0.0018) My,
m(*8Ni) 0.006 Mo,
m(*Ti)  (0.55+0.17) x 107* M,

Table 7.1: The nucleosynthesis yields are taken from Seitenzahl et al. (2014) except
for 7¥Ni which is taken from Fransson & Kozma (2002). No error estimates were
given for ®Ni. The explosion energy is adapted from Blinnikov et al. (2000).
For the progenitor range we chose typical values found in the literature, see e.g.,
Shigeyama & Nomoto (1990); Woosley (1988).

Figure 7.2 shows the explosion energy and ejected mass of “°Ni, >’Ni, ¥Ni, and
4T for different cases of kpusn and 5., and four selected high-compactness (HC)
progenitors with relatively high explosion energies used to calibrate the PUSH
method. The different cases of ks, and f,5 span a wide range of explosion ener-
gies around 1 Bethe. There is a roughly linear correlation between the explosion
energy and the synthesized >*Ni mass, which becomes more distinguished if more
progenitor models are considered. However, this correlation is not directly compat-
ible with the observations, as the ejected “®Ni is systematically larger than expected
(up to a factor of ~ 2 for models with an explosion energy around 1 Bethe). There
is a weak trend that models with higher #;¢ tend to give lower nickel masses for a
given explosion energy.

Our simulations can be reconciled with the observations by taking into account
fallback from the initially unbound matter. Since we do not model the explosion
long enough to see the development of the reverse shock and the appearance of
the related fallback when the shock reaches the hydrogen-rich envelope, we have
to impose it, removing some matter from the innermost ejecta?2. With a value of
~ 0.1 Mg we can match both the expected explosion energy and the mass of ejected
6Ni, see Figure 7.3. In this way we have fixed the final mass cut by observations.
However, we point out that we are able to identify the amount of late-time fallback
only because we also have the dynamical mass cut from our hydrodynamical sim-
ulations. This is not possible in other methods such as pistons or thermal bombs.
Our value of 0.1 M, of fallback in SN 1987A will be further discussed and com-
pared with other works in section 7.1.6.

2Note that we did not modify the explosion energy due to the fallback. This is based on the
expectation that at the late time when fallback forms, the explosion energy is approximately equally
distributed among the total ejected mass, which is about two orders of magnitude higher than our
fallback mass.
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kpush Lrise Ton Toff
(-)  (ms) (ms) (s)
35 200 80 1

Table 7.2: The 18.0 Mg progenitor, together with these parameters, gives the best
fit to the observational data. In addition, we had to impose a late-time fallback of
0.1 Me.

The observed yield of *°Ni provides a strong constraint on which parameter combi-
nation would fit the data. From the observed yields of >'Ni and *®Ni, only the 18.0
and 19.4 progenitors remain viable candidates. Without fallback, our predicted
4Ti yields are compatible with the observed yields (see Figure 7.2). However, if
we include fallback (which is needed to explain the observed Ni yields), *Ti be-
comes underproduced compared to the observed value. Since this behaviour is true
for all our models, we exclude the constraint given by **Ti from our calibration
procedure. From the considered parameter combinations, we obtained the best fit
to SN 1987A for the 18.0 My progenitor model with kpush = 3.5, fiise = 200 ms,
and a fallback of 0.1 Mg. These parameters are summarized in Table 7.2.

A summary of the most important results of the simulations using this parameter
set for the different progenitors in the 18-21 My window is given in Table 7.3. For
the remnant mass and for the *°Ni yields of our best-fit model, we provide both the
values obtained with and without assuming a fallback of 0.1 M.

7.1.4 Ni and Ti yields, progenitor dependence

Figures 7.2 and 7.3 show that the composition of the ejecta is highly dependent on
the progenitor model, especially for the amount of 'Ni and *®Ni ejected. From
the four HC progenitors shown, two (18.0 Mg and 19.4 M) produce a fairly high
amount of those isotopes, while the other two (19.2 Mg and 20.6 M) do not reach
the amount observed in SN 1987A. A thorough investigation of the composition
profile of the ejecta reveals that >’Ni and ®Ni are mainly produced in the slightly
neutron-rich layers (Y, < 0.5), where the alpha-rich freeze-out leads to nuclei only
one or two neutron units away from the N = Z line. A comparison of the Y,
and composition profiles for the 18.0 Mg and the 20.6 My, progenitors is shown in
Figure 7.4. For the 18.0 M model, the cutoff mass is 1.56 Mg, and a large part of
the silicon shell is ejected. In this shell, the initial matter composition is slightly
neutron-rich (due to small contributions from >*Fe and °Fe), with ¥, =~ 0.498
(dotted line in top left graph), and the conditions for the production of 3'Ni and
8Ni are favourable. The increase in Y, around 1.9 My marks the transition to the
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ZAMS Eexpl texpl Mfemnant Mgmnant M(56Ni )
Mo)  (Bethe)  (s) Mo) Mo) Mo)
18.0 1.092 0304  1.563 1.416 0.158
18.2 0.808 0.249  1.509 1.371 0.110
18.4 1.358 0.318 1.728 1.549 0.144
18.6 0.702  0.239  1.529 1.388 0.090
18.8 0.721 0236  1.522 1.382 0.093
19.0 1.366  0.317 1.716 1.54 0.161
19.2 1.356  0.318 1.724 1.546 0.152
194 1.15 0.326  1.608 1.452 0.158
19.6 0.371 0230 1.584 1.433 0.04
19.8 0.661 0.225 1.523 1.383 0.088
20.0 0.613 0222 1474 1.342 0.085
20.2 0.379 0224 1.554 1.408 0.039
20.4 0.743 0263 1.674 1.506 0.094
20.6 1.005 0.277 1.781 1.592 0.141
20.8 0959 0277 1.764 1.578 0.135
21.0 1.457 0316  1.733 1.554 0.198

18.0(fb) 1.092 0.304 1.663 1.497 0.082

Table 7.3: For the model 18.0 (fb), which is our best fit to SN 1987A, we have
included 0.1 Mg of fallback, determined from observational constraints. See the
text for more details. The two different remnant masses given refer to the baryonic
mass (M?®) and the gravitational mass (M%), respectively.

oxygen shell. The same transition for the 20.6 M model happens around 1.74 Mg,
i.e., inside the mass cut. Therefore, this model ejects less 3INj and 8Ni (see also
Thielemann et al. 1990). In all our models, **Ti is produced within the innermost
0.15 Mg of the ejecta (see Figure 7.4). Since we assume 0.1 Mg fallback onto
the proto-neutron star (PNS), most of the synthesized **Ti is not ejected in our
simulations.

