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Preface to the First Edition

Galois theory is a showpiece of mathematical unification, bringing together several
different branches of the subject and creating a powerful machine for the study of
problems of considerable historical and mathematical importance. This book is an
attempt to present the theory in such a light, and in a manner suitable for second- and
third-year undergraduates.

The central theme is the application of the Galois group to the quintic equation.
As well as the traditional approach by way of the ‘general’ polynomial equation
I have included a direct approach which demonstrates the insolubility by radicals
of a specific quintic polynomial with integer coefficients, which I feel is a more
convincing result. Other topics covered are the problems of duplicating the cube,
trisecting the angle, and squaring the circle; the construction of regular polygons;
the solution of cubic and quartic equations; the structure of finite fields; and the
‘Fundamental Theorem of Algebra’.

In order to make the treatment as self-contained as possible, and to bring together
all the relevant material in a single volume, I have included several digressions. The
most important of these is a proof of the transcendence of 7, which all mathemati-
cians should see at least once in their lives. There is a discussion of Fermat numbers,
to emphasise that the problem of regular polygons, although reduced to a simple-
looking question in number theory, is by no means completely solved. A construction
for the regular 17-gon is given, on the grounds that such an unintuitive result requires
more than just an existence proof.

Much of the motivation for the subject is historical, and I have taken the oppor-
tunity to weave historical comments into the body of the book where appropriate.
There are two sections of purely historical matter: a short sketch of the history of
polynomials, and a biography of Evariste Galois. The latter is culled from several
sources, listed in the references.

I have tried to give plenty of examples in the text to illustrate the general theory,
and have devoted one chapter to a detailed study of the Galois group of a particular
field extension. There are nearly two hundred exercises, with twenty harder ones for
the more advanced student.

Many people have helped, advised, or otherwise influenced me in writing this
book, and I am suitably grateful to them. In particular my thanks are due to Rolph
Schwarzenberger and David Tall, who read successive drafts of the manuscript; to
Len Bulmer and the staff of the University of Warwick Library for locating docu-
ments relevant to the historical aspects of the subject; to Ronnie Brown for editorial
guidance and much good advice; and to the referee who pointed out a multitude of

Xiii



xiv Preface to the First Edition

sins of omission and commission on my part, whose name I fear will forever remain
a mystery to me, owing to the system of secrecy without which referees would be in
continual danger of violent retribution from indignant authors.

University of Warwick IAN STEWART
Coventry
April 1972



Preface to the Second Edition

It is sixteen years since the first edition of Galois Theory appeared. Classical Galois
theory is not the kind of subject that undergoes tremendous revolutions, and a large
part of the first edition remains intact in this, its successor. Nevertheless, a certain
thinning at the temples and creaking of the joints have become apparent, and some
rejuvenation is in order.

The main changes in this edition are the addition of an introductory overview and
a chapter on the calculation of Galois groups. I have also included extra motivating
examples and modified the exercises. Known misprints have been corrected, but since
this edition has been completely reset there will no doubt be some new ones to tax
the reader’s ingenuity (and patience). The historical section has been modified in the
light of new findings, and the publisher has kindly permitted me to do what I wanted
to do in the first edition, namely, include photographs from Galois’s manuscripts, and
other historical illustrations. Some of the mathematical proofs have been changed to
improve their clarity, and in a few cases their correctness. Some material that I now
consider superfluous has been deleted. I have tried to preserve the informal style of
the original, which for many people was the book’s greatest virtue.

The new version has benefited from advice from several quarters. Lists of typo-
graphical and mathematical errors have been sent to me by Stephen Barber, Owen
Brison, Bob Coates, Philip Higgins, David Holden, Frans Oort, Miles Reid, and C. F.
Wright. The Open University used the first edition as the basis for course M333, and
several members of its Mathematics Department have passed on to me the lessons
that were learned as a result. I record for posterity my favourite example of OU wit,
occasioned by a mistake in the index: ‘226: Stéphanie D. xix. Should refer to page
xxi (the course of true love never does run smooth, nor does it get indexed correctly).’

I am grateful to them, and to their students, who acted as unwitting guinea-pigs:
take heart, for your squeaks have not gone unheeded.

University of Warwick IAN STEWART
Coventry
December 1988

XV



Preface to the Third Edition

Galois Theory was the first textbook I ever wrote, although it was the third book,
following a set of research-level lecture notes and a puzzle book for children. When
I wrote it, I was an algebraist, and a closet Bourbakiste to boot; that is, I followed the
fashion of the time which favoured generality and abstraction. For the uninitiated,
‘Nicolas Bourbaki’ is the pseudonym of a group of mathematicians—mostly French,
mostly young—who tidied up the mathematics of the mid-20th Century in a lengthy
series of books. Their guiding principle was never to prove a theorem if it could be
deduced as a special case of a more general theorem. To study planar geometry, work
in n dimensions and then ‘letn =2’

Fashions change, and nowadays the presentation of mathematics has veered back
towards specific examples and a preference for ideas that are more concrete, more
down-to-Earth. Though what counts as ‘concrete’ today would have astonished the
mathematicians of the 19th Century, to whom the general polynomial over the com-
plex numbers was the height of abstraction, whereas to us it is a single concrete
example.

As I write, Galois Theory has been in print for 30 years. With a lick of paint
and a few running repairs, there is no great reason why it could not go on largely
unchanged for another 30 years. ‘If it ain’t broke, don’t fix it.” But I have convinced
myself that psychologically it is broke, even if its logical mechanism is as bright and
shiny as ever. In short: the time has come to bring the mathematical setting into line
with the changes that have taken place in undergraduate education since 1973. For
this reason, the story now starts with polynomials over the complex numbers, and
the central quest is to understand when such polynomials have solutions that can be
expressed by radicals—algebraic expressions involving nothing more sophisticated
than nth roots.

Only after this tale is complete is any serious attempt made to generalise the
theory to arbitrary fields, and to exploit the language and thought-patterns of rings,
ideals, and modules. There is nothing wrong with abstraction and generality—they
are still cornerstones of the mathematical enterprise. But ‘abstract’ is a verb as well
as an adjective: general ideas should be abstracted from something, not conjured from
thin air. Abstraction in this sense is highly non-Bourbakiste, best summed up by the
counter-slogan ‘let 2 = n.” To do that we have to start with case 2, and fight our way
through it using anything that comes to hand, however clumsy, before refining our
methods into an elegant but ethereal technique which—without such preparation—
lets us prove case n without having any idea of what the proof does, how it works, or
where it came from.

Xvii



xviii Preface to the Third Edition

It was with some trepidation that I undertook to fix my non-broke book. The
process turned out to be rather like trying to reassemble a jigsaw puzzle to create
a different picture. Many pieces had to be trimmed or dumped in the wastebasket,
many new pieces had to be cut, discarded pieces had to be rescued and reinserted.
Eventually order re-emerged from the chaos—or so I believe.

Along the way I made one change that may raise a few eyebrows. I have spent
much of my career telling students that written mathematics should have punctuation
as well as symbols. If a symbol or a formula would be followed by a comma if it were
replaced by a word or phrase, then it should be followed by a comma—however
strange the formula then looks.

I still think that punctuation is essential for formulas in the main body of the text.
If the formula is 2+ 1, say, then it should have its terminating comma. But I have
come to the conclusion that eliminating visual junk from the printed page is more
important than punctuatory pedantry, so that when the same formula is displayed, for
example

21

then it looks silly if the comma is included, like this,
241,

and everything is much cleaner and less ambiguous without punctuation.

Purists will hate this, though many of them would not have noticed had I not
pointed it out here. Until recently, I would have agreed. But I think it is time we
accepted that the act of displaying a formula equips it with implicit—invisible—
punctuation. This is the 21st Century, and typography has moved on.

Other things have also moved on, and instant gratification is one of them. Modern
audiences want to see some payoff today, if not last week. So I have placed the
more accessible applications, such as the ‘Three Geometric Problems of Antiquity’—
impossible geometric constructions—as early as possible. The price of doing this is
that other material is necessarily delayed, and elegance is occasionally sacrificed for
the sake of transparency.

I have preserved and slightly extended what was undoubtedly the most popular
feature of the book, a wealth of historical anecdote and storytelling, with the roman-
tic tale of Evariste Galois and his fatal duel as its centrepiece. ‘Pistols at 25 paces!’
Bang! Even though the tale has been over-romanticised by many writers, as Roth-
man (1982a, 1982b) has convincingly demonstrated, the true story retains elements
of high drama. I have also added some of the more technical history, such as Van-
dermonde’s analysis of 11 th roots of unity, to aid motivation. I have rearranged the
mathematics to put the concrete before the abstract, but I have not omitted anything
of substance. I have invented new—or, at least, barely shop-soiled—proofs for old
theorems when I felt that the traditional proofs were obscure or needlessly indirect.
And I have revived some classical topics, such as the nontrivial expression of roots
of unity by radicals, having felt for 30 years that /1 is cheating.

The climax of the book remains the proof that the quintic equation cannot be
solved by radicals. In fact, you will now be subjected to four proofs, of varying
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generality. There is a short, snappy proof that the ‘general’ polynomial equation of
degree n > 5 cannot be solved by radicals that are rational functions of the coeffi-
cients. An optional section proving the Theorem on Natural Irrationalities, which was
the big advance made by Abel in 1824, removes this restriction, and so provides the
second proof. Lagrange came within a whisker of proving all of the above in 1770-
1771, and Ruffini probably did prove it in 1799, but with the restriction to radicals
that are rational functions of the coefficients. He seems to have thought that he had
proved something stronger, which confused the issue. The proof given here has the
merit of making the role of field automorphisms and the symmetric and alternating
groups very clear, with hardly any fuss, and it could profitably be included in any el-
ementary group theory course as an application of permutations and quotient groups.
Proof 4 is a longer, abstract proof of the same fact, and this time the assumption that
the radicals can be expressed as rational functions of the coefficients is irrelevant to
the proof. In between is the third proof, which shows that a specific quintic equation,
x° —6x+3 = 0, cannot be solved by radicals. This is the strongest statement of the
four, and by far the most convincing; it takes full-blooded Galois Theory to prove it.

The sole remaining tasks in this preface are to thank Chapman and Hall/CRC
Press for badgering me into preparing a revised edition and persisting for several
years until I caved in, and for putting the whole book into ISTEX so that there was a
faint chance that I might complete the task. And, as always, to thank careful read-
ers, who for 30 years have sent in comments, lists of mistakes, and suggestions for
new material. Two in particular deserve special mention. George Bergman suggested
many improvements to the mathematical proofs, as well as pointing out typograph-
ical errors. Tom Brissenden sent a large file of English translations of documents
related to Galois. Both have had a significant influence on this edition.

University of Warwick IAN STEWART
Coventry
April 2003
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Another decade, another edition. ..

This time I have resisted the urge to tinker with the basic structure. I am grate-
ful to George Bergman, David Derbes, Peter Mulligan, Gerry Myerson, Jean Pierre
Ortolland, F. Javier Trigos-Arrieta, Hemza Yagoub, and Carlo Wood for numerous
comments, corrections, and suggestions. This edition has greatly benefited from their
advice. Known typographical errors have been corrected, though no doubt some in-
genious new ones have been introduced. Material that needed updating, such as ref-
erences, has been updated. Minor improvements to the exposition have been made
throughout.

The main changes are as follows.

In Chapter 2, I have replaced the topological (winding number) proof of the Fun-
damental Theorem of Algebra by one that requires less sophisticated background: a
simple and plausible result from point-set topology and estimates of a kind that will
be familiar to anyone who has taken a first course in analysis.

Chapter 7 has been reformulated, identifying the Euclidean plane R? with the
complex plane C. This makes it possible to talk of a point x + iy = z € C being con-
structible by ruler and compass, instead of considering its coordinates x and y sepa-
rately. The resulting theory is more elegant, some proofs are simpler, and attention
focuses on the Pythagorean closure QPY of the rational numbers QQ, which consists
precisely of the points that can be constructed from {0, 1}. For consistency, similar
but less extensive changes have been made in Chapter 20 on regular polygons. I have
added a short section to Chapter 21 on constructions in which an angle-trisector is
also permitted, since it is an intriguing and direct application of the methods devel-
oped.

Having read, and been impressed by, Peter Neumann’s English translation of the
publications and manuscripts of Evariste Galois (Neumann 2011), I have taken his
warnings to heart and added a final historical Chapter 25. This takes a retrospective
look at what Galois actually did, as compared to what many assume he did, and what
is done in this book. It is all too easy to assume that today’s presentation is merely a
streamlined and generalised version of Galois’s. However, the history of mathematics
seldom follows what now seems the obvious path, and in this case it did not.

The issues are easier to discuss at the end of the book, when we have amassed
the necessary terminology and understood the ideas required. The key question is the
extent to which Galois relied on proving that the alternating group As is simple—or,
at least, not soluble. The perhaps surprising answer is ‘not at all’. His great contribu-
tion was to introduce the Galois correspondence, and to prove that (in our language)

Xxi
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an equation is soluble by radicals if and only if its Galois group is soluble. He cer-
tainly knew that the group of the general quintic is the symmetric group Ss, and that
this is not soluble, but he did not emphasise that point. Instead, his main aim was to
characterise equations (of prime degree) that are soluble by radicals. He did so by
deducing the structure of the associated Galois group, which is clearly not the sym-
metric group since among other features it has smaller order. However, he did not
point this out explicitly.

Neumann (2011) also discusses two myths: that Galois proved the alternating
groups A, are simple for n > 5, and that he proved that As is the smallest simple
group aside from cyclic groups of prime order. As Neumann points out, there is
absolutely no evidence for the first (and precious little to suggest that Galois cared
about alternating groups). The sole evidence for the second is a casual statement that
Galois made in his letter to his friend Auguste Chevalier, composed the night before
the fatal duel. He states, enigmatically, that the smallest non-cyclic simple group
has ‘5.4.3 elements. Neumann makes a very good case that here Galois is thinking
not of As as such, but of the isomorphic group PSIL(2,5). He definitely knew that
PSLL(2,5) is simple, but nothing in his extant works even hints at a proof that no non-
cyclic simple group can have smaller order. The one issue on which I differ slightly
from Neumann is whether Galois could have proved this. I believe it was possible,
although I agree it is unlikely given the lack of supporting evidence. In justification,
I have finished by giving a proof using only ideas that Galois could have‘ discovered
and proved without difficulty. At the very least it shows that a proof is possible—
and easier than we might expect—using only classical ideas and some bare-hands
ingenuity.

University of Warwick IAN STEWART
Coventry
September 2014



Historical Introduction

Mathematics has a rich history, going back at least 5000 years. Very few subjects
still make use of ideas that are as old as that, but in mathematics, important dis-
coveries have lasting value. Most of the latest mathematical research makes use of
theorems that were published last year, but it may also use results first discovered by
Archimedes, or by some unknown Babylonian mathematician, astronomer, or priest.
For example, ever since Archimedes proved (around 250 BC) that the volume of a
sphere is what we would now write as 4§71:r3, that discovery has been available to any
mathematician who is aware of the result, and whose research involves spheres. Al-
though there are revolutions in mathematics, they are usually changes of viewpoint or
philosophy; earlier results do not change—although the hypotheses needed to prove
them may. In fact, there is a word in mathematics for previous results that are later
changed: they are called ‘mistakes’.

The history of Galois theory is unusually interesting. It certainly goes back to
1600 BC, where among the mud-brick buildings of exotic Babylon, some priest or
mathematician worked out how to solve a quadratic equation, and they or their stu-
dent inscribed it in cuneiform on a clay tablet. Some such tablets survive to this day,
along with others ranging from tax accounts to observations of the motion of the
planet Jupiter, Figure 1 (Left).

Adding to this rich historical brew, the problems that Galois theory solves, pos-
itively or negatively, have an intrinsic fascination—squaring the circle, duplicating
the cube, trisecting the angle, constructing the regular 17-sided polygon, solving the
quintic equation. If the hairs on your neck do not prickle at the very mention of these
age-old puzzles, you need to have your mathematical sensitivities sharpened.

If those were not enough: Galois himself was a colourful and tragic figure—a
youthful genius, one of the thirty or so greatest mathematicians who have ever lived,
but also a political revolutionary during one of the most turbulent periods in the
history of France. At the age of 20 he was killed in a duel, ostensibly over a woman
and quite possibly with a close friend, and his work was virtually lost to the world.
Only some smart thinking by Joseph Liouville, probably encouraged by Galois’s
brother Alfred, rescued it. Galois’s story is one of the most memorable among the
lives of the great mathematicians, even when the more excessive exaggerations and
myths are excised.

Our tale therefore has two heroes: a mathematical one, the humble polynomial
equation, and a human one, the tragic genius. We take them in turn.
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FIGURE 1: Left: A Babylonian clay tablet recording the motion of Jupiter. Right: A
page from Pacioli’s Summa di Arithmetica.

Polynomial Equations

A Babylonian clay tablet from about 1600 BC poses arithmetical problems
that reduce to the solution of quadratic equations (Midonick 1965 page 48). The
tablet also provides firm evidence that the Babylonians possessed general meth-
ods for solving quadratics, although they had no algebraic notation with which
to express their solution. Babylonian notation for numbers was in base 60, so
that (when transcribed into modern form) the symbols 7,4;3,11 denote the number
7x60%+4x60+3x 607"+ 11 x 602 = 2544025 In 1930 the historian of sci-
ence Otto Neugebauer announced that some of the most ancient Babylonian problem
tablets contained methods for solving quadratics. For instance, one tablet contains
this problem: find the side of a square given that the area minus the side is 14,30.
Bearing in mind that 14,30 = 870 in decimal notation, we can formulate this prob-
lem as the quadratic equation

x> —x=870

The Babylonian solution reads:
Take half of 1, which is 0;30, and multiply 0;30 by 0;30, which is

0;15. Add this to 14,30 to get 14,30;15. This is the square of 29;30. Now
add 0;30 to 29;30. The result is 30, the side of the square.
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Although this description applies to one specific equation, it is laid out so that similar
reasoning can be applied in greater generality, and this was clearly the Babylonian
scribe’s intention. The method is the familiar procedure of completing the square,
which nowadays leads to the usual formula for the solution of a quadratic. See Joseph
(2000) for more on Babylonian mathematics.

The ancient Greeks in effect solved quadratics by geometric constructions, but
there is no sign of an algebraic formulation until at least AD 100 (Bourbaki 1969
page 92). The Greeks also possessed methods for solving cubic equations, which
involved the points of intersection of conics. Again, algebraic solutions of the cubic
were unknown, and in 1494 Luca Pacioli ended his Summa di Arithmetica (Figure 1,
right) with the remark that (in his archaic notation) the solution of the equations
x3 +mx = n and x> + n = mx was as impossible at the existing state of knowledge as
squaring the circle.

This state of ignorance was soon to change as new knowledge from the Middle
and Far East swept across Europe and the Christian Church’s stranglehold on in-
tellectual innovation began to weaken. The Renaissance mathematicians at Bologna
discovered that the solution of the cubic can be reduced to that of three basic types:
%+ px = q,x> = px+q, and x> + g = px. They were forced to distinguish these
cases because they did not recognise the existence of negative numbers. It is thought,
on good authority (Bortolotti 1925), that Scipio del Ferro solved all three types; he
certainly passed on his method for one type to a student, Antonio Fior. News of the
solution leaked out, and others were encouraged to try their hand. Solutions for the
cubic equation were rediscovered by Niccolo Fontana (nicknamed Tartaglia, ‘The
Stammerer’; Figure 2, left) in 1535.

One of the more charming customs of the period was the public mathemati-
cal contest, in which mathematicians engaged in mental duels using computational
expertise as their weapons. Mathematics was a kind of performance art. Fontana
demonstrated his methods in a public competition with Fior, but refused to reveal the
details. Finally he was persuaded to tell them to the physician Girolamo Cardano,
having first sworn him to secrecy. Cardano, the ‘gambling scholar’, was a mixture
of genius and rogue, and when his Ars Magna (Figure 2, right) appeared in 1545, it
contained a complete discussion of Fontana’s solution. Although Cardano claimed
motives of the highest order (see the modern translation of his The Book of My Life,
1931), and fully acknowledged Fontana as the discoverer, Fontana was justifiably
annoyed. In the ensuing wrangle, the history of the discovery became public knowl-
edge.

The Ars Magna also contained a method, due to Ludovico Ferrari, for solving
the quartic equation by reducing it to a cubic. Ferrari was one of Cardano’s students,
so presumably he had given permission for his work to be published. .. or perhaps a
student’s permission was not needed. All the formulas discovered had one striking
property, which can be illustrated by Fontana’s solution x> + px = ¢ :
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FIGURE 2: Left: Niccolo Fontana (Tartaglia), who discovered how to solve cubic
equations. Right: Title page of Girolamo Cardano’s Ars Magna.

This expression, usually called Cardano’s formula because he was the first to publish
it, is built up from the coefficients p and g by repeated addition, subtraction, mul-
tiplication, division, and—crucially—extraction of roots. Such expressions became
known as radicals.

Since all equations of degree < 4 were now solved by radicals, it was natural to
ask how to solve the quintic equation by radicals. Ehrenfried Walter von Tschirn-
haus claimed a solution in 1683, but Gottfried Wilhelm Leibniz correctly pointed
out that it was fallacious. Leonhard Euler failed to solve the quintic, but found new
methods for the quartic, as did Etienne Bézout in 1765. Joseph-Louis Lagrange took
a major step forward in his magnum opus Réflexions sur la Résolution Algébrique
des Equations of 1770-1771, when he unified the separate tricks used for the equa-
tions of degree < 4. He showed that they all depend on finding functions of the roots
of the equation that are unchanged by certain permutations of those roots, and he
showed that this approach fails when it is tried on the quintic. That did not prove that
the quintic is insoluble by radicals, because other methods might succeed where this
particular one did not. But the failure of such a general method was, to say the least,
suspicious.

A realisation that the quintic might not be soluble by radicals was now dawning.
In 1799 Paolo Ruffini published a two-volume book Teoria Generale delle Equazioni
whose 516 pages constituted an attempt to prove the insolubility of the quintic. Tig-
nol (1988) describes the history, saying that ‘Ruffini’s proof was received with scepti-
cism in the mathematical community.” The main stumbling-block seems to have been
the length and complexity of the proof; at any rate, no coherent criticisms emerged.
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In 1810 Ruffini had another go, submitting a long paper about quintics to the French
Academy; the paper was rejected on the grounds that the referees could not spare the
time to check it. In 1813 he published yet another version of his impossibility proof.
The paper appeared in an obscure journal, with several gaps in the proof (Bour-
baki 1969 page 103). The most significant omission was to assume that all radicals
involved must be based on rational functions of the roots (see Section 8.7). Nonethe-
less, Ruffini had made a big step forward, even though it was not appreciated at the
time.

As far as the mathematical community of the period was concerned, the question
was finally settled by Niels Henrik Abel in 1824, who proved conclusively that the
general quintic equation is insoluble by radicals. In particular he filled in the big gap
in Ruffini’s work. But Abel’s proof was unnecessarily lengthy and contained a minor
error, which, fortunately, did not invalidate the method. In 1879 Leopold Kronecker
published a simple, rigorous proof that tidied up Abel’s ideas.

The ‘general’ quintic is therefore insoluble by radicals, but special quintic equa-
tions might still be soluble. Some are: see Section 1.4. Indeed, for all Abel’s methods
could prove, every particular quintic equation might be soluble, with a special for-
mula for each equation. So a new problem now arose: to decide whether any partic-
ular equation can be solved by radicals. Abel was working on this question in 1829,
just before he died of a lung condition that was probably tuberculosis.

In 1832 a young Frenchman, Evariste Galois, was killed in a duel. He had for
some time sought recognition for his mathematical theories, submitting three mem-
oirs to the Academy of Sciences in Paris. They were all rejected, and his work ap-
peared to be lost to the mathematical world. Then, on 4 July 1843, Liouville ad-
dressed the Academy. He opened with these words:

I hope to interest the Academy in announcing that among the pa-
pers of Evariste Galois I have found a solution, as precise as it is pro-
found, of this beautiful problem: whether or not there exists a solution
by radicals. ..

The Life of Galois

The most accessible account of Galois’s troubled life, Bell (1965), is also one
of the less reliable, and in particular it seriously distorts the events surrounding his
death. The best sources I know are Rothman (1982a, 1982b). For Galois’s papers and
manuscripts, consult Bourgne and Azra (1962) for the French text and facsimiles of
manuscripts and letters, and Neumann (2011) for English translation and parallel
French text. Scans of the entire body of work can be found on the web at

www .bibliotheque-institutdefrance.fr/numerisation/

Evariste Galois (Figure 3) was born at Bourg-la-Reine near Paris on 25 Octo-

ber 1811. His father Nicolas-Gabriel Galois was a Republican (Kollros 1949)—that
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is, he favoured the abolition of the monarchy. He was head of the village liberal
party, and after the return to the throne of Louis XVIII in 1814, Nicolas became
town mayor. Evariste’s mother Adelaide-Marie (née Demante) was the daughter of
a jurisconsult—a legal expert who gives opinions about cases brought before them.
She was a fluent reader of Latin, thanks to a solid education in religion and the clas-
sics.

For the first twelve years of his life, Galois was educated by his mother, who
passed on to him a thorough grounding in the classics, and his childhood appears to
have been a happy one. At the age of ten he was offered a place at the College of
Reims, but his mother preferred to keep him at home. In October 1823 he entered
a preparatory school, the College de Louis-le-Grand. There he got his first taste of
revolutionary politics: during his first term the students rebelled and refused to chant
in chapel. He also witnessed heavy-handed retribution, for a hundred of the students
were expelled for their disobedience.

Galois performed well during his first two years at school, obtaining first prize
in Latin, but then boredom set in. He was made to repeat the next year’s classes, but
predictably this just made things worse. During this period, probably as refuge from
the tedium, Galois began to take a serious interest in mathematics. He came across
a copy of Adrien-Marie Legendre’s Eléments de Géométrie, a classic text which
broke with the Euclidean tradition of school geometry. According to Bell (1965)
Galois read it ‘like a novel’, and mastered it in one reading—but Bell is prone to
exaggeration. Whatever the truth here, the school algebra texts certainly could not
compete with Legendre’s masterpiece as far as Galois was concerned, and he turned
instead to the original memoirs of Lagrange and Abel. At the age of fifteen he was
reading material intended only for professional mathematicians. But his classwork
remained uninspired, and he seems to have lost all interest in it. His rhetoric teachers
were particularly unimpressed by his attitude, and accused him of affecting ambition
and originality, but even his own family considered him rather strange at that time.

Galois did make life very difficult for himself. For a start, he was was an untidy
worker, as can be seen from some of his manuscripts (Bourgne and Azra 1962).
Figures 4 and 5 are a sample. Worse, he tended to work in his head, committing only
the results of his deliberations to paper. His mathematics teacher Vernier begged him
to work systematically, no doubt so that ordinary mortals could follow his reasoning,
but Galois ignored this advice. Without adequate preparation, and a year early, he
took the competitive examination for entrance to the Ecole Polytechnique. A pass
would have ensured a successful mathematical career, for the Polytechnique was the
breeding-ground of French mathematics. Of course, he failed. Two decades later Olry
Terquem (editor of the journal Nouvelles Annales des Mathématiques) advanced the
following explanation: ‘A candidate of superior intelligence is lost with an examiner
of inferior intelligence. Because they do not understand me, / am a barbarian...” To
be fair to the examiner, communication skills are an important ingredient of success,
as well as natural ability. We might counter Terquem with ‘Because I do not take
account of their inferior intelligence, I risk being misunderstood.” But Galois was
too young and impetuous to see it that way.

In 1828 Galois enrolled in an advanced mathematics course offered by Louis-
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FIGURE 3: Portrait of Evariste Galois drawn from memory by his brother Alfred,
1848.

