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Abstract  21 

Storm surges are responsible for much of the damage and loss of life associated with landfalling 22 

hurricanes. Understanding how global warming will affect hurricane surge thus holds great 23 

interest. As general circulation models (GCMs) cannot simulate hurricane surges directly, we 24 

couple a GCM-driven hurricane model with hydrodynamic models to simulate large numbers of 25 

synthetic surge events under projected climates and assess surge threat, as an example, for New 26 

York City (NYC). Struck by several intense hurricanes in recorded history, NYC is highly 27 

vulnerable to storm surges. We show that the surge level for NYC will likely increase due to the 28 

change of storm climatology with a magnitude comparable to the projected sea-level rise (SLR), 29 

based on some GCMs. The combined effects of storm climatology change and a 1-m SLR may 30 

cause the current NYC 100-year surge flooding to occur every 3-20 years and the 500-year 31 

flooding to occur every 25-240 years by the end of the century.   32 

 33 

Introduction 34 

Associated with extreme winds, rainfall, and storm surges, tropical cyclones present major 35 

hazards for coastal areas. Moreover, tropical cyclones respond to climate change1, 2, 3. Previous 36 

studies predicted an increase in the global mean of the maximum winds and rainfall rates of 37 

tropical cyclones in a warmer climate4

4

; however, the effect of climate change on storm surges, 38 

the most damaging aspect of tropical cyclones, remains to be investigated . Hurricane Katrina of 39 

2005, the costliest natural disaster in U.S. history, produced the greatest coastal flood heights 40 

ever recorded in the U.S., causing more than $100 billion in losses and resulting in about 2000 41 

fatalities. On the eastern U.S. coast, where tropical cyclones are less frequent than in the Gulf of 42 

Mexico and Florida regions, the Great Hurricane of 1938 produced record flood heights in Long 43 
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Island and southern New England, killing 600-800 people. A question of increasing concern is 44 

whether such devastating surge events will become more frequent.   45 

 46 

The storm surge is a rise of water driven by a storm’s surface wind and pressure gradient forces 47 

over a body of shallow water; its magnitude is determined, in a complex way, by the 48 

characteristics of the storm plus the geometry and bathymetry of the coast. As a result, the 49 

change of surge severity cannot be inferred directly from the change of storm intensity 5, 6, 7, 8

Camille

. 50 

For example, Hurricane  of 1969 (Category 5) made landfall in the same region of 51 

Mississippi as the less intense Hurricane Katrina (Category 3), but produced lower surges due to 52 

its smaller size5,6,9. Using only a storm’s landfall characteristics to predict surges is also 53 

inaccurate10, 11

6

, as the evolution of the storm before and during landfall affects the surge. 54 

Furthermore, similar storms can produce quite different surges at locations with different 55 

topological features . Therefore, quantifying the impact of climate change on hurricane surges 56 

requires explicit modeling of the development of storms and induced surges at local scales under 57 

projected climates.    58 

 59 

Modeling hurricane surges under climate scenarios, however, is not straightforward, because 60 

tropical cyclones cannot be resolved in current GCMs due to their relatively low resolution 61 

(~100 km) compared to the size of storm core (~ 5 km). Although high-resolution regional 62 

models (e.g., refs 12 and 13) may be used to downscale the GCM simulations, these models are 63 

still limited in horizontal resolution and are too expensive to implement for risk assessment. This 64 

study takes a more practical approach, coupling a simpler GCM-driven statistical/deterministic 65 

http://www.wunderground.com/hurricane/at19693.asp�
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hurricane model with hydrodynamic surge models to simulate cyclone surges for different 66 

climates.  67 

 68 

Computationally efficient, this method can be used to generate large numbers of synthetic surge 69 

events at sites of interest, providing robust statistics to characterize surge climatology and 70 

extremes.  We apply this method to investigate current and future hurricane surge threat for NYC, 71 

considering also the contribution of wave setup, astronomical tides, and SLR. The resulting surge 72 

flood return-level curves provide scientific bases for climate adaptation and sustainable 73 