7.1.5 Sensitivities of nucleosynthesis yields

While post-processing the ejecta trajectories for nucleosynthesis, Y, is evolved by
the nuclear network independently of the hydrodynamical evolution. This leads
to a discrepancy at later times between the electron fraction in the initial trajec-
tory (Yil ydr0) and in the network (Y}"¢). In order to estimate the possible error in
our nucleosynthesis calculations arising from this discrepancy, we have performed
reference calculations using Y?ydro(t = tfina1) instead of Y? ydrO(T = 10 GK) as a
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Figure 7.4: Electron fraction profiles (top) and nuclear compositions (bottom)
above the mass cut for the 18.0 Mg (left) and the 20.6 Mg (right) progenitors with
the parameters kyush = 3.5 and #je = 200 ms. The electron fraction is plotted for
two different times in the network: the input values for the first timestep (“input”)
and the value after post-processing (“final”). The dashed lines correspond to the
alternative case, where Y? ydro(t = 4.6 s) is taken as the initial electron fraction in
the network.

starting value for the network (see section 7.1.1). The results are shown in Fig-
ure 7.4 for two progenitors: 18.0 Mg and 20.6 M. The label “standard” refers to
the regular case which uses Y?ydro(T = 10 GK) as input. The calculation using
YO = fenar) as input is labelled “alternative” and is represented by the dashed
lines. The point in time at which the Y, profile is shown is indicated by the sup-
plements “input” (before the first timestep) and “final” (at # = 100 s). For the Y,
profile of the 18.0 Mg progenitor (top left) the minimum around 1.59 Mg, disap-
pears, leading to an increase in °Ni in this region at the cost of 3'Ni and ®Ni
(bottom left). For the 20.6 M, progenitor the situation is similar, with only a very
small region just above 1.8 Mg showing significant differences. In general, we ob-
serve that the uncertainties in Y, in our calculations are only present up to 0.05 Mg
above the mass cut. The resulting uncertainties in the composition of the ejecta are
very small or even inexistent in the scenarios where we consider fallback.

The radioactive isotope **Ti can be detected in supernovae and supernova rem-
nants. Several groups have used different techniques to estimate the **Ti yield
(Chugai et al., 1997; Fransson & Kozma, 2002; Jerkstrand et al., 2011; Larsson
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etal., 2011; Grebenev et al., 2012; Grefenstette et al., 2014; Seitenzahl et al., 2014),
and the inferred values span a broad range, (0.5 — 4) x 10™* My, Traditional su-
pernova nucleosynthesis calculations (e.g., Thielemann et al., 1996; Woosley &
Weaver, 1995) typically predict too low *Ti yields and there are only very few
models that predict high yields: Thielemann et al. (1990) report **Ti yields around
10™* and above in the best fits of their artificial SN explosions to SN 1987A.
Rauscher et al. (2002) argue that the yields of **Ni and **Ti are very sensitive to the
“final mass cut” (as we have shown, too), which is often determined by fallback.

Ejecta in a supernova may be subject to convective overturn. To account for this,
we can assume homogeneous mixing in the inner layers up to the outer boundary of
the silicon shell before cutting off the fallback material (see, for example, Umeda &
Nomoto 2002 and references therein). For our best-fit model, the ejected “*Ti mass
increases to 2.70 x 107> Mo, if this prescription is applied. Comparing to the pre-
vious yield of 1.04 x 107> My, we observe that the effect of homogeneous mixing
is considerable, but not sufficient to match the observational values. The ejected
36-38Nj masses also show a slight increase. However, there are also uncertainties
in the nuclear physics connected to the production and destruction of **Ti. The
final amount of produced **Ti depends mainly on two reactions: *°Ca(a, y)**Ti
and “Ti(a, p)47V. Margerin et al. (2014) measured the “Ti(a, p)47V reaction rate
within the Gamow window and concluded that it may be considerably smaller than
previous theoretical predictions. In their study, an upper limit cross section is re-
ported that is by a factor of 2.2 smaller than the cross section we have used in our
calculations (at a confidence level of 68%). Using this smaller cross section for
the *Ti(e, p)*’V reaction, our yield of ejected 44Ti for our best-fit model (18.0 M,
progenitor, kpush = 3.5, fise = 200 ms) rises to 1.49 X 1075 M, with fallback, and
5.65 x 107> Mg, without fallback. This corresponds to a relative increase of 43%
with fallback and 48% without fallback. If we include both the new cross section
and homogeneous mixing, the amount of **Ti in the ejecta is 3.99 x 107 Mg,
including fallback. This value, however, is still below the expected value derived
from observations, but within the error box. The effects of the smaller destruction
rate and homogeneous mixing are illustrated in Figure 7.5, where the black solid
line is the standard calculation (corresponding to the **Ti line in Figure 7.4) and
the *Ti yields with the modified *Ti(a, p)*’V rate are represented by the black
dashed line. The red horizontal line shows the average **Ti yield at each mass co-
ordinate if, in addition to the modified rate, homogeneous mixing is assumed. The
vertical dashed line indicates the mass cut with 0.1 Mg, fallback, i.e., the border
between fallback and ejected material.
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7.1.6 Amount of fallback

To reconcile our models with the nucleosynthesis observables of SN 1987A we
need to invoke 0.1 Mg, of fallback (see section 7.1.3). The variation in the amount
of synthesized Ni isotopes between runs obtained with different PUSH parame-
ters (Figure 7.2) suggests that a smaller #;s (and, consequently, smaller kpush)
could also be compatible with SN 1987A observables, if a larger fallback is as-
sumed. On the one hand, assuming that #;s ranges between 50 ms and 250 ms,
fallback for the 18.0 Mgy model compatible with observations is between 0.14 Mg
(for tiise = 50 ms) and 0.09 Mg, (for tie = 250 ms). On the other hand, if the
amount of fallback has been fixed, the observed yields (especially of *°Ni) reduce
the uncertainty in fs to < 50 ms.

Our choice of 0.1 Mg is compatible with the fallback obtained by Ugliano et al.
(2012) in exploding spherically symmetric models for progenitor stars in the same
Z.AMS mass window. Moreover, Chevalier (1989) estimated a total fallback around
0.1 Mg for SN 1987A, which is supposed to be an unusually high value compared
to “normal” type II supernovae. Recent multidimensional numerical simulations
by Bernal et al. (2013); Fraija et al. (2014) confirmed this scenario and further-
more showed that such a hypercritical accretion can lead to a submergence of the
magnetic field, giving a natural explanation why the neutron star (possibly) born in
SN 1987A has not been found yet.

—

—  “Ti with mixing

[
= om

107 55 185 1.90

MIM;]

Figure 7.5: Standard (solid black line) and alternate “Ti yields for the 18.0 Mg
best-fit model: modified **Ti(e, p)*’V rate without (black dashed line) and with
homogeneous mixing assumed (red horizontal line). The vertical dashed line marks
the final mass cut, if a fallback of 0.1 M, is applied. Figure adapted from Eichler
et al. (2015b).
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7.2 Multi-D Simulations and Their Nucleosynthesis Yields

In this section, we present detailed full-network nucleosynthesis calculations for an
axisymmetric long-term CCSN simulation presented in Nakamura et al. (2015), us-
ing a 17 Mg progenitor with solar metallicity from the Woosley et al. (2002) series.
This progenitor has a compactness of £, 5 = 0.161, and is therefore an intermediate-
compactness progenitor. The detailed explosion properties obtained in a long-term
simulation are discussed in Nakamura et al. (2017), where a gravitational NS mass
of 1.85 M, and a diagnostic explosion energy of 1.23 x 10°! erg are reported. The
computational domain encompasses a mass of 4.07 Mg and the simulation stops
7s after core bounce. For the nucleosynthesis calculations, we have used 129024
tracer particles that are initially evenly distributed in the computational domain.