Paul-Emile Richard, who recognised his ability and was very sympathetic towards
him. He was of the opinion that Galois should be admitted to the Polytechnique
without examination—probably because he recognised the dangerous combination
of high talent and poor examination technique. If this opinion was ever communi-
cated to the Polytechnique, it fell on deaf ears.

The following year saw the publication of Galois’s first research paper (Galois
1897) on continued fractions; though competent, it held no hint of genius. Mean-
while, Galois had been making fundamental discoveries in the theory of polynomial
equations, and he submitted some of his results to the Academy of Sciences. The ref-
eree was Augustin-Louis Cauchy, who had already published work on the behaviour
of functions under permutation of the variables, a central theme in Galois’s theory.

As Rothman (1982a) says, ‘We now encounter a major myth.” Many sources state
that Cauchy lost the manuscript, or even deliberately threw it away, either to conceal
its contents or because he considered it worthless. But René Taton (1971) found a
letter written by Cauchy in the archives of the Academy. Dated 18 January 1830, it
reads in part:

I was supposed to present today to the Academy first a report on
the work of the young Galoi [spelling was not consistent in those days]
and second a memoir on the analytic determination of primitive roots
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[by Cauchy]... Am indisposed at home. I regret not being able to attend
today’s session, and I would like you to schedule me for the following
session for the two indicated subjects.

So Cauchy still had the manuscript in his possession, six months after Galois had
submitted it. Moreover, he found the work sufficiently interesting to want to draw
it to the Academy’s attention. However, at the next session of the Academy, on 25
January, Cauchy presented only his own paper. What had happened to the paper by
Galois?

Taton suggests that Cauchy was actually very impressed by Galois’s researches,
because he advised Galois to prepare a new (no doubt improved) version, and to sub-
mit it for the Grand Prize in Mathematics—the pinnacle of mathematical honour—
which had a March 1 deadline. There is no direct evidence for this assertion, but the
circumstantial evidence is quite convincing. We do know that Galois made such a
submission in February. The following year the journal Le Globe published an ap-
peal for Galois’s aquittal during his trial for allegedly threatening the king’s life (see
below):

Last year before March 1, M. Galois gave to the secretary of the
Institute a memoir on the solution of numerical equations. This mem-
oir should have been entered in the competition for the Grand Prize in
Mathematics. It deserved the prize, for it could resolve some difficulties
that Lagrange had failed to do. Cauchy had conferred the highest praise
on the author about this subject. And what happened? The memoir is
lost and the prize is given without the participation of the young savant.

Rothman points out that Cauchy fled France in September 1830, so the article is un-
likely to have been based on Cauchy’s own statements. Le Globe was a journal of
the Saint-Simonian organisation, a neo-Christian socialist movement founded by the
Comte de Sainte-Simone. When Galois left jail, his closest friend Auguste Cheva-
lier invited him to join a Saint-Simonian commune founded by Prosper Enfantin.
Chevalier was a very active member and an established journalist. It is plausible that
Chevalier wrote the article, in which case the original source would have been Ga-
lois himself. If so, and if Galois was telling the truth, he knew that Cauchy had been
impressed by the work.

The same year held two major disasters. On 2 July 1829 Galois’s father com-
mitted suicide after a bitter political dispute in which the village priest forged Nico-
las’s signature on malicious epigrams aimed at his own relatives. It could not have
happened at a worse time, for a few days later Galois again sat for entrance to the
Polytechnique—his final chance. There is a legend (Bell 1965, Dupuy 1896) that
he lost his temper and threw an eraser into the examiner’s face, but according to
Bertrand (1899) this tradition is false. Apparently the examiner, Dinet, asked Galois
some questions about logarithms.

In one version of the story, Galois made some statements about logarithmic se-
ries, Dinet asked for proofs, and Galois refused on the grounds that the answer was
completely obvious. A variant asserts that Dinet asked Galois to outline the theory of
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‘arithmetical logarithms’. Galois informed him, no doubt with characteristic blunt-
ness, that there were no arithmetical logarithms. Dinet failed him.

Was Galois right, though? It depends on what Dinet had in mind. The phrase
‘arithmetical logarithms’ is not necessarily meaningless. In 1801 Carl Friedrich
Gauss had published his epic Disquisitiones Arithmeticae, which laid the founda-
tions of number theory for future generations of mathematicians. Ironically, Gauss
had sent it to the French Academy in 1800, and it was rejected. In the Disquisitiones
Gauss developed the notion of a primitive root modulo a prime. If g is a primitive root
(mod p) then every nonzero element m (mod p) can be written as a power m = g2("),
Then a(mn) = a(m) + a(n), so a(m) is analogous to logm. Gauss called a(m) the in-
dex of m to base g, and Article 58 of his book begins by stating that ‘Theorems
pertaining to indices are completely analogous to those that refer to logarithms.” So
if this is what Dinet was asking about, any properly prepared candidate should have
recognised it, and known about it.

Because he had expected to be admitted to the Polytechnique, Galois had not
studied for his final examinations. Now faced with the prospect of the Ecole Normale,
then called the Ecole Preparatoire, which at that time was far less prestigious than the
Polytechnique, he belatedly prepared for them. His performance in mathematics and
physics was excellent, in literature less so; he obtained both the Bachelor of Science
and Bachelor of Letters on 29 December 1829.

Possibly following Cauchy’s recommendation, in February 1830 Galois pre-
sented a new version of his researches to the Academy of Sciences in competi-
tion for the Grand Prize in Mathematics. The manuscript reached the secretary
Joseph Fourier, who took it home for perusal. But he died before reading it, and
the manuscript could not be found among his papers. It may not have been Fourier
who lost it, however; the Grand Prize committee had three other members: Legendre,
Sylvestre-Francois Lacroix, and Louis Poinsot.

If the article in Le Globe is to be believed, no lesser a light than Cauchy had con-
sidered Galois’s manuscript to have been worthy of the prize. The loss was probably
an accident, but according to Dupuy (1896), Galois was convinced that the repeated
losses of his papers were not just bad luck. He saw them as the inevitable effect of
a society in which genius was condemned to an eternal denial of justice in favour of
mediocrity, and he blamed the politically oppressive Bourbon regime. He may well
have had a point, accident or not.

At that time, France was in political turmoil. King Charles X succeeded Louis
XVIII in 1824. In 1827 the liberal opposition made electoral gains; in 1830 more
elections were held, giving the opposition a majority. Charles, faced with abdication,
attempted a coup d’état. On 25 July he issued his notorious Ordonnances suppressing
the freedom of the press. The populace was in no mood to tolerate such repression,
and revolted. The uprising lasted three days, after which as a compromise the Duke
of Orléans, Louis-Philippe, was made king. During these three days, while the stu-
dents of the Polytechnique were making history in the streets, Galois and his fellow
students were locked in by Guigniault, Director of the Ecole Normale. Galois was
incensed, and subsequently wrote a blistering attack on the Director in the Gazette
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des Ecoles, signing the letter with his full name. An excerpt (the letter was published
in December) reveals the general tone:

Gentlemen:

The letter which M. Guignault placed in the Lycée yesterday, on
the account of one of the articles in your journal, seemed to me most
improper. I had thought that you would welcome eagerly any way of
exposing this man.

Here are the facts which can be vouched for by forty-six students.

On the morning of July 28, when several students of the Ecole Nor-
male wanted to join in the struggle, M. Guigniault told them, twice, that
he had the power to call the police to restore order in the school. The
police on the 28th of July!

The same day, M. Guigniault told us with his usual pedantry: ‘There
are many brave men fighting on both sides. If I were a soldier, I would
not know what to decide. Which to sacrifice, liberty or LEGITIMACY?’

There is the man who the next day covered his hat with an enormous
tricolor cockade. There are our liberal doctrines!

The editor removed the signature, the Director was not amused, and Galois was ex-
pelled because of his ‘anonymous’ letter (Dalmas 1956).

Galois promptly joined the Artillery of the National Guard, a branch of the mili-
tia composed almost entirely of Republicans. On 21 December 1830 the Artillery of
the National Guard, almost certainly including Galois, was stationed near the Lou-
vre, awaiting the verdict of the trial of four ex-minsters. The public wanted these
functionaries executed, and the Artillery was planning to rebel if they received only
life sentences. Just before the verdict was announced, the Louvre was surrounded by
the full National Guard, plus other troops who were far more trustworthy. When the
verdict of a jail sentence was heralded by a cannon shot, the revolt failed to materi-
alise. On 31 December, the king abolished the Artillery of the National Guard on the
grounds that it constituted a serious security threat.

Galois was now faced with the urgent problem of making a living. On 13 January
1831 he tried to set up as a private teacher of mathematics, offering a course in
advanced algebra. Forty students enrolled, but the class soon petered out, probably
because Galois was too involved in politics. On 17 January he submitted a third
version of his memoir to the Academy: On the Conditions of Solubility of Equations
by Radicals. Cauchy was no longer in Paris, so Siméon Poisson and Lacroix were
appointed referees. After two months Galois had heard no word from them. He wrote
to the President of the Academy, asking what was happening. He received no reply.

During the spring of 1831, Galois’s behaviour became more and more extreme,
verging on the paranoid. On April 18 Sophie Germain, one of the few women math-
ematicians of the time, who studied with Gauss, wrote to Guillaume Libri about
Galois’s misfortunes: ‘They say he will go completely mad, and I fear this is true.’
See Henry (1879). Also in April, 19 members of the Artillery of the National Guard,
arrested after the events at the Louvre, were put on trial charged with attempting
to overthrow the government. The jury acquitted them, and on 9 May a celebratory
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banquet was held. About 200 Republicans were present, all extremely hostile to the
government of Louis-Philippe. The proceedings became more and more riotous, and
Galois was seen with a glass in one hand and a dagger in the other. His companions
allegedly interpreted this as a threat to the king’s life, applauded mightily, and ended
up dancing and shouting in the street.

Next day, Galois was arrested. At his subsequent trial, he admitted everything, but
claimed that the toast proposed was actually ‘To Louis-Philippe, if he turns traitor,
and that the uproar had drowned the last phrase. But he also made it crystal clear that
he expected Louis-Philippe to do just that. Nevertheless, the jury acquitted him, and
he was freed on 15 June.

On 4 July he heard the fate of his memoir. Poisson declared it ‘incomprehensible’.
The report (reprinted in full in Taton, 1947) ended as follows:

We have made every effort to understand Galois’s proof. His rea-
soning is not sufficiently clear, sufficiently developed, for us to judge its
correctness, and we can give no idea of it in this report. The author an-
nounces that the proposition which is the special object of this memoir is
part of a general theory susceptible of many applications. Perhaps it will
transpire that the different parts of a theory are mutually clarifying, are
easier to grasp together rather than in isolation. We would then suggest
that the author should publish the whole of his work in order to form a
definitive opinion. But in the state which the part he has submitted to the
Academy now is, we cannot propose to give it approval.

The report may well have been entirely fair. Tignol (1988) points out that Galois’s en-
try ‘did not yield any workable criterion to determine whether an equation is solvable
by radicals.” The referees’ report was explicit:

[The memoir] does not contain, as [its] title promised, the condition
of solubility of equations by radicals; indeed, assuming as true M. Ga-
lois’s proposition, one could not derive from it any good way of deciding
whether a given equation of prime degree is soluble or not by radicals,
since one would first have to verify whether this equation is irreducible
and next whether any of its roots can be expressed as a rational function
of two others.

The final sentence here refers to a beautiful criterion for solubility by radicals of
equations of prime degree that was the climax of Galois’s memoir. It is indeed un-
clear how it can be applied to any specific equation. Tignol says that ‘Galois’s theory
did not correspond to what was expected, it was too novel to be readily accepted.’
What the referees wanted was some kind of condition on the coefficients that deter-
mined solubility; what Galois gave them was a condition on the roots. Tignol sug-
gests that the referees’ expectation was unreasonable; no simple criterion based on
the coefficients has ever been found, nor is one remotely likely. But that was unclear
at the time. See Chapter 25 for further discussion.

On 14 July, Bastille Day, Galois and his friend Ernest Duchatelet were at the head
of a Republican demonstration. Galois was wearing the uniform of the disbanded
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Attillery and carrying a knife, several pistols, and a loaded rifle. It was illegal to
wear the uniform, and even more so to be armed. Both men were arrested on the
Pont-Neuf, and Galois was charged with the lesser offence of illegally wearing a
uniform. They were sent to the jail at Sainte-Pélagie to await trial. While in jail,
Duchatelet drew a picture on the wall of his cell showing the king’s head, labelled as
such, lying next to a guillotine. This presumably did not help their cause. Duchételet
was tried first; then it was Galois’s turn. On 23 October he was tried and convicted,
and his appeal was turned down on 3 December. By this time he had spent more
than four months in jail. Now he was sentenced to six months there. He worked for
a while on his mathematics (Figure 4 left); then in the cholera epidemic of 1832 he
was transferred to a hospital. Soon he was put on parole.
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FIGURE 4: Left: First page of preface written by Galois when in jail. Right: Doodles
left on the table before departing for the fatal duel. ‘Une femme’, with the second
word scribbled out, can be seen near the lower left corner.

Along with his freedom he experienced his first and only love-affair, with a
certain Mlle. ‘Stéphanie D.” From this point on the history becomes very compli-
cated and conjectural. Until recently, the lady’s surname was unknown, adding to
the romantic image of the femme fatale. The full name appears in one of Galois’s
manuscripts, but the surname has deliberately been scribbled over, no doubt by Ga-
lois. Some forensic work by Carlos Infantozzi (1968), deciphering the name that Ga-
lois had all but obliterated, led to the suggestion that the lady was Stéphanie-Felicie
Poterin du Motel, the entirely respectable daughter of Jean-Louis Auguste Poterin du
Motel. Jean-Louis was resident physician at the Sieur Faultrier, where Galois spent
the last few months of his life. The identification is plausible, but it relies on ex-
tracting a sensible name from beneath Galois’s scribbles, so naturally there is a some
controversy about it.

In general, much mystery surrounds this interlude, which has a crucial bearing
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on subsequent events. Apparently Galois was rejected and took it very badly. On 25
May he wrote to Chevalier: ‘How can I console myself when in one month I have
exhausted the greatest source of happiness a man can have?” On the back of one
of his papers he made fragmentary copies of two letters from Stéphanie (Tannery
1908, Bourgne and Azra 1962). One begins ‘Please let us break up this affair’ and
continues ’.. . and do not think about those things which did not exist and which never
would have existed.” The other contains the sentences ‘I have followed your advice
and I have thought over what. .. has. .. happened... In any case, Sir, be assured there
never would have been more. You’re assuming wrongly and your regrets have no
foundation.’

Not long afterwards, Galois was challenged to a duel, ostensibly because of his
advances towards the young lady. Again, the circumstances are veiled in mystery,
though Rothman (1982a, 1982b) has lifted a corner of the veil. One school of thought
(Bell, 1965; Kollros, 1949) asserts that Galois’s infatuation with Mlle. du Motel was
used by his political opponents, who found it the perfect excuse to eliminate their
enemy on a trumped-up ‘affair of honour’. There are even suggestions that Galois
was in effect assassinated by a police spy.

But in his Mémoires, Alexandre Dumas says that Galois was killed by
Pescheux D’Herbinville, a fellow Republican, see Dumas (1967). Dumas described
D’Herbinville as ‘a charming young man who made silk-paper cartridges which he
would tie up with silk ribbons.” The objects concerned seem to have been an early
form of cracker, of the kind now familiar at Christmas. He was one of the 19 Republi-
cans acquitted on charges of conspiring to overthrow the government, and something
of a hero with the peasantry. D’Herbinville was certainly not a spy for the police:
all such men were named in 1848 when Caussidiere became chief of police. Dalmas
(1956) cites evidence from the police report, suggesting that the other duellist was
one of Galois’s revolutionary comrades, and the duel was exactly what it appeared to
be. This theory is largely borne out by Galois’s own words on the matter (Bourgne
and Azra, 1962):

I beg patriots and my friends not to reproach me for dying otherwise
than for my country. I die the victim of an infamous coquette. It is in a
miserable brawl that my life is extinguished. Oh! why die for so trivial a
thing, for something so despicable! ... Pardon for those who have killed
me, they are of good faith.

Figure 4 right shows a doodle by Galois with the words ‘Une femme’ partially
crossed out. It does appear that Stéphanie was at least a proximate cause of the duel,
but very little else is clear.

On 29 May, the eve of the duel, Galois wrote a famous letter to his friend Au-
guste Chevalier, outlining his mathematical discoveries. This letter was eventually
published by Chevalier in the Revue Encyclopédique. In it, Galois sketched the con-
nection between groups and polynomial equations, stating that an equation is soluble
by radicals provided its group is soluble. But he also mentioned many other ideas
about elliptic functions and the integration of algebraic functions, and other things
too cryptic to be identifiable.
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The scrawled comment ‘I have no time’ in the margins (Figure 5) has given rise

to another myth: that Galois spent the night before the duel frantically writing out
his mathematical discoveries. However, that phrase has next to it ‘(Author’s note)’,
which hardly fits such a picture; moreover, the letter was an explanatory accompani-
ment to Galois’s rejected third manuscript, complete with a marginal note added by

Poisson (Figure 6 left).
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FIGURE 5: ‘I have no time’ (je n’ ai pas le temps), above deleted paragraph in lower
left corner. But consider the context.

The duel was with pistols. The post-mortem report (Dupuy 1896) states that they

were fired at 25 paces, but the truth may have been even nastier. Dalmas reprints an
article from the 4 June 1832 issue of Le Precursor, which reports:

Paris, 1 June—A deplorable duel yesterday has deprived the exact
sciences of a young man who gave the highest expectations, but whose
celebrated precocity was lately overshadowed by his political activities.
The young Evariste Galois. .. was fighting with one of his old friends, a
young man like himself, like himself a member of the Society of Friends
of the People, and who was known to have figured equally in a political
trial. It is said that love was the cause of the combat. The pistol was the
chosen weapon of the adversaries, but because of their old friendship
they could not bear to look at one another and left the decision to blind
fate. At point-blank range they were each armed with a pistol and fired.
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Only one pistol was charged. Galois was pierced through and through
by a ball from his opponent; he was taken to the hospital Cochin where
he died in about two hours. His age was 22. L.D., his adversary, is a bit
younger.

Who was ‘L.D.”? Does the initial ‘D’ refer to d’Herbinville? Perhaps. ‘D’ is ac-
ceptable because of the variable spelling of the period; the ‘L’ may have been a
mistake. The article is unreliable on details: it gets the date of the duel wrong, and
also the day Galois died and his age. So the initial might also be wrong. Rothman has
another theory, and a more convincing one. The person who best fits the description
here is not d’Herbinville, but Duchatelet, who was arrested with Galois on the Pont-
Neuf. Bourgne and Azra (1962) give his Christian name as ‘Ernest’, but that might
be wrong, or again the ‘L’ may be wrong. To quote Rothman: ‘we arrive at a very
consistent and believable picture of two old friends falling in love with the same girl
and deciding the outcome by a gruesome version of Russian roulette.’

This theory is also consistent with a final horrific twist to the tale. Galois was hit
in the stomach, a particularly serious wound that was almost always fatal. If indeed
the duel was at point-blank range, this is no great surprise. If at 25 paces, he was
unlucky.

He did not die two hours later, as Le Precursor says, but a day later on 31 May,
of peritonitis; he refused the office of a priest. On 2 June 1832 he was buried in the
common ditch at the cemetery of Montparnasse.

His letter to Chevalier ended with these words (Figure 6 right):

Ask Jacobi or Gauss publicly to give their opinion, not as to the
truth, but as to the importance of these theorems. Later there will be, I
hope, some people who will find it to their advantage to decipher all this
mess. ..
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FIGURE 6: Left. Marginal comment by Poisson. Right: The final page written by
Galois before the duel. ‘“To decipher all this mess’ (déchiffrer tout ce gachis, is the
next to last line).



Chapter 1

Classical Algebra

In the first part of this book, Chapters 1-15, we present a (fairly) modern version of
Galois’s ideas in the same setting that he used, namely, the complex numbers. Later,
from Chapter 16 onwards, we generalise the setting, but the complex numbers have
the advantages of being familiar and concrete. By initially restricting ourselves to
complex numbers, we can focus on the main ideas that Galois introduced, without
getting too distracted by ‘abstract nonsense’.

A warning is in order. The decision to work over the complex numbers has advan-
tages in terms of accessibility of the material, but it sometimes makes the discussion
seem clumsy by comparison with the elegance of an axiomatic approach. This is ar-
guably a price worth paying, because this way we appreciate the abstract viewpoint
when it makes its appearance, and we understand where it comes from. However, it
also requires a certain amount of effort to verify that many of the proofs in the com-
plex case go through unchanged to more general fields—and that some do not, and
require modification.

We assume familiarity with the basic theory of real and complex numbers, but
to set the scene, we recall some of the concepts involved. We begin with a brief
discussion of complex numbers and introduce two important ideas. Both relate to
subsets of the complex numbers that are closed under the usual arithmetic operations.
A subring of the complex numbers is a subset closed under addition, subtraction, and
mutliplication; a subfield is a subring that is also closed under division by any non-
zero element. Both concepts were formalised by Richard Dedekind in 1871, though
the ideas go back to Peter Gustav Lejeune-Dirichlet and Kronecker in the 1850s.

We then show that the historical sequence of extensions of the number system,
from natural numbers to integers to rationals to reals to complex numbers, can with
hindsight be interpreted as a quest to make more and more equations have solutions.
We are thus led to the concept of a polynomial, which is central to Galois theory
because it determines the type of equation that we wish to solve. And we appreciate
that the existence of a solution depends on the kind of number that is permitted.

Throughout, we use the standard notation N,Z,Q, R, C for the natural numbers,
integers, rationals, real numbers, and complex numbers. These systems sit inside
each other:

NCZCQCRCC

and each C symbol hints at a lengthy historical process in which ‘new numbers’
were proposed for mathematical reasons—usually against serious resistance on the
grounds that although their novelty was not in dispute, they were not numbers and
therefore did not exist.

17
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1.1 Complex Numbers

A complex number has the form
zZ=x+Iy

where x,y are real numbers and i = —1. Therefore i = /—1, in some sense. The
easiest way to define what we mean by \/—1 is to consider C as the set R? of all
pairs of real numbers (x,y), with algebraic operations

(x1,1) + (x2,2) = (¥1+x2,y1+2) L1
(x1,1) (x2,¥2) = (122 — y1y2,%1y2 + %21) '

Then we identify (x,0) with the real number x to arrange that R C C, and define
i =(0,1). In consequence, (x,y) becomes identified with x + iy. The formulas (1.1)
imply that i = (0,1)(0,1) = (—1,0) which is identified with the real number -1, so
i is a ‘square root of minus one’. Observe that (0,1) is not of the form (x,0), so i is
not real, which is as it should be, since —1 has no real square root.

This approach seems to have first been published by the Irish mathematician
William Rowan Hamilton in 1837, but in that year Gauss wrote to the geometer
Wolfgang Bolyai that the same idea had occurred to him in 1831. This was probably
true, because Gauss usually worked things out before anybody else did, but he set
himself such high standards for publication that many of his more important ideas
never saw print under his name. Moreover, Gauss was somewhat conservative, and
shied away from anything potentially controversial.

Once we see that complex numbers are just pairs of real numbers, the previously
mysterious status of the ‘imaginary’ number v/—1 becomes much more prosaic. In
fact, to the modern eye it is the ‘real’ numbers that are mysterious, because their
rigorous definition involves analytic ideas such as sequences and convergence, which
lead into deep philosophical waters and axiomatic set theory. In contrast, the step
from R to R? is essentially trivial—except for the peculiarities of human psychology.

1.2 Subfields and Subrings of the Complex Numbers

For the first half of this book, we keep everything as concrete as possible—but
not more so, as Albert Einstein is supposed to have said about keeping things simple.
Abstract algebra courses usually introduce (at least) three basic types of algebraic
structure, defined by systems of axioms: groups, rings, and fields. Linear algebra
adds a fourth: vector spaces. For the first half of this book, we steer clear of abstract
rings and fields, but we do assume the basics of finite group theory and linear algebra.

Recall that a group is a set G equipped with an operation of ‘multiplication’ writ-
ten (g,h) — gh. If g,h € G then gh € G. The associative law (gh)k = g(hk) holds for
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all g,h,k € G. There is an identity 1 € G such that 1g = g = gl for all g € G. Finally,
every g € G has an inverse g~! € G such that gg=! = 1 = g~ !g. The classic example
here is the symmetric group S, consisting of all permutations of the set {1,2,...,n}
under the operation of composition. We assume familiarity with these axioms, and
with subgroups, isomorphisms, homomorphisms, normal subgroups, and quotient
groups.

Rings are sets equipped with operations of addition, subtraction, and multiplica-
tion; fields also have a notion of division. The formal definitions were supplied by
Heinrich Weber in 1893. The axioms specify the formal properties assumed for these
operations—for example, the commutative law ab = ba for multiplication.

In the first part of this book, we do not assume familiarity with abstract rings and
fields. Instead, we restrict attention to subrings and subfields of C, or polynomials
and rational functions over such subrings and subfields. Informally, we assume that
the terms ‘polynomial’ and ‘rational expression’ (or ‘rational function’) are familiar,
at least over C, although for safety’s sake we define them when the discussion be-
comes more formal, and redefine them when we make the whole theory more abstract
in the second part of the book. There were no formal concepts of ‘ring’ or ‘field’ in
Galois’s day and linear algebra was in a rudimentary state. He had to invent groups
for himself. So we are still permitting ourselves a more extensive conceptual toolkit
than his.

Definition 1.1. A subring of C is a subset R C C such that 1 € R, and if x,y € R then
x+Yy,—x, and xy € R.

(The condition that 1 € R is required here because we use ‘ring’ as an abbrevia-
tion for what is often called a ‘ring-with-1’ or ‘unital ring’.)

A subfield of C is a subring K C C with the additional property that if x € K and
x#0thenx! € K.

Here x~! = 1 /xis the reciprocal. As usual we often write x/y for xy~!.

It follows immediately that every subring of C contains 1+ (—1) = 0, and is
closed under the algebraic operations of addition, subtraction, and multiplication. A
subfield of C has all of these properties, and is also closed under division by any
nonzero element. Because R and K in Definition 1.1 are subsets of C, they inherit the
usual rules for algebraic manipulation.

Examples 1.2. (1) The set of all a + bi, for a,b € Z, is a subring of C, but not a
subfield.
Since this is the first example we outline a proof. Let

R={a+bi:a,beZ}
Since 1 =1+ 0i,wehave 1 € R.Letx =a+bi,y =c+di € R. Then

x+y = (a+c)+(b+d)ieR
—a—bieR
(ac—bd)+ (ad +bc)i € R

—X

Xy



20 Classical Algebra

and the conditions for a subring are valid. However, 2 € R but its reciprocal 27! =
1 € R, so R is not a subfield.
(2) The set of all a + bi, for a,b € Q, is a subfield of C.
Let
K={a+bi:a,beQ}

The proof is just like case (1), but now

- a b .

(a+bi) = m—mteK
so K is a subfield.
(3) The set of all polynomials in 7, with integer coefficients, is a subring of C, but
not a subfield.
(4) The set of all polynomials in 7, with rational coefficients, is a subring of C. We
can appeal to a result proved in Chapter 24 to show that this set is not a subfield.
Suppose that 7~! = f(r) where f is a polynomial over Q. Then nf(x) —1 = 0,
so 7 satisfies a nontrivial polynomial equation with rational coefficients, contrary to
Theorem 24.5 of Chapter 24.
(5) The set of all rational expressions in 7 with rational coefficients (that is, fractions
p(m)/q(m) where p,q are polynomials over Q and g(x) # 0) is a subfield of C.
(6) The set 2Z of all even integers is not a subring of C, because (by our convention)
it does not contain 1.
(7) The set of all a+ bv/2, for a,b € Q, is not a subring of C because it is not closed
under multiplication. However, it is closed under addition and subtraction.