development in rapidly developing coastal areas14,15,16

 75 

.  74 

Storm simulation  76 

The statistical/deterministic hurricane model17, 18

17

 used in this study generates synthetic tropical 77 

cyclones under given large-scale atmospheric and ocean environments, which may be estimated 78 

from observations or climate modeling. This method does not rely on the limited historical track 79 

database, but rather generates synthetic storms that are in statistical agreement with 80 

observations , and it compares well with various other methods used to study the effects of 81 

climate change on tropical cyclones18, 19 4, . In this study, we assume the cyclone-threatened area 82 

for NYC to be within a 200-km radius from the Battery (74.02 W, 40.9 N; chosen as the 83 

representative location for NYC), and we call it a NY-region storm if a storm ever passes within 84 

this threatened area with a maximum wind speed greater than 21 m/s. To investigate the current 85 

surge probabilities, we generate a set of 5000 NY-region storms under the observed climate 86 

(represented by 1981-2000 statistics) estimated from the National Center for Environmental 87 

Prediction/National Center for Atmospheric Research (NCAR/NCEP) reanalysis20. To study the 88 
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impact of climate change, we apply each of four climate models, CNRM-CM3 (Centre National 89 

de Recherches Météorologiques, Météo-France), ECHAM5 (Max Planck Institution), GFDL-90 

CM2.0 (NOAA Geophysical Fluid Dynamics Laboratory), and MIROC3.2 91 

(CCSR/NIES/FRCGC, Japan), to generate four sets of 5000 NY-region storms under current 92 

climate conditions (1981-2000 statistics) and another four sets of 5000 NY-region storms under 93 

future climate conditions (2081-2100 statistics) for the IPCC-AR4 A1B emission scenario21

18

. 94 

(Most of the climate data are obtained from the World Climate Research Program (WCRP) third 95 

Climate Model Intercomparison Project (CMIP3) multimodel dataset.)  We choose these four 96 

climate models because, based on the study of ref. , the predictions of the changes in storm 97 

frequency, intensity, and power dissipation in the Atlantic basin by these models span the range 98 

of predictions by all seven CMIP3 models from which the required model output is available. 99 

 100 

The annual frequency of the historical NY-region storms is estimated from the best-track 101 

Atlantic hurricane dataset (updated from ref. 22

18

) to be 0.34; we assume this number to be the 102 

storm annual frequency under the current climate. Since the hurricane model does not produce an 103 

absolute rate of genesis, the storm frequency derived from each climate model for the current 104 

climate is calibrated to the observed value (0.34), and the frequency for the future climate is then 105 

predicted . Estimated annual frequencies of future NY-region storms from the four climate 106 

models differ: CNRM is 0.7, ECHAM is 0.3, GFDL is 1.34, and MIROC is 0.29; the change of 107 

the storm frequency due to global warming ranges from a decrease of 12% to an increase of 108 

290%. The large variation among the model predictions reflects the general uncertainties in 109 

climate models’ projections of tropical cyclone frequency, due to systematic model differences 110 

and internal climate variability (which may not be averaged out over the 20-yr periods 111 
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considered here18). According to ref. 23

4

, as much as half of the uncertainty may be owing to the 112 

climate variability. Moreover, the variations in the projected storm frequency changes at global 113 

or basin scales, as in refs.  and 18, are greatly amplified at local scales, as in this study, due to 114 

the differences in the storm track and intensity changes predicted by the climate models. We also 115 

note that even larger variations in the storm frequency changes can be induced if more climate 116 

models are considered; for example, the Hadley Center UK Meteorological Office model 117 

UKMO-HadCM3 may predict a relatively large reduction in the storm frequency due to climate 118 

change, based on the study of ref. 3.  119 

  120 

Surge modeling  121 

This study uses two hydrodynamic models: the Advanced Circulation Model (ADCIRC 24, 25) 122 

and the Sea, Lake, and Overland Surges from Hurricanes (SLOSH26) model, both of which have 123 

been validated and applied to simulate storm surges and make forecasts for various coastal 124 

regions (e.g., refs 27, 28, 29, 30, 31, 32). Storm surges are driven by storm surface wind and 125 

sea-level pressure fields. For the ADCIRC simulations, the surface wind (10-min. average at 10 126 

m) is estimated by calculating the wind velocity at the gradient height with an analytical 127 

hurricane wind profile33, translating the gradient wind to the surface level with a velocity 128 

reduction factor (0.8534) and an empirical expression of inflow angles35, and adding a fraction 129 