7.2.1 Ciriteria for ejected particles

In a first step, it is important to know which particles are successfully ejected,
i.e., become gravitationally unbound in the course of a SN. Usually, a particle
is considered ejected when its specific total energy at the end of the simulation is
positive (E(7s) > 0). The specific total energy is the sum of internal energy, (radial)
kinetic energy, and gravitational potential ¢:

2

Erot = Eine + % +¢. (7.2.1)
The initial and final positions (at t = Os and ¢t = 7s, respectively) of all tracer
particles that are ejected according to this criterion are shown in Figure 7.6, along
with the peak temperature each tracer reaches at any point in the simulation. Note
that for this model the core bounce occurs at + = 0.206s. The progression and
position of the shock front at the end of the simulation can be seen in the left panel,
since all particles that encounter the shock at one point in the simulation have a
higher peak temperature than the others. Indeed, the final velocities of the particles
confirm that the shock proceeds in the polar directions, while material around the
equator is infalling. The fate of the infalling material is uncertain at this point, as
it could be both accreted onto the PNS or accelerated along the z-axis and ejected.
Therefore, the pure energy criterion should be seen as an upper limit for the total
ejecta mass.

We can find a lower limit by imposing an additional condition, when only particles
with a positive radial velocity component are considered ejected, i.e., E(7s) > 0 &
vrad(7s) > 0. Figure 7.7 shows the initial and final positions of these tracers. The
tracers in the blank areas around the equator are initially hit by a weak outward
shock, obtaining a slightly positive radial velocity, which is however below the



88

CHAPTER 7. CORE-COLLAPSE SUPERNOVAE

escape velocity. Therefore, their flight from the PNS is stopped after a short amount

of time and they fall back towards the center.

The role as lower limit of this criterion can be understood when considering the
tracer particles close to the z-axis and still outside of the shock on the left-hand
panel in Figure 7.6. Since these particles have not yet encountered the shock, they
are infalling (and therefore do not count towards the final ejecta). As soon as the
shock front reaches them, however, they will be turned around and their velocity
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Figure 7.6: Initial distribution of tracer particles (left) with E(7s) > 0 and the final
positions of the same tracers at a simulation time of 7s (right). The colour indicates

the peak temperature that is reached during any time of the simulation.

z [cm]

1e+10 —

8e+09

6e+09

4e+09

2e+09

-2e+09

-4e+09

5e+09

y [em]

le+10

le+10

8e+09

6e+09

4e+09

2e+09

T[GK]

z[cm]

1e+10

8e+09 K

6e+09

4e+09

2e+09

-2e+09

-4e+09

5e+09

y [em]

le+10

le+10

8e+09

6e+09

T[GK]

4e+09

2e+09

Figure 7.7: Same as Figure 7.6, but with the additional condition v;,q4 > 0 for
successfully ejected particles.
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vector will point outward. The total mass of ejecta according to the E & vy,q cri-
terion is therefore sensitive to the simulation time at which the criterion is applied.
Ideally, it would be applied at a time when the shock front has reached the outer
layers of the star. This is not possible in this case, because the simulation stops
before that point.

Out of the 4.07 Mg in the computational domain, 1.93 Mg, are ejected according to
the pure E criterion and 0.91 Mg, for the E & vyyq criterion. We have argued that
both criteria do not give a good estimate of the ejecta mass, but should rather be
considered an upper and lower limit, respectively. In order to obtain a better idea of
the amount (and the composition) of the ejecta, we have tested other criteria. One
of them is the condition p(7s) < 10'! gcm~3, henceforth labelled “p”. Clearly, this
prescription suffers from the same flaw as the pure E criterion, since all the particles
outside the PNS count towards the final ejecta. Another option is to use a purely
geometrical approach: We have already found that the shock propagates mainly in
a bipolar fashion along the z-axis (see Figure 7.6), while matter around the equator
is mostly infalling. Therefore, we can choose an angle 6 above and below the
equator that distinguishes between ejected and accreted material. Obviously, in
order to avoid counting PNS material, we also ask for the p criterion to be fulfilled.
The concept is illustrated in Figure 7.8 for 6 = 30° (left) and 6 = 45° (right).

We have already established that the ejecta mass is sensitive to the moment when
the criteria are applied. The simulation stops at 7s and it can be expected that
the most precise results are obtained when the criteria are applied at this moment.
However, particles might not fulfil an ejection criterion when the simulation stops,
but only later on, for instance when they encounter the shock front and are accel-
erated away from the center. Thus, we also apply all our criteria at a simulation
time of ¢t = 5s. By doing this, we are able to identify trends for the behaviour of
the ejecta mass and the individual isotopic yields according to all our criteria. The
total mass of the ejecta (Mejc) as well as the ejected masses of some isotopes are
summarized in Table 7.4 for the pure energy (E), the energy with radial velocity
(E + vrad), the density (p), and the two angle criteria (6°° & %) taken at 5s and 7s
(indicated by the supplements “5” and “7”). The method for the nucleosynthesis
calculations with which these yields were obtained is explained in section 7.2.2.

Table 7.4 reveals that the different ejection criteria give very different predictions
for the total mass of the ejecta and the yields for '°0 and 28Si. However, the values
for M(**Ti) and M(°®Ni) are very similar for all the criteria when applied at 7s.
The predictions for the ejected **Ti mass lie within a range of 1.14 x 107> Mg
and 1.35 x 107 My, the predicted *Ni mass is between 1.10 x 1072 My, and
1.39x 1072 Mg. The convergence of the yields for nuclei with higher mass numbers
becomes even clearer in Figure 7.9, where the data from Table 7.4 are plotted in
dependence of the moment of application.
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Figure 7.8: Left: Final positions of successfully ejected particles under the as-
sumption that all particles within an angle 8 = 30° above and below the equator
are accreted onto the PNS, and all other particles with p < 10! gcm™ are ejected.
Right: Same, but with 6 = 45°.

Several trends are visible in Figure 7.9. First, the predicted total mass of the ejecta
slowly decreases with increasing simulation time for four of the five criteria (top
left panel). This can be explained by accretion onto the PNS, i.e., accreting par-
ticles become gravitationally bound (hence not fulfilling the pure E criterion any-
more) and their density increases above 10'! gcm™ (failing the p criterion). The
decreasing trend for the 0 criteria is due to particles that are first accelerated by the
shock close to the boundary and after a while fall into the equatorial plane, thus not
counting towards the ejecta anymore. For the E + vy,q criterion the ejected mass
is growing, since the shock is still moving outward and accelerating infalling par-
ticles. Furthermore, there is a striking difference between the temporal behaviour
of the '°0 and 28Si yields on the one hand (Fig. 7.9b & 7.9¢) and the **Ti, *°Ni,
and %8Ge yields on the other hand (Fig. 7.9d-7.9f): The former group includes nu-
clei that are already present in the pre-SN progenitor (mainly in the outer layers),
which means that their yields generally follow the trends of the total mass. 28Si
shows a slightly deviating behaviour from the total mass, because it is also the fuel
for explosive Si burning in high enough temperatures (according to Thielemann
et al. 1996, complete Si exhaustion is reached in tracers that reach 7 = 5 GK).
The latter nuclei belong to the group of freshly synthesized products of the SN
with relatively high mass number. They are localized mainly in the regions with
the highest peak temperatures, and the convergence of their yields at # = 7s means
that most of the corresponding tracer particles are considered ejected in all criteria.
Of all our tested criteria, E + vyyq is the physically most motivated, although it has
the previously discussed drawback that all the tracer particles outside of the shock
radius are not considered ejected, even if they might still become gravitationally
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Figure 7.9: Ejected total mass (a) and yields of several selected isotopes (b)-(f)
according to different ejection criteria. See text for explanation.
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Crit Meje M('°0) M(*Si) M(**Ti) M(°°Ni)
[Mo] [Mo] [Mo] [Mo] [Mo]
E(5) 2.06 1.02  131x107%2 530x107° 4.61 x1072
E(7) 1.93 1.01  122x107% 120x107° 1.17x 1072
E + vaa(5) 0.74 047  7.67x107° 1.01x107 9.51x1073
E + vraa(7) 0.91 0.57 6.52x107% 1.14x107 1.10x 1072
o(5) 2.12 1.02  131x107%2 7.77x107° 6.57x 1072
o(7) 1.95 1.02  131x107% 135x107 1.39x 1072
630(5) 1.01 0.51 1.12x 1072 296x 1075 2.67x 1072
630(7) 0.88 045 1.07x1072 1.28x107 1.30x 1072
63 (5) 0.53 025 7.14x107% 1.73x107° 1.67x 1072
65(7) 0.43 0.18 733x1073 125x107° 127x1072

