
Robolint: automated analysis of liquid handler method code 

to flag programming errors and align to team practices
Andrew Hurder1*, Mark R Southern1, Niket Karode1, Sura H Hadi1, Eli J Fine1‡

1Department of Automation & Process Engineering, National Resilience, San Diego CA 

*presenting author
‡ corresponding author: eli.fine@resilience.com

830 Winter Street, Waltham, MA 02451 USA

• Writing method code to control laboratory robotics is often a manual and error-prone activity

• Lab Automation Engineering lags Software Engineering in using automated tools to streamline programming

• We created a code linting tool to analyze method code to automatically detect issues while programming

• Robolint was developed as a plugin to the Python Pylint framework and is run a pre-commit hook by Git

• Robolint currently supports analyzing MethodManager4 files (Dynamic Devices), but can be extended to

process any text-readable method code

• Robolint detects issues with inconsistent style and syntax thereby making it easier to understand the code

• Robolint detects potential logical errors where the code may be directing the liquid handler to perform an action

inconsistent with the programmer’s intent

• Automated linting of method code reduces time programmers and reviewers spend checking code manually and

reduces the chance of mistakes being deployed in the lab

Overview

As lab automation engineers, our role is to automate the work of scientists, but the way we go about

our work is often frustratingly manual. The software engineering industry has developed various tools

and practices that automate daily programming tasks. One essential tool is a linter, which automatically

analyzes code as it is being programmed before it is merged with others' work and before deployment.

While method simulators are provided within most liquid handler control software, their scope is limited

to detecting issues that are not physically possible for the robot to perform. The role of a linter is to help

detect logical errors within the code (accidentally programming the robot to do something other than

what was intended) and to enhance the readability of the code.

Mistakes still slip through despite time-consuming, detailed code examination by skilled automation

engineers. Humans are fallible, which is why we automate many lab activities, and we see this when

reviewing liquid handler code. Avoiding costly mistakes in the lab by utilizing automated linting to

increase code quality is long overdue in our industry.

Introduction

• Implemented to analyze files generated by MethodManager4 v1.4.8425, using Python v3.9.13

PyLint v2.15.10, pre-commit v2.21.0, Git v2.30.2

• Tested on Windows 11, Windows Server 2019, Linux (Debian 10)

• Currently hosted on internal company servers but working on transitioning to hosting as an open-

source repository to accept community contributions for new linting rules and method languages to

support. https://github.com/resilience-bio

Methods

Resilience.com

Results

• Static code analysis (linting) can now be easily incorporated into the workflow for programming

laboratory automation equipment.

• By building on the Pylint framework, Robolint leverages its extensive existing documentation and

rich feature set to facilitate creating new rules and configurations easy for people with limited

software engineering backgrounds.

• Robolint can detect a variety of issues while code is being created that can be fixed to avoid

potential problems in the lab or during future revisions to the code.

• Robolint is easily configurable to comply with different conventions and best practices adopted by

different organizations. Rules can be completely disabled in the configuration file, and any naming

rules (e.g., labware, variables) can be customized (using regular expressions).

Conclusion

Overriding a Rule

Figure 4. Example of overriding a rule. In many

cases, setting a single channel volume to a different

value in an otherwise uniform aspiration could be a

logical programming error resulting from forgetting to

select all the channels when making a volume

adjustment. But in this case it was intentional, and

the programmer can suppress the warning by

including a comment in the code.

Rule Name Category Description

invalid-variable-name Style Convention
Ensuring variables are named in a consistent format across the team reduces the 
chance of duplicate variables being created.

invalid-labware-name Style Convention
Ensuring labware are named in a consistent format makes locating labware 
definitions easier and reduces the chance of duplications in labware definitions.

invalid-method-name Style Convention
Ensuring method files are named in a consistent format reduces confusion for 
operators looking for files to start a run, as well as for programmers needing to edit 
a file originally created by someone else.

too-many-lines Style Convention
Used when a single file has too many lines, reducing its readability. Long workflows 
should be broken into submodules and repeated actions refactored unto reusable 
subfunctions.

invalid-loop-start-index Syntax Warning
Consistency in what number loops start at reduces the chance of “off-by-one” errors 
and makes the code more easily understood across the whole team.

invalid-boolean-value Syntax Warning
Consistency in how to represent boolean values (1 / 0, y / n, true / false, True / 
False)

divergent-channel-volume Logical Error

In systems with independent channels, many workflows involves the channels all 
moving a different volume of liquid. But many steps simply need to treat all wells the 
same. However sometimes mistakes in programming can lead to a single channel 
being left at an old volume when the rest of the channels are changed to a new 
uniform volume. This circumstance is flagged as a possible error.

missing-initialization-steps Logical Error

Many teams have a standard set of commands they want each method to begin 
with (e.g. re-initializing the instrument, confirming that the production branch of 
code rather than development is checked out when an Operator is running a 
method…). This rule automatically checks and enforces that those are included.

hardcoded-aspirate-volume Logical Error

Many teams prefer that all volumes in a step be bound to variables---rather than 
hardcoded---so that it’s less error-prone to make future adjustments to the method. 
E.g. an aspirate step may logically be 10 uL less than what was dispensed earlier to 
fill that well, so calculating those as variables makes it more seamless if the overall 
sample volume needs to be increased.

no-full-z-retraction-before-travel Logical Error

When optimizing method speed, a programmer may often disable retracting all the 
way to Z-max because they’ve deemed it safe in the current deck layout. However, 
when updating a method, the deck may change and this movement can get 
overlooked. By forcing an explicit comment in the code describing reasoning for the 
original safe motion path, it is easier to spot and take into account when modifying 
the code to avoid potential crashes.

excess-z-retraction Logical Error

By default, many liquid handler software suites defaults to retracting to maximum Z 
height after every command. However, when performing multiple pipetting actions 
within the same plate the programmer likely only intends the robot to retract to the 
plate height for more efficient movements.

Table 1. Example RulesConfiguring as a Git hook

Figure 1. Pre-commit

hook configuration.

This enables Robolint

to run automatically

when new changes to

the code are

attempted, and will

prevent Git commits

from taking place until

all specified files

comply with the

enabled rules.

Robolint Output

Figure 5. Example output. When run,

Robolint scans the files, flags violations and

provides information on the line number and

suggested corrections.

Robolint Configuration

Figure 2. Example rule

configuration. Various

settings can be configured in

the robolintrc file based

on team preferences.

Rule Implementation

Figure 3. Example implementation. By

extending the Pylint framework, a new

configurable rule can be implemented with

very little additional code. The complexities of

running the linter, collating and displaying

messages, and processing all the files are all

managed by leveraging the existing

functionality of Pylint.

References 1. Pylint, https://pylint.readthedocs.io/ 

2. Pre-commit, https://pre-commit.com/