(0.5; based on observed statistics) of the storm translation velocity to account for the asymmetry 130 

of the wind field; the surface pressure is estimated from a parametric pressure model36

26

. For the 131 

SLOSH simulations, the wind and pressure are determined within the SLOSH model by a semi-132 

parametric hurricane model . The two hydrodynamic models are applied with numerical grids of 133 

various resolutions (from ~1 km to ~ 10 m around NYC). The SLOSH simulation with a coarse 134 
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resolution grid is used to select the extreme surge events, which are further analyzed with higher-135 

resolution ADCIRC simulations to estimate the probability distributions of NYC surges (see 136 

Methods and Supplementary Figs. S1 and S2).   137 

 138 

As examples, Figure 1 displays the spatial distribution of the storm surge around the NYC area 139 

for two worst-case scenarios for the Battery under the NCAR/NCEP current climate. The storm 140 

that generates the highest surge (4.75 m) at the Battery moves northeastward and close to the site 141 

with a high intensity (Fig. 1a). A relatively weaker storm that moves farther from the site also 142 

produces a comparable surge (4.57 m) at the Battery, due to its larger size and northwestward 143 

translation (Fig. 1b). Both storms pass to the west of the Battery, inducing high surges at the site 144 

with their largest wind forces to the right of the track; this effect (of the wind field’s asymmetry) 145 

on the surge is particularly significant for northwestward-moving storms, which concentrate their 146 

strongest wind forces on pushing water into New York Harbor and up to lower Manhattan. These 147 

two worst-case surges for the Battery have very low occurrence probabilities under the current 148 

climate condition. However, NYC has indeed been affected by numerous intense storm surges in 149 

recorded history and, based on the local sedimentary evidence, prehistory37

37

. The highest water 150 

level at the Battery as inferred from historic archives was about 3.2 m relative to the modern 151 

mean sea level, due to a hurricane in 1821 striking NYC at a low tide ; thus the largest historical 152 

surge at the Battery might be about 3.8 m (given the magnitude of the local low tide of about 0.5-153 

0.8 m).   154 

 155 

We also investigate the influences of other processes related to the surge for NYC, using a set of 156 

over 200 most extreme surge events. To investigate the effects of wave setup, we simulate the 157 
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extreme events with the ADCIRC model coupled with a wave model32; the wave setup is found 158 

to be relatively small for the study region (see Fig. S3), and thus it is neglected in our estimation 159 

of surge probabilities. We notice, however, that the nonlinear effect of the astronomical tide on 160 

the surge (tide-surge nonlinearity) is relatively large (see Fig. S4). We model this nonlinearity as 161 

a function of the surge and tidal characteristics, based on a database generated for the extreme 162 

events (see Methods and Fig. S5). This function is then used to estimate the storm tide as a 163 

combination of the surge and astronomical tide. In addition, we study the nonlinear effect on the 164 

surge from the SLR, by simulating the extreme surges for a range of projected SLRs for NYC. 165 

This SLR effect is found to be negligible (see Fig. S6), and thus projected SLRs in future 166 

climates are accounted for linearly in the estimation of the flood height for NYC.     167 

  168 

Statistical analysis  169 

We assume the annual number of NY-region storms to be Poisson-distributed (see Fig. S7), with 170 

as mean the annual storm frequency. For each storm arrival, the probability density function 171 

(PDF) of the induced surge is estimated from the generated surge database. Our empirical 172 

datasets show that the surge PDF is characterized by a long tail, which determines the risk. We 173 

apply a Peaks-Over-Threshold (POT) method to model this tail with a Generalized Pareto 174 

Distribution (GPD), using the maximum likelihood method, and the rest of the distribution with 175 

non-parametric density estimation. The GPD fits relatively well with the surge distribution for 176 

almost all storm sets in this study (Figs. S8 and S9). The estimated storm frequency and surge 177 