Table 7.4: Total ejecta masses (Mejc) and individual isotopic yields according to
different ejection criteria, which are applied at two different times in the simulation
(5s and 7s).

unbound at a later point. In order to account for this, we choose a combined final
criterion consisting of E + vig + 6°°, i.e., all particles fulfilling either E + vyyq or
63 are considered ejected. This can be justified by the notion that all particles with
an angle 6 > 30° or 8 < —30° from the equator will encounter the shock at one
point after the end of the simulation and obtain a positive radial velocity. The final
positions of the tracers fulfilling E + vy,q + 6°° at t = 7s are shown in Figure 7.10,
together with their peak temperature (right) and the corresponding density (left).

7.2.2 Nucleosynthesis calculation procedure

As the composition of the particles is heavily dependent on their peak temperatures
during the simulation (see e.g., Thielemann et al. 1996), we divide them into 20
bins according to their peak temperature in the simulation. Using this method, we
are able to make bin-by-bin nucleosynthesis predictions that can be easily applied
in the future in order to give estimates also for CCSNe simulations of other progen-
itors. We choose the E + vyaq + 6°° criterion at ¢ = 7s, as discussed in the previous
section. Table 7.5 lists the number of particles in each temperature bin.

It can be seen that more than half of the ejected particles do not reach a temper-
ature of Tg = 1 (To is a measure of temperature in 10° GK), which means that
they do not undergo explosive burning and eject material of a composition that is
practically unchanged from the pre-collapse composition. For these tracer particles
in particular, but to a varying degree also for the tracers in the higher-temperature
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Figure 7.10: Particles fulfilling the E + vyq + 639 criterion at 7 = 7s. The panel on
the right hand side shows the peak temperature (not necessarily at that time), the
corresponding density is shown on the left.

bins, the initial abundance composition is very important. We correlate the initial
abundances for each particle with the nuclear composition in the progenitor data
(Woosley et al. 2002) for the corresponding radius:

Y(A,Z)ye(t = 0) = Y(A,Z)prog(r = Tirei) » (7.2.2)

where Y (A, Z);. and Y(A,Z),,0 denote the abundances of nuclear species (A, Z)
in the tracer particle and the progenitor, respectively, ¢ is the simulation time, and
Tirei denotes the radius of the tracer particle at + = 0. This procedure is applied
to all the tracer particles except for the ones in the highest-temperature bin (i.e.,
with Tpeqr > 8 GK), where the initial composition can be derived from nuclear
statistical equilibrium (NSE).

The hydrodynamical simulation provides data up to a simulation time ¢ = 7 s. In
order to make sure that we do not miss any nucleosynthesis processes taking place
after that time, we extrapolate for each tracer to the point where the temperature
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Ty N Ty N Ty N Ty N
<0.8 14096 | 1.2-14 1848 | 2.4-2.8 727 | 4.8-54 389
0.8-0.9 2038 | 1.4-1.6 1802 | 2.8-3.2 356 | 54-62 114
09-1.0 1616 | 1.6-1.8 1205 | 3.2-3.6 213 | 6.2-7.0 38
1.0-1.1 1441 | 1.8-2.0 1034 | 3.6-4.2 305 | 7.0-8.0 50
1.1-1.2 1221 | 2.0-2.4 1269 | 42-48 196 | >80 1416

Table 7.5: Temperature bins and number of ejected tracer particles N in each bin.

drops below 0.01 GK, assuming an expansion with constant velocity. The temper-
ature is calculated at each timestep using the equation of state of Timmes & Swesty
(2000). The post-simulation evolution and the input data for the nuclear network
are the same as in section 7.1.1.

As the tracer particles from the lower-temperature bins basically expel the unal-
tered progenitor composition, we do not post-process all the particles from these
bins. Instead, we randomly select and post-process a subset from each bin and
verify that the ejected composition agrees with the (initial) progenitor composi-
tion. Table 7.6 shows the numbers of tracers that have been post-processed for
each peak temperature bin.

To N,p Ty Npp To N,p Ty N,»
<0.8 200 | 1.2-14 200 | 2.4-2.8 400 | 4.8-54 389
0.8-09 200 | 14-1.6 200 |28-32 3565462 114
09-1.0 200 | 1.6-1.8 200 | 3.2-3.6 213 | 6.2-7.0 38
1.0-1.1 200 | 1.8-2.0 200 | 3.6-4.2 305 | 7.0-8.0 50
1.1-1.2 200 | 2.0-24 400 | 42-48 196 | >80 1416

Table 7.6: Numbers of randomly selected and post-processed tracer particles (de-
noted N,,,) for each bin.

In total, 5677 tracers have been post-processed, with an emphasis on the tracers in
the high-temperature bins. In fact, all of the tracers reaching a peak temperature of
at least T9 = 2.8 have been post-processed.

For the low-temperature bins where we do not post-process all the tracers, we
calculate the isotopic yields by extrapolating to all tracers in each respective bin
taking into account the (individual) mass each tracer particle represents. We do this
for each bin by first calculating an average mass fraction for each isotopic species,
weighted by the tracer masses, and then multiplying with the total bin mass Mp;,,
gained by summing up the masses of all the tracers in the bin:

MbMA,Z) = 2i XA, M,

bin s M- (7.2.3)
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Here, X;(A, Z) is the mass fraction of nucleus (A, Z) and M; is the mass correspond-
ing to tracer particle i. The sums go over all post-processed tracer particles, while
My, is the sum over all particle masses in the bin. The yields from the individual
bins are then added up to obtain the total nuclear yields.

Finally, we account for the fact that the shock will move through the outer layers of
the star (which are not included in the computational domain), unbinding material
from the helium and hydrogen shells in the process. However, as it has lost a lot of
its energy, it does not heat up the material to the temperatures required for explosive
nucleosynthesis. Therefore, we add half of the progenitor material starting from
an enclosed mass coordinate of 4.07 Mg (corresponding to the outer boundary
of the computational domain in the simulation) to the ejecta. The factor 1/2 is
derived from the two opening angles of 120°, within which material is considered
successfully ejected (see Figure 7.8 left panel). Transferred into a 3D model, this
would encompass two solid angles of 7 sr each, which corresponds to 2x1/4 = 1/2
of the star’s volume. This procedure adds about 4.885 Mg of progenitor material
which mainly consists of helium and hydrogen. Note that these considerations
inherently lead to the formation of a black hole in the center due to the late accretion
onto the PNS, with a mass of about 6 M.