Definition 1.3. Suppose that K and L are subfields of C. An isomorphism between
K and Lis amap ¢ : K — L that is one-to-one and onto, and satisfies the condition

Px+y)=90x)+00) () =0x)9() (12)
for all x,y € K.
Proposition 1.4. If ¢ : K — L is an isomorphism, then:

¢(0) =0
o(1) =1
¢(—x) = —9(x)
oG = (9(0)!

Proof. Since 0x = 0 for all x € K, we have ¢(0)¢(x) = ¢(0) for all x € K. Let x =
¢~1(0), which exists since ¢ is one-to-one and onto. Then ¢(0).0 = ¢(0), so 0 =
$(0).

Since 1x = x for all x € K, we have ¢(1)¢(x) = ¢(x) forall x € K. Letx = ¢ (1)
to deduce that ¢(1).1=1,s0 ¢(1) =

Since x + (—x) = 0 for all x € K, we have ¢(x) + ¢(—x) = ¢(0) = 0. Therefore

¢(—x) = -9 (x).
Since x.x~! = 1 for all x € K, we have ¢(x).¢(x~') = ¢(1) = 1. Therefore

o) = (p(x)~! O
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If ¢ satisfies (1.2) and is one-to-one but not necessarily onto, it is a monomor-
phism. An isomorphism of K with itself is called an automorphism of K.
Throughout the book we make extensive use of the following terminology:

Definition 1.5. A primitive nth root of unity is an nth root of 1 that is not an mth root
of 1 for any proper divisor m of n.

For example, i is a primitive fourth root of unity, and so is —i. Since (—1)* =1,
the number —1 is a fourth root of unity, but it is not a primitive fourth root of unity
because (—1)2 = 1.

Over C the standard choice for a primitive nth root of unity is

C _ e27:1'/n
=

We omit the subscript # when this causes no ambiguity.
The next result is standard, but we include a proof for completeness.

Proposition 1.6. Let { = e2™/" Then £* = e2*%i/" is g primitive nth root of unity if
and only if k is prime to n.

2kzi/n is not a primitive nth root of

Proof. We prove the equivalent statement: {*¥ = e
unity if and only if k is not prime to n.

Suppose that {* is not a primitive nth root of unity. Then ({¥)™ = 1 where m is
a proper divisor of n. That is, n = mr where r > 1. Therefore {¥" =1, so mr =n
divides km. This implies that r|k, and since also r|n we have (n,k) > r > 1, s0 k is
not prime to #.

Conversely, suppose that k is not prime to n, and let r > 1 be a common divisor.
Then 7|k and n = mr where m < n. Now km is divisible by mr = n, so ({¥)™ = 1.

That is, ¢¥ is not a primitive nth root of unity. O

Examples 1.7.(1) Complex conjugation x + iy — x — iy is an automorphism of C.
Indeed, if we denote this map by a, then:

a((x+iy)+m+iv)) = a((x+u)+i(y+v))

= (x+u)—i(y+v)
(x—iy)+ (u—iv)
a(x+iy) + a(u+iv)
o((x+iy)u+iv)) = o((xu—yv)+i(xv+yu))
xu—yv—i(xv+yu)
= (x—iy)(u—1iv)
= alx+iy)o(u+iv)

(2) Let K be the set of complex numbers of the form p + g+v/2, where p,q € Q. This
is a subfield of C because

(p+aV2)(p—qV2) = p*—24*
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)
- p q
pravd) =L s
( ) p2—242 pr-2q%
if p and g are non-zero. The map p +¢+v/2 — p — g+/2 is an automorphism of K.
(3)Let ¢ = v/2 € R, and let
1 V3

O=-3%"7%

be a primitive cube root of unity in C. The set of all numbers p + go + ra?, for
p,q,r € Q, is a subfield of C, see Exercise 1.5. The map

p+qa~|—ra2'—>p+qwa+ra)2a2

is a monomorphism onto its image, but not an automorphism, Exercise 1.6.

1.3 Solving Equations

A physicist friend of mine once complained that while every physicist knew what
the big problems of physics were, his mathematical colleagues never seemed to be
able to tell him what the big problems of mathematics were. It took me a while to
realise that this doesn’t mean that they didn’t know, and even longer to articulate
why. The reason, I claim, is that the big problems of physics, at any given moment,
are very specific challenges: measure the speed of light, prove that the Higgs boson
exists, find a theory to explain high-temperature superconductors. Mathematics has
problems like that too; indeed, Galois tackled one of them—prove that the quintic
cannot be solved by radicals. But the big problems of mathematics are more general,
and less subject to fashion (or disappearance by virtue of being solved). They are
things like ‘find out how to solve equations like this one’, ‘find out what shape things
like this are’, or even ‘find out how many of these gadgets can exist’. Mathematicians
know this, but it is so deeply ingrained in their way of thinking that they seldom
consciously recognise such questions as big problems. However, such problems have
given rise to entire fields of mathematics—here, respectively, algebra, topology, and
combinatorics. I mention this because it is the first of the above big problems that
runs like an ancient river through the middle of the territory we are going to explore.
Find out how to solve equations. Or, as often as not, prove that it cannot be done with
specified methods.

What sort of equations? For Galois: polynomials. But let’s work up to those in
easy stages.

The usual reason for introducing a new kind of number is that the old ones are
inadequate for solving some important problem. Most of the historical problems in
this area can be formulated using equations—though it must be said that this is a
modern interpretation and the ancient mathematicians did not think in quite those
terms.
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For example, the step from N to Z is needed because although some equations,
such as
t+2=17

can be solved for ¢ € N, others, such as
t+7=2

cannot. However, such equations can be solved in Z, where t = —5 makes sense.
(The symbol x is more traditional than ¢ here, but it is convenient to standardise on ¢
for the rest of the book, so we may as well start straight away.)

Similarly, the step from Z to Q (historically, it was initially from N to Q*, the
positive rationals) makes it possible to solve the equation

2t=17

because t = % makes sense in Q.
In general, an equation of the form

a+b=0

where a, b are specific numbers and ¢ is an unknown number, or ‘variable’, is called
a linear equation. In a subfield of C, any linear equation with a # 0 can be solved,
with the unique solution t = —b/a.

The step from Q to R is related to a different kind of equation:

=2

As the ancient Greeks understood (though in their own geometric manner—they did
not possess algebraic notation and thought in a very different way from modern math-
ematicians), the ‘solution’ 7 = v/2 is an irrational number—it is not in Q. (See Ex-
ercise 1.2 for a proof, which may be different from the one you have seen before. It
is essentially one of the old Greek proofs, translated into algebra. Paul Erdds used to
talk of proofs being from ‘The Book’, by which he meant an alleged volume in the
possession of the Almighty, in which only the very best mathematical proofs could
be found. This Greek proof that the square root of 2 is irrational must surely be in The
Book. An entirely different proof of a more general theorem is outlined in Exercise
1.3)
Similarly, the step from R to C centres on the equation

2=-1

which has no real solutions since the square of any real number is positive.
Equations of the form
at> +bt+c=0

are called quadratic equations. The classic formula for their solutions (there can be
0, 1, or 2 of these) is of course

e —b+Vb?—4ac
- 2a
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and this gives all the solutions ¢ provided the formula makes sense. For a start, we
need a # 0. (If a = 0 then the equation is actually linear, so this restriction is not a
problem.) Over the real numbers, the formula makes sense if b2 — 4ac > 0, but not
if b2 — 4ac < 0. Over the complex numbers it makes sense for all a,b,c. Over the
rationals, it makes sense only when b? — 4ac is a perfect square—the square of a
rational number.

1.4 Solution by Radicals

We begin by reviewing the state of the art regarding solutions of polynomial
equations, as it was just before the time of Galois. We consider linear, quadratic, cu-
bic, quartic, and quintic equations in turn. In the case of the quintic, we also describe
some ideas that were discovered after Galois. Throughout, we make the default as-
sumption of the period: the coefficients of the equation are complex numbers.

Linear Equations

Let a,b € C with a # 0. The general linear equation is
at+b=0

and the solution is clearly

Quadratic Equations

Let a,b,c € C with a # 0. The general quadratic equation is
at’> +bt+¢c=0
Dividing by a and renaming the coefficients, we can consider the equivalent equation
?+at+b=0

The standard way to solve this equation is to rewrite it in the form

a 2 a2
(t+§> Zz—b

Taking square roots,
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2

a a
:——:I:\/—»—b

=73*V73

which is the usual quadratic formula except for a change of notation. The process
used here is called completing the square; as remarked in the Historical Introduction,
it goes back to the Babylonians 3600 years ago.

so that

Cubic Equations

Let a,b,c € C with a # 0. The general cubic equation can be written in the form
P +a’+bt+c=0

where again we have divided by the leading coefficient to avoid unnecessary compli-
cations in the formulas.

The first step is to change the variable to make a = 0. This is achieved by setting
y=t+%,sothat?=y— %.Such amove is called a Tschirnhaus transformation, after
the person who first made explicit and systematic use of it. The equation becomes

Y +py+g=0 (13)
where

_ —a?+3b

3
_2a°—9ab+21c
1= 27
To find the solution(s) we try (rabbit out of hat) the substitution
y=vu+y

Now

¥ = utv+39udv(Vu+ )

so that (1.3) becomes

(u+v+q)+ (Vu+ ) 3Vudv+p) =0

We now choose u and v to make both terms vanish:

u+v+qg =20 (1.4)
3udv+p =0 (1.5)
which imply
u+v=—q (1.6)
3
w = -2 amn
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Multiply (1.6) by u and subtract (1.7) to get

P3
u(u-l—v) —uv=—qu+-—

27
which can be rearranged to give
3
2 p
+qu——==0
wtqu— oo
which is a quadratic.
The solution of quadratics now tells us that
2 3
q q p
=144/ 42
VTt
Since u+v = —q we have
2 3
. S A
TV T

Changing the sign of the square root just permutes # and v, so we can set the sign to
+. Thus we find that

2 3 2 3
y=\3/ s B R A (1.8)
2 V4

2 Va4 ' 27

which (by virtue of publication, not discovery) is usually called Cardano’s formula.
(This version differs from the formula in the Historical Introduction because Cardano
worked with x2 + px = ¢, so g changes sign.) Finally, remember that the solution ¢ of
the original equation is equal to y — a/3.

Peculiarities of Cardano’s Formula

An old Chinese proverb says ‘Be careful what you wish for: you might get it’. We
have wished for a formula for the solution, and we’ve got one. It has its peculiarities.

First: recall that over C every nonzero complex number z has three cube roots. If
one of them is @, then the other two are wo and @20, where

1 V3
O=—=+i—
27
is a primitive cube root of 1. Then
2 2

The expression for y therefore appears to lead to nine solutions, of the form
a+B a+of a+o’B
0o+ wa+of oo+’
0’a+pf o’oa+ofp o’o+o’p
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where o, 8 are specific choices of the cube roots.

However, not all of these expressions are zeros. Equation (1.5) implies (1.7), but
(1.7) implies (1.5) only when we make the correct choices of cube roots. If we choose
o, B so that 3af + p = 0, then the solutions are

a+p oo+’ o*a+of

Another peculiarity emerges when we try to solve equations whose solutions we
already know. For example,
Y +3y—36=0

has the solution y = 3. Here p = 3,9 = —36, and Cardano’s formula gives

y={/18+\/375+\3/18—\/%

which seems a far cry from 3. However, further algebra converts it to 3: see Exercise
1.4.
As Cardano observed in his book, it gets worse: if his formula is applied to

P —15t—4=0 (1.9)
it leads to
3 3
t= \/2+\/—121+\/2—\/—121 (1.10)

in contrast to the obvious solution ¢ = 4. This is very curious even today, and must
have seemed even more so in the Renaissance period.

Cardano had already encountered such baffling expressions when trying to solve
the quadratic £(10 —¢) = 40, with the apparently nonsensical solutions 5+ +/—15 and
5 — v/ —15, but there it was possible to see the puzzling form of the ‘solution’ as ex-
pressing the fact that no solution exists. However, Cardano was bright enough to spot
that if you ignore the question of what such expressions mean, and just manipulate
them as if they are ordinary numbers, then they do indeed satisfy the equation. ‘So,’
Cardano commented, ‘progresses arithmetic subtlety, the end of which is as refined
as it is useless.’

However, this shed no light on why a cubic could possess a perfectly reasonable
solution, but the formula (more properly, the equivalent numerical procedure) could
not find it. Around 1560 Raphael Bombelli observed that (24++/—1)3 =24 /=121,
and recovered (see Exercise 1.7) the solution t = 4 of (1.9) from the formula (1.10),
again assuming that such expressions can be manipulated just like ordinary num-
bers. But Bombelli, too, expressed scepticism that such manoeuvres had any sensi-
ble meaning. In 1629 Albert Girard argued that such expressions are valid as formal
solutions of the equations, and should be included ‘for the certitude of the general
rules’. Girard was influential in making negative numbers acceptable, but he was way
ahead of his time when it came to their square roots.

In fact, Cardano’s formula is pretty much useless whenever the cubic has three
real roots. This is called the ‘irreducible case’ of the cubic, and the traditional escape
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route is to use trigonometric functions, Exercise 1.8. All this rather baffled the Re-
naissance mathematicians, who did not even have effective algebraic notation, and
were wary of negative numbers, let alone imaginary ones.

Using Galois theory, it is possible to prove that the cube roots of complex num-
bers that arise in the irreducible case of the cubic equation cannot be avoided. That
is, there are no formulas in real radicals for the real and imaginary parts. See Van der
Waerden (1953) volume 1 page 180, and Isaacs (1985).

Quartic Equations

An equation of the fourth degree
tra +b® +ct+d=0

is called a quartic equation (an older term is biquadratic). To solve it, start by making
the Tschirnhaus transformation y = ¢ +a/4, to get

YV +py?+gy+r=0 (1.11)
where

_, 3

p= 8

_,_9b_ 3a

1=°75 7"

e, @b

TEATA T 06 T 256

Rewrite this in the form

r\’ p?
2 Py _ p-
<y +2> qy r+4

Introduce a new term u, and observe that

2 2
2, P _ (2, P 2, P 2
(y +2+u) = <y -|—2> +2<y +2)u+u

2

= —qy—r+%+2uy2—|—pu+u2

We choose u to make the right hand side a perfect square. If it is, it must be the square
of V2uy— #27’ and then we require

2 2
" 24
r+4+pu+u »

Provided u # 0, this becomes

81 +8pu+ (2p—8r)u—q> =0 (1.12)
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which is a cubic in u. Solving by Cardano’s method, we can find u. Now

(y2+§+u>2= (\/2_uy—\/2_u)2

SO

y2+§+u=:i:<\/2_uy—\/2_u)

Finally, we can solve the above two quadratics to find y.

If u = 0 we do not obtain (1.12), but if # = 0 then g = 0, so the quartic (1.11) is
a quadratic in y?, and can be solved using only square roots.

Equation (1.12) is called the resolvent cubic of (1.11). Explicit formulas for the
roots can be obtained if required. Since they are complicated, we shall not give them
here.

An alternative approach to the resolvent cubic, not requiring a preliminary
Tschirnhaus transformation, is described in Exercise 1.13.

Quintic Equations

So far, we have a series of special tricks, different in each case. We can start to
solve the general quintic equation

Pta*+br +c? +dt+e=0
in a similar way. A Tschirnhaus transformation y = ¢ +a/5 reduces it to
Y+py+qy’ +ry+s=0

However, all variations on the tricks that we used for the quadratic, cubic, and quartic
equations grind to a halt.

In 1770-1771 Lagrange analysed all of the above special tricks, showing that
they can all be ‘explained’ using general principles about symmetric functions of
the roots. When he applied this method to the quintic, however, he found that it
‘reduced’ the problem to a sextic—an equation of degree 6. Instead of helping, the
method made the problem worse. A fascinating description of these ideas, together
with a method for solving quintics whenever they are soluble by radicals, can be
found in a lecture by George Neville Watson, rescued from his unpublished papers
and written up by Berndt, Spearman and Williams (2002). The same article contains
a wealth of other information about the quintic, including a long list of historical and
recent references. Because the formulas are messy and the story is lengthy, the most
we can do here is give some flavour of what is involved.

Lagrange observed that all methods for solving polynomial equations by radicals
involve constructing rational functions of the roots that take a small number of values
when the roots o are permuted. Prominent among these is the expression

8= [ (o—o%) (1.13)

1<j<k<n
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where n is the degree. This takes just two values, £0: plus for even permutations
and minus for odd ones. Therefore A = §2 (known as the discriminant because it is
nonzero precisely when the roots are distinct, so it ‘discriminates’ among the roots)
is a rational function of the coefficients. This gets us started, and it yields a complete
solution for the quadratic, but for cubics upwards it does not help much unless we
can find other expressions in the roots with similar properties under permutation.

Lagrange worked out what these expressions look like for the cubic and the quar-
tic, and noticed a pattern. For example, if a cubic polynomial has roots o, &, &3 and
@ is a primitive cube root of unity, then the expression

u=(0q + oo+ o’a)?

takes exactly two distinct values. In fact, even permutations leave it unchanged, while
odd permutations transform it to

v=(oq + 0’y + woz)?

It follows that 4 v and uv are fixed by all permutations of the roots, and must there-
fore be expressible as rational functions of the coefficients. So u+v =a,uv =b
where a, b are rational functions of the coefficients. Therefore u and v are the solu-
tions of the quadratic equation #> — at +b = 0, so they can be expressed using square
roots. But now the further use of cube roots expresses 01 + W0y + (1)2063 = J/u and
o+ 0oy + oo = /v by radicals. Since we also know that o + 0 + 03 is minus
the coefficient of 2, we have three independent linear equations in the roots, which
are easily solved.
Something very similar works for the quartic, with expressions like

(0 — 0+ a3 — 0g)?

But when we try the same idea on the quintic, an obstacle appears. Suppose that
the roots of the quintic are o, 05, 03, 04, 05. Let £ be a primitive fifth root of unity.
Following Lagrange’s lead, it is natural to consider

w=(oq+Clam+8m+ay+Cos)

There are 120 permutations of 5 roots, and they transform w into 24 distinct expres-
sions. Therefore w is a root of a polynomial of degree 24—a big step in the wrong
direction, since we started with a mere quintic.

The best that can be done is to use an expression derived by Arthur Cayley in
1861, based on an idea of Robert Harley in 1859. This expression is

2
x= (0 0+ 0p03 + 030y + 0405 + Qs O — O O3 — 0 Oly — O3 Ols — Ola O — Ols 02)

It turns out that x takes precisely 6 values when the variables are permuted in all
120 possible ways. Therefore x is a root of a sextic equation. The equation is very
complicated and has no obvious roots; it is, perhaps, better than an equation of degree
24, but it is still no improvement on the original quintic. Except when the sextic
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happens, by accident, to have a root whose square is rational, in which case the
quintic is soluble by radicals. Indeed, this is a necessary and sufficient condition for
a quintic to be soluble by radicals, see Berndt, Spearman and Williams (2002). For
instance, as they explain in detail, the equation

P +15+12=0

has the solution

5 _75+21m+ 5 _75_2lm+ 5 225+72‘/m+ 5/225—724/10
125 125 125 125

with similar expressions for the other four roots.

Lagrange’s general method, then, fails for the quintic. This does not prove that
the general quintic is not soluble by radicals, because for all Lagrange or anyone else
knew, there might be other methods that do not make the problem worse. But it does
suggest that there is something very different about the quintic. Suspicion began to
grow that no method would solve the quintic by radicals. Mathematicians stopped
looking for such a solution, and started looking for an impossibility proof instead.

EXERCISES

1.1 Use (1.1) to prove that multiplication of complex numbers is commutative and
associative. That is, if u,v,w are complex numbers, then uv = vu and (uv)w =
u(vw).

1.2 Prove that v/2 is irrational, as follows. Assume for a contradiction that there
exist integers a, b, with b # 0, such that (a/b)? = 2.
1. Show that we may assume a,b > 0.

2. Observe that if such an expression exists, then there must be one in which

b is as small as possible.
3. Show that . )
—a
G-
4. Show that2b—a > 0,a—b > 0.
5. Show that a — b < b, a contradiction.

1.3 Prove that if g € Q then /g is rational if and only if g is a perfect square; that
is, it can be written in the form g = p{' --- pf» where the integers a;, which
may be positive or negative, are all even.
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1.4*

1.5

1.6

1.7

1.8

1.9
1.10

1.11*

1.12*

Classical Algebra

Prove without using Cardano’s formula that

{/18+\/%+€/18—\/E:3

Let & = v/2 € R. Prove that the set of all numbers p+qo +ra?, for p,q,r € Q,
is a subfield of C.

Let @ be a primitive cube root of unity in C. With the notation of Exercise 1.5,
show that the map

p+qa+roa*— p+qoa+ro’o?
is a monomorphism onto its image, but not an automorphism.

Use Bombelli’s observation that (24 +/—1)3 = 2 ++/—121 to show that (with
one choice of values of the cube roots)

€/2+M+{/2—M=4

Use the identity cos36 = 4cos> 6 —3cos 6 to solve the cubic equation 73 +
pt+q=0when 27¢%> +4p> < 0.

Find radical expressions for all three roots of > — 15 — 4 = 0.

When 274¢% + 4p® < 0 it is possible to try to make sense of Cardano’s formula
by generalising Bombelli’s observation; that is, to seek o, 8 such that

2 313 2 3

q p q q 14
B+ =2+
{a B 4+27] 2 4+27

Why is this usually pointless?

Let P(n) be the number of ways to arrange n zeros and ones in a row, given
that ones occur in groups of three or more. Show that

P(n)=2P(n—1)—P(n—2)+P(n—4)

P g’(;)l—) — x, where x > 0 is real and x* —

2x3 4+ x2 — 1 = 0. Factorise this quartic as a product of two quadratics, and
hence find x.

and deduce that as n — o the ratio

The largest square that fits inside an equilateral triangle can be placed in any of
three symmetrically related positions. Eugenio Calabi noticed that there is ex-
actly one other shape of triangle in which there are three equal largest squares,
Figure 7. Prove that in this triangle the ratio x of the longest side the other
two is a solution of the cubic equation 2x> —2x> —3x+2 = 0, and find an
approximate value of x to three decimal places.
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FIGURE 7: Calabi’s triangle.

1.13 Investigate writing the general quartic * + at3 4 bt? + ct 4 d in the form
(e +pt+4q)* = (1 +3)?
which, being a difference of two squares, factorises into two quadratics
(P +pt+q+re+s)(t2+pt+q—rt—s)
and can thus be solved in radicals if p,q,r,s can be expressed in terms of the

original coefficients a,b,c,d.

Show that doing this leads to a cubic equation.
1.14 Mark the following true or false.

(a) -1 has no square root.

(b) -1 has no real square root.

(c) -1 has two distinct square roots in C.

(d) Every subring of C is a subfield of C.

(e) Every subfield of C is a subring of C.

(f) The set of all numbers p +gv/5 for p,q €Q is a subring of C.
(g) The set of all numbers p+ g+/5 for p,q € C is a subring of C.
(h) Cardano’s formula always gives a correct answer.

(i) Cardano’s formula always gives a sensible answer.

(j) A quintic equation over QQ can never be solved by radicals.



Chapter 2

The Fundamental Theorem of Algebra

At the time of Galois, the natural setting for most mathematical investigations was the
complex number system. The real numbers were inadequate for many questions, be-
cause —1 has no real square root. The arithmetic, algebra, and—decisively—analysis
of complex numbers were richer, more elegant, and more complete than the corre-
sponding theories for real numbers.

In this chapter we establish one of the key properties of C, known as the Fun-
damental Theorem of Algebra. This theorem asserts that every polynomial equation
with coefficients in C has a solution in C. This theorem is, of course, false over R—
consider the equation 2+ 1 = 0. It was fundamental to classical algebra, but the name
is somewhat archaic, and modern algebra bypasses C altogether, preferring greater
generality. Because we find it convenient to work in the same setting as Galois, the
theorem will be fundamental for us.

All rigorous proofs of the Fundamental Theorem of Algebra require quite a lot
of background. Here, we give a proof that uses a few simple ideas from algebra and
trigonometry, estimates of the kind that are familiar from any first course in analysis,
and one simple basic result from point-set topology.

Later, we give an almost purely algebraic proof, but the price is the need for much
more machinery: see Chapter 23. Ironically, that proof uses Galois theory to prove
the Fundamental Theorem of Algebra, the exact opposite of what Galois did. The
logic is not circular, because the proof in Chapter 23 rests on the abstract approach
to Galois theory described in the second part of this book, which makes no use of the
Fundamental Theorem of Algebra.

2.1 Polynomials

Linear, quadratic, cubic, quartic, and quintic equations are examples of a more gen-
eral class: polynomial equations. These take the form

p(t)=0

where p(¢) is a polynomial in ¢.

Mathematics is littered with polynomial equations, arising in a huge variety of
contexts. As a sample, here are two from the literature. You don’t need to think about
them: just observe them like a butterfly-collector looking at a strange new specimen.

35
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John Horton Conway came up with one of the strangest instances of a polynomial
equation that I have ever encountered, in connection with the so-called look and say
sequence. The sequence starts

1 11 21 1211 111221 312211 13112221

The rule of formation is most readily seen in verbal form. We start with ‘1°, which
can be read as ‘one one’, so the next term is 11. This reads ‘two ones’, leading to
21. Read this as ‘one two, one one’ and you see where 1211 comes from, and so
on. If L(n) is the length of the nth term in this sequence, approximately how big is
L(n)? Conway (1985) proves that L(n) satisfies a 72-term linear recurrence relation.
Standard techniques from combinatorics then prove that for large n, the value of
L(n) is asymptotically proportional to a", where & = 1-303577... is the smallest
real solution of the 71st degree polynomial equation

t71 _ t69 _ 2168 _ t67 + 2,66 + 2;65 _ t63 _ t62 _ t61 _ t60 + 2t58

+5857 43156 — 2555 — 1054 — 3153 — 2152 1+ 651 + 6190 4149 - 948

—3t47 7146 _ 8145 _ 8% 1 1063 + 6142 + 8141 — 5140 — 123

+7638 — 7137 17636 1135 — 3434 1 10633 + 132 — 6131 — 2730 2.1)
—10r% — 3128 £ 2127 4 9526 _ 3425 4 14524 — 8s23 — 7521 4 9420

+3119 — 4418 _ 10717 — 7¢16 - 12415 4 7514 213 — 12412 — 4411
210159 4+ 7T T4 — 4 41283 — 612 +3t—6=0

The second example is from cosmology. Braden, Brown, Whiting, and York
(1990) show that the entropy of a black hole is 7ria?, where & is a solution of
the 7th degree equation

Pt—g)(t—1)+b* (- ¢g")* =0 2.2)

where b, g are expressions involving temperature and various fundamental physical
constants such as the speed of light and Planck’s constant.

With the importance of polynomial equations now established, we start to de-
velop a coherent theory of their solutions. As the above examples illustrate, a poly-
nomial is an algebraic expression involving the powers of a ‘variable’ or ‘indeter-
minate’ . We are used to thinking of such a polynomial as the function that maps ¢
to the value of the expression concerned, so that the first polynomial represents the
function f such that f(z) = t> — 2 + 6. This “function’ viewpoint is familiar, and it
causes no problems when we are thinking about polynomials with complex numbers
as their coefficients. Later (Chapter 16) we will see that when more general fields are
permitted, it is not such a good idea to think of a polynomial as a function. So it is
worth setting up the concept of a polynomial so that it extends easily to the general
context.

We therefore define a polynomial over C in the indeterminate t to be an expres-
sion

ro+rit4 - rpt"

where rg, ...,r, € C,0 < n € Z, and ¢ is undefined. What, though, is an ‘expression’,
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logically speaking? For set-theoretic purity we can replace such an expression by
the sequence (ro, ..., ry). In fact, it is more convenient to use an infinite sequence
(ro,r1 ,...) in which all entries r; = 0 when j > n for some finite n: see Exercise 2.2.
In such a formalism, # is just a symbol for the sequence {0, 1,0 ...}.