PDF are then combined to generate the surge return-level curves and associated statistical 178 

confidence intervals (calculated with the Delta method38). The surge PDF is further applied to 179 

estimate the storm tide and flood height return levels (see Methods).  180 
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 181 

Current surge threat  182 

The estimated return levels of the storm surge at the Battery under the NCAR/NCEP current 183 

climate appear in Fig. 2. The estimated current 50-year storm surge is about 1.24 m, the 100-year 184 

surge is about 1.74 m, and the 500-year surge is about 2.78 m.  A previous study39, using the 185 

SLOSH model with a relatively coarse mesh, predicted a higher surge (2.14 m) for the 100-year 186 

return period but lower surges for longer return periods (e.g., 2.73 m for the 500-year surge) for 187 

this site. These differences result mainly from the different wind profiles and grid resolutions 188 

applied in the ADCIRC and SLOSH simulations and the different storm sets (statistical samples) 189 

used. The estimated return level of the storm tide, shown also in Fig. 2, is about 0.3-0.5 m higher 190 

than the storm surge level. Thus, the estimated current 50-year storm tide is about 1.61 m, the 191 

100-year storm tide is about 2.03 m, and the 500-year storm tide is about 3.12 m. Considering 192 

that much of the seawall protecting lower Manhattan is only about 1.5 m above the mean sea 193 

level30, NYC is presently highly vulnerable to extreme hurricane-surge flooding. For return 194 

periods under 50 years, extratropical cyclones may also contribute to the coastal flooding risk 195 

and become the main source of 1-10 year coastal floods for NYC40, 41

 197 

.   196 

Impact of climate change 198 

The predictions of storm tide return levels for current and future IPCC A1B climates are 199 

presented in Fig. 3. (In the context of climate change, the return level at period T may be 200 

understood as the level with an annual exceedance probability of 1/T.) The results from the four 201 

climate models differ:  CNRM predicts an increase of the storm tide level, while ECHAM 202 
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predicts a decrease; GFDL predicts that the storm tide level will increase for the main range of 203 

the return period but decrease for very long return periods, while MIROC predicts a decrease for 204 

low and moderate return periods but an increase for longer return periods. However, the 205 

magnitudes of the changes (the ratio of A1B to the current-climate levels) using CNRM (1.13-206 

1.24) and GFDL (0.98-1.44) are more significant than those using ECHAM (0.89-0.96) and 207 

MIROC (0.89-1.08). The discrepancies among the model results can be attributed to the models’ 208 

different estimations of the change of the storm frequency and the surge severity.  The storm 209 

frequency on a local scale plays an important role in determining the surge risk; the prediction of 210 

the frequency change for NY-region storms by the four climate models varies greatly. Moreover, 211 

unlike the average storm intensity, which is predicted to increase by these and other climate 212 

models4, the storm surge severity is predicted to increase by some models but decrease by others. 213 

This difference appears because the surge magnitude depends on other parameters of the storm 214 

as well as on its intensity, all of which may change differently in the different climate models.  215 

 216 

We suspect that a main reason that the increase of storm intensity (in some models) does not 217 

translate to an increase in surge magnitude is that the storm’s radius of maximum wind (Rm) 218 

tends to decrease as the storm intensity increases, given the assumption made in the above 219 

simulations that the distribution of the storm’s outer radius (Ro, determined from observed 220 

statistics42) remains the same under different climates. However, in theory the storm’s overall 221 

dimension scales linearly with the potential intensity43; therefore, the increase of potential 222 

intensity in a warmer climate44 may induce an increase of Ro. Consequently, the reduction of Rm 223 

due to the increase of storm intensity may be offset and even reversed. In such a case, climate 224 

change will likely increase storm intensity and size simultaneously, resulting in a significant 225 
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intensification of storm surges. In order to test this hypothesis, we performed the simulations as 226 

before but assumed that Ro increases by 10% and Rm increases by 21% in the future climate. We 227 

base this assumption on the estimated change of the potential intensity in the future climate 228 

(expected to increase by about 10%4) and on a theoretical scaling relationship between Ro and Rm 229 