7.2.3 Results

The complete isotopic yields are summarized in Table 7.7. Only isotopes with an
ejected mass of at least 10~!°> M, are included. Note that these are the integrated
yields over all ejected particles, as described in section 7.2.2.

In our approach we run each calculation until the temperature drops below 0.01 GK,
which means that the calculations for the individual tracer particles do not end at
the exact same time. Therefore, the yields in Table 7.7 do not correspond to one
specific snapshot in time, which has a significance for unstable isotopes with half-
lives of an order Ti» = 1000s and shorter. The S\ yield of 1.30 x 1072 Mg
is very low for a CCSN in this mass range (see e.g., section 7.1.3). Figure 7.9¢
demonstrates that it is produced in considerably larger amounts (the p criterion at
5s indicates 6.57 x 1072 M, of ejected “°Ni), but the majority of it is accreted onto
the PNS in the later stages of the simulation.

Figure 7.11 shows the isotopic [X/Fe] distribution (cf. chapter 3) after decay to
stability. Connected data points of the same colour represent different isotopes of
the same element. All nuclei with Ty, < 10° yr are considered to be completely
decayed. The solar abundances are from Lodders et al. (2009). The slight over-
production of a-elements up to Ti is typical of CCSNe (Thielemann et al., 1996).
The high abundances of neutron-deficient isotopes for Z > 32 (Ge and beyond) is a
clear signature of the vp-process, a mechanism of the rapid proton capture process
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Iso M/Mg Iso M/Mg Iso M/Mg Iso M/Mg Iso M/Mg
ONe 3.28x10°T [ 3P 932x10® | ¥K 634x10°™ | ¥V 392x10°
'H 281x10° 0Ne 2.18x107!' | ¥P 508x107 | PK 860x107" | IV 678 x107°
2H 1.11x107'9 | 2INe 2.08x107° | 3P 1.12x 1075 | ¥Ca 4.94x 1075 | 5'v 198 x 1078
SH 3.00x107"2 | 2Ne 1.73x 1077 | 7S 727x10712 | ¥Ca 1.73x1073 | 2V  1.13x 107!
SHe 7.43x107° | PNe 196x10712 | 31s  523x 107" | 4Ca 4.39x10°° | ¥V 731x107"
‘“He 2.14x10° 2Ne 9.08x 1071 | 328 966x1073 | *Ca 254x10° | 2V 876x 1071
°Li 648x 107! | 2Na 1.63x 1071 | 3S 1.79x 107 | #Ca 644x1077 | ¥Cr 425x107
TLi 2.87x10710 | 2INa 2.77x 10712 | 3S 349x10° | *Ca 131x10°® | ¥Cr 345x107°
Be 1.01x107% | 22Na  4.16x 1077 | 3S 2.09x10® |%Ca 136x107'9 | Cr 6.31x10°°
‘Be 547x107"" | Na 996x107° | S 848x 108 |4Ca 455x10712 | 3lCr 6.07x 1076
10Be 4.47x107'9 | 2Na 3.63x107° | 7S 7.06x 10713 | 47Ca 2.79x 107! | 2Cr 5.38 x 107/
"Be 8.13x1071 | ®Na 2.09x 1071 | 38 1.06x10713 | ¥Ca 1.12x1077 | 3Cr 6.20x 1078
0B 491 x1071 | Mg 9.72x 1078 | 32C1 1.22x 10712 | ¥Ca 2.84x 1074 | Cr 2.03x 1077
B 911x107° | Mg 348x1072 | 3Cl 3.96x 107" | 9¥Sc 9.03x 1074 | ¥Cr 241x10712
2B 403x1071 | Mg 159x 1073 | 3*Cl 2.54x1071 | 41Sc 1.43x 10715 | %Cr 1.20x 107!
e 319x1077 | Mg 1.84x 1077 | 3Cl 1.16x 1075 | ’Sc 1.07x 1075 | ¥Mn 1.10x 1071
2C  L14x107" [ 7Mg 1.04x107° |3°Cl 574x107° | $Sc 4.60x10™° |3'Mn 5.88x107°
BC 831x107° | Mg 206x1078 | 37Cl 157x1077 | *Sc 1.14x107% | *Mn 1.48x 107
4Cc 678 x 1077 | 24A1 2.54x 1071 | BCl 9.99x 107! | ¥Sc 6.13x 1077 | 3Mn 9.95x 107
N 270x 1078 | A1 1.13x 10783 | ¥Cl 6.05x10713 | %S¢ 1.16 x 1072 | **Mn 5.14x 107
BN 1.92x107% | A1 4.16x1077 | 3¥Ar 891x 107" | ¥Sc 1.23x 1071 | Mn 9.11 x 107/
BN 232x1072 | Z7A1 2.08x 1075 | 3%Ar 1.98x 1073 | ¥Sc 3.94%x10™° | ¥Mn 1.45x1077
BN 6.05x107% | A1 530%x108 | 3Ar 790x107° | ¥Sc 579%x10™° | Mn 4.84x10713
16N 346x 10710 | 22A1 534%x 10710 | 3BAr 4.02x107° | 0S¢ 225%x 1075 | 3Mn 2.55x 10713
40 563x10710 | 30A1 450%x 107 | PAr 3.39x107® | ¥Ti 128x10 | °Mn 1.83x1071
o 222x10% | 27Si  8.09x 107 | Ar 343x107® | ¥Ti 3.05x10° | 2Fe 2.19x107*
160 738x 107" | 28Si 1.52x1072 | “"Ar 4.86x 10712 | °Ti 536x10° | 3BFe 1.01 x107°
70 197x107% | 2Si 1.61x107 | “Ar 9.19%x 1072 | “Ti 493x10°° | *Fe 7.83x1073
B0 491x107% | 30Si 551x107° | %K 2.86x10713 | ¥Ti 3.89x10® | PFe 1.77x107
Y0 505x107 | 31si 1.02x108 | 37K 523x107° | ¥Ti 140x10°® | %Fe 7.77x107°
200 870x107B | 2si 235x1077 | BK 543x1077 | OTi 891x10® | 7Fe 6.58x 1077
TE 851x1071" | 2P 149x107"%2 | ¥K 1.64x107 | 3'Ti 2.04x10713 | BFe 1.02x107°
BE  115x107° | PP 7.92x1074 | ¥K 397x107% | 32Ti 248 x 107 | ¥Fe 9.20x 1078
PYE 823x10° | ¥ 121x107 | 4K 2.12x107% | 4V  1.15x107 | ¥Fe 1.90x 107°
VF 366x10710 | 3P 205x107 | K 6.13x 10719 | ¥V 3.60x107° | ®'Fe 3.68x 10714
2l 972x107 | 2P 272x107 | ¥K  139x 10711 | BV 368 %1077 | 2Co 1.87x 1071