The elements ry, ..., r, are the coefficients of the polynomial. In the usual way,
terms 0t may be omitted or written as 0, and 1¢ can be replaced by ™.

In practice we often write polynomials in descending order

Fat" + g1 Vb it + 10

and from now on we make such changes without further comment.

Two polynomials are defined to be equal if and only if the corresponding co-
efficients are equal, with the understanding that powers of ¢ not occurring in the
polynomial may be taken to have zero coefficient. To define the sum and the product
of two polynomials, write Z '

Iytl

ro+rit+- "

where the summation is considered as being over all integers i > 0, and ry, is defined
to be 0 if k > n. Then, if ‘
r= Zr,-t’ s = Zsit’

r+s=Y(ri+s)t (23)

instead of

we define

and
rs=Ygq it where gj= Y msi (2.4)
h+i=j

It is now easy to check directly from these definitions that the set of all polynomials
over C in the ¢ obeys all of the usual algebraic laws (Exercise 2.3). We denote this
set by C[¢], and call it the ring of polynomials over C in the indeterminate t.

We can also define polynomials in several indeterminates #1,#,,...,%,, obtaining
the ring of n-variable polynomials

Clr1,t2,- - -, tn)

in an analogous way.

An element of C[z] will usually be denoted by a single letter, such as f, when-
ever it is clear which indeterminate is involved. If there is ambiguity, we write f(¢)
to emphasise the role played by . Although this looks like function notation, tech-
nically it is not. However, polynomials over C can be interpreted as functions, see
Proposition 2.3 below.

Next, we introduce a simple but very useful concept, which quantifies how com-
plicated a polynomial is.

Definition 2.1. If f is a polynomial over C and f # 0, then the degree of f is the
highest power of ¢ occurring in f with non-zero coefficient.
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For example, 2+ 1 has degree 2, and 723¢1101 _ 9111¢55 443 has degree 1101.
The polynomial (2.1) has degree 71, and (2.2) has degree 7.

More generally, if f = ¥ r;t' and r,, # 0 and r,, = O for m > n, then f has degree n.
We write d f for the degree of f. To deal with the case f = 0 we adopt the convention
that d0 = —oo. This symbol is endowed with the following properties: —oo < n for any
integer n, —oo +n = —o0, —00 X n = —oo, (—00)? = —co, We do not set (—oo)? = +oo
because 0.0 = 0.

The following result is immediate from this definition:

Proposition 2.2. If f, g are polynomials over C, then

d(f+g) <max(df,dg)  I(fg)=0df+dg
O

The inequality in the first line is due to the possibility of the highest terms ‘can-
celling’, see Exercise 2.4.

The f(¢) notation makes f appear to be a function, with ¢ as its ‘independent vari-
able’, and in fact we can identify each polynomial f over C with the corresponding
function. Specifically, each polynomial f € C[¢] can be considered as a function from
C to C, defined as follows: if f = ¥ r;t' and a € C, then o is mapped to ¥ r;a’. The
next proposition proves that when the coefficients lie in C, it causes no confusion if
we use the same symbols f to denote a polynomial and the function associated with
it.

Proposition 2.3. Two polynomials f,g over C define the same function if and only
if they are equal as polynomials; that is, they have the same coefficients.

Proof. Equivalently, by taking the difference of the two polynomials, we must prove
that if f(¢) is a polynomial over C and f(¢) = O for all #, then the coefficients of f
are all 0. Let P(n) be the statement: If a polynomial f(¢) over C has degree n, and
f(t)=0forallt € C, then f = 0. We prove P(n) for all n by induction on n.

Both P(0) and P(1) are obvious. Suppose that P(n— 1) is true. Write

fO)=ant"+---+ao
In particular, f(0) =0, so ap = 0 and

f(t) = apt"+---+ait
= t{ant" '+ +ay)
= 18(t)

where g(t) = ayt"! 4 --- +a; has degree n— 1. Now g(t) vanishes for all t € C
except, perhaps, t = 0. However, if g(0) = a1 # 0 then g(¢) # 0 for ¢ sufficiently small.
(This follows by continuity of polynomial functions, but it can be proved directly by
estimating the size of g(€) when € is small.) Therefore g(¢) vanishes for all z € C. By
induction, g = 0. Therefore f = 0, so P(n) is true and the induction is complete. [
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Proposition 2.3 implies that we can safely consider a polynomial over a subfield
of C as either a formal algebraic expression or a function. It is easy to see that sums
and products of polynomials agree with the corresponding sums and products of
functions. Moreover, the same notational flexibility allows us to ‘change the variable’
in a polynomial. For example, if ¢, u are two indeterminates and f(z) = Y r;t!, then
we may define f(u) = ¥ r;u’. It is also clear what is meant by such expressions as

f(t=3)or f(£2+1).

2.2 Fundamental Theorem of Algebra

In Section 1.3 we saw that the development of the complex numbers can be
viewed as the culmination of a series of successive extensions of the natural num-
ber system. At each step, equations that cannot be solved within the existing number
system become soluble in the new, extended system. For example, C arises from R
by insisting that t> = —1 should have a solution.

The question then arises: why stop at C? Why not find an equation that has no
solutions over C, and enlarge the number system still further to provide a solution?

The answer is that no such equation exists, at least if we limit ourselves to poly-
nomials. Every polynomial equation over C has a solution in C. This proposition was
a matter of heated debate around 1700. In a paper of 1702, Leibniz disputes that it
can be true, citing the example

x4+a4=(x+a \/——1)<x—a \/——1>(x+a\/7—_1>(x—am)

and presumably thinking that v/1/—1 is not a complex number.
However, in 1676 Isaac Newton had already observed the factorisation into real
quadratics:

¥ at = (P +a?)? - 2a%2 = (3 +a® +V2ax) (3 + a® — V2ax)

and Nicholas Bernoulli published the same formula in 1719. In effect, the resolution

of the dispute rests on observing that v/i = %, which is in C. In fact, every complex

number has a complex square root:

= /¢z+\/c12+l)2L'_A/—a-l-\/aZ-i-b2
2 n

L hr— 4
5%

o Al V 2

(together with minus the same formula), as can be checked by squaring the right-
hand side. Here the square root of a® + b? is the positive one, and the signs of the
other two square roots are chosen to make their product equal to b. Observe that

(2.5)

a+vVa2+b2>0 —a+Vat+b2>0
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because a? +b? > a?, 50 both of the main square roots on the right-hand side are real.
In 1742 Euler asserted, without proof, that every real polynomial can be decom-
posed into linear or quadratic factors with real coefficients; Bernoulli now erred the
other way, citing
X =4 2t 4 4x 44

with zeros 1 +1v2++v=3, 1 =v/2+v=3, 1+1/2—+/=3, and 1 —/2—/=3.
Euler responded, in a letter to his friend Christian Goldbach, that the four factors
occur as two complex conjugate pairs, and that the product of such a pair of factors
is a real quadratic. He showed this to be the case for Bernoulli’s proposed counterex-
ample. Goldbach suggested that x* + 72x — 20 did not agree with Euler’s assertion,
and Euler pointed out a computational error, adding that he had proved the theorem
for polynomials of degree < 6. Euler and Jean Le Rond d’ Alembert gave incomplete
proofs for any degree; Lagrange claimed to have filled in the gaps in Euler’s proof
in 1772, but made the mistake of assuming that the roots existed, and using the laws
of algebra to deduce that they must be complex numbers, without proving that the
roots—whatever they were—must obey the laws of algebra. The first genuine proof
was given by Gauss in his doctoral thesis of 1799. It involved the manipulation of
complicated trigonometric series to derive a contradiction, and was far from trans-
parent. The underlying idea can be reformulated in topological terms, involving the
winding number of a curve about a point, see Hardy (1960) and Stewart (1977). Later
Gauss gave three other proofs, all based on different ideas.

Other classical proofs use deep results in complex analysis, such as Liouville’s
Theorem: a bounded function analytic on the whole of the complex plane is constant.
This depends on Cauchy’s Integral Formula and takes most of a course in complex
analysis to prove. See Titchmarsh (1960). An alternative approach uses Rouché’s
Theorem, Titchmarsh (1960) 3.44. Another proof uses the Maximum Modulus The-
orem: if an analytic function is not constant, then the maximum value of its modulus
on an arbitrary set occurs on the boundary of that set. A variant uses the Minimum
Modulus Theorem (the minimum value of its modulus on an arbitrary set is either
zero or occurs on the boundary of that set). See Stewart and Tall (1983) Theorems
10.14, 10.15. Euler’s approach, which sets the real and imaginary parts of p(z) to
zero and proves that the resulting curves in the plane must intersect, can be made
rigorous. William Kingdon Clifford gave a proof based on induction on the power of
2 that divides the degree n, which is most easily explained using Galois theory. We
present this in Chapter 23, Corollary 23.13.

All of these proofs are quite sophisticated. But there’s an easier way, using a few
ideas from elementary point-set topology and estimates of the kind we encounter
early on in any course on real analysis. It can be found on Wikipedia, and it deserves
to be more widely known because it is simple and cuts straight to the heart of the
issue. The necessary facts can be proved directly by elementary means, and would
have been considered obvious before mathematicians started worrying about rigour
in analysis around 1850. So Euler, Gauss, and other mathematicians of those periods
could have discovered this proof.

We now state this property of the complex numbers formally, and explore some of
its easier consequences. It is the aforementioned Fundamental Theorem of Algebra.
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FIGURE 8: Idea of proof.

As we have observed, this is a good name if we are thinking of classical algebra, but
not such a good name in the context of modern abstract algebra, which constructs
suitable fields as it goes along and avoids explicit use of complex numbers.

Theorem 2.4 (Fundamental Theorem of Algebra). If p(z) is a non-constant poly-
nomial over C, then there exists zo € C such that p(z9) = 0.

Such a number z is called a root of the equation p(¢) = 0, or a zero of the poly-
nomial p. For example, i is a root of the equation > +1 = 0 and a zero of 2 + 1.
Polynomial equations may have more than one root; indeed, t> + 1 = 0 has at least
one other root, —i.

The idea behind the proof is illustrated in Figure 8, and can be summarised in
a few lines. Assume for a contradiction that p(z) is never zero. Then |p(z)|? has a
nonzero minimum value and attains that minimum at some point w € C. Consider
points v on a small circle centred at w, and use simple estimates to show that | p(v)|?
must be less than |p(w)|? for some v. Contradiction.

Now for the details.

Proof of Theorem 2.4. Suppose for a contradiction that no such zq exists. For some
R > 0 the set
9 ={z:Ip@)? <R}

is non-empty. The map y : C — R* defined by y(z) = |p(z)|? is continuous, so
2 = y~1([0,R]) is compact. For a subset of C this is equivalent to being closed and
bounded. It follows that |p(z)|? attains its minimum value on 2. By the definition of
2 this is also its minimum value on C.

Assume this minimum is attained at w € C. Then

P > [p(w)?

for all z € C, and by assumption p(w) # 0.
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We now consider |p(z)|? as z runs round a small circle centred at w, and derive a
contradiction.
Let h € C. Expand p(w+ h) in powers of A to get

p(w+h) = po+ p1h+ poh® +---+ ph" (2.6)

where 7 is the degree of p. Here the p; are specific complex numbers. They are in
fact the Taylor series coefficients

pi=pYw)/j!

but we don’t actually need to use this, and (2.6) can be proved algebraically without
difficulty.
Clearly pyo = p(w), and we are assuming this is nonzero, so pg # 0. If p; = pr =
.-+ = pn = 0 then p(z) = po is constant, contrary to hypothesis. So some p; # 0. Let
m be the smallest integer > 1 from which p,, # 0. In (2.6) let & = ge'® for small
€ > 0. Then
p(w—l—seie) =po +pm£memi9 +0(£m+1)

where O(€") indicates terms of order n or more in €. Therefore
p(w+ee®)[* = |po+ pme™e™® |+ 0(e™)
= poPo +1—)0pm8’”emi9 +p0ﬁm£me—mi9 + 0(€m+1)

Let pop,, = re'® for r > 0. Since po # 0 and p,, # 0 we have r > 0. Setting 1 = 0 we
see that popy = [p(w)|?. Now

|p(W+8€i6)|2 — poﬁo_i__rei(pememie+re—i¢8me—mi9+0(£m+1)
= |p(w)|? +2€™rcos(mb + ¢) + O(e™t1)
Set 6 = 1 (¢ — ), so that ¢ = = —m8. Then cos(m + ¢) = cos(x) = —1, and
i0\2 __ 2 m m+1
lp(w+€e”)|" = |p(w)|* —2€"r+ O(e™"")
But &,r > 0, so for sufficiently small € we have

i0)|2

lp(w+€e®)|> < |p(w)[?

contradicting the definition of w. Therefore there exists zg € C such that p(z9) =
0. O

2.3 Implications

The Fundamental Theorem of Algebra has some useful implications. Before
proving the most basic of these, we first prove the Remainder Theorem.
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Theorem 2.5 (Remainder Theorem). Let p(z) € C[t] with dp > 1, and let & € C.
(1) There exist q(t) € Ct] and r € C such that p(t) = (t — at)q(t) +r.
(2) The constant r satisfies r = p(t).

Proof. Lety=1t— a so that t = y+ a. Write p(¢) = ppt" + - -+ + po where p, #0
and n > 1. Then
p(t) =pu(y+0)" 4+ po

Expand the powers of y 4+ & by the binomial theorem, and collect terms to get

p(t) = apy"+---+ary+ay  ajeC
= y(ay" '+t ar) +ao
= (t—a)q(t)+r

where

ay(t—a)" '+ tay(t— ) +a,0

ao

q(t)

Now substitute ¢ = ¢ in the identity p(¢) = (¢ — &¢)q(z) +r to get
pla)=(a—a)g(a)+r=0q()+r=r
O

Corollary 2.6. The complex number o, is a zero of p(t) if and only if t — & divides
p(2) in C[t].

Propeosition 2.7. Let p(t) € C[t] with dp = n > 1. Then there exist 0,...,0, €C,
and 0 # k € C, such that

p(t)=k(t—ay)...(t— o) 2.7

Proof. Use induction on n. The case n = 1 is obvious. If n > 1 we know, by the
Fundamental Theorem of Algebra, that p(¢) has at least one zero in C : call this zero
0y, By the Remainder Theorem, there exists g(¢) € C[t] such that

p(t) = (t—a)q(1) (2.8)
(note that the remainder r = p(oy,) = 0). Then dg = n— 1, so by induction
q(t) =k(t—a1)...(t — 1) 29)

For suitable complex numbers k, 0i1,. .., 0_1. Substitute (2.9) in (2.8) and the induc-
tion step is complete. O
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It follows immediately that the ; are the only complex zeros of p(z).
The zeros o need not be distinct. Collecting together those that are equal, we
can rewrite (2.7) in the form

p(t) =k(t—B)™ ...t —B)™

where k = ay, the Bj are distinct, the m; are integers > 1, and my +---+m; = n. We
call m; the multiplicity of the zero B; of p(t).

In particular, we have proved that every complex polynomial of degree n has
precisely n complex zeros, counted according to multiplicity.

EXERCISES
2.1 Let p(¢) € Qf]. Show that p(z) has a unique expression in the form

p(t)=(t—ou)...(t—ar)q(t)

(except for re-ordering the «;) where o; € Q for 1 < j < r and ¢(¢) has no
zeros in Q[¢]. Prove that here, the «; are precisely the zeros of p(z) in Q.

2.2 A formal definition of C[¢] runs as follows. Consider the set S of all infinite
sequences
(an)nen = (ao,a1,...,an,...)

where a, € C for all n € N, and such that a, = 0 for all but a finite set of n.
Define operations of addition and multiplication on S by the rules

(an)+ (bn) = (un) where u,=a,+by,
(an)(sn) = (vn) where v, =aybo+an—1b1+---+aobn
Prove that C[z], so defined, satisfies all of the usual laws of algebra for addition,
subtraction, and multiplication. Define the map

6:C—> S
0(k) = (k,0,0,0,...)

and prove that 6(C) C S is isomorphic to C.

Finally, prove that if we identify a € C with 6 (a) € S and the ‘indeterminate’
t with (0,1,0,0,0,...) € S, then (an) = ag + - -+ ayt", where N is chosen
so that a, = 0 for n > N. Thus we can define polynomials as sequences of
complex numbers corresponding to the coefficients.

2.3 Using (2.3, 2.4), prove that polynomials over C obey the following algebraic
laws:
fre=g+f f+(g+h)=(f+g) +h fg=gf, f(gh) = (fg)h, and f(g+
h) = fg+ fh.
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Exercises 45

Show that d(f + g) can be less than max(df,dg), and indeed that d(f + g)
can be less than min(df,dg).

If z1,22,. . .,2, are distinct complex numbers, show that the determinant

1 1 - 1

21 2t Zn

2 2 2

D= Zl Z2 “oe zn
Zrlt—l zg—l . z;ﬁl

is non-zero.

(Hint: Consider the z; as independent indeterminates over C. Then D is a poly-
nomial in the z;, of total degree 0+ 1+2++--+ (n—1) = $n(n—1). More-
over, D vanishes whenever z; = z, for k # j, since it then has two identical
rows. Therefore D is divisible by z; — zx for all j # k, hence it is divisible by
[1j<k(zj — zk). Now compare degrees.)

The determinant D is called a Vandermonde determinant, for obscure reasons
(no such expression occurs in Alexandre-Theophile Vandermonde’s published
writings).

Use the Vandermonde determinant to prove that if a polynomial f(¢) vanishes
for all t € C, then all coefficients of f are zero. (Hint. Substitute t = 1,2,3,...
and solve the resulting system of linear equations for the coefficients.)

Prove, without using the Fundamental Theorem of Algebra, that every cubic
polynomial over R can be expressed as a product of linear factors over C.

Do the same for cubic polynomials over C.

Mark the following true or false. Here f,g are polynomials over C.

(@) 9(f—g) >min(df,dg).
(b) 9(f —g) < min(df,dg).
(©) 9(f —g) < max(df,0g).
(d) 9(f —g) > max(df,dg).
(e) Every polynomial over C has at least one zero in C.

(f) Every polynomial over C of degree > 1 has at least one zero in R.



Chapter 3

Factorisation of Polynomials

Not only is there an algebra of polynomials: there is an arithmetic. That is, there
are notions analogous to the integer-based concepts of divisibility, primes, prime
factorisation, and highest common factors. These notions are essential for any serious
understanding of polynomial equations, and we develop them in this chapter.

Mathematicians noticed early on that if f is a product gh of polynomials of
smaller degree, then the solutions of f(¢) = 0 are precisely those of g(¢) = 0 together
with those of () = 0. For example, to solve the equation

B—62+11t—6=0

we can spot the factorisation (¢ — 1)(z — 2)(¢ — 3) and deduce that the roots are t =
1,2,3. From this simple idea emerged the arithmetic of polynomials—a systematic
study of divisibility properties of polynomials with particular reference to analogies
with the integers. In particular, there is an analogue for polynomials of the Euclidean
Algorithm for finding the highest common factor of two integers.

In this chapter we define the relevant notions of divisibility and show that there
are certain polynomials, the ‘irreducible’ ones, that play a similar role to prime num-
bers in the ring of integers. Every polynomial over a given subfield of C can be
expressed as a product of irreducible polynomials over the same subfield, in an es-
sentially unique way. We relate zeros of polynomials to the factorisation theory.

Throughout this chapter all polynomials are assumed to lie in K[¢], where K is
a subfield of the complex numbers, or in R[t], where R is a subring of the complex
numbers. Some theorems are valid over R, while others are valid only over K: we
will need both types.

3.1 The Euclidean Algorithm

In number theory, one of the key concepts is divisibility: an integer a is divisible
by an integer b if there exists an integer ¢ such that a = bc. For instance, 60 is divisible
by 3 since 60 = 3.20, but 60 is not divisible by 7. Divisibility properties of integers
lead to such ideas as primes and factorisation. We wish to develop similar ideas for
polynomials.

Many important results in the factorisation theory of polynomials derive from the

47
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observation that one polynomial may always be divided by another provided that a
‘remainder’ term is allowed. This is a generalisation of the Remainder Theorem, in
which f is assumed to be linear.

Proposition 3.1 (Division Algorithm). Let f and g be polynomials over K, and
suppose that f is non-zero. Then there exist unique polynomials q and r over K, such
that g = fq+r and r has strictly smaller degree than f.

Proof. Use induction on the degree of g. If dg = —oo then g = 0 and we may take
qg=r=0.If dg = 0 then g = k is an element of K. If also d f = 0 then f is an element
of K, and we may take g = k/f and r = 0. Otherwise d f > 0 and we may take g = 0
and r = g. This starts the induction.

Now assume that the result whenever the degree of g is less than n, and let dg =
n>0.If df > dg, then we may as before take g = 0, r = g. Otherwise

f=aut"+---+ao g=but"+---+bo
where a,, # 0 # b, and m < n. Let
81=bnay,' " " — g

Since the terms of highest degree cancel (which is the object of the exercise) we
have dg; < dg. By induction there are polynomials g; and r; over K such that g; =
fa1+r1 and 9r; < 9f. Let

q="bna, 1" " —q r=-r

Then
fa+r=bua,' t" " f—qif—ri=g+g1—81=8
s0 g = fq+r; clearly dr < d f as required.
Finally we prove uniqueness. Suppose that

g=fqi+r=fq+r, where dr,dr, <df

Then f (g1 — g2) = r, — r1. By Proposition 2.2, the polynomial on the left has higher
degree than that on the right, unless both are zero. Since f 7# 0 we must have g = ¢»
and r; = ry. Thus g and r are unique. O

With the above notation, g is called the quotient and r is called the remainder
on dividing g by f. The inductive process we employed to find g and r is called the
Division Algorithm.

Example 3.2. Divide g(¢) = t* —7¢3+5t2+4 by f =2+ 3 and find the quotient
and remainder.
Observe that
22 43) =1 4312

has the same leading coefficient as g. Then

g—12(*4+3) = -7 + 22 +4
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which has the same leading coefficient as
—Tt(t>+3) = =71 - 21t

Therefore
g2 (2 +3)+7t(2 +3) =22 + 211 +4

which has the same leading coefficient as
2 +3) =212 +6

Therefore
g— 122 +3)+Tt(12 +3) —2(>+3) =21t —2

So
g= (2 4+3) (2 -7t +2)+ (21t —2)

and the quotient g(¢) = 2 — 7t + 2, while the remainder r(¢) = 21¢ — 2.

The next step is to introduce notions of divisibility for polynomials, and in par-
ticular the idea of ‘highest common factor’ which is crucial to the arithmetic of poly-
nomials.

Definition 3.3. Let f and g be polynomials over K. We say that f divides g (or f is
a factor of g, or g is a multiple of f) if there exists some polynomial 4 over K such
that g = fh. The notation f|g will mean that f divides g, while ftg will mean that f
does not divide g.

Definition 3.4. A polynomial d over K is a highest common factor (hcf) of poly-
nomials f and g over K if d|f and d|g and further, whenever e|f and e|g, we have
eld.

Note that we have said a highest common factor rather than the highest common
factor. This is because hcf’s need not be unique. However, the next lemma shows that
they are unique apart from constant factors.

Lemma 3.5. Ifd is an hcf of the polynomials f and g over K, and if 0 # k € K, then
kd is also an hcffor f and g.

If d and e are two hcf’s for f and g, then there exists a non-zero element k € K
such that e = kd.

Proof. Clearly kd|f and kd|g. If e|f and e|g then e|d so that e|kd. Hence kd is an
hcf.

If d and e are hef’s then by definition e|d and d|e. Thus e = kd for some polyno-
mial k. Since e|d the degree of e is less than or equal to the degree of d, so k must
have degree < 0. Therefore k is a constant, and so belongs to K. Since 0 # e = kd,
we must have k # 0. |

We shall prove that any two non-zero polynomials have an hcf by providing a
method to calculate one. This method is a generalisation of the technique used by
Euclid (Elements Book 7 Proposition 2) around 600 BC for calculating hcf’s of inte-
gers, and is accordingly known as the Euclidean Algorithm.
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Algorithm 3.6 (Euclidean Algorithm). Ingredients Two polynomials f and g over
K, both non-zero.

Recipe For notational convenience let f = r_j, g = ro. Use the Division Algo-
rithm to find successively polynomials g; and r; such that

r-1=qiro+n dr1 < dry
ro=qar1+nr (97'2 < Brl
ri=q3ry+r3 dr3 < dry

3.1

ri=Qisalis1 + iz Origy <Oty

Since the degrees of the r; decrease, we must eventually reach a point where the
process stops; this can happen only if some r;. 3 = 0. The last equation in the list
then reads

Ts = gs+27s+1 32)
and it provides the answer we seek:
Theorem 3.7. With the above notation, ry.1 is an hef for f and g.

Proof. First we show that ry; 1 divides both f and g. We use descending induction
to show that rg|r; for all i. Clearly rs;1|rs1. Equation (3.2) shows that rg q]|r;.
Equation (3.1) implies that if 75 1|ri+2 and rg1|riq; then rsyq|ri. Hence rsyq|ri for
all i; in particular rsy1|ro = g and rs11|r—1 = f.

Now suppose that e|f and e|g. By (3.1) and induction, e|r; for all i. In particular,
e|rs+1. Therefore ry; 1 is an hef for f and g, as claimed. O

Example 3.8. Let f =t* +2:34+2:2+ 2t +1, g = t*> — 1 over Q. We compute an hcf
as follows:

4283422 4241 = (P +2+3) (12— 1)+ 41 +4
11

2
?2—1=(4+4)(51—=
(4 +4) (51— 7)

Hence 4t + 4 is an hcf. So is any rational multiple of it, in particular, ¢ + 1.

We end this section by deducing from the Euclidean Algorithm an important
property of the hcf of two polynomials.

Theorem 3.9. Let f and g be non-zero polynomials over K, and let d be an hcf for
f and g. Then there exist polynomials a and b over K such that

d=af+bg

Proof. Since hcf’s are unique up to constant factors we may assume that d = gy
where equations (3.1) and (3.2) hold. We claim as induction hypothesis that there
exist polynomials a; and b; such that

d = airi+birit1
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This is clearly true when i = s+ 1, for we may then take g; = 1, b; = 0. By (3.1)
Ti+1 =Ti—1 — qi+17i

Hence by induction
d = airi +bi(ri-1 — gi+17i)

so that if we put
ai_1=b; bi_1 =a;—bigiy1

we have
d=ai1ri-1+bi1r;

Hence by descending induction
d=a_r_1+b_jro=af+bg
where a = a_1, b = b_;. This completes the proof. |

The induction step above affords a practical method of calculating @ and b in any
particular case.

3.2 Irreducibility

Now we investigate the analogue, for polynomials, of prime numbers. The con-
cept required is ‘irreducibility’. In particular, we prove that every polynomial over a
subring of C can be expressed as a product of irreducibles in an ‘essentially’ unique
way.

An integer is prime if it cannot be expressed as a product of smaller integers. The
analogue for polynomials is similar: we interpret ‘smaller’ as ‘smaller degree’. So
the following definition yields the polynomial analogue of a prime number.

Definition 3.10. A non-constant polynomial over a subring R of C is reducible if it
is a product of two polynomials over R of smaller degree. Otherwise it is irreducible.

Examples 3.11. (1) All polynomials of degree 1 are irreducible, since they certainly
cannot be expressed as a product of polynomials of smaller degree.