(Rm scales with Ro 
2)33. The storm tide level thus predicted, shown also in Fig. 3, is higher or 230 

nearly unchanged in the future climate for the four models. The magnitude of the change also 231 

grows due to the increase of the storm size; it becomes 1.23-1.36 for CNRM, 1.05-1.50 for 232 

GFDL, 0.95-1.02 for ECHAM, and 0.97-1.11 for MIROC. At present, the effect of climate 233 

change on hurricane size has not been investigated; therefore, it is unclear whether the surge will 234 

greatly increase due to the simultaneous increase in storm intensity and size or only moderately 235 

change when one factor increases while the other decreases. Further investigation of the storm 236 

size distribution under different climates is needed to answer this question.   237 

 238 

Discussion  239 

As the climate warms, the global mean sea level is projected to rise, due to thermal expansion 240 

and melting of land ice. Superimposed on the global SLR, regional sea levels may change due to 241 

local land subsidence and ocean circulation changes, both of which are expected to significantly 242 

increase sea level in the NYC area45, 46

40

. The total SLR for NYC is projected to be in the range of 243 

0.5-1.5 m by the end of the century21, , 47. The effect of SLR, rather than changes in storm 244 

characteristics, has been the focus of most studies on the impact of climate change on coastal 245 

flooding risk (e.g., refs. 45 and 48); some studies also account for the change of hurricane 246 

intensity due to the change of the sea surface temperature (e.g., refs. 49 and 50). To our 247 

knowledge, this paper is the first to explicitly simulate large numbers of hurricane surge events 248 
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under projected climates to assess surge probability distributions. Our study shows that some 249 

climate models predict the increase of the surge flooding level due to the change of storm 250 

climatology to be comparable to the projected SLR for NYC. For example, the CNRM and 251 

GFDL models predict that, by the end of the century, the 100-year and 500-year storm tide levels 252 

will increase by about 0.7-1.0 m (Figs. 3a and 3c). More consequential, the combined effect of 253 

storm climatology change and SLR will greatly shorten the surge flooding return periods. As 254 

shown by the estimated flood return level in Fig. 4, if we assume the SLR in the NYC area to be 255 

1 m, by the end of the century, the current NYC 100-year surge flooding may occur every 20 256 

years or less (with CNRM, GFDL, ECHAM, and MIROC yielding predictions of 4/4, 3/3, 21/20, 257 

and 14/13 years, respectively, for observed/increased storm sizes), the current 500-year surge 258 

flooding may occur every 240 years or less (with CNRM, GFDL, ECHAM, and MIROC 259 

yielding predictions of 62/29, 28/24, 188/140, and 241/173 years, respectively). These findings 260 

are dependent on the climate models used to generate the environmental conditions for the storm 261 

simulations, so other climate models may produce different results. Nevertheless, all four climate 262 

models used in this study predict significant increases in the surge flood level due to climate 263 

change, providing an additional rationale for a comprehensive approach to managing the risk of 264 

climate change, including long-term adaptation planning and greenhouse-gas emissions 265 

mitigation.     266 

 267 

Methods  268 

High-resolution surge simulations are computationally intensive; therefore, to make it possible to 269 

simulate surges with reasonable accuracy for our large synthetic storm sets, we apply the two 270 
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hydrodynamic models with numerical grids of various resolutions in such a way that the main 271 

computational effort is concentrated on the storms that determine the risk of concern. First, the 272 

SLOSH simulation, using a polar grid with resolution of about 1 km around NYC, is applied as a 273 

filter to select the storms that have return periods, in terms of the surge height at the Battery, 274 

greater than 10 years, the typical range of hurricane surge periodicity relevant to design and 275 

policy-making. Second, the ADCIRC simulation, using an unstructured grid with resolution of 276 

~100 m around NYC (and up to 100 km over the deep ocean), is applied to each of the selected 277 

storms (see Supplementary Fig. S1, for a comparison between SLOSH and ADCIRC 278 

simulations). To determine whether the resolution of the ADCIRC simulation is sufficient, 279 

another ADCIRC mesh30 with resolution as high as ~10 m around NYC is used to simulate over 280 