7.2. MULTI-D SIMULATIONS 97

Iso M/Mg Iso M/Mg Iso M/Mg Iso M/Mg Iso M/Mg

MCo 397x1078P [9¥Cu 474x10°5 | 2Ge 1.73x10° | ¥Se 6.64x 10710 [ °Rb 2.30x 10712
BCo 534x107 | OCu 1.62x1075 | Ge 3.38x107% | #Se 2.18x107'* | 77Rb 3.19x 10710
%Co 6.54x 107 | 9Zn 287x107° | “Ge 2.20x1077 | "'Br 1.96x 107! | 7®Rb 4.75 x 107!
Co 1.30x 107 | %Zn 7.66x1078 | PGe 2.14x107% | ?Br 236x107° | ”Rb 1.62x 10710
BCo 591x107° | BZn 897x10° | °Ge 4.00x 1077 | PBr 6.02x107'° | Rb 4.79 x 10712
PCo 1.16x107° | %7Zn 3.14x10™* | 7Ge 5.32x107° | ™Br 2.54x107° |8 Rb 5.08x107°

0Co 2.16x107° | %Zn 635x107° | 8Ge 4.11x 1077 | PBr 225x107% | 32Rb 8.32x107°

6lCo 1.14x 1077 | %zZn 825x107 | “As 3.70x10™° | 7Br 4.96x 1078 | 83Rb 2.36 x 107’

2Co 1.80x 10712 | 7Zn 4.66x 1077 | ¥As 823x107% | 77Br 6.84x107% | 8Rb 1.14x 1078

BCo 433x1071 | 8zZn 337x107° | ®As 191x10® | ®Br 7.35x 10713 | Rb 9.11x 1078

BNi 1.62x 107 | ¥Zn 936x 1078 | PAs 6.73x 1078 | ”Br 1.64x 1077 |8°Rb 2.27x 1077

ONi 1.30%x 1072 | 9Zn 346x 1077 | TAs 1.34x 1077 | 8Br 1.57x 1071 | Rb 1.00 x 107©

YINi 225x107* | 71Zn 3.69x 1070 | 2As 5.99x107% | 81Br 223x 1077 | 38Rb 2.75%x 10710
BNi 1.15%x1073 | ?Zn 299x 1077 | PAs 2.15x 1077 | #Br 1.04x 1077 | 3Rb 4.06 x 1072
PNi 1.27x107* | ©2Ga 234x 1074 | *As 9.92x107° | BBr 4.75x10°% | 8Sr 2.31x 10712
ONi 1.04x1073 | BGa 6.53x10™° | PAs 1.12x1077 | Br 239x1077 | ”Sr 1.61x107!!
6INi 1.68x 107 | ®Ga 128x107° | 7As 2.05x107® | ®Br 3.00x 107! | 89Sr 1.02x107°

©2Ni 854x 107 | %Ga 3.14x1077 | 7As 1.57x 108 | 8Br 3.84x 1074 | 81Sr 234x 10710
OBNi 4.09%x 1077 | %Ga 234x10° | BAs 3.39x 1077 | ?Kr 3.22x107'2 | 82Sr 1.67 x 1077

®INi 2.23x107° | 97Ga 243x107° | PAs 2.19x 107! | PKr 3.44x 10712 | 8Sr 537x107°

ONi 3.45x10% | %8Ga 3.62x108 | 82As 2.85x107° | “Kr 1.60x107° | 3Sr 2.72x 1077

ONj 227x107° | “Ga 6.83x1077 | 8Se 292x107% | PKr 1.56x107° | 8Sr 2.37x 1077

Ni 1.86x 1075 | °Ga 1.67x10™° | Se 5.08x107'! | °Kr 1.73x 1078 | 30Sr 2.95x 1077

bCu 6.45x 1074 | "Ga 9.25x 1078 | °Se 2.19x10°® | 7Kr 595x107° | ¥Sr 2.38x 107’

TCu 473x 1074 | 2Ga 252x107® | 7'Se 1.09x 1078 | ®Kr 4.06x 1077 | 38Sr 7.07x107°

BCuy 387x1071% | BGa 1.15x10°8 | ?Se 7.40x 1077 | PKr 3.50x107% | 8sr 1.05x1078

PCu 1.58x107° | Ga 2.05x 107! | BSe 5.12x10% | 39Kr 7.84x1077 | °Sr 2.01x107°

OCu 246x10™* | °Ga 1.68x 10715 | Se 1.64x107° | 8'Kr 4.03x 1077 | ?'Sr 2.67x 10712
6lCcy 380x 1075 | %Ge 3.46x1077 | PSe 5.13x 1077 | 82Kr 3.80x 1077 | 2Sr 7.58x 10713
2Cu 3.61x107 | ¥Ge 7.75%x10713 | °Se 2.01x107° | 8¥Kr 642x10% | 30y 1.50x 10712
BCu 2.54x 107 | %%Ge 1.86x107° | 77Se 3.18x 1077 | 3¥Kr 145x10°¢ | 8y 7.61x 10712
4Cu 1.05x10° | Ge 230x1077 | 8Se 3.68x1077 | ¥Kr 746x1077 | 32y 142x10713
SCu 1.06x107% | BGe 2.00x107° | PSe 4.00x10°® | 3Kr 580x107% | 8y 820x107!2
Cu 3.56x 108 | Ge 6.77x1077 | 39Se 1.83x 1077 | 8Kr 7.04x10710 | 34y 552x 10714
Cu 642x1077 | %Ge 1.76x 107 | 81Se 6.59x10™° | 88Kr 1.14x 10710 | 85y 338 x 10710
BCu 147x107% | "'Ge 1.05x1077 | 32Se 1.68x107° | PRb 5.04x 10713 | 3¢Y 266 x 107°
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Iso M/Mg Iso M/Mg Iso M/Mg Iso M/Mg Iso M/Mg

Y 9.72x 1070 | PZr 3.00x 10> | ®Nb 1.15x 10710 | 9°Tc  127x 1077 | Bpd  436x 107 P
8y 270x1077 | %lZr 3.80x 1078 | Nb 2.04x 107 | 97Tc 2.18x 10710 | 100pqd 259 x 10713
Y 1.67x10° | 2zr 1.22x107° | 'Nb 439x10715 | BTc 996x 10713 | BAg 223 x 10712
MY 6.09x10°% | Pzr 1.07x10710 | 8Mo 1.60x 10713 | PTc  5.18x 1071 | PAg  2.64x 10713
Ny 773x10710 | %7zr 504x1071" | ¥Mo 1.73x 10713 | 2Ru  3.34x 10714 | 190Ag 203 x 10714
RY 421x10712 | Pzr 224x107"2 | Mo 1.06x10°% | ®Ru  3.49x 1071 | %Cd 1.04 x 1072
By 259x10712 | %7r 8.02x107* | )Mo 4.24x 10710 | %Ru  3.16x 10710 | 97Cd 8.50 x 10714
Y 1.66x 1075 | TNb 2.71x 1074 | ?Mo 4.32x 1077 | PRu  4.54x 1071 | 8Cd 458 x 10712
67y 294x 10783 | ®Nb 144 %1074 | Mo 4.89x 108 | Ru 222x107° | Cd 4.25x 10713
T1Zr 411x 1073 | Nb 2.00x 1073 | Mo 2.80x 1078 | “7Ru  3.48x 10712 | 10Cd 439 x 10~
Bzr 487x 10718 [ 8Nb 3.67x10713 | ®Mo 1.06x 108 | ®Ru 1.36x 107! | 0lcd  1.57x 1071
87r 801x1072 | Nb 1.69x 10713 | Mo 2.77x1071° | Ru  353x 1072 | “In  1.37x10713
87zr 438x10713 | 8¥Nb 8.62x 10712 | Mo 330x 10712 | 1ORy 1.14x 107 | BIn  4.07x 10712
847r 3.15x10712 | ¥Nb 1.85x107° | Mo 6.75x107* | PRh 3.99x 107 | ®In  2.69x 10713
87r 531x10712 | Nb 891 x 1077 | ?'Tc  7.09x 1074 | °Rh 554 x 1074 | 101  425x%x 10714
867r 7.20x 10710 | )INb 4.36x 1077 | 2Tc  9.00x 10712 | 7Rh 246x 1074 | Vn 234 x 1071
87r 353x10710 | 2Nb 1.14x 1078 | PTc 6.62x 10710 | ®Rh  1.07x 1075 | PSn  7.10x 10713
87r 1.92x1077 | BNb 2.52x107° | PTc 1.59x 10710 | Rh 220x 10713 | 1908y 323 x 10714
87r 352x1077 | Nb 123x107° | PTc 4.08x 107! | %Pd  8.18x 10715 | 10lspn 233 x 1071