(2) The polynomial 2 — 2 is irreducible over Q. To show this we suppose, for a
contradiction, that it is reducible. Then

t* 2= (at+b)(ct+d)

where a,b,c,d, € Q. Dividing out if necessary we may assume a = ¢ = 1. Then
b+d =0 and bd = —2, so that b> = 2. But no rational number has its square equal
to 2 (Exercise 1.2).
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(3) However, 2 — 2 is reducible over the larger subfield R, for now
2-2=(t-V2)t+V2)

This shows that an irreducible polynomial may become reducible over a larger sub-
field of C.
(4) The polynomial 6¢ + 3 is irreducible in Z[¢]. Although it has factors

6t+3=3(2t+1)

the degree of 2¢ 41 is the same as that of 6z 6. So this factorisation does not count.
(5) The constant polynomial 6 is irreducible in Z[t]. Again, 6 = 2 - 3 does not count.

Any reducible polynomial can be written as the product of two polynomials of
smaller degree. If either of these is reducible it too can be split up into factors of
smaller degree ... and so on. This process must terminate since the degrees cannot
decrease indefinitely. This is the idea behind the proof of:

Theorem 3.12. Any non-zero polynomial over a subring R of C is a product of
irreducible polynomials over R.

Proof. Let g be any non-zero polynomial over R. We proceed by induction on the
degree of g. If dg = 0 or 1 then g is automatically irreducible. If dg > 1, then either
g is irreducible or g = hk where dh, dk < dg. By induction, k& and k are products
of irreducible polynomials, whence g is such a product. The theorem follows by
induction. O

Example 3.13. We can use Theorem 3.12 to prove irreducibility in some cases,
especially for cubic polynomials over Z. For instance, let R = Z. The polynomial

f@&)=1—-5t+1

is irreducible. If not, then it must have a linear factor t — & over Z, and then @@ € Z
and f (o) = 0. Moreover, there must exist 3,y € Z such that

fO)=@—a)*+pt+7)
=24+ (B-a)*+(y—aB)—ay

soin particular ¢y= —1. Therefore ¢ = +1. But (1) = -3 #0and f(—1) =5#0.
Therefore no such factor exists.

Irreducible polynomials are analogous to prime numbers. The importance of
prime numbers in Z stems in part from the possibility of factorising every integer
into primes, but even more so from the unigueness (up to order) of the prime factors.
Likewise the importance of irreducible polynomials depends upon a uniqueness the-
orem. Uniqueness of factorisation is not obvious, see Stewart and Tall (2002) Chapter
4. In certain cases it is possible to express every element as a product of irreducible
elements, without this expression being in any way unique. We shall heed the warn-
ing and prove the uniqueness of factorisation for polynomials. To avoid technical
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issues like those in Examples 3.1(4,5), we restrict attention to polynomials over a
subfield K of C. It is possible to prove more general theorems by introducing the
idea of a ‘unique factorisation domain’, see Fraleigh (1989) Chapter 6.

For convenience we make the following:

Definition 3.14. If f and g are polynomials over a subfield K of C with hcf equal to
1, we say that f and g are coprime, or f is prime to g. (The common phrase ‘coprime
to’ is wrong. The prefix ‘co’ and the ‘to’ say the same thing, so it is redundant to use
both.)

The key to unique factorisation is a statement analogous to an important property
of primes in Z, and is used in the same way:

Lemma 3.15. Let K be a subfield of C, f an irreducible polynomial over K, and g, h
polynomials over K. If f divides gh, then either f divides g or f divides h.

Proof. Suppose that ftg. We claim that f and g are coprime. For if d is an hcf for f
and g, then since f is irreducible and d|f, either d = kf for some k € K,ord =k € K.
In the first case f|g, contrary to hypothesis. In the second case, 1 is also an hcf for f
and g, so they are coprime. By Theorem 3.9, there exist polynomials a and b over K
such that

l=af+bg
Then
h = haf + hbg
Now fl|haf, and f|hbg since f|gh. Hence f|h. This completes the proof. |

We may now prove the uniqueness theorem.

Theorem 3.16. For any subfield K of C, factorisation of polynomials over K into
irreducible polynomials is unique up to constant factors and the order in which the
factors are written.

Proof. Suppose that f = f...f, = g1...8s where f is a polynomial over K and
fis---s fr &1, - .,8s are irreducible polynomials over K. If all the f; are constant then
f € K, so all the g; are constant. Otherwise we may assume that no f; is constant,
by dividing out all of the constant terms. Then fi|g; .. .gs. By an obvious induction
based on Lemma 3.15, fi|g; for some j. We can choose notation so that j = 1, and
then fi|g1. Since fi and g; are irreducible and fj is not a constant, we must have
f1 = kig1 for some constant ki. Similarly f> = kago, ..., fr = krgr wWhere k, ..., k;
are constant. The remaining g;(I > ) must also be constant, or else the degree of the
right-hand side would be too large. The theorem is proved. |
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3.3 Gauss’s Lemma

It is in general very difficult to decide—without using computer algebra, at any
rate—whether a given polynomial is irreducible. As an example, think about

OB B 2 I 0 P B T S P AP 2+ +1 (33)

This is not an idle example: we shall be considering precisely this polynomial in
Chapter 20, in connection with the regular 17-gon, and its irreducibility (or not) will
be crucial.

To test for irreducibility by trying all possible factors is usually futile. Indeed,
at first sight there are infinitely many potential factors to try, although with suitable
short cuts the possibilities can be reduced to a finite—usually unfeasibly large—
number. In principle the resulting method can be applied to polynomials over Q, for
example: see van der Waerden (1953), Garling (1960). But the method is not really
practicable.

Instead, we have to invent a few useful tricks. In the next two sections we describe
two of them: Eisenstein’s Criterion and reduction modulo a prime. Both tricks apply
in the first instance to polynomials over Z. However, we now prove that irreducibility
over Z is equivalent to irreducibility over Q. This extremely useful result was proved
by Gauss, and we use it repeatedly.

Lemma 3.17 (Gauss’s Lemma). Let f be a polynomial over Z that is irreducible
over Z. Then f, considered as a polynomial over Q, is also irreducible over Q.

Proof. The point of this lemma is that when we extend the subring of coefficients
from Z to QQ, there are hosts of new polynomials which, perhaps, might be factors of
f. We show that in fact they are not. For a contradiction, suppose that f is irreducible
over Z but reducible over Q, so that f = gh where g and % are polynomials over Q,
of smaller degree, and seek a contradiction. Multiplying through by the product of
the denominators of the coefficients of g and A, we can rewrite this equation in the
form nf = g’h’, where n € Z and g, k' are polynomials over Z. We now show that
we can cancel out the prime factors of n one by one, without going outside Z|t].
Suppose that p is a prime factor of n. We claim that if

g =go+git+-+gt  H=ho+ht+- - +ht

then either p divides all the coefficients g;, or else p divides all the coefficients A;.
If not, there must be smallest values i and j such that ptgi and pth;. However, p
divides the coefficient of 77/ in g’'h’, which is

hogi+j+h18i+j—1+ - +hjgi+ - +hitjgo

and by the choice of i and j, the prime p divides every term of this expression except
perhaps h;g;. But p divides the whole expression, so p|h;g;. However, pth;j and ptg;,
a contradiction. This establishes the claim.
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Without loss of generality, we may assume that p divides every coefficient g;.
Then g’ = pg” where g” is a polynomial over Z of the same degree as g’ (or g). Let
n = pny. Then pni f = pg"h’, so that n1 f = g"K. Proceeding in this way we can
remove all the prime factors of n, arriving at an equation f = gh. Here g and h are
polynomials over Z, which are rational multiples of the original g and %, so dg = dg
and dh = oh. But this contradicts the irreducibility of f over Z, so the lemma is
proved. O

Corollary 3.18. Let f € Z[t] and suppose that over Q|[t] there is a factorisation into
irreducibles:

f=g8...8
Then there exist a; € Q such that a;g; € Z[t] and a; . ..as = 1. Furthermore,

f=(aig1)...(asgs)
is a factorisation of f into irreducibles in Z|t).

Proof. Factorise f into irreducibles over Z[t], obtaining f = h; ...h,. By Gauss’s
Lemma, each h; is irreducible over Q. By uniqueness of factorisation in Q[t], we
must have r = s and hj = a;gj foraj € Q. Clearly a; ...as = 1. The Corollary is now
proved. |

3.4 [Eisenstein’s Criterion

No, not ‘Einstein’. Ferdinand Gotthold Eisenstein was a student of Gauss, and
greatly impressed his tutor. We can apply the tutor’s lemma to prove the student’s
criterion for irreducibility:

Theorem 3.19 (Eisenstein’s Criterion). Let
f@)=ao+ait+---+au"
be a polynomial over Z. Suppose that there is a prime q such that
(1) qtan
() glai (i=0,...,n—1)
3) ¢*tao
Then fis irreducible over Q).

Proof. By Gauss’s Lemma it is sufficient to show that f is irreducible over Z. Sup-
pose for a contradiction that f = gh, where

g=bo+bit+---+b,t" h=co+cit+-+cst’
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are polynomials of smaller degree over Z. Then r > 1,s > 1, and r + s = n. Now
boco = ag so by (2) g|bg or glco. By (3) g cannot divide both by and cg, so without
loss of generality we can assume g|bo, gfco. If all b; are divisible by g, then g, is
divisible by g, contrary to (1). Let b; be the first coefficient of g not divisible by q.
Then

aj=bjco+---+boc;j

where j < n. This implies that g divides co, since g divides aj, b, ...,bj_1, but not
b;. This is a contradiction. Hence f is irreducible. O

Example 3.20. Consider
fl) = %ts + %t“ +3 4 % over Q
This is irreducible over Q if and only if
9f(r) =265 +15r* 493 +3

is irreducible over Q. Eisenstein’s criterion now applies with g = 3, showing that f
is irreducible.

We now turn to the polynomial (3.3). This provides an instructive example that
leads to a useful general result. In preparation, we prove a standard number-theoretic
property of binomial coefficients:

Lemma 3.21. If p is prime, the binomial coefficient
p
r

Proof. The binomial coefficient is an integer, and

(2) =7

The factor p in the numerator cannot cancel with any factor in the denominator unless
r=0orr=p. O

is divisibleby pif 1l <r<p—1.

We then have:

Lemma 3.22. If p is a prime then the polynomial
fO)=141+---+1P7!

is irreducible over Q.
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Proof. Notethat f(¢t) = (#?—1)/(t—1). Putz = 1 + u where u is a new indeterminate.
Then f(¢) is irreducible over Q if and only if f(1 + u) is irreducible. But

f(l _|_u) = (1+u—u)p_1
= uP™! + ph(u)

where A is a polynomial in u over Z with constant term 1, by Lemma 3.21. By Eisen-
stein’s Criterion, Theorem 3.19, f(1 + u) is irreducible over Q. Hence f(¢) is irre-
ducible over Q. O

Setting p = 17 shows that the polynomial (3.3) is irreducible over Q.

3.5 Reduction Modulo p

A second trick to prove irreducibility of polynomials in Z[¢] involves ‘reducing’
the polynomial modulo a prime integer p.
Recall that if n € Z, two integers a, b are congruent modulo n, written

a=b (mod n)

if a — b is divisible by n. The number 7 is the modulus, and ‘modulo’ is Latin for
‘to the modulus’. Congruence modulo 7 is an equivalence relation, and the set of
equivalence classes is denoted by Z,. Arithmetic in Z, is just like arithmetic in Z,
except that n = 0.

The test for irreducibility that we now wish to discuss is most easily explained
by an example. The idea is this. There is a natural map Z — Z, in which eachm € Z
maps to its congruence class modulo n. The natural map extends in an obvious way to
amap Z[t] — Zn|t]. Now a reducible polynomial over Z is a product gh of polynomi-
als of lower degree, and this factorisation is preserved by the map. Provided n does
not divide the highest coefficient of the given polynomial, the image is reducible
over Z,. So if the image of a polynomial is irreducible over Z,, then the original
polynomial must be irreducible over Z. (The corresponding statement for reducible
polynomials is in general false: consider > — 2 € Z[t] when p = 2.) Since Z, is finite,
there are only finitely many possibilities to check when deciding irreducibility.

In practice, the trick is to choose the right value for n.

Example 3.23. Consider
f(t) =t*+158 +7 over Z

Over Zs this becomes * + 2. If this is reducible over Zs, then either it has a factor of
degree 1, or it is a product of two factors of degree 2. The first possibility gives rise
to an element x € Zs such that x* +2 = 0. No such element exists (there are only five
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AV,
A T,

FIGURE 9: Multiple zeros of a (real) polynomial. The multiplicity is 1 at (A), 2 at
(B), and 3 at (C).

elements to check) so this case is ruled out. In the remaining case we have, without
loss of generality,
2= (+at+b)(®+ct+d)

Therefore a+-c =0,ac+b+d =0,ad + bc = 0,bd = 2. Combining ad + bc = 0 with
a+c=0wegeta(b—d)=0.Soeithera=0o0rb=d.

Ifa=0thenc=0,s0b+d=0,bd =2. That is, b% = —2 =3 in Zs. But this is
not possible.

If b = d then b? = 2, also impossible in Zs.

Hence t* + 2 is irreducible over Zs, and therefore the original f(¢) is irreducible
over Z, hence over Q.

Notice that if instead we try to work in Zsz, then f(¢) becomes t* + 1, which
equals (t2+¢—1)(t>2 —t —1) and so is reducible. Thus working (mod 3) fails to
prove irreducibility.

3.6 Zeros of Polynomials

We have already studied the zeros of a polynomial over C. It will be useful to
employ similar terminology for polynomials over a subring R of C, because then we
can keep track of where the zeros lie. We begin with a formal definition.

Definition 3.24. Let R be a subring of C, and let f be a polynomial over R. An
element & € R such that f() =01is a zero of f in R.

To illustrate some basic phenomena associated with zeros, we consider polyno-
mials over the real numbers. In this case, we can draw the graph y = f(x) (in standard
terminology, with x € R in place of ¢). The graph might, for example, resemble Fig-
ure 9.

The zeros of f are the values of x at which the curve crosses the x-axis. Consider
the three zeros marked A, B, C in the diagram. At A the curve cuts straight through
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the axis; at B it ‘bounces’ off it; at C it ‘slides’ through horizontally. These phenom-
ena are generally distinguished by saying that B and C are ‘multiple zeros’ of f(z).
The single zero B must be thought of as two equal zeros (or more) and C as three (or
more).

But if they are equal, how can there be two of them? The answer is the concept of
‘multiplicity’ of a zero, introduced in Section 2.3. We now reformulate this concept
without using the Fundamental Theorem of Algebra, which in this context is the
proverbial nut-cracking sledgehammer. The key is to look at linear factors of f.

Lemma 3.25. Let f be a polynomial over the subfield K of C. An element a € K is
azero of f if and only if (t — &) | f(2) in K[t].

Proof. We know that (¢ — &)| f(¢) in C[¢] by Theorem 2.5, but we want slightly more.
If (r — a)| f(¢) in K[¢], then f(¢) = (¢ — ot)g(¢) for some polynomial g over K, so that
f(@) = (a—a)g(a) =0.
Conversely, suppose f(¢t) = 0. By the Division Algorithm, there exist polynomi-
als g,r € K[t] such that
f() = (1= a)q(t) +r(2)

where dr < 1. Thus r(¢) = r € K. Substituting o for ¢,
0=f(a) = (@ —a)g(a) +r
sor=0. Hence (t — a)|f(¢) € K[t] as required. O

We can now say what we mean by a multiple zero, without appealing to the
Fundamental Theorem of Algebra.

Definition 3.26. Let f be a polynomial over the subfield K of C. An element a € K
is a simple zero of f if (t — &)|f(¢) but (t — &)?{ f(t). The element « is a zero of f
of multiplicity m if (t — &)™|f(t) but (¢ — &)™ +1{ £(¢). Zeros of multiplicity greater
than 1 are repeated or multiple zeros.

For example, 1> — 3¢ + 2 over Q has zeros at a = 1, —2. It factorises as (t — 1)2(¢ +
2). Hence —2 is a simple zero, while 1 is a zero of multiplicity 2.

When K =R and we draw a graph, as in Figure 9, points like A are the simple
zeros; points like B are zeros of even multiplicity; and points like C are zeros of
odd multiplicity > 1. For subfields of C other than R (except perhaps Q, or other
subfields of R) a graph has no evident meaning, but the simple geometric picture for
R is often helpful.

Lemma 3.27. Let f be a non-zero polynomial over the subfield K of C, and let its
distinct zeros be 0, .. ., 0, with multiplicities my, ... ,m, respectively. Then

fO)=@t—a)™...(t — o)™ g(t) 3.4

where g has no zeros in K.
Conversely, if (3.4) holds and g has no zeros in K, then the zeros of f in K are
ay,..., 04, with multiplicities my, . ..,m, respectively.
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Proof. Forany o € K the polynomial ¢ — o is irreducible. Hence for distinct o, B € K
the polynomials  — & and z — 8 are coprime in K[¢]. By uniqueness of factorisation
(Theorem 3.16) equation (3.4) must hold. Moreover, g cannot have any zeros in K,
or else f would have extra zeros or zeros of larger multiplicity.

The converse follows easily from uniqueness of factorisation, Theorem 3.12 and
Theorem 3.16. (]

From this lemma we deduce a famous theorem:

Theorem 3.28. The number of zeros of a nonzero polynomial over a subfield of C,
counted according to multiplicity, is less than or equal to its degree.

Proof. In equation (3.4) we must have m; +---+m, < df. O

EXERCISES
3.1 For the following pairs of polynomials f and g over Q, find the quotient and

remainder on dividing g by f.

@) g=t"—-2+5,f=34+7

(b) g=12+1,f=12

() g=4> - 172+t -3, f=2t+5
@ g=r*—1,f=12+1

() g=t*—1,f=32+3t

3.2 Find hcf’s for these pairs of polynomials, and check that your results are com-
mon factors of f and g.

3.3 Express these hcf’s in the form af + bg.
3.4 Decide the irreducibility or otherwise of the following polynomials:
(@) t*+1 over R.
() t*+1 over Q.
(¢) t7 + 1123 — 33t +22 over Q.
d t*+3+124+1+1over Q.
(e) 13 —7t2+3t+3 over Q.
3.5 Decide the irreducibility or otherwise of the following polynomials:

(@) t*+13+12 41+ 1 over Q. (Hint: Substitute ¢ + 1 in place of ¢ and appeal
to Eisenstein’s Criterion.)

®) P+t*+34+12+1+1over Q.
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)+ 4+ +3 412+t +1over Q.
3.6 In each of the above cases, factorise the polynomial into irreducibles.

3.7 Say that a polynomial f over a subfield K of C is prime if whenever f|gh
either f|g or f|h. Show that a polynomial f # O is prime if and only if it is
irreducible.

3.8 Find the zeros of the following polynomials; first over Q, then R, then C.

(@ P +1
(b) 2 —6:24111 -6
() P+1+1
d 2+1
@ t*+2+2+1+1
) r*—6r2+11
3.9 Mark the following true or false. (Here ‘polynomial’ means ‘polynomial over
C)
(a) Every polynomial of degree n has n distinct zeros.
(b) Every polynomial of degree » has at most n distinct zeros.
(c) Every polynomial of degree » has at least n distinct zeros.
(d) If f, g are non-zero polynomials and f divides g, then df < dg.
(e) If f,g are non-zero polynomials and f divides g, then df < dg.
(f) Every polynomial of degree 1 is irreducible.
(g) Every irreducible polynomial has prime degree.

(h) If a polynomial f has integer coefficients and is irreducible over Z, then
it is irreducible over Q.

(i) If a polynomial f has integer coefficients and is irreducible over Z, then
it is irreducible over R.

(j) If a polynomial f has integer coefficients and is irreducible over R, then
it is irreducible over Z.



Chapter 4

Field Extensions

Galois’s original theory was couched in terms of polynomials over the complex field.
The modern approach is a consequence of the methods used, starting around 1890
and flourishing in the 1920s and 1930s, to generalise the theory to arbitrary fields.
From this viewpoint the central object of study ceases to be a polynomial, and be-
comes instead a ‘field extension’ related to a polynomial. Every polynomial f over a
field K defines another field L containing K (or at any rate a subfield isomorphic to
K). There are conceptual advantages in setting up the theory from this point of view.
In this chapter we define field extensions (always working inside C) and explain the
link with polynomials.

4.1 Field Extensions

Suppose that we wish to study the quartic polynomial
f)=1*—4> -5
over Q. Its irreducible factorisation over Q is

f) = @+ 1) ~5)

so the zeros of f in C are +i and /5. There is a natural subfield L of C associated
with these zeros; in fact, it is the unique smallest subfield that contains them. We
claim that L consists of all complex numbers of the form

p+gi+r/5+sivV5  (p,g,rs€Q)

Clearly L must contain every such element, and it is not hard to see that sums and
products of such elements have the same form. It is harder to see that inverses of
(non-zero) such elements also have the same form, but it is true: we postpone the
proof to Example 4.8. Thus the study of a polynomial over QQ leads us to consider a
subfield L of C that contains Q. In the same way the study of a polynomial over an
arbitrary subfield K of C will lead to a subfield L of C that contains K. We shall call
L an ‘extension’ of K. For technical reasons this definition is too restrictive; we wish
to allow cases where L contains a subfield isomorphic to K, but not necessarily equal
to it.

63
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Definition 4.1. A field extension is a monomorphism 1 : K — L, where K and L are
subfields of C. We say that K is the small field and L is the large field.

Notice that with a strict set-theoretic definition of function, the map 1 determines
both K and L. See Definition 1.3 for the definition of ‘monomorphism’. We often
think of a field extension as being a pair of fields (K,L), when it is clear which
monomorphism is intended.

Examples 4.2. 1. The inclusionmaps 11 : Q - R, : R—> C,and 13 : Q — C are all
field extensions.

2. Let K be the set of all real numbers of the form p + gv/2, where p,q € Q. Then K
is a subfield of C by Example 1.7. The inclusion map 1 : Q — K is a field extension.

If 1 : K — L is a field extension, then we can usually identify K with its image
1(K), so that 1 can be thought of as an inclusion map and K can be thought of as a
subfield of L. Under these circumstances we use the notation

LK

for the extension, and say that L is an extension of K. In future we shall identify K
and 1(K) whenever this is legitimate.
The next concept is one which pervades much of abstract algebra:

Definition 4.3. Let X be a subset of C. Then the subfield of C generated by X is the
intersection of all subfields of C that contain X.

It is easy to see that this definition is equivalent to either of the following:
1. The (unique) smallest subfield of C that contains X.

2. The set of all elements of C that can be obtained from elements of X by a finite
sequence of field operations, provided X # {0} or 0.

Proposition 4.4. Every subfield of C contains Q.

Proof. Let K C C be a subfield. Then 0,1 € K by definition, so inductively we find
that 14...4 1 = nlies in X for every integer n > 0. Now X is closed under additive
inverses, so —n also lies in K, proving that Z C K. Finally, if p,q € Z and g # 0,
closure under products and multiplicative inverses shows that pg—! € K. Therefore
Q C K as claimed. O

Corollary 4.5. Let X be a subset of C. Then the subfield of C generated by X con-
tains Q.

Because of Corollary 4.5, we use the notation
QX)
for the subfield of C generated by X.
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Example 4.6. We find the subfield K of C generated by X = {1,i}. By Proposi-
tion 4.4, K must contain Q. Since K is closed under the arithmetical operations, it
must contain all complex numbers of the form p + gi, where p,q € Q. Let M be the
set of all such numbers. We claim that M is a subfield of C. Clearly M is closed under
sums, differences, and products. Further

N p q .
(p+aq)~' = - i
p2 + q2 p2 + q2
so that every non-zero element of M has a multiplicative inverse in M. Hence M is
a subfield, and contains X. Since K is the smallest subfield containing X, we have
K C M.But M C K by definition. Hence K = M, and we have found a description of
the subfield generated by X .

In the case of a field extension L : K we are mainly interested in subfields lying
between K and L. This means that we can restrict attention to subsets X that contain
K; equivalently, to sets of the form KUY where Y C L.

Definition 4.7. If L : K is a field extension and Y is a subset of L, then the subfield of
C generated by KUY is written K(Y) and is said to be obtained from K by adjoining
Y.

Clearly K(Y) C L since L is a subfield of C. Notice that K(Y) isin general con-
siderably larger than KUY.

This notation is open to all sorts of useful abuses. If ¥ has a single element y
we write K(y) instead of K({y}), and in the same spirit K(y1,...,yn) will replace

K({y1,---,yn}).

Example 4.8. Let K = Q and let Y = {i,/5}. Then K(¥) must contain K and Y.
It also contains the product iv/5. Since K D Q, the subfield K(Y) must contain all
elements
o =p+qi+rV5+siV5 (p,q,r,s € Q).

Let L C C be the set of all such «. If we prove that L is a subfield of C, then it follows
that K(Y) = L. Moreover, it is easy to check that L is a subring of C, hence L is a
subfield of C if and only if for o # 0 we can find an inverse o~ ! € L. If fact, we shall
prove that if (p,q,r,s) #(0,0,0,0) then « # 0, and then

(p+qi+rV/5+siv5) el
First, suppose that p + gi + r\/g +si\/§ = (. Then
p+rV5=—i(g+sV5)

Now both p+rv/5 and —(g+sv/5) are real, but i is imaginary. Therefore p+rv/5 =0
and g+sv/5=0.If r # 0 then v/5 = —p/r € Q, but /5 is irrational. Therefore r =0,
whence p = 0. Similarly, g = s = 0.

Now we prove the existence of a~! in two stages. Let M be the subset of L
containing all p + gi (p,q € Q). Then we can write

a=x+yV5
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wherex=p+igandy=r+is€ M. Let

B=p+qgi—r/5—siV5=x—y/5€L

Then
aB = (x+yV5)(x—yV5) =x* -5y =z

say, where z € M. Since o # 0 and B # 0 we have z # 0, so ¢~ ! = Bz~ 1. Now write
z=u+vi (u,v € Q) and consider w = u — vi. Since zw = u? +v? € Q we have

Z_l — (u2—|—v2)_1wEM

soa =Bz 1elL
Alternatively, we can obtain an explicit formula by working out the expression

(p + gi+rV/5+s5ivV5)(p—qgi+rv/5 —siv5)
X (p+qi—rV5—siv/5)(p—gi—rV/5 +5iV5)

and showing that it belongs to Q, and then dividing out by
(p+qi+rV/5+siV/5)

See Exercise 4.6.

Examples 4.9. (1) The subfield R(i) of C must contain all elements x + iy where
x,y € R. But those elements comprise the whole of C. Therefore C = R(i).

(2) The subfield P of R consisting of all numbers p + gv/2 where p, g € Q is easily
seen to equal Q(v/2).

(3) It is not always true that a subfield of the form K(¢) consists of all elements of
the form j+ ko where j,k € K. It certainly contains all such elements, but they need
not form a subfield.

For example, in R : Q let & be the real cube root of 2, and consider Q(¢). As well
as @, the subfield Q( &) must contain a2, We show that a2 # j+ ke for j,k € Q. For
acontradiction, suppose that &> = j+ka. Then 2 = o3 = ja+ka? = jk+(j+k?)a.
Therefore (j+k?)a = 2— jk. Since o is irrational, (j+k*) = 0 =2 — jk. Eliminating
j, we find that k3 = 2, contrary to k € Q.

In fact, Q(a) is precisely the set of all elements of R of the form p 4 ga + ro?2,
where p,q,r € Q. To show this, we prove that the set of such elements is a subfield.
The only (minor) difficulty is finding a multiplicative inverse: see Exercise 4.7.