200 most extreme events under the observed climate condition. The differences between the 281 

results from the two grids are very small, with our ~100-m mesh overestimating the surge at the 282 

Battery by about 2.5% (Fig. S2).  Thus, the ~100-m ADCIRC simulations are used, with a 2.5% 283 

reduction, to estimate the surge levels at the Battery for return periods of 10 years and longer. 284 

(ADCIRC model control parameters follow refs. 29 and 30, whose results have been validated 285 

against observations.) 286 

 287 

To quantify tide-surge nonlinearity, we generate a database of the storm surge and storm tide for 288 

over 200 most extreme events arriving every 3 hours during a tidal cycle. We model the 289 

nonlinearity (denoted by L: the difference between simulated storm tide, surge, and astronomical 290 

tide) as a function of the tidal phase (φ) when the (peak) surge arrives, the surge height (H), tidal 291 

range (tr), and mean tidal level (tm). We define a non-dimensional factor γ for the nonlinearity as 292 

𝛾 = 𝐿+𝑡𝑚
𝐻+𝑡𝑟

  ,                                                                                         (1) 293 
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so that, for a given value of γ, the higher the storm surge or the astronomical tide, the larger the 294 

nonlinearity relative to the negative mean tidal level (-tm; considering that the nonlinearity and 295 

the tide are out of phase, Fig. S4). We use the generated storm surge and storm tide database to 296 

estimate γ by kernel regression as a function of the tidal phase (Fig. S5).  Then, the nonlinearity 297 

L, for a given tide and a surge H corresponding to tidal phase φ, is estimated as 298 

𝐿(𝜑) = 𝛾(𝜑)(𝐻 + 𝑡𝑟) − 𝑡𝑚.                                                     (2) 299 

 300 

We assume the annual number of NY-region storms to be Poisson-distributed, with mean 𝜆. 301 

The probability distribution of surge height H, P{H<h}, is estimated from the generated surges 302 

for each storm set. The surge PDF is applied to estimate the PDF of the storm tide (Ht),  303 

𝑃{𝐻𝑡 < ��ℎ} = 𝑃{𝐻 + 𝑡(Φ) + 𝐿(Φ) < ��ℎ}                                                  (3) 304 

where t is the height of the astronomical tide and 𝛷 is the (random) phase when the storm surge 305 

arrives. Making use of the estimated γ function, equation (3) becomes  306 

𝑃{𝐻𝑡 < ��ℎ}  = ∫ 𝑃{𝐻 < ℎ−𝑡(𝜑)−𝛾(𝜑)𝑡𝑟+𝑡𝑚
1+𝛾(𝜑) }2𝜋

0 𝑃{ �Φ = 𝑑𝜑} ,                         (4) 307 

It is reasonable to assume that the surge can happen at any time during a tidal cycle with 308 

equal likelihood, and equation (4) becomes 309 

𝑃{𝐻𝑡 < ��ℎ} = ∫ 𝑃{𝐻 < � �ℎ−𝑡(𝜑)−𝛾(𝜑)𝑡𝑟+𝑡𝑚
1+𝛾(𝜑) �2𝜋

0
1
2𝜋
𝑑𝜑 .                                (5) 310 

(Note that equation (5) can be extended to include the effects of different tides during the 311 

hurricane season by taking a weighted average of P{Ht<h} for all types of tides considered, 312 

with weights equal to the fractions of time during the season when different types of tide 313 

occur.) Then, by definition, storm tide return period Tt is 314 

 𝑇𝑡 = 1

1−𝑒−𝜆(1−𝑃�𝐻𝑡<ℎ�) .                                                             (6) 315 
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No analytical expression for the return level (h) is available in this case; the storm tide return 316 

levels in Figs. 2 and 3 are calculated by solving equations (5) and (6) numerically. We used the 317 

astronomical tide cycle observed at the site during the period of Sep. 18-19, 1995 (NOAA tides 318 

and currents), assuming the tidal variation at NYC during the hurricane season is relatively 319 

small.     320 

 321 

The surge PDF is also applied to estimate the PDF of the flood height (Hf),  322 

𝑃{𝐻𝑓 < ��ℎ} = 𝑃{𝐻 + 𝑡(Φ) + 𝐿(Φ) + 𝑆 < ��ℎ} ,                                              (7) 323 