Table 7.7: Isotopic yields for the E + vyq + 60 criterion and with the added material from the outer
progenitor layers (see text for explanation). Only isotopes with ejected masses greater than 1071 Mg
are included.

that allows to bypass the ®*Ge waiting point by means of antineutrino captures on
free protons, converting them to neutrons which can be captured by **Ge and other
neutron-deficient isotopes (Frohlich et al., 2006). We would also like to emphasize
the efficient production of °>Mo and **Mo in our calculations, as the origin of these
isotopes (along with “°Ru and °Ru) has been a long-standing puzzle. In general,
the ejecta are rather neutron-deficient, with about 70% of the innermost (hottest)
ejected particles having an initial Y, larger than 0.5. The high [*°K/Fe] ratio can
be explained by its half-life of T;,» = 1.28 X 10° yr, which means that we do not
consider it decayed in our results.
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[X/Fe]

Figure 7.11: Isotopic [X/Fe] values of our 17.0 Mg model with the E + vpq + 630
ejection criterion and added progenitor material from the outer layers (see text),
and after the decay of all unstable nuclei with T}/, < 10° yr. Isotopes of the same
element are represented by connected data points of the same colour. The solar
abundances are those of Lodders et al. (2009).

7.24 11.2 M, progenitor

We are repeating our calculations for the explosion of the s11.2 progenitor model
(from the same set from Woosley et al. 2002), which is also discussed in Nakamura
et al. (2017). So far, only preliminary results are available. The final positions of
the tracer particles fulfilling the p criterion reveal a unipolar explosion in positive
z-direction (see Figure 7.12). An obvious criterion for ejected particles is to require
an angle 8 > +30° above the equator (i.e., a much stronger geometric constraint
than for the 17.0 Mg model), together with the E + vy,q condition. The spatial dis-
tribution of tracer particles allowed in this prescription is illustrated in Figure 7.13,
and the corresponding temperature bin distribution is summarized in Table 7.8.

Although the nucleosynthesis calculations have not been fully performed yet, a
comparison of Tables 7.5 and 7.8 allows to make qualitative predictions about the
composition of the ejecta in the 11.2 Mg case. First, the number of tracers in
the 79 > 8.0 bin is significantly larger for the 11.2 Mg progenitor than for the
17.0 Mg progenitor. One could therefore expect larger yields for the heavy a-
nuclei and vp-nuclei. A comparison of the total masses (My;;) of the T9 > 8.0 bins
in the two models however reveals that the hottest particles in the 11.2 Mg case

carry a lower average mass: For the 17.0 My model M1T7>'(8)GK = 3.14 x 1072 Mo,
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Figure 7.12: Similar to Figure 7.6, but for the p criterion and the 11.2 Mg model.
The positions of the hottest particles (coloured red) indicate a unipolar shock prop-
agation.

To N| To N| To N| To N
<08 17950 | 1.2-1.4 1068 | 2.42.8 525 | 4854 170
0.8-0.9 1206 | 1.4-1.6 1142 | 2.8-32 380 | 5462 185
09-1.0 1111 | 1.6-1.8 765 | 3.2-3.6 380 | 62-7.0 133
1.0-1.1 1073 | 1.82.0 471 | 3.6-42 266 | 7.0-80 38
1.1-12 1017 | 2024 649 | 42-48 192 | >80 1912

Table 7.8: Temperature bins and number of ejected tracer particles N in each bin
for the 11.2 My model.

while the 11.2 Mg model yields M2, = 1.05 x 1072 M. The choice of §
is more difficult here, as there is a weak shock going in all directions (visible in
Figure 7.13). However, it can also be seen that matter behind the shock and close
to the center does not fulfil the ejection criterion, as its radial velocity that was
temporarily pointing outward has already been turned around at the end of the
simulation. We note that the angle of 8 > +30° probably represents a lower limit

to the ejected mass for the 11.2 Mg case.
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Figure 7.13: Similar to Figure 7.10 (left),
allowing for a positive angle 8 > +30°.

but for the 11.2 Mg model and only
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7.3 Magneto-Hydrodynamically Driven Supernovae

Magneto-hydrodynamically driven (MHD; sometimes also called magnetorotation-
ally driven) SNe are a special class of CCSNe and represent an alternative explo-
sion mechanism to the neutrino-driven SNe. They have been proposed by LeBlanc
& Wilson (1970) and revisited in 3D simulations by e.g., Takiwaki et al. (2009);
Képpeli (2013). The conceptual idea is that when a differentially rotating star with
high magnetic fields collapses, the toroidal magnetic field lines become denser and
the magnetic field is amplified due to magnetic flux conservation. Because of the
differential rotation, the initially poloidal field lines are wound up along the rota-
tional axis during the collapse and become toroidal, increasing the toroidal field
component even further. The ejection of material is powered by the free rotational
kinetic energy that is stored in differential rotation, which is defined as the differ-
ence between the rotational kinetic energy T}, and the solid-body rotational kinetic
energy Trorsolid at the same total angular momentum Lig;:

Trot,free = Trot(Ltot) - Trot,solid(Ltot) . (731)

After the stalling of the prompt shock wave, material is accreted, moving through
a (hot) shock surface, where the material composition is changed considerably
due to photodissociations. Along the inward trajectory, the density also increases,
enabling electron captures on free protons and, to a lesser extent, more complex
nuclei. The electron captures continue for as long as the material is in the hot and
dense region close to the proto-neutron star, leading to a substantial decrease in Y.
Eventually, neutron-rich material is accelerated and ejected in two high-energy jets
at the poles, moving on a spiralling path along the magnetic field lines. The concept
is illustrated in Figure 7.14 on the example of three snapshots of a simulation from
Kippeli (2013) for a 15 Mg progenitor. The entropy per baryon is colour-coded
and the magnetic field lines are represented by the white lines. The time values are
after core bounce. For this model, Y, and the asymptotic escape velocity v., are
shown in Figure 7.15 for a time 31 ms after core bounce. Note that only zones with
positive total energy and positive radial velocity are considered ejected. Since the
hydro-code FISH that has been used for this simulation is non-relativistic, the high
velocities of ¢/4 achieved in the jets should be considered an upper limit.