4.2 Rational Expressions

We can perform the operations of addition, subtraction, and multiplication in the
polynomial ring C[¢], but (usually) not division. For example, C[¢] does not contain
an inverse ¢! for #, see Exercise 4.8.
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However, we can enlarge C|[t] to provide inverses in a natural way. We have seen
that we can think of polynomials f(¢) € C[t] as functions from C to itself. Similarly,
we can think of fractions p(¢)/q(z) € C(¢) as functions. These are called rational
functions of the complex variable ¢ , and their formal statements in terms of poly-
nomials are rational expressions in the indeterminate ¢. However, there is now a
technical difficulty. The domain of such a function is not the whole of C: all of the
zeros of g(¢) have to be removed, or else we are trying to divide by zero. Complex
analysts often work in the Riemann sphere CU{}, and cheerfully let 1 /00 = 0, but
care must be exercised if this is done; the civilised way to proceed is to remove all
the potential troublemakers. So we take the domain of p(t)/q(¢) to be

{zeC:q(z) # 0}

As we have seen, any complex polynomial g has only finitely many zeros, so the
domain here is ‘almost all’ of C. We have to be careful, but we shouldn’t get into
much trouble provided we are.

In the same manner we can also construct the set

(C(tl,...,t,,)

of all rational functions in n variables (rational expressions in z indeterminates). One
use of such functions is to specify the subfield generated by a given set X. It is
straightforward to prove that Q(X) consists of all rational expressions

po,..., )

q(ﬁly-waﬁﬂ)

for all n, where p,q € Q[t1,...,,), the o and B; belong to X, and ¢(Bi,...,B) # 0.
See Exercise 4.9.

It is also possible to define such expressions without using functions. See ‘field
of fractions’ in Chapter 16, immediately after Corollary 16.18. This approach is nec-
essary in the more abstract development of the subject.

4.3 Simple Extensions

The basic building-blocks for field extensions are those obtained by adjoining
one element:

Definition 4.10. A simple extension is a field extension L : K such that L = K( ) for
some o € L.

Examples 4.11. (1) As the notation shows, the extensions in Examples 4.9 are all
simple.
(2) Beware: An extension may be simple without appearing to be. Consider L =
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Q(l ’ _ia

V5, —\/5) As written, it appears to require the adjunction of four new elements.
Clearly just two, i and /5, suffice. But we claim that in fact only one element is
needed, because L = L’ where L’ = Q(i 4 v/5), which is obviously simple. To prove
this, it is enough to show that i € L’ and v/5 € L, because these imply that L C L’
and L' CL,soL=L'" Now L contains

(i+V5)2=—142iV5+5=4+2iV5
Thus it also contains
(i+V5)(4+2iV5) = 14i—2V/5

Therefore it contains
14i —2v5+2(i+V/5) = 16i

s0 it contains i. But then it also contains (i +/5) —i = /5. Therefore L = L' as
claimed, and the extension Q(i, —i,v/5, —v/5) : Q is in fact simple.
(3) On the other hand, R : Q is not a simple extension (Exercise 4.5).

Our aim in the next chapter will be to classify all possible simple extensions.
We end this chapter by formulating the concept of isomorphism of extensions. In
Chapter 5 we will develop techniques for constructing all possible simple extensions
up to isomorphism.

Definition 4.12. An isomorphism between two field extensions 1 : K — K, j: L — L
is a pair (A, u) of field isomorphisms A : K — L, it : K — L, such that for all k € K

JA(k) = u(2(k))

Another, more pictorial, way of putting this is to say that the diagram
KLR
Al L lu
LJ L
commutes; that is, the two paths from K to L compose to give the same map.

The reason for setting up the definition like this is that as well as the field structure
being preserved by isomorphism, the embedding of the small field in the large one is
also preserved.

Various identifications may be made. If we identify K and 1(K), and L and j(L),
then 1 and j are inclusions, and the commutativity condition now becomes

Klx=2

where p|x denotes the restriction of u to K. If we further identify K and L then A
becomes the identity, and so | is the identity. In what follows we shall attempt to
use these ‘identified’ conditions wherever possible. But on a few occasions (notably
Theorem 9.6) we shall need the full generality of the first definition.
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EXERCISES

4.1 Provethatisomorphism of field extensions is an equivalence relation.

4.2 Find the subfields of C generated by:

@ {0,1}
(b) {0}
© {0,1,}
@ {i,v2}
@ {v2,V3}
® R
(&) RU{i}
4.3 Describe the subfields of C of the form

(@) Q(v2)
(b) Qi)

(c) Q(a) where « is the real cube root of 2
@) Q(v5,V7)

(€ Q(iv11)

6 Q(e*+1)

® Q(/r)

4.4 This exercise illustrates a technique that we will tacitly assume in several sub-
sequent exercises and examples.

Prove that 1,v/2,/3,1/6 are linearly independent over Q.
(Hint: Suppose that p +q\/§+ V3 +sv/6 = 0 with p,q,1,s € Q. We may
suppose that r # 0 or s # 0 (why?). If so, then we can write v/3 in the form
a+bVv2
3 =
c+dv2

where a,b,c,d,e, f € Q. Square both sides and obtain a contradiction.)

=e+fV2

4.5 Show that R is not a simple extension of (Q as follows:

(a) Qs countable.
(b) Any simple extension of a countable field is countable.

(¢) R s not countable.

4.6 Find a formula for the inverse of p + gi + /5 + siv/5, where D, q,1,s € Q.
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4.7 Find a formula for the inverse of p + o + ra2, where p,q,r € Q and a = v/2.
4.8 Prove that ¢ has no multiplicative inverse in C[t].

4.9 Prove that Q(X) consists of all rational expressions

p(al,...,a,,)

q(ﬁla---aﬁn)

for all n, where p,q € Q[t1,...,,], the &; and B; belong to X, and

q(B1;.--:Ba) #0.
4.10 Mark the following true or false.

(a) If X is the empty set then Q(X) = Q.
(b) If X is a subset of Q then Q(X) = Q.
(c) If X contains an irrational number, then Q(X) # Q.

@ Q(v2) = Q.
) Q(v2)=R.
0 R(V2)=R.

(g) Every subfield of C contains Q.
(h) Every subfield of C contains R.
(i) If o # B and both are irrational, then Q(c, ) is not a simple extension

of Q.



Chapter 5

Simple Extensions

The basic building block of field theory is the simple field extension. Here one new
element o is adjoined to a given subfield K of C, along with all rational expressions in
that element over K. Any finitely generated extension can be obtained by a sequence
of simple extensions, so the structure of a simple extension provides vital information
about all of the extensions that we shall encounter.

We first classify simple extensions into two very different kinds: transcendental
and algebraic. If the new element « satisfies a polynomial equation over K, then
the extension is algebraic; if not, it is transcendental. Up to isomorphism, K has
exactly one simple transcendental extension. For most fields K there are many more
possibilities for simple algebraic extensions; they are classified by the irreducible
polynomials m over K.

The structure of simple algebraic extensions can be described in terms of the
polynomial ring K|[¢], with operations being performed ‘modulo m’. In Chapter 16
we generalise this construction using the notion of an ideal.

5.1 Algebraic and Transcendental Extensions

Recall that a simple extension of a subfield K of C takes the form K (o) where in
nontrivial cases o ¢ K. We classify the possible simple extensions for any K. There
are two distinct types:

Definition 5.1. Let K be a subfield of C and let o € C. Then « is algebraic over K
if there exists a non-zero polynomial p over K such that p(@) = 0. Otherwise, o is
transcendental over K.

We shorten ‘algebraic over Q’ to ‘algebraic’, and ‘transcendental over Q’ to
‘transcendental’.

Examples 5.2. (1) The number a = V2is algebraic, because o?2—-2=0.

(2) The number ¢ = +/2 is algebraic, because &> —2 = 0.

(3) The number & = 3-14159... is transcendental. We postpone a proof to Chapter
24. In Chapter 7 we use the transcendence of 7 to prove the impossibility of ‘squaring
the circle’.

(4) The number & = /T is algebraic over Q(x), because a2 — 7 = 0.

71
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(5) However, o = /7 is transcendental over Q. To see why, suppose that p(1/7) =0
where 0 # p(t) € Q[t]. Separating out terms of odd and even degree, we can write this
as a(m) +b(x)/w =0, so a(x) = —b(n)\/7 and a*(x) = wb*(x). Thus f(x) =0,
where

fo)=a*()-’(r) € Q]
Now d(a?) is even, and 9(th?) is odd, so the difference f(z) is nonzero. But this
implies that 7 is algebraic, a contradiction.

In the next few sections we classify all possible simple extensions and find ways
to construct them. The transcendental case is very straightforward: if K(z) is the
set of rational functions of the indeterminate ¢ over K, then K(¢) : K is the unique
simple transcendental extension of K up to isomorphism. If K(¢) : K is algebraic,
the possibilities are richer, but tractable. We show that there is a unique monic irre-
ducible polynomial m over K such that m(o) = 0, and that m determines the exten-
sion uniquely up to isomorphism.

We begin by constructing a simple transcendental extension of any subfield.

Theorem 5.3. The set of rational expressions K(t) is a simple transcendental exten-
sion of the subfield K of C.

Proof. Clearly K(¢) : K is a simple extension, generated by ¢. If p is a polynomial
over K such that p(¢) = 0 then p = 0 by definition of K(¢), so the extension is tran-
scendental. (]

5.2 The Minimal Polynomial

The construction of simple algebraic extensions is a much more delicate issue. It
is controlled by a polynomial associated with the generator @ of K( ) : K, called the
‘minimal polynomial’. (An alternative name often encountered is ‘minimum polyno-
mial’.) To define it we first set up a technical definition.

Definition 5.4. A polynomial f(¢) = ag+ait+--- + a,t" over a subfield K of C is
monic if a, = 1.

Clearly every polynomial is a constant multiple of some monic polynomial, and
for a non-zero polynomial this monic polynomial is unique. Further, the product of
two monic polynomials is again monic.

Now suppose that K () : K is a simple algebraic extension. There is a polynomial
p over K such that p( @) = 0. We may suppose that p is monic. Therefore there exists
at least one monic polynomial of smallest degree that has « as a zero. We claim that
p is unique. To see why, suppose that p,q are two such. then p(a) — g( ) =0, so if
P # q then some constant multiple of p — g is a monic polynomial with o as a zero,
contrary to the definition. Hence there is a unique monic polynomial p of smallest
degree such that p(a) = 0. We give this a name:
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Definition 5.5. Let L : X be a field extension, and suppose that & € L is algebraic
over K. Then the minimal polynomial of o over K is the unique monic polynomial m
over K of smallest degree such that m(a) = 0.

For example, i € C is algebraic over R. If we let m(t) = t> + 1 then m(i) = 0.
Clearly m is monic. The only monic polynomials over R of smaller degree are those
of the form ¢ 4-r, where r € R, or the constant polynomial 1. But i cannot be a zero of
any of these, or else we would have i € R. Hence the minimal polynomial of i over
Risr?+1.

It is natural to ask which polynomials can be minimal. The next lemma provides
information on this question.

Lemma 5.6. If « is an algebraic element over the subfield K of C, then the minimal
polynomial of a over K is irreducible over K. It divides every polynomial of which
o is a zero.

Proof. Suppose that the minimal polynomial m of & over K is reducible, so that
m = fg where f and g are of smaller degree. We may assume f and g are monic.
Since m(a) = 0 we have f(a)g(a) = 0, so either f(a) =0 or g(or) = 0. But this
contradicts the definition of m. Hence m is irreducible over K.

Now suppose that p is a polynomial over K such that p(a) = 0. By the Division
Algorithm, there exist polynomials ¢ and r over K such that p = mq+r and dr < dm.
Then 0 = p(&) =0 + r{a). If r # 0 then a suitable constant multiple of r is monic,
which contradicts the definition of m. Therefore r = 0, so m divides p. O

Conversely, if K is a subfield of C, then it is easy to show that any irreducible
polynomial over K can be the mimimum polynomial of an algebraic element over K:

Theorem 5.7. If K is any subfield of C and m is any irreducible monic polynomial
over K, then there exists a € C, algebraic over K, such that 0. has minimal polyno-
mial m over K.

Proof. Let o be any zero of m in C. Then m(a) = 0, so the minimal polynomial f
of o over K divides m. But m is irreducible over K and both f and m are monic;
therefore f = m. O

5.3 Simple Algebraic Extensions

Next, we describe the structure of the field extension K () : K when o has min-
imal polynomial m over K. We proceed by analogy with a basic concept of number
theory. Recall from Section 3.5 that for any positive integer # it is possible to perform
arithmetic modulo n, and that integers a,b are congruent modulo n, written

a=b (mod n)
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if a— b is divisible by n. In the same way, given a polynomial m € K|[t], we can calcu-
late with polynomials modulo m. We say that polynomials a,b € K[t] are congruent
modulo m, written

a=b (mod m)

if a(t) — b(2) is divisible by m(z) in K|z].

Lemma 5.8. Suppose that a; = a; (mod m) and by = by (mod m). Then a; +b; =
ay +by (mod m), and a1b; = aby (mod m).

Proof. We know that a; —a; = am and by — by = bm for polynomials a,b € K[t].
Now
(a1+b1) — (a2 +b2) = (a1 —az) + (b1 —by) = (a—b)m

which proves the first statement. For the product, we need a slightly more elaborate
argument:
a1b1 —axby = a1by —a1by +a1by — axby
a1(by —by) +ba(a1 —az)
(a1b+bra)m

d

Lemma 5.9. Every polynomial a € K|t] is congruent modulo m to a unique polyno-
mial of degree < dm.

Proof. Divide a by m with remainder, so that a = gm+ r where g,r € K[t] and dr <
dm. Then a — r = gm, so a = r (mod m). To prove uniqueness, suppose that r = s
(mod m) where dr, ds < dm. Then r — s is divisible by m but has smaller degree than
m. Therefore r — s = 0, so r = s, proving uniqueness. O

We call r the reduced form of a modulo m. Lemma 5.9 shows that we can calcu-
late with polynomials modulo m in terms of their reduced forms. Indeed, the reduced
form of a+ b is the reduced form of a plus the reduced form of b, while the reduced
form of ab is the remainder, after dividing by m, of the product of the reduced form
of a and the reduced form of b.

Slightly more abstractly, we can work with equivalence classes. The relation =
(mod m) is an equivalence relation on K[t], so it partitions K[¢] into equivalence
classes. We write [a] for the equivalence class of a € K[t]. Clearly

[a] = {f € K[t] : m|(a— f)}
The sum and product of [a] and [b] can be defined as:
[a] +[b]=[a+D]  [a][b] = [ab]

It is straightforward to show that these operations are well-defined; that is, they do
not depend on the choice of elements from equivalence classes. Each equivalence
class contains a unique polynomial of degree less than dm, namely, the reduced form
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of a. Therefore algebraic computations with equivalence classes are the same as com-
putations with reduced forms, and both are the same as computations in K[¢] with the
added convention that m(z) is identified with 0. In particular, the classes [0] and [1]
are additive and multiplicative identities respectively.

We write
K([t]/(m)

for the set of equivalence classes of K[t] modulo m. Readers who know about ideals
in rings will see at once that K[¢]/ (m) is a thin disguise for the quotient ring of K|t]
by the ideal generated by m, and the equivalence classes are cosets of that ideal, but
at this stage of the book these concepts are more abstract than we really need.

A key result is:

Theorem 5.10. Every nonzero element of K|t]/ (m) has a multiplicative inverse in
K[t]/ (m) if and only if m is irreducible in K|t|.

Proof. If m is reducible then m = ab where da,db < dm. Then [a][b] = [ab] =
[m] = [0]. Suppose that [a] has an inverse [c], so that [c][a] = [1]. Then [0] = [c][0] =
[c][a][b] = [1][b] = [b], so m divides b. Since db < dm we must have b =0, som =0,
contradiction.

If m is irreducible, let a € K|[t] with [a] # [0]; that is, mfa. Therefore a is prime to
m, so their highest common factor is 1. By Theorem 3.9, there exist &,k € K|[t] such
that ha + km = 1. Then [h][a] + [k][m] = [1], but [m] = [0] so [1] = [h][a] + [k][m] =
[h][a] + [£][0] = [h][a] + [0] = [A][a]. Thus [h] is the required inverse. O

Again, in abstract terminology, what we have proved is that K[¢]/ (m) is a field
if and only if m is irreducible in K[t]. See Chapter 17 for a full explanation and
generalisations.

5.4 Classifying Simple Extensions

We now demonstrate that the above methods suffice for the construction of all
possible simple extensions (up to isomorphism). Again transcendental extensions
are easily dealt with.

Theorem 5.11. Every simple transcendental extension K(a) : K is isomorphic to
the extension K(t) : K of rational expressions in an indeterminate t over K. The
isomorphism K (t) — K() can be chosen to map t to &, and to be the identity on K.

Proof. Define amap ¢ : K(t) — K(c) by
¢(f(1)/8(2)) = f(@)/g(ex)

If g # 0 then g() # O (since @ is transcendental) so this definition makes sense. Itis
clearly a homomorphism, and a simple calculation shows that it is a monomorphism.
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It is clearly onto, and so is an isomorphism. Further, ¢|x is the identity, so that ¢
defines an isomorphism of extensions. Finally, ¢ () = a. O

The classification for simple algebraic extensions is just as straightforward, but
more interesting:

Theorem 5.12. Let K(t) : K be a simple algebraic extension, and let the minimal
polynomial of o over K be m. Then K(a) : K is isomorphic to K[t]/(m) : K. The
isomorphism K|[t]/(m) — K(a) can be chosen to map t to o. (and to be the identity
onK).

Proof. The isomorphism is defined by [p(¢)] — p(a), where [p(¢)] is the equivalence
class of p(¢) (mod m). This map is well-defined because p(a) = 0 if and only if
m|p. It is clearly a field monomorphism. It maps ¢ to ¢, and its restriction to X is the
identity. O

Corollary 5.13. Suppose K(a) : K and K(B) : K are simple algebraic extensions,
such that o. and B have the same minimal polynomial m over K. Then the two exten-
sions are isomorphic, and the isomorphism of the large fields can be taken to map o,
to B (and to be the identity on K).

Proof. Both extensions are isomorphic to K[t]/{m). The isomorphisms concerned
map ¢ to & and ¢ to 3 respectively. Call them t, j respectively. Then ji~! is an iso-
morphism from K( ¢) to K(f) that is the identity on K and maps o to j3. O

Lemma 5.14. Let K() : K be a simple algebraic extension, let the minimal poly-
nomial of & over K be m, and let dm = n. Then {1,q.,...,0"~'} is a basis for K(ct)
over K.

Proof. The theorem is a restatement of Lemma 5.9. (]

For certain later applications we need a slightly stronger version of Theorem 5.12,
to cover extensions of isomorphic (rather than identical) fields. Before we can state
the more general theorem we need the following:

Definition 5.15. Let 1 : K — L be a field monomorphism. Then there is a map 1 :
K[t] = L[t], defined by

T(ko+kit+- +knt") = 1(ko) +1(k1)t + -+ 1(kn)t"

(ko, ..., kn € K). It is easy to prove that { is a monomorphism. If 1 is an isomorphism,
then so is 1.

The hat is unnecessary, once the statement is clear, and it may be dispensed with.
So in future we use the same symbol 1 for the map between subfields of C and for its
extension to polynomial rings. This should not cause confusion since (k) = 1(k) for
any k € K.
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Theorem 5.16. Suppose that K and L are subfields of C and 1 : K — L is an isomor-
phism. Let K(ot),L(B) be simple algebraic extensions of K and L respectively, such
that o has minimal polynomial mq(t) over K and B has minimal polynomial mg(t)
over L. Suppose further that mg(t) = 1(mq(t)). Then there exists an isomorphism
j:K(a) = L(B) such that jlx =1 and j(a) = B.

Proof. We can summarise the hypotheses in the diagram

K — K(a)

Y
L — L(B)

where j is yet to be determined. Using the reduced form, every element of K() is
of the form p(a) for a polynomial p over K of degree < dmyg. Define j(p(@)) =
(1(p))(B) where 1(p) is defined as above. Everything else follows easily from The-
orem 5.12. |

The point of this theorem is that the given map 1 can be extended to a map j
between the larger fields. Such extension theorems, saying that under suitable condi-
tions maps between sub-objects can be extended to maps between objects, constitute
important weapons in the mathematician’s armoury. Using them we can extend our
knowledge from small structures to large ones in a sequence of simple steps.

Theorem 5.16 implies that under the given hypotheses the extensions K(ct) : K
and L(B) : L are isomorphic. This allows us to identify K with L and K( ) with L(B),
via the maps 1 and j.

Theorems 5.7 and 5.12 together give a complete characterisation of simple al-
gebraic extensions in terms of polynomials. To each extension corresponds an irre-
ducible monic polynomial, and given the small field and this polynomial, we can
reconstruct the extension.

EXERCISES
5.1 Is the extension Q(+/5,1/7) simple? If so, why? If not, why not?

5.2 Find the minimal polynomials over the small field of the following elements
in the following extensions:
@ iinC:Q
() iinC:R
() V2inR: Q
@ (v5+1)/2inC:Q
) (iv3-1)/2inC:Q
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53

54

55

5.6

5.7
5.8

59
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Show that if o has minimal polynomial 2 — 2 over Q and B has minimal
polynomial 2 — 4¢ + 2 over Q, then the extensions Q(cx) : Q and Q(B) : Q are
isomorphic.

For which of the following m(¢) and K do there exist extensions K( ¢) of K for
which o has minimal polynomial m(z)?

(@) m(t)=t>—4,K=R
() m(t)=t>-3,K=R
() m(t)=12-3,K=Q
@ m(t)=1"-3°+43-1—-1,Kk=R

Let K be any subfield of C and let m(z) be a quadratic polynomial over K
(dm = 2). Show that all zeros of m(z) lie in an extension K () of K where
a? =k € K. Thus allowing ‘square roots’ v/k enables us to solve all quadratic
equations over K.

Construct extensions Q(¢) : Q where & has the following minimal polynomial
over Q:

(@) -5

®) t*+3+124+1+1

) 3+2

Is Q(v/2,v/3,V/5) : Q a simple extension?

Suppose that m(z) is irreducible over K, and o has minimal polynomial m()
over K. Does m(#) necessarily factorise over K () into linear (degree 1) poly-
nomials? (Hint: Try K = Q, oc = the real cube root of 2.)

Mark the following true or false.

(a) Every field has non-trivial extensions.

(b) Every field has non-trivial algebraic extensions.

(c) Every simple extension is algebraic.

(d) Every extension is simple.

(e) All simple algebraic extensions of a given subfield of C are isomorphic.

(f) All simple transcendental extensions of a given subfield of C are isomor-
phic.

(g) Every minimal polynomial is monic.
(h) Monic polynomials are always irreducible.

(i) Every polynomial is a constant multiple of an irreducible polynomial.



Chapter 6

The Degree of an Extension

A technique which has become very useful in mathematics is that of associating
with a given structure a different one, of a type better understood. In this chapter
we exploit the technique by associating with any field extension a vector space. This
places at our disposal the machinery of linear algebra—a very successful algebraic
theory—and with its aid we can make considerable progress. The machinery is suf-
ficiently powerful to solve three notorious problems which remained unanswered for
over two thousand years. We shall discuss these problems in the next chapter, and
devote the present chapter to developing the theory.

6.1 Definition of the Degree

It is not hard to define a vector space structure on a field extension. It already has
one! More precisely:

Theorem 6.1. IfL : K is a field extension, then the operations

(A, u) = Au (AeK,uel)
(u,v) = u+v (u,v € L)
define on L the structure of a vector space over K.

Proof. The set L is a vector space over K if the two operations just defined satisfy
the following axioms:

(1) u+v=v+uforallu,velL.

2) (w+v)+w=u+ (v+w) forall u,v,w € L.

(3) There exists 0 € L such that 0+u = u forall u € L.

(4) For any u € L there exists —u € L such that u+ (—u) = 0.
5) fAeK,uvelL, thenA(u+v)=Au+Av.

(6) If 1 is the multiplicative identity of K, then 1u = u for all u € L.

79
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(7) If A,u € K, then A (uu) = (Au)uforall u € L.

Each of these statements follows immediately because K and L are subfields of C
and K C L. O

We know that a vector space V over a subfield K of C (indeed over any field,
but we’re not supposed to know about those yet) is uniquely determined, up to iso-
morphism, by its dimension. The dimension is the number of elements in a basis—a
subset of vectors that spans V and is linearly independent over K. The following
definition is the traditional terminology in the context of field extensions:

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension of L
considered as a vector space over K.

Examples 6.3. (1) The complex numbers C are two-dimensional over the real num-
bers R, because a basis is {1, i}. Hence [C : R] = 2.

(2) The extension Q(i, \/5) : Q has degree 4. The elements {1, V5, i,i\/g} form a
basis for Q(i,v/5) over Q, by Example 4.8.

Isomorphic field extensions obviously have the same degree.

6.2 The Tower Law

The next theorem lets us calculate the degree of a complicated extension if we
know the degrees of certain simpler ones.

Theorem 6.4 (Short Tower Law). If K, L, M are subfields of Cand K C L C M,
then
[M:K]=[M:L]L:K]

Note: For those who are happy with infinite cardinals this formula needs no extra
explanation; the product on the right is just multiplication of cardinals. For those who
are not, the formula needs interpretation if any of the degrees involved is infinite. This
interpretation is the obvious one: if either [M : L] or [L: K] = oo then [M : K] = oo;
and if [M : K] = o then either [M : L] = o or [L: K] = oo.

Proof. Let (x;);cs be a basis for L as vector space over K and let (y;)jes be a basis
for M over L. For all i € I and j € J we have x; € L,y; € M. We shall show that
(xiyj)ier, jes is a basis for M over K (where x;y; is the product in the subfield M).
Since dimensions are cardinalities of bases, the theorem follows.

First, we prove linear independence. Suppose that some finite linear combination
of the putative basis elements is zero; that is,

Zk,-,-x,-yjzo (kijEK)
isJ
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We can rearrange this as

B (Bhoer=s

Since the coefficients }; k;;x; lie in L and the y; are linearly independent over L,
Zki jx,- =0
i

Repeating the argument inside L we find that k;; = 0 for all i € 1, j € J. So the ele-
ments x;y; are linearly independent over K.
Finally we show that the x;y; span M over K. Any element x € M can be written

X = Zl jy j
j
for suitable A; € L, since the y; span M over L. Similarly for any j € J
lj = ZA,, Xi
i
for A;; € K. Putting the pieces together,
x=Y Aijxiyj
i!j
as required. O

Example 6.5. Suppose we wish to find [Q(v/2,v/3) : Q). It is easy to see that
{1,/2} is a basis for Q(v/2) over Q. For let & € Q(+/2). Then & = p +g+/2 where
P, q € Q, proving that {1, /2} spans Q(+/2) over Q. It remains to show that 1 and
/2 are linearly independent over Q. Suppose that p 4+ g/2 = 0, where p, g € Q. If
g # 0 then v/2 = p/q, which is impossible since /2 is irrational. Therefore g = 0.
But this implies p = 0.

In much the same way we can show that {1, v/3} is a basis for Q(v/2, v/3) over
Q(v/2). Every element of Q(v/2, v/3) can be written as p +gv/2+rv/3 +sv/6 where
D, 4,1, s € Q. Rewriting this as

(p+qV2)+ (r+svV2)V3

we see that {1, v/3} spans Q(v/2, v/3) over Q(v/2). To prove linear independence
we argue much as above: if

(p+qV2) + (r+svV2)V3=0
then either (r+ sv/'2) = 0, whence also (p+ gv/2) = 0, or else
V3= (p+4qv2)/(r+sv2) € Q(V2)

Therefore /3 = a + b2 where a,b € Q. Squaring, we find that abV2 is rational,
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which is possible only if either a = 0 or b = 0. But then v/3 = a or v/3 = bv/2, both of
which are absurd. Then (p+gv/2) = (r+sv/2) = 0 and we have proved that {1,/3}
is a basis. Hence

[Q(v2,v3):Q] = [Q(V2,V3):Q(V2)][Q(V2) : Q]
=2x2=4

The theorem even furnishes a basis for Q(\/E, V3 ) over Q: form all possible pairs
of products from the two bases {1, v2} and {1, v/3}, to get the ‘combined’ basis
{la \/ia \/5: \/6}

By induction on n we easily parlay the Short Tower Law into a useful generali-
sation:

Corollary 6.6 (Tower Law). If Ky C K| C --- C K, are subfields of C, then
[K,, : K()] = [Kn : Kn—l] [K,,_l : Kn_z] cee [K] : Ko]
O

In order to use the Tower Law we have to get started. The degree of a simple
extension is fairly easy to find:

Proposition 6.7. Let K(a) : K be a simple extension. If it is transcendental then
[K(@) : K] = . If it is algebraic then [K(¢t) : K] = dm, where m is the minimal
polynomial of o. over K.