where S is the SLR, and the nonlinear effect of SLR on the surge is neglected. Then, based on 324 

equation (5),  325 

𝑃{𝐻𝑓 < ℎ} = ∫ ∫ 𝑃{𝐻 < ℎ−𝑡(𝜑)−𝛾(𝜑)𝑡𝑟+𝑡𝑚−𝑠
1+𝛾(𝜑) }2𝜋

0 𝑃{𝑆 = 𝑑𝑠} 1
2𝜋
𝑑𝜑𝑠𝑚

0  ,                        (8) 326 

where it is assumed that the range of possible SLR is [0, sm]. The probability distribution of SLR 327 

may be estimated from GCM simulations and/or other methods21, 47. It is also useful to estimate 328 

the flood return level for a certain SLR. For a given SLR (s), equation (8) reduces to 329 

𝑃{𝐻𝑓 < ℎ} = ∫ 𝑃{𝐻 < ℎ−𝑡(𝜑)−𝛾(𝜑)𝑡𝑟+𝑡𝑚−𝑠
1+𝛾(𝜑) }2𝜋

0
1
2𝜋
𝑑𝜑  .                        (9) 330 

The flood return period Tf is 331 

 𝑇𝑓 = 1

1−𝑒−𝜆(1−𝑃�𝐻𝑓<ℎ�)
  .                                                             (10) 332 

The flood return levels in Fig. 4 are calculated by solving equations (9)-(10) numerically, 333 

assuming a SLR of 1 m (s=1) for the future climate (and s= 0 for the current climate) and using 334 

the astronomical tide cycle observed during Sep. 18-19, 1995. The statistical confidence interval 335 

of the estimated storm tide and surge flood return levels remains the same as the confidence 336 

interval of the estimated surge return level, as no new distribution parameters are introduced. The 337 
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uncertainty in the estimation of the future return levels may be considered as the combination of 338 

the statistical confidence interval and the variation of predictions from different climate models.  339 

 340 
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         357 

(a)                                                                                    (b) 358 

 Figure 1. Two worst-case surge events for the Battery (generated by the ADCIRC simulations 359 

with resolution of ~100 m around NYC), under the NCAR/NCEP current climate. The contours 360 

and colors show the maximum surge height (m) during the passage of the storm. The black curve 361 

shows the storm track. The black star shows the location of the Battery. The storm parameters 362 

when the storm is closest to the Battery site are: (a). storm symmetrical maximum wind speed Vm 363 

= 56.6 m/s, minimum sea-level pressure Pc  = 960.1 mb, radius of maximum wind Rm = 39.4 km, 364 

translation speed Ut = 15.3 m/s, and distance to the site ds = 3.9 km; (b). Vm = 52.1 m/s, Pc  = 365 

969.2 mb, Rm = 58.9 km, Ut = 9.7 m/s, and ds = 21.1 km. 366 

 367 

 368 
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 369 

Figure 2. Estimated return levels for the Battery of the storm surge (m; green) and storm tide (m; 370 

black) for the NCAR/NCEP current climate. The shade shows the 90% confidence interval. 371 

 372 

 373 

 374 

 375 

 376 
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 377 

 378 

Figure 3. Estimated storm tide return levels for the current climate (black), the IPCC A1B 379 

climate (blue), and the IPCC A1B climate with Ro increased by 10% and Rm by 21% (red), 380 

predicted by each of the four climate models. The x axis is the return period (year) and the y axis 381 

is the storm tide (m) at the Battery. The shade shows the 90% confidence interval. 382 

 383 

 384 
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 385 

 386 

Figure 4. Estimated flood return levels for the current climate (black), the IPCC A1B climate 387 

(blue), and the IPCC A1B climate with Ro increased by 10% and Rm by 21% (red), predicted by 388 

each of the four climate model. The SLR for the A1B climate is assumed to be 1 m.  The x axis 389 

is the return period (year) and the y axis is the flood height (m) at the Battery. The shade shows 390 

the 90% confidence interval. 391 

 392 

 393 

 394 

 395 

 396 
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