Figure 7.15 furthermore shows that the ejected material in the jets is very neutron-
rich, with Y,-values between 0.1 and 0.3. Therefore, the conditions are favourable
for the operation of a strong r-process producing material up to and beyond the
third r-process peak, which has been shown in Winteler et al. (2012). We have
repeated their nucleosynthesis calculations, this time also employing the HFB-14
mass model in addition to the FRDM (1992) model. The results are shown in
Figure 7.16. Note that the calculated r-process abundances in MHD SNe generally
reproduce the solar r-abundances very well, even around the third peak, in contrast
to the shifted peak encountered in NSMs (see chapter 6). This can be explained
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Figure 7.14: MHD SN simulation from Képpeli (2013) depicting the magnetic
field lines (white lines) and the entropy per baryon (colours). The three snapshots
correspond to different times in the simulation (14 ms, 25 ms, and 31 ms after core
bounce). The computational domain is 700 x 700 x 1400 km.
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Figure 7.15: Y, (left) and asymptotic escape velocity (right) in the yz-plane at a
post-bounce time of 31 ms for the Képpeli (2013) MHD SN (see also Figure 7.14).

— FRDM (1992)
o - - HFB-14

abundance

120 140 160 180 200

Figure 7.16: R-Process yields for the MHD SN simulation discussed in the text for
two mass models (see section 2.4).

by the moderate Y., which leads to less fission cycling and in turn to less fission
neutrons around the r-process freeze-out.

Képpeli (2013) conclude that the MHD SN mechanism requires extreme conditions
in the progenitor with respect to the magnetic field strength and rotation velocity
(they use an initial poloidal magnetic field Byo; = 5 X 10'? G and an initial ratio of
rotational kinetic energy to gravitational binding energy Tyo/|W| = 1072). Core-
collapse progenitors derived from current stellar evolution models generally do not
reach these values. However, the low-metallicity progenitors of Woosley & Heger
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(2006) achieve high velocities, and the observations of highly magnetized pulsars
(magnetars) reveal that very large magnetic fields of the order of 10! G are present
in some neutron stars in our galaxy. All these considerations lead to the conclusion
that if MHD SNe can be realized in nature, they would be very rare, occurring at
a rate of about 0.1 — 1 % of all CCSNe. This frequency, coupled with the low Y,,
makes them a very good candidate for the rare r-process site that is needed in order
to explain the large scatter in r-process material that is observed in old stars with
[Fe/H] < -2 (see Figures 3.1b & 3.2).
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Chapter 8

Summary and Conclusions

Over the course of this thesis, the nuclear network WINNET has been extended to
run with two new fission fragment distribution models (Kelic et al., 2008; Panov
et al., 2008), both of which are considerably more sophisticated than the two pre-
viously used models (Panov et al., 2001; Kodama & Takahashi, 1975). The two
new models have been applied to r-process calculations in a NSM scenario, with
the ABLAO7 model especially successful in reproducing the solar second r-process
peak. Additional reaction libraries (ReacLIB) have been compiled, enabling the use
of the ETFSI-Q and HFB-14 mass models in WINNET, as well as introducing two
new global sets of S-decays (Marketin et al., 2015; Panov et al., 2015). We have
studied the sensitivity of our NSM nucleosynthesis calculations to all these nuclear
inputs and reported our findings in Eichler et al. (2015a). One focal point of this
work was the position of the third r-process peak, which in comparison to the so-
lar peak is shifted towards higher mass numbers. We found the reason for this
behaviour to be late captures of fission neutrons around the freeze-out from (n,y)—
(y,n) equilibrium. The B-decay predictions of Marketin et al. (2015) are generally
faster for nuclei beyond the N = 126 shell closure, which accelerates the reaction
flux in that region of the nuclear chart and leads to earlier fission and an earlier
release of fission neutrons. All neutrons that are captured before the (n,y)—(y,n)
equilibrium freeze-out do not have an effect on the position of the third peak, and
consequently the shift is weakened. There have been several other recent publica-
tions underlining the impact of mass models (Mendoza-Temis et al., 2015), fission
distribution models (Goriely et al., 2013; Goriely, 2015a) as well as S-decays (see
e.g., Lorusso et al. 2015) on r-process nucleosynthesis.

We have included a short chapter on the problems involved with NSMs as r-process
sites in the early galaxy, and the possible solution presented by MHD SNe that
generate two jets ejecting neutron-rich matter. The low expected frequency of these
events matches the observed scatter in the [Eu/Fe] values of metal-poor stars well.

107
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Furthermore, we have performed CCSN nucleosynthesis calculations for the PUSH
calibration study (Perego et al., 2015), where we compared our “°=>8Ni and **Ti
yields for a wide range of PUSH parameters and progenitors in the 18 — 21 Mg
bracket to the observed values of SN 1987A. These considerations revealed the
necessity for a late fallback of about 0.1 M, in order to match our -38Ni masses
with the observations, which is fully consistent with observational constraints form
SN 1987A and explicit fallback calculations for progenitors in this mass range
(Chevalier, 1989; Ugliano et al., 2012). However, the ejected 44T} mass in all our
models is too low, confirming a long-standing problem of reproducing this observ-
able in SN 1987A. The fallback necessary to match the other observables has a
particularly damaging effect on the **Ti yield, as it is synthesized in the innermost
zones of the ejecta. As we have shown, the yield can be increased when homoge-
neous mixing of the ejecta is assumed after the mass cut is determined, but before
the fallback is applied. Margerin et al. (2014) reported on a new experimentally
determined upper limit for the **Ti(, p)*’V reaction, the main destruction chan-
nel of **Ti. Adapting the new (upper limit) **Ti(a, p)*’V rate, we have found an
increase by about 45 % for the ejected “*Ti mass. In addition, we have investigated
the dependence of the >’Ni and *®Ni yields on the mass cut and the position of the
boundary between the Si shell to the O shell in the progenitor. As Y, < 0.5 in the Si
shell (due to the presence of small amounts of *Fe) for the progenitors considered
here, the synthesis of the slightly neutron-rich isotopes >’Ni and *®Ni is facilitated.
From our sample only the 18.0 Mg and the 19.4 Mg had parts of their Si shells
ejected.

The last part of my thesis was dedicated to nucleosynthesis calculations of 2D
CCSN long-term simulations from Nakamura et al. (2017). So far, detailed results
are only available for the 17.0 Mg model. We have carefully studied the implica-
tions of five different ejection criteria on the nuclear yields and chosen to assume
successful ejection for particles that fulfil £ > 0,vg > 0, or 8] > 30°, where 6 is
the angle measured from the equator. This geometric criterion has been made nec-
essary by the fact that the first requirement does not include particles that have not
encountered the shock at the time when the simulation stops, but are expected to do
so at a later moment (see Figures 7.6 & 7.7). We have shown that the yields of the
heavier a-elements do not greatly depend on the ejection criterion, and find that the
ejected mass of *°Ni in our calculations is remarkably low. The results for the SN
of the 11.2 Mg, progenitor will show if this is an anomaly caused by the progenitor
structure, or a characteristic of the hydrodynamical simulations. The composition
of the final ejecta has a richness of neutron-deficient isotopes of elements with
Z > 32, a trademark of the vp-process (Frohlich et al., 2006).
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