Proof. For the transcendental case it suffices to note that the elements 1, o, a2, ...
are linearly independent over K. For the algebraic case, we appeal to Lemma 5.14.
O

For example, we know that C = R(i) where i has minimal polynomial % + 1, of
degree 2, Hence [C : R] = 2, which agrees with our previous remarks.

Example 6.8. We now illustrate a technique that we shall use, without explicit refer-
ence, whenever we discuss extensions of the form Q(\/a1, . . ., /@,) : Q with rational
;. The technique can be used to prove a general theorem about such extensions, see
Exercise 6.15. The question we tackle is: find [Q(v/2,+/3,/5) : Q].

By the Tower Law,

[Q(V2,v3,V5): Q]
=[Q(v2,v3,v5) : Q(v2,v3)[Q(v2,v3): Q(V2)][Q(v2) : Q]

It is ‘obvious’ that each factor equals 2, but it takes some effort to prove it. As a
cautionary remark: the degree [Q(v/6,/10,1/15) : Q) is 4, not 8 (Exercise 6.14).
(a) Certainly [Q(v2) : Q] = 2.
(b) If V3 ¢ Q(v/2) then [Q(v/2,+/3) : Q(v/2)] = 2. So suppose v/3 € Q(+/2), im-
plying that

V3=p+qvV2  p,qeQ
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We argue as in Example 6.5. Squaring,
3= (p*+24%) +2pqV2
SO
P’+24°=3  pg=0

If p = 0 then 2¢? = 3, which is impossible by Exercise 1.3. If ¢ = 0 then p? =
which is impossible for the same reason. Therefore v/3 ¢ Q(v/2), and [Q(v/2,/3
Q(v2)| =2.

(c) Finally, we claim that v/5 ¢ Q(v/2,1/3). Here we need a new idea. Suppose

3,
):

\/§=p+q\/§+r\/§+5‘\/6 P,q,1,5 €Q
Squaring:

5=p?+2g% + 317 + 65 + (2pq + 6r5)V2 + (2pr+4¢s)V3 + (2ps+2qr)V'6

whence
PP +2¢*+3r2+65s> =5
pq+3rs =0
pr+2gs = 0 @D
ps+qr =0

The new idea is to observe that if (p,q,r,s) satisfies (6.1), then so do (p,q,—r,—s),
(p,—q,r,—s), and (p,—q, —r,s). Therefore

p+q\/§+r\/§+sx/6 =5

p+q\/§—r\/§—S\/g = +/5
p—q\/§+r\/§—sx/6 = +V5
p—qV2—1V3+sV6 = £V5

Adding the first two equations, we get p+¢+v/2 =0 or p+¢+v/2 = /5. The first
implies that p = g = 0. The second implies that p% + 2¢4% + 2pg\/2 = 5, which is
easily seen to be impossible. Adding the first and third, n3=0orr/3= \/5, SO
r = 0. Finally, s = 0 since sv/6 = /5 is impossible by Exercise 1.3.

Having proved the claim, we immediately deduce that

QVEVEVE): QA V) =2
which implies that [Q(v/2,v/3,V/5) : Q] = 8.

Linear algebra is at its most powerful when dealing with finite-dimensional vec-
tor spaces. Accordingly we shall concentrate on field extensions that give rise to such
vector spaces.

Definition 6.9. A finite extension is one whose degree is finite.
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Proposition 6.7 implies that any simple algebraic extension is finite. The converse
is not true, but certain partial results are: see Exercise 6.16. In order to state what is
true we need:

Definition 6.10. An extension L : K is algebraic if every element of L is algebraic
over K.

Algebraic extensions need not be finite, see Exercise 6.11, but every finite exten-
sion is algebraic. More generally:

Lemma 6.11. An extension L : K is finite if and only if L= K(«@, ..., 0,) where r is
finite and each Q; is algebraic over K.

Proof. Induction using Theorem 6.4 and Proposition 6.7 shows that any extension of
the form K(o, ..., &) : K for algebraic ¢; is finite.

Conversely, let L : K be a finite extension. Then there is a basis {a, ..., o} for
L over K, whence L = K (o, ..., 0). Each @; is clearly algebraic. O
EXERCISES
6.1. Find the degrees of the following extensions:
@ C:Q
(b) R(V3):R

(c) Q(a) : Q where a is the real cube root of 2
@) Q(3,v5,V11):Q
) Q(V6):Q

) Q(@):Q where a’ =3

6.2. Show that every element of Q(+/5, v/7) can be expressed uniquely in the form
p+ q\/§ +rV/74sV35

where p, g, r, s € Q. Calculate explicitly the inverse of such an element.

6.3. If [L: K] is a prime number show that the only fields M such that K CM C L
are K and L themselves.

6.4. If [L: K] = 1 show that K = L.
6.5. Write out in detail the inductive proof of Corollary 6.6.

6.6. Let L: K be an extension. Show that multiplication by a fixed element of L is
a linear transformation of L considered as a vector space over K. When is this
linear transformation nonsingular?



6.7.

6.8.

6.9.
6.10*

6.11

6.12
6.13
6.14*

6.15%

6.16
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Let L : K be a finite extension, and let p be an irreducible polynomial over K.
Show that if d p does not divide [L : K], then p has no zeros in L.

If L: K is algebraic and M : L is algebraic, is M : K algebraic? Note that you
may not assume the extensions are finite.

Prove that Q(v/3, v/5) = Q(v/34+/5). Try to generalise your result.

Prove that the square roots of all prime numbers are linearly independent over
Q. Deduce that algebraic extensions need not be finite.

Find a basis for Q(\/ (1++/3)) over Q and hence find the degree of

Q(1y/(14++/3)) : Q. (Hint: You will need to prove that 1+ +/3 is not a square
in Q(v3).)

If [L : K] is prime, show that L is a simple extension of K.
Show that [Q(v/6,/10,v/15) : Q] = 4, not 8.

Let K be a subfield of C and let ay,...,a, be elements of K such that any
product aj ---aj,, with distinct indices jj, is not a square in K. Let a;; = | /a;
for 1 < j < n. Prove that [K(¢ty,...,0p) : K] =2

If K = Q, how can we verify the hypotheses on the a; by looking at their prime
factorisations?

Let L: K be an algebraic extension and suppose that X is an infinite field. Prove
that L : K is simple if and only if there are only finitely many fields M such
that K C M C L, as follows.

(a) Assume only finitely many M exist. Use Lemma 6.11 to show that L : K
is finite.

(b) Assume L = K(a, o). For each B € K let Jg = K(a1 + Boy). Only
finitely many distinct Jg can occur: hence show that L = Jg for some f3.

(c) Use induction to prove the general case.

(d) For the converse, let L = K () be simple algebraic, with K C M C L.
Let m be the minimal polynomial of ¢ over K, and let my; be the min-
imal polynomial of & over M. Show that mys|m in L[t]. Prove that my,
determines M uniquely, and that only finitely many mys can occur.

Mark the following true or false.

(a) Extensions of the same degree are isomorphic.
(b) Isomorphic extensions have the same degree.
(c) Every algebraic extension is finite.

(d) Every transcendental extension is not finite.
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(e) Every element of C is algebraic over R.
(f) Every extension of R that is a subfield of C is finite.

(g) Every algebraic extension of Q is finite.



Chapter 7

Ruler-and-Compass Constructions

Already we are in a position to see some payoff. The degree of a field extension
is a surprisingly powerful tool. Even before we get into Galois theory proper, we
can apply the degree to a warm-up problem—indeed, several. The problems come
from classical Greek geometry, and we will do something much more interesting and
difficult than solving them. We will prove that no solutions exist, subject to certain
technical conditions on the permitted methods.

According to Plato the only ‘perfect’ geometric figures are the straight line and
the circle. In the most widely known parts of ancient Greek geometry, this belief
had the effect of restricting the (conceptual) instruments available for performing
geometric constructions to two: the ruler and the compass. The ruler, furthermore,
was a single unmarked straight edge.

Strictly, the term should be ‘pair of compasses’, for the same reason we call a
single cutting instrument a pair of scissors. However, ‘compass’ is shorter, and there
is no serious danger of confusion with the navigational instrument that tells you
which way is north. So ‘compass’ it is.

With these instruments alone it is possible to perform a wide range of construc-
tions, as Euclid systematically set out in his Elements somewhere around 300 BC.
This series of books opens with 23 definitions of basic objects ranging from points
to parallels, five axioms (called ‘postulates’ in the translation by Sir Thomas Heath),
and five ‘common notions’ about equality and inequality. The first three axioms state
that certain constructions may be performed:

(1) To draw a straight line from any point to any point.
(2) To produce a finite straight line continuously in a straight line.
(3) To describe a circle with any centre and any distance.

The first two model the use of a ruler (or straightedge); the third models the use of a
compass.

Definition 7.1. A ruler-and-compass construction in the sense of Euclid is a finite
sequence of operations of the above three types.

Note the restriction to finite constructions. Infinite constructions can sometimes
make theoretical sense, and are more powerful: see Exercise 7.12. They provide ar-
bitrarily good approximations if we stop after a finite number of steps.

Later Greek geometry introduced other ‘drawing instruments’, such as conic sec-
tions and a curve called the quadratrix. But long-standing tradition associates Euclid

87
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with geometric constructions carried out using an unmarked ruler and a compass.
The Elements includes ruler-and-compass constructions to bisect a line or an angle,
to divide a line into any specified number of equal parts, and to draw a regular pen-
tagon.

However, there are many geometric problems that clearly ‘should’ have solu-
tions, but for which the tools of ruler and compasses are inadequate. In particular,
there are three famous constructions which the Greeks could not perform using these
tools: Duplicating the Cube, Trisecting the Angle, and Squaring the Circle. These
ask respectively for a cube twice the volume of a given cube, an angle one-third the
size of a given angle, and a square of area equal to a given circle.

It seems likely that Euclid would have included such constructions if he knew
any, and it is a measure of his mathematical taste that he did not present fallacious
constructions that are approximately correct but not exact. The Greeks were inge-
nious enough to find exact constructions if they existed, unless they had to be ex-
traordinarily complicated. (The construction of a regular 17-gon is an example of a
complicated construction that they missed: see Chapter 19.) We now know why they
failed to find ruler-and-compass constructions for the three classical problems: they
don’t exist. But the Greeks lacked the algebraic techniques needed to prove that.

The impossibility of trisecting an arbitrary angle using ruler and compass was
not proved until 1798 when Gauss was writing his Disquisitiones Arithmeticae, pub-
lished in 1801. Discussing his construction of the regular 17-gon, he states without
proof that such constructions do not exist for the 9-gon, 25-gon, and other numbers
that are not a power of 2 times a product of distinct Fermat primes—those of the
form 22" +1. He also writes that he can ‘prove in all rigour that these higher-degree
equations [involved in the construction] cannot be avoided in any way’, but adds ‘the
limits of the present work exclude this demonstration here.” Constructing the regular
9-gon is clearly equivalent to trisecting ZT", so Gauss’s claim disposes of trisections.
He did not publish a proof; the first person to do so was Pierre Wantzel in 1837.

This result does not imply that an angle one third the size of a given one does
not exist, or that practical constructions with very small errors cannot be devised; it
tells us that the specified instruments are inadequate to find it exactly. Wantzel also
proved that it is impossible to duplicate the cube with ruler and compass. Squaring
the circle had to wait even longer for an impossibility proof.

In this chapter we mention approximate constructions, which are entirely accept-
able for practical work. We make some brief historical remarks to point out that the
Greeks could solve the three classical problems using ‘instruments’ that went be-
yond just ruler and compass. We identify the Euclidean plane R? with the complex
plane C, which lets us avoid considering the two coordinates of a point separately
and greatly simplifies the discussion. We formalise the concept of ruler-and-compass
construction by defining the notion of a constructible point in C. We introduce a
series of specific constructions that correspond to field operations (+,—, x, /) and
square roots in C. We characterise constructible points in terms of the ‘Pythagorean
closure’ QPY of @, and deduce a simple algebraic criterion for a point to be con-
structible. By applying this criterion, we prove that the three classical problems can-
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not be solved by ruler-and-compass construction. We also prove that there is no such
construction for a regular heptagon (7-sided polygon).

7.1 Approximate Constructions and More General Instruments

For the technical drawing expert we emphasise that we are discussing exact con-
structions. There are many approximate constructions for trisecting the angle, for
instance, but no exact methods. Dudley (1987) is a fascinating collection of approxi-
mate methods that were thought by their inventors to be exact. Figure 10 is a typical
example. To trisect angle BOA, draw line BE parallel to OA. Mark off AC and CD
equal to OA, draw arc DE with centre C and radius CD. Drop a perpendicular EF to
OD and draw arc FT centre O radius OF to meet BE at T. Then angle AOT approxi-
mately trisects angle BOA. See Exercise 7.10.

L™ | e !
O A C g D

FIGURE 10: Close—but no banana.

The Greeks were well aware that by going outside the Platonic constraints, all
three classical problems can be solved. Archimedes and others knew that angles can
be trisected using a marked ruler, as in Figure 11. The ruler has marked on it two
points distance r apart. Given ZAOB = 6 draw a circle centre O with radius 7, cutting
OA at X, OB at Y. Place the ruler with its edge through X and one mark on the line
QY at D; slide it until the other marked point lies on the circle at E. Then ZEDO
= 6/3. For a proof, see Exercise 7.3. Exercise 7.14 shows how to duplicate the cube
using a marked ruler.

Setting your compasses up against the ruler so that the pivot point and the pen-
cil effectively constitute such marks also provides a trisection, but again this goes
beyond the precise concept of a ‘ruler-and-compass construction’. Many other uses
of ‘exotic’ instruments are catalogued in Dudley (1987), which examines the history
of trisection attempts. Euclid may have limited himself to an unmarked ruler (plus
compasses) because it made his axiomatic treatment more convincing. It is not en-
tirely clear what conditions should apply to a marked ruler—the distance between
the marks causes difficulties. Presumably it ought to be constructible, for example.

The Greeks solved all three problems using conic sections, or more recondite
curves such as the conchoid of Nichomedes or the quadratrix (Klein 1962, Coolidge
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FIGURE 11: Trisecting an angle with a marked ruler.

1963). Archimedes tackled the problem of Squaring the Circle in a characteristically
ingenious manner, and proved a result which would now be written

10 1
3ﬁ<ﬂ:<37

This was a remarkable achievement with the limited techniques available, and refine-
ments of his method can approximate 7 to any required degree of precision.

Such extensions of the apparatus solve the practical problem, but it is the theo-
retical one that holds the most interest. What, precisely, are the limitations on ruler-
and-compass constructions? With the machinery now at our disposal it is relatively
simple to characterise these limitations, and thereby give a complete answer to all
three problems. We use coordinate geometry to express problems in algebraic terms,
and apply the theory of field extensions to the algebraic questions that arise.

7.2 Constructions in C

We begin by formalising the notion of a ruler-and-compass construction. Assume
that initially we are given two distinct points in the plane. Equivalently, by Euclid’s
Axiom 1, we can begin with the line segment that joins them. These points let us
choose an origin and set a scale. So we can identify the Euclidean plane R? with C,
and assume that these two points are 0 and 1.

Euclid dealt with finite line segments (his condition (1) above) but could make
them as long as he pleased by extending the line (condition (2)). We find it more
convenient to work with infinitely long lines (modelling an infinitely long ruler),
which in effect combines Euclid’s conditions into just one: the possibility of drawing
the (infinitely long) line that passes through two given points. From now on, ‘line’ is
always used in this sense.
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Ifz1,20 € Cand 0 < r € R, define

L(z1,z2) = the line joining z1 tozz (21 7# 22)
C(z1,r) = the circle centre z; with radius r > 0

We now define constructible points, lines, and circles recursively:

Definition 7.2. For each n € N define sets £2,,, .%,, and %, of n-constructible points,
lines, and circles, by:

P = {0,1}
“ =0
% =0

Z1 = {L(z21,22) : 21,22 € P}

1 = {C(z1,122 —23]) 1 21,22,23 € P}

Ppi1 = {z€ C:zliesontwo distinct linesin %41} U
{z € C: zlies on a line in .%,+1 and a circle in €41 }U
{z € C: zlies on two distinct circles in %, 11}

1+i43

FIGURE 12: The set &;.

Figure 12 shows that

1+iv3

e@l={_1;0;172a 2 }

Lemma 7.3. Foralln €N,
an C 9n+1 % c =5€n+1 an c (gn+1

and each is a finite set.
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Proof. The inclusions are clear. Let p, be the number of points in &2y, I,, the number
of lines in .%,, and c,, the number of circles in %,,. Then

[-Zut1l < 5pa(pn+1)
|Gns1] < Pupa(pn+1)
|t@n+1| < %n+l(ln+l+1)+21ncn +Cn+1(cn+l+1)

bearing in mind that a line or circle meets a distinct circle in < 2 points. By induction,
all three sets are finite for all ». O

We formalise a Euclidean ruler-and-compass construction using these sets. The
intuitive idea is that starting from O and 1, such a construction generates a finite
sequence of points by drawing a line through two previously constructed points, or
a circle whose centre is one previously constructed point and whose radius is the
distance between two previously constructed points, and then defining a new point
using intersections of these.

Definition 7.4. A point z € C is constructible if there is a finite sequence of points
20=0,z1=1,22,23,... 7k =2 (7.1)
such that z;1 lies in at least one of:

L(zjy»2j,) NL(zj3,2j,)
L(zjy,25,) NC(2j3: [2j, —2js)
C(Zj1 ) |Zj2 —Zj3 |) mC(Z]'M |Zj5 —Zjg |)
where all j; < j and the intersecting lines and circles are distinct.
In the first case, the lines must not be parallel in order to have non-empty in-

tersection; in the other cases, the line must meet the circle and the two circles must
meet. These technical conditions can be expressed as algebraic properties of the z;.

We can now prove:
Theorem 7.5. A point z € C is constructible if and only ifz € &, for some n € N.

Proof. Let z € C be constructible, using the sequence (7.1). Inductively, it is clear
that z =z € .

Conversely, let z € Z?;. Then we can find a sequence z i€ P;, where 0 < j <k,
satisfying (7.1). O

To characterise constructible points, we need:

Definition 7.6. The Pythagorean closure QP of Q is the smallest subfield K C C
with the property:
7z€EK = ++z€K (72)

The Pythagorean closure of QQ exists because every subfield of C contains Q, so QPY
is the intersection of all subfields of C satisfying (7.2).
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The main theorem of this section is:

Theorem 7.7. A point z € C is constructible if and only if z € QPY. Equivalently,

UZ.=q (73)

n=0

Pre-proof Discussion.

We can summarise the main idea succinctly. Coordinate geometry in C shows that
each step in a ruler-and-compass construction leads to points that can be expressed
using rational functions of the previously constructed points together with the square
root of a rational function of those points. Conversely, all rational functions of given
points can be constructed, and so can square roots of given points. Therefore anything
that can be constructed lies in QP, and anything in QPY can be constructed.

The details require some algebraic computations in C and some basic Euclidean
geometry. We prove Theorem 7.7 in two stages. In this section we show that

(A) &, CQ™ forallneN.

In the next section, after describing some basic constructions for arithmetical opera-
tions and square roots, we complete the proof by establishing

(B) If z € QM then z € &2, for some n € N.

Equation (7.3) is an immediate consequence of (A) and (B).

Proof of Part (A). Part (A) follows by coordinate geometry in C = R2. The details
are tedious, but we give them for completeness. Use induction on n. Since &y =
{0,1} C Q, we have & € z. Suppose inductively that 2, C QP, and let z € Py 41.
We have to prove that z € QPY.

There are three cases: line meets line, line meets circle, circle meets circle.

Case I: Line meets line. Here {z} = L(z1,2z2) NL(z3,24) where the z; € &2, C QP
(induction hypothesis) and the lines are distinct. Therefore there exist real @, such
that

z=oaz+(1-0)z
z2=PBz+(1-B)zu
Therefore
o Blzzs—z4)+z—2
1 —22
Since a, B € R, we also have
o Bzz—z)+2—2

1—22

where the bar is complex conjugate. These two equations have a unique solution for
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a, B because we are assuming that the lines meet at a unique point z, and the solution
is:
2(z4 —723) +72(23 — 24) — 2324 + 2423
(z1—22)(Z3—24) + (za —23) (21 — 22)
_ n@-—2)+il—u)-—na+uz
(za—23)(Z2—21) + (21 —22)(Za —23)
so o, € QY. Thenz = oz; + (1 — at)zp € QF.
Case 2: Line meets circle. Here z € L(z1,22) N C(z3,|z4 — z5|) where the z; €
P, C QP (induction hypothesis). Let r = |z4 — z5|. There exist ¢, 8 € R such that

z=o0z1+(1—0az)
7 = z3+re'?
Therefore

a(z1—2)+z2 = 73 +re'f

i —2)+7 = z3+re ™
where we take the complex conjugate to get the second equation. We can eliminate
0 to get

(a(z1 —22) + 22 —n) (AT —22) + 22 —73) = re®re @ =% = (24 — 25)(24 — Z5)

which is a quadratic equation for o with coefficients in QPY. Since the quadratic
formula involves only rational functions of the coefficients and a square root, ¢ €
QY. Therefore z € Q.

Case 3: Circle meets circle. Here z € C(z1, |z2 — 23]) NC(z4, |25 — 26|) where the
zj € P, C QW (induction hypothesis). Let r = |z2 — z3|,5 = |25 — z6|. There exist
0,¢ € R such that

z = z1+re®
7= z+se?
Take conjugates and eliminate 6, ¢ as above to get
(z—2)z-7u) =
(z—z4)(z—2) =
Solving for z and Z (left as an exercise) we find that z satisifies a quadratic equation
with coefficients in QPY. Therefore z € QPY. O

7.3 Specific Constructions

To prove the converse (B) above we first discuss constructions that implement
algebraic operations and square roots in C. The next lemma begins the process of
assembling useful constructions and bounding the number of steps they require.
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Lemma 7.8. (1) A line can be bisected using a 2-step construction.
(2) An angle can be bisected using a 2-step construction.

(3) An angle can be copied (so that its vertex is a given point and one leg lies
along a given line through that point) using a 3-step construction.

(4) A perpendicular to a given line at a given point can be constructed using a
2-step construction.

Proof. See Figure 13 for diagrams.
(1) Let the line be L{z,w].
Draw circles C[z, |z — w|] and C[w, |z— w/|]. These meet at two points u, .
The midpoint p of L[z, w] is its intersection with L[u,v|.
(2) Let 0 be the angle between L[a,b] and La, c].
Draw Cla, 1] meeting L[a,b] at p and L[a,c] at g.
Draw C[p, 1] and C|g, 1] meeting at s,z. Then L[a, s] (or L[a,t]) bisects 6.
(3) Let 0 be the angle between L[a,b] and Lla, c].
Suppose p,q € C are given, and we wish to construct angle 0 at p with one side
Llp,q].
Let Cla,1] meet L[a,b] at d and L[a,c] at e.
Let L[p,1] meet L[p,q] at s.
Let C[s,|d — e|] meet C[p, 1] at ¢ as shown. Then the angle between L[p,t] and
L[p,q] is O for the appropriate choice of ¢.
(4) Let a lie on a line L. Let the circle Cla,1] meet L at b, c.
Let C[b,|b —c|] meet C[c, |b—c|] at p,q.
Then L[p, g] is the required perpendicular. |

The next lemma continues the process of collecting useful constructions.

Lemma 7.9. (1) A parallel to a given line through a given point not on that line
can be constructed using a 3-step construction.

(2) A triangle similar to a given triangle, with one edge prescribed, can be con-
structed using a 7-step construction.

Proof. See Figure 14 for diagrams.

(1) Let the line be L{a, b] and let p € C be a point that does not lie on the line. Using

Lemma 7.8(3), copy the angle between L[a,b] and Lia, p] to vertex p, with one leg

lying along L[a, p] produced. The other leg is then parallel to L{a, b].

(2) Let the vertices of the first triangle be a,b, c. Suppose two vertices p, g of the

required similar triangle are given, such that the similarity maps a to p and b to q.
Using Lemma 7.8(3), copy angles 6, ¢ at a,b to locations p,q, with one leg of

each lying along L[p,q|. Then the other legs meet at s, which is the third vertex of

the similar triangle required. O

We can now prove the existence of constructions that produce useful algebra
results:
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d p

FIGURE 13: Four basic constructions. Top left: Bisecting a line. Top right: Bisecting
an angle. Bottom left: Copying an angle. Bottom right: Constructing a perpendicular.

[ -
A /b/«// / >/\
6 “““‘ r ‘,f//’ — ’/"8 7¢
/a b P q

FIGURE 14: Left: Constructing a parallel. Right: Constructing a similar triangle.

Theorem 7.10. Let z,w € C. Then, assuming z and w are already constructed:
(1) z+w can be constructed using a 7-step construction.
(2) —z can be constructed using a 1-step construction.
(3) zw can be constructed using a 7-step construction.
(4) 1/z can be constructed using an 8-step construction.
(5) *+/z can be constructed using an 8-step construction.

Proof. See Figure 15 for diagrams.
(1) If z,w are not collinear with 0, complete the parallelogram with vertices 0,z,w.
The remaining vertex is z+ w.
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If z,w are collinear with 0, circle C|z,|w|] meets L[0,z] in two points, z+ w and
Z—w.
(2) The circle C[0, |z|] meets the line L[0,z] at z and at —z.
(3) Consider the triangle T with vertices 0, 1,z. Construct point p so that the triangle
with vertices 0,w, p is similar to T'.

We claim that p = zw. By similarity |p|/|w| = |z|/1, so |p| = |z||w|. Further,
arg(p) = argz + argw, where arg denotes the argument. Therefore p = zw.
(4) Let C[0, 1] meet L[0,z] at p (with O lying between z and p). Then |p| = 1.

Construct a triangle with vertices 0, p, g similar to 0,z,1. Then |q|/1 = |p|/|z| =
1/lz], s0 lg = 1/[zl.

Let C[0,g] meet L[p,z] at s, on the same side of the origin as p. Then |s| = 1/[z]
and arg(s) = w+arg(z), so p=1/z.
(5) Let z = ¢®. Then VZ= ei0/2 ¢i(m+8/2) So we have to bisect 6 and construct
VreR".

Use CJ[0, 1] to construct —1.

Bisect L[—1,r]to geta= (r—1)/2.

Construct the perpendicular P to L[0, 1] at 0.

Let circle Cla, |r — a|] meet P at s. Then the intersecting chords theorem (or a
short calculation with coordinates) implies that s.s = 1.7, s0 s = /T.

Construct line L through 0 bisecting the angle between L[0, r] and L[0,z].

This meets the circle C[0, |s|] at +4/z. For the other square root use (2) above. [J

Next we characterise the elements of QPY in terms of field extensions.

Theorem 7.11. A complex number o is an element of Q™ if and only if there is a
tower of field extensions

such that

for0<j<n—1

Proof. First, suppose such a tower exists. We prove by induction on j that K; C Q.
This is clear for j = 0. Now, K1 is an extension of K of degree 2, so K; 1 = K;(B)
where the minimum polynomial of B over K; is quadratic. Since quadratics can be
solved by extracting square roots, B € QPY, so Kj1 C QY. Therefore @ € Q.

Next, suppose that & € QPY. We prove that such a tower exists. By the definition
of QPY there is a tower

Q=LCLiC...CL2Qa)
such that [Lj41 : Lj] =2 for0 < j <n— 1. Define
M; =LjﬂQ(a)

Consider the L; and M; as vector spaces over QQ, and note that they are finite-
dimensional. We have dimL; 1 =2dimL; for all relevant j. Therefore either M; 1 =
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M; or dimM;,; = 2dimM;. Delete M;, if it equals M; and renumber the resulting
M;j as Ko,Kq, . ..,Ky, with Ko = Q. Clearly K, = Q(a). O

From this we immediately deduce a simple necessary condition for a point to be
constructible:

Theorem 7.12. If « is constructible then [Q(¢) : Q] is a power of 2. O
Now we are ready for the:

Proof. Proof of Part (B) To complete the proof, we must prove (B). If z € QY
then there is a finite sequence of points z9 = 0,z; = 1,...z = z such that z;,1 €
Q(zo,---,z1,0) where a? € Q(zp,...,z). Inductively, z; is constructible by Theo-
rem 7.10, so ;41 is constructible. O

i ] R
. Z+w / \\

= /
H"",/' / ‘ \ o

FIGURE 15: Constructions for five operations. Top left: z+w. Top right: —z. Middle:
zw. Bottom left: 1/z. Bottom right: +/z.
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7.4 Impossibility Proofs

We now apply the above theory to prove that there do not exist ruler-and-compass
constructions that solve the three classical problems mentioned in the introduction
to this chapter.

We first prove the impossibility of Duplicating the Cube, where the method is
especially straightforward.

Theorem 7.13. The cube cannot be duplicated by ruler and compass construction.

Proof. Duplicating the cube is equivalent to constructing & = v/2. Suppose for a
contradiction that & € QPY, and let m be its minimum polynomial over Q. By Theo-
rem 7.12, dm = 2* for some k.

However, since &> = 2, the minimum polynomial of & divides x> — 2. But this
is irreducible over Q. If not, it would have a linear factor x — a with a € Q, and then
a@® =2, 50 a = o.. But « is irrational. Therefore dm = 3, which is not a power of 2,
contradicting Theorem 7.12. |

Some angles can be trisected, for example 7 /2. However, the required construc-
tion should work for any angle, so to prove impossibility it is enough to exhibit one
specific angle that cannot be trisected. We prove:

Theorem 7.14. There exists an angle that cannot be trisected by ruler-and-compass
construction.

Proof. We prove something more specific: the angle ZT" cannot be trisected. We know

that @ = e2*/3 € Q, since ® = _H'T"/g Suppose for a contradiction that such a

construction exists. Then { = e/ € Q. Therefore @ = { + {1 € QM, so its
minimum polynomial m over Q has degree dm = 2* for some k. Now {3 = @ and
0’4+ 0+1=0,50 £+ &3 +1=0. Therefore {6+ ¢ = —1. But

@ = (§+¢7")
= +30+307 447
= 430+3¢071+¢°
=3x-1

Therefore m divides x3 — 3x+ 1. But this is irreducible over Q by Gauss’s lemma, so
m=x>—3x+ 1 and dm = 3, contradicting Theorem 7.12. O

This is the place for a word of warning to would-be trisectors, who are often
aware of Wantzel’s impossibility proof but somehow imagine that they can succeed
despite it (Dudley 1987). If you claim a trisection of a general angle using ruler and
compasses according to our standing conventions (such as ‘unmarked ruler’) then
you are in particular claiming a trisection of 7/3 using those instruments. The above
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proof shows that you are therefore claiming that 3 is a power of 2; in particular, since
3 #£ 1, you are claiming that 3 is an even number.
Do you really want to go down in history as believing you have proved this?
The final problem of antiquity is more difficult:

Theorem 7.15. The circle cannot be squared using ruler-and-compass construc-
tions.

Proof. Such a construction is equivalent to constructing the point (0,+/7) from the
initial set of points Py = {(0,0),(1,0)}. From this we can easily construct (0, 7). So
if such a construction exists, then [Q(x) : Q] is a power of 2, and in particular &
is algebraic over Q. On the other hand, a famous theorem of Ferdinand Lindemann
asserts that 7 is not algebraic over Q. The theorem follows. O

We prove Lindemann’s theorem in Chapter 24. We could give the proof now, but
it involves ideas off the main track of the book, and has therefore been placed in the
Chapter 24. If you are willing to take the result on trust, you can skip the proof.

As a bonus, and to set the scene for Chapter 19 on regular polygons, we dispose
of another construction that the ancients might well have wondered about. They knew
constructions for regular polygons with 3,4, 5, sides, and it is easy to double these to
get 6, 8, 10, 12, 16, 20, and so on. The impossibility of trisecting 27/3 also proves
that a regular 9-gon (enneagon) cannot be constructed with ruler and compass. But
the first ‘missing’ case is the regular 7-gon (heptagon). Our methods easily prove this
impossible, too:

Theorem 7.16. The regular 7-gon (he ptagon) cannot be constructed with ruler and
compass.

Proof. Constructing the regular heptagon is equivalent to proving that
¢ = e/ e QMY
and this complex 7th root of unity satisfies the polynomial equation
O+ + P+ +E+1=0
because {7 — 1 = 0 and the polynomial #” — 1 factorises as
7—1=0-1)C++ 43+ +1+1)

Since 7 is prime, Lemma 3.22, implies that 19+ 15 +1* +13 +12 + 1+ 1 is irreducible.
Its degree is 6, which is not a power of 2, so the regular 7-gon is not constructible.

There is an alternative approach in this case, which does not appeal to Eisen-
stein’s Criterion. Rewrite the above equation as

CH+P+C+1+¢ + P+ =0
Now ¢ € QM if and only if o = { + £~ € Q, as above. Observe that

o = §P+30+3¢7 1+
o = {2424+ ¢72
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SO
ad+a*—3a-1=0

The polynomial x> + x2 — 3x — 1 is irreducible by Gauss’s Lemma, Lemma 3.17, so
the degree of the minimum polynomial of & over Q is 3. Therefore & ¢ QY. O

7.5 Construction From a Given Set of Points

There is a ‘relative’ version of the theory of this chapter, in which we start not
with {0,1} but some finite subset P C C, satisfying some simple technical condi-
tions. This set-up is more appropriate for discussing constructions such as ‘given an
angle, bisect it’, without assuming that the original angle is itself constructible. In
this context, Definition 7.4 is modified to:

Definition 7.17. Let P be a finite subset of C containing at least two distinct el-
ements, with 0,1 € P (to identify the plane with C). For each n € N define sets
P, %, and 6, of points, lines, and circles that are n-constructible from P by:

Po =P
“ =0
% =0

Lnr1 = {L(z1,22) 1 21,22 € P}

Gnt1 = {C(z1, |22 —23]) 1 21,22,23 € P}

Pp+1 = {z€ C: zlies on two distinct lines in %1} U
{z € C: zlies on a line in .%,1; and a circle in €1} U
{z € C: zlies on two distinct circles in %11}

A point is constructible from P if it is n-constructible from P for some n.

The entire theory then goes through, with essentially the same proofs, except that
the ground field Q must be replaced by Q(P) throughout. The constructible points
are precisely those in Q(P)PY, defined in the obvious way, and they are characterised
by the existence of a tower of subfields of C starting from Q(P) such that each
successive extension has degree 2. More precisely, Theorem 7.11 becomes

Theorem 7.18. A complex number o is an element of Q(P)P if and only if there is
a tower of field extensions

QP) =K CK C...C K, = Q)

such that
[Kj1: Kj] =2

for0<j<n—1.

The proof is the same.
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EXERCISES
7.1 Express in the language of this chapter methods of constructing, by ruler and
compasses:
(a) The perpendicular bisector of a line.
(b) The points trisecting a line.
(c) Division of a line into n equal parts.
(d) The tangent to a circle at a given point.
(e) Common tangents to two circles.
7.2 Estimate the degrees of the field extensions corresponding to the constructions
in Exercise 7.1, by giving reasonably good upper bounds.
7.3 Prove using Euclidean geometry that the ‘marked ruler’ construction of Fig-
ure 11 does indeed trisect the given angle AOB.
7.4 Can the angle 27/5 be trisected using ruler and compasses?
7.5 Show that it is impossible to construct a regular 9-gon using ruler and com-
passes.
7.6 By considering a formula for cos56 find a construction for the regular pen-
tagon.
7.7 Prove that the angle 6 can be trisected by ruler and compasses if and only if
the polynomial
483 —3t —cos 0
is reducible over Q(cos ).
7.8 Verify the following approximate construction for 7 due to Ramanujan (1962,
p- 35), see Figure 16. Let AB be the diameter of a circle centre O. Bisect AO
at M, trisect OB at T. Draw TP perpendicular to AB meeting the circle at P.
Draw BQ = PT, and join AQ. Draw OS, TR parallel to BQ. Draw AD = AS,
and AC = RS tangential to the circle at A. Join BC, BD, CD. Make BE = BM.
Draw EX parallel to CD. Then the square on BX has approximately the same
area as the circle.
(You will need to know that 7 is approximately % This approximation is first
found in the works of the Chinese astronomer Zu Chongzhi in about AD 450.)
7.9 Prove that the construction in Figure 10 is correct if and only if the identity

Q_ sin@
3 24cosO

holds. Disprove the identity and estimate the error in the construction.

sin
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Sr

FIGURE 16: Srinivasa Ramanujan’s approximate squaring of the circle.

Show that the ‘compasses’ operation can be replaced by ‘draw a circle centre
Py and passing through some point other than Py’ without altering the set of
constructible points.

Find a construction with infinitely many steps that trisects any given angle
0, in the sense that the angle ¢, obtained by stopping the construction after n
steps converges to ¢ = 6 /3 when n tends to infinity. (Hint: consider the infinite

series
111
4 16 64

which converges to %.)

A race of alien creatures living in n-dimensional hyperspace R" wishes to du-
plicate the hypercube by ruler-and-compass construction. For which n can they
succeed?

Figure 17 shows a regular hexagon of side AB = 1 and some related lines. If
XY =1, show that YB = v/2. Deduce that the cube can be duplicated using a
marked ruler.

Since the angles g, g + —23E, g + 47” are all distinct, but equal 6 when multiplied
by 3, it can be argued that every angle has three distinct trisections. Show that

Archimedes’s construction with a marked ruler (Figure 11) can find them all.

Prove that the regular 11-gon cannot be constructed with ruler and compass.
[Hint: Let { = 2®/11 and mimic the proof for a heptagon.]

Prove that the regular 13-gon cannot be constructed with ruler and compass.
[Hint: Let { = €2™/13 and mimic the proof for a heptagon.]

The regular 15-gon and 16-gon can be constructed with ruler and compass. So
the next regular polygon to consider is the 17-gon.
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FIGURE 17: Duplicating the cube using a marked ruler.

Why does the method used in the previous questions fail for the 17-gon?

7.18* Prove that an angle (which you must specify and which must itself be con-
structible) cannot be divided into five equal pieces with ruler and compass.
[Hint: Do not start with 27t/3 or 7/2, both of which can be divided into five
equal pieces with ruler and compass (why?).]

7.19 If o € Q, prove that the angle 6 such that tan = ¢ is constructible.
7.20* Let 6 be such that tan 6 = a/b where a,b € Z are coprime and b # 0. Prove
the following:

(a) If a+ b is odd, then 6 can be trisected using ruler and compass if and only
if a® + b? is a perfect cube.

(b) If a+ b is even, then O can be trisected using ruler and compass if and only
if (a® +b?)/2 is a perfect cube.

(c) The angles tan—12/11 and tan—' 9/13 can be trisected using ruler and com-
pass.

[Hint: Use the fact that the ring of Gaussian integers Z[i] = {p+ig: p,q €
Z} has the property of unique prime factorisation, together with the standard
formula for tan30 in terms of tan 6.]

This Exercise is based on Chang and Gordon (2014).
7.21 Mark the following true or false.
(a) There exist ruler-and-compass constructions trisecting the angle to an

arbitrary degree of approximation.

(b) Such constructions are sufficient for practical purposes but insufficient
for mathematical ones.

(c) A point is constructible if it lies in a subfield of C whose degree over Q
is a power of 2.

(d) The angle 7 cannot be trisected using ruler and compass.

(e) A line of length & cannot be constructed using ruler and compass.
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(®) It is impossible to triplicate the cube (that is, construct one with three
times the volume of a given cube) by ruler and compass.

(g) The real number 7 is transcendental over Q.
(h) The real number 7 is transcendental over R.

(1) If a cannot be constructed by ruler and compass, then ¢ is transcendental
over Q.



Chapter 8

The Idea Behind Galois Theory

Having satisfied ourselves that field extensions are good for something, we can focus
on the main theme of this book: the elusive quintic, and Galois’s deep insights into
the solubility of equations by radicals. We start by outlining the main theorem that
we wish to prove, and the steps required to prove it. We also explain where it came
from.

We have already associated a vector space to each field extension. For some prob-
lems this is too coarse an instrument; it measures the size of the extension, but not its
shape, so to speak. Galois went deeper into the structure. To any polynomial p € C[t],
he associated a group of permutations, now called the Galois group of p in his hon-
our. Complicated questions about the polynomial can sometimes be reduced to much
simpler questions about the group—especially when it comes to solution by radi-
cals. What makes his work so astonishing is that in his day the group concept existed
only in rudimentary form. Others had investigated ideas that we now interpret as
early examples of groups, but Galois was arguably the first to recogne the concept in
sufficient generality, and to understand its importance.

We introduce the main ideas in a very simple context—a quartic polynomial
equation whose roots are obvious. We show that the reason for the roots being ob-
vious can be stated in terms of the symmetries of the polynomial—in an appropriate
sense—and that any polynomial equation with those symmetries will also have ‘ob-
vious’ roots.

With a little extra effort, we then subvert the entire reason for the existence of this
book, by proving that the ‘general’ polynomial equation of the nth degree cannot be
solved by radicals—of a particular, special kind—when n > 5. This is a spectacular
application of the Galois group, but in a very limited context: it corresponds roughly
to what Ruffini proved (or came close to proving) in 1813. By stealing one further
idea from Abel, we can even remove Ruffini’s assumption, and prove that there is
no general radical expression in the coefficients of a quintic, or any polynomial of
degree > 5, that determines a zero.

We could stop there. But Galois went much further: his methods are not only
more elegant, they give much stronger results. The material in this chapter provides
a sprinbgboard, from which we can launch into the full beauty of the theory.

107
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8.1 A First Look at Galois Theory

Galois theory is a fascinating mixture of classical and modern mathematics, and
it takes a certain amount of effort to get used to its thought patterns. This section is
intended to give a quick survey of the basic principles of the subject, and explain how
the abstract treatment has developed from Galois’s original ideas.

The aim of Galois theory is to study the solutions of polynomial equations

f@)=t"+a, " 1+ +ap=0

and, in particular, to distinguish those that can be solved by a ‘formula’ from those
that cannot. By a formula we mean a radical expression: anything that can be built
up from the coefficients a; by the operations of addition, subtraction, multiplication,
and division, and also—the essential ingredient—by nth roots, n =2,3,4,.. ..

In Chapter 1 we saw that polynomial equations over C of degree 1,2, ,3 or4 can
be solved by radicals. The central objective of this book is a proof that the quintic
equation is different. It cannot, in general, be solved by radicals. Along the way we
come to appreciate the deep, general reason why quadratics, cubics, and quartics can
be solved using radicals.

In modern terms, Galois’s main idea is to look at the symmetries of the polyno-
mial f(¢). These form a group, its Galois group, and the solution of the polynomial
equation is reflected in various properties of the Galois group.

8.2 Galois Groups According to Galois

Galois had to invent the concept of a group, quite aside from sorting out how
it relates to the solution of equations. Not surprisingly, his approach was relatively
concrete by today’s standards, but by those of his time it was highly abstract. Indeed
Galois is one of the founders of modern abstract algebra. So to understand the modern
approach, it helps to take a look at something rather closer to what Galois had in
mind.

As an example, consider the polynomial equation

f@)=1t*—4>-5=0
which we encountered in Chapter 4. As we saw, this factorises as
E+1)(>=5)=0

so there are four roots 7 = i, —i, /5, —v/5. These form two natural pairs: i and —i
go together, and so do /5 and —v/5. Indeed, itis impossible to distinguish i from
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—i, or v/5 from —+/5, by algebraic means, in the following sense. Write down any
polynomial equation, with rational coefficients, that is satisfied by some selection
from the four roots. If we let

a=i PB=—i y=V5 8=-V5
then such equations include
®?+1=0 a+p=0 82-5=0 y+6=0 ay—B&=0

and so on. There are infinitely many valid equations of this kind. On the other hand,
infinitely many other algebraic equations, such as & + ¥ = 0, are manifestly false.
Experiment suggests that if we take any valid equation connecting @, 3, ¥, and
0, and interchange o and 3, we again get a valid equation. The same is true if we
interchange v and 8. For example, the above equations lead by this process to

B*+1=0 B+a=0 P-5=0 &+y=0
By—ad=0 ad—By=0 Bé—oay=0

and all of these are valid. In contrast, if we interchange o and ¥, we obtain equations
such as
P+1=0 y+Bf=0 «a+8=0

which are false. Exercise 8.1 outlines a simple proof that these operations preserve
all valid equations connecting o, 3, ¥, and 6.

The operations that we are using here are permutations of the zeros ., 3, % 6. In
fact, in the usual permutation notation, the interchange of & and B is

(o B v &
R= (B a 5) 8.1
and that of y and 0 is
(o By O
5= (a B o y) 8.2)

These are elements of the symmetric group S4 on four symbols, which includes all
24 possible permutations of a, 3, 7, 6.

If these two permutations turn valid equations into valid equations, then so must
the permutation obtained by performing them both in turn, which is

(31

Are there any other permutations that preserve all the valid equations? Yes, of course,
the identity
(2419
o B y o

It can be checked that only these four permutations preserve valid equations: the
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other 20 all turn some valid equation into a false one. For example, if o, 6 are fixed
and f3, y are swapped, the value equation & + 8 = 0 becomes the invalid equation
a+vy=0.

It is a general fact, and an easy one to prove, that the invertible transformations
of a mathematical object that preserve some feature of its structure always form a
group. We call this the symmetry group of the object. This terminology is especially
common when the object is a geometrical figure and the transformations are rigid
motions, but the same idea applies more widely. And indeed these four permutations
do form a group, which we denote by G.

What Galois realised is that the structure of this group to some extent controls
how we should set about solving the equation.

He did not use today’s notation for permutations, and this led to potential con-
fusion. To him, a permutation of, say, {1,2,3,4}, was an ordered list, such as 2413.
Given a second list, say 3214, he then considered the substitution that changes 2413
to 3214; thatis, the map 2 — 3,4 — 2,1 — 1,3 — 4. Nowadays we would write this

as
2413
3214

1234
1342

but Galois did not even have the — notation or associated concepts, so he had to
write the substitution as 1342. His use of similar notation for both permutations and
substitutions takes some getting used to, and probably did not make life easier for
the people asked to referee his papers. Today’s definition of ‘function’ or ‘map’ dates
from about 1950; it certainly helps to clarify the ideas.

To see why permutations/substitutions of the roots matter, consider the subgroup
H ={I,R} of G.Certain expressions in &, 3, 7, 6 are fixed by the permutations in this
group. For example, if we apply R to a4 B2 —5y82, then we obtain 32 + a2 — 5782,
which is clearly the same. In fact an expression is fixed by R if and only if it is
symmetric in & and f3.

It is nothard to show thatany polynomial in o, 3, ¥, 6 thatis symmetric in & and
B can be rewritten as a polynomial in & + 3, af3, ¥, and 8. For example, the above
expression can be written as (a4 )2 —2a8 — 5782, But we know that & =i, § = —i,
so that o+ B = 0 and a8 = 1. Hence the expression reduces to —2 — 578%. Now «
and B have been eliminated altogether.

or, reordering the top row,

8.3 How to Use the Galois Group

Pretend for a moment that we don’t know the explicit zeros i, —i, V/5,—/5, but
that we do know the Galois group G. In fact, consider any quartic polynomial g()
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with the same Galois group as our example f(¢) above; that way we cannot possibly
know the zeros explicitly. Let them be @, B, 7, 6. Consider three subfields of C related
to a, B,7, 0, namely

QCQ(7,6) CQ(a,B,7,6)

Let H = {I,R} C G. Assume that we also know the following two facts:
(1) The numbers fixed by H are precisely those in Q(y,d).
(2) The numbers fixed by G are precisely those in Q.

Then we can work out how to solve the quartic equation g(¢) = 0, as follows.
The numbers o + 8 and af are obviously both fixed by H. By fact (1) they lie
in Q(y, ). But since

(t—a)t—B)=r>—(a+B)t+ap

this means that o and B satisfy a quadratic equation whose coefficients are in
Q(7,6). That is, we can use the formula for solving a quadratic to express o, 8
in terms of rational functions of y and J, together with nothing worse than square
roots. Thus we obtain & and 3 as radical expressions in ¥ and 6.

But we can repeat the trick to find ¥ and 6. The numbers ¥+ & and ¥ are fixed
by the whole of G: they are clearly fixed by R, and also by S, and these generate
G. Therefore Y+ 8 and ¥4 belong to Q by fact (2) above. Therefore ¥ and J satisfy
a quadratic equation over Q, so they are given by radical expressions in rational
numbers. Plugging these into the formulas for & and y we find that all four zeros are
radical expressions in rational numbers.

We have not found the formulas explicitly. But we have shown that certain in-
formation about the Galois group necessarily implies that they exist. Given more
information, we can finish the job completely.

This example illustrates that the subgroup structure of the Galois group G is
closely related to the possibility of solving the equation g(¢) = 0. Galois discovered
that this relationship is very deep and detailed. For example, the proof that an equa-
tion of the fifth degree cannot be solved by a formula boils down to this: the quintic
has the wrong sort of Galois group. Galois’s surviving papers do not make this proof
explicit, probably because he considered the insolubility of the quintic to be a known
theorem, but it is an easy deduction from results that he does state: see Chapter 25.

We present a simplified version of this argument, in a restricted setting, in Sec-
tion 8.7. In Section 8.8 we remove this technical restriction using Abel’s classical
methods.

8.4 The Abstract Setting

The modern approach follows Galois closely in principle, but differs in several
respects in practice. The permutations of @, 3,7, d that preserve all algebraic rela-
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tions between them turns out to be the symmetry group of the subfield Q(a, 3,7,6)
of C generated by the zeros of g, or more precisely its automorphism group, which
is a fancy name for the same thing.

Moreover, we wish to consider polynomials not just with integer or rational co-
efficients, but coefficients that lie in a subfield K of C (or, later, any field). The zeros
of a polynomial f(¢) with coefficients in K determine another field L which contains
K, but may well be larger. Thus the primary object of consideration is a pair of fields
K C L, or in a slight generalisation, a field extension L : K. Thus when Galois talks
of polynomials, the modern approach talks of field extensions. And the Galois group
of the polynomial becomes the group of K-automorphisms of L, that is, of bijections
0 :L— Lsuchthatforallx,ye Landk € K

B(x+y) = 6(x)+6(y)
6(xy) = 6(x)0(y)
o(k) = k

Thus the bulk of the theory is described in terms of field extensions and their groups
of K-automorphisms. This point of view was introduced in 1894 by Dedekind, who
also gave axiomatic definitions of subrings and subfields of C.

The method used above to solve g(z) = O relies crucially on knowing the con-
ditions (1) and (2) at the start of Section 8.3. But can we lay hands on that kind of
information if we do not already know the zeros of g? The answer is that we can—
though not easily—provided we make a general study of the automorphism groups
of field extensions, their subgroups, and the subfields fixed by those subgroups. This
study leads to the Galois correspondence between subgroups of the Galois group and
subfields M of L that contain K. Chapters 9-11 set up the Galois correspondence and
prove its key properties, and the main theorem is stated and proved in Chapter 12.
Chapter 13 studies one example in detail to drive the ideas home. Chapters 15 and
18 derive the spectacular consequences for the quintic. Then, starting in Chapter 16,
we generalise the Galois correspondence to arbitrary fields, and develop the resulting
theory in several directions.

8.5 Polynomials and Extensions

In this section we define the Galois group of a field extension L : K. We begin by
defining a special kind of automorphism.

Definition 8.1. Let L : K be a field extension, so that X is a subfield of the subfield
L of C. A K-automorphism of L is an automorphism o of L such that

a(k)=k forallkek (83)

We say that o fixes k € K if (8.3) holds.
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Effectively condition (8.3) makes o an automorphism of the extension L : K,
rather than an automorphism of the large field L alone. The idea of considering au-
tomorphisms of a mathematical object relative to a sub-object is a useful general
method; it falls within the scope of the famous 1872 ‘Erlangen Programme’ of Felix
Klein. Klein’s idea was to consider every ‘geometry’ as the theory of invariants of an
associated transformation group. Thus Euclidean geometry is the study of invariants
of the group of distance-preserving transformations of the plane; projective geom-
etry arises if we allow projective transformations; topology comes from the group
of all continuous maps possessing continuous inverses (called ‘homeomorphisms’ or
‘topological transformations’). According to this interpretation any field extension is
a geometry, and we are simply studying the geometrical figures.

The pivot upon which the whole theory turns is a result which is not in itself
hard to prove. As Lewis Carroll said in The Hunting of the Snark, it is a ‘maxim
tremendous but trite’.

Theorem 8.2. IfL: K is a field extension, then the set of all K-automorphisms of L
forms a group under composition of maps.

Proof. Suppose that @ and 8 are K-automorphisms of L. Then af is clearly an auto-
morphism; further if k € K then a8 (k) = a.(k) =k, so that a3 is a K-automorphism.
The identity map on L is obviously a K-automorphism. Finally, a~! is an automor-
phism of L, and for any k € K we have

k=alak)=a (k)

so that a~! is a K-automorphism. Composition of maps is associative, so the set of
all K-automorphisms of L is a group. O

Definition 8.3. The Galois group I'(L : K) of a field extension L : K is the group of
all K-automorphisms of L under the operation of composition of maps.

Examples 8.4. (1) The extension C : R. Suppose that & is an R-automorphism of C.
Let j = a(i) where i = /—1. Then

7= (@) =a(®) = a(-1)=-1

since a(r) = r for all r € R. Hence either j =i or j = —i. Now for any x,y € R
o(x+iy) = a(x) + a(i)a(y) = x+ jy

Thus we have two candidates for R-automorphisms:

o) i x+iy—x+iy
Oy i x+iy+—x—1iy

Obviously ¢ is the identity, and thus is an R-automorphism of C. The map o, is
complex conjugation, and is an automorphism by Example 1.7(1). Moreover,

o (x+0i))=x—0i=x
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so 0 is an R-automorphism. Obviously 0622 = 04, so the Galois group I'(C:R) is a
cyclic group of order 2.
(2) Let ¢ be the real cube root of 2, and consider Q(c) : Q. If & is a Q-automorphism
of Q(c), then

(a(c))’ = a(c’) = a(2) =2
Since Q(c) C R we must have a(c) = c. Hence « is the identity map, and T'(Q(c) : Q)
has order 1.
(3) Let the field extension be Q(\/E, V3, \/5) : Q, as in Example 6.8. The analysis
presented in that example shows that 12 — 5 is irreducible over Q(v/2,v/3). Similarly,
12 — 2 is irreducible over Q(v/3,+/5) and 12 — 3 is irreducible over Q(v/2,+/5). Thus
there are three Q-automorphisms of Q(v/2,v/3,v/5), defined by

P2: V2 —V2 V3-V3 V5045
p3:V2vV2 V3 —V3 V545
ps:V2v2  V3evV3 V5 -5

It is easy to see that these maps commute, and hence generate the group Z; X Z, X Zy

Moreover, any Q-automorphism of Q(\/i, \/5, \/5) must map V2 j:\/i, V3
++/3, and /5 — £+/5 by considering minimal polynomials. All combinations of
signs occur in the gr