
MIT Open Access Articles

Approximate Dynamic Programming Using Bellman
Residual Elimination and Gaussian Process Regression

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bethke, B., and J.P. How. “Approximate dynamic programming using Bellman residual
elimination and Gaussian process regression.” American Control Conference, 2009. ACC '09.
2009. 745-750. © 2009 Institute of Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/ACC.2009.5160344

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/58907

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58907

Approximate Dynamic Programming Using Bellman Residual
Elimination and Gaussian Process Regression

Brett Bethke and Jonathan P. How

Abstract— This paper presents an approximate policy itera-
tion algorithm for solving infinite-horizon, discounted Markov
decision processes (MDPs) for which a model of the system
is available. The algorithm is similar in spirit to Bellman
residual minimization methods. However, by using Gaussian
process regression with nondegenerate kernel functions as the
underlying cost-to-go function approximation architecture, the
algorithm is able to explicitly construct cost-to-go solutions
for which the Bellman residuals are identically zero at a set
of chosen sample states. For this reason, we have named
our approach Bellman residual elimination (BRE). Since the
Bellman residuals are zero at the sample states, our BRE
algorithm can be proven to reduce to exact policy iteration
in the limit of sampling the entire state space. Furthermore,
the algorithm can automatically optimize the choice of any
free kernel parameters and provide error bounds on the
resulting cost-to-go solution. Computational results on a classic
reinforcement learning problem indicate that the algorithm
yields a high-quality policy and cost approximation.

I. INTRODUCTION

Markov Decision Processes (MDPs) are a powerful frame-
work for addressing problems involving sequential decision
making under uncertainty [1]. Such problems occur fre-
quently in a number of fields, including engineering, finance,
and operations research. This paper considers the general
class of infinite horizon, discounted, finite state MDPs. The
MDP is specified by (S,A, P, g), where S is the state space,
A is the action space, Pij(u) gives the transition probability
from state i to state j under action u, and g(i, u) gives the
immediate cost of taking action u in state i. We assume
that the MDP specification is fully known. Future costs are
discounted by a factor 0 < α < 1. A policy of the MDP is
denoted by µ : S → A. Given the MDP specification, the
problem is to minimize the so-called cost-to-go function Jµ
over the set of admissible policies Π:

min
µ∈Π

Jµ(i0) = min
µ∈Π

E[
∞∑
k=0

αkg(ik, µ(ik))].

It is well-known that MDPs suffer from the curse of
dimensionality, which implies that the size of the state space,
and therefore the amount of time necessary to compute
the optimal policy, increases exponentially rapidly with the
size of the problem. The curse of dimensionality renders
most MDPs of practical interest difficult or impossible to
solve exactly. To overcome this challenge, a wide variety of

B. Bethke is a Ph.D. Candidate, Dept. of Aeronautics and Astro-
nautics, Massachusetts Institute of Technology, Cambridge, MA 02139
bbethke@mit.edu

J. P. How is a Professor of Aeronautics and Astronautics, MIT,
jhow@mit.edu

methods for generating approximate solutions to large MDPs
have been developed, giving rise to the fields of approximate
dynamic programming and reinforcement learning [2], [3].

Approximate policy iteration is a central idea in many
reinforcement learning methods. In this approach, an ap-
proximation to the cost-to-go vector of a fixed policy is
computed; this step is known as policy evaluation. Once
this approximate cost is known, a policy improvement step
computes an updated policy, and the process is repeated.
In many problems, the policy improvement step involves a
straightforward minimization over a finite set of possible
actions, and therefore can be performed exactly. However,
the policy evaluation step is generally more difficult, since
it involves solving the fixed-policy Bellman equation:

TµJµ = Jµ. (1)

Here, Jµ represents the cost-to-go vector of the policy µ,
and Tµ is the fixed-policy dynamic programming operator.
Eq. (1) is an n-dimensional, linear system of equations,
where n = |S| is the size of the state space S. Because n is
typically very large, solving Eq. (1) exactly is impractical,
and an alternative approach must be taken to generate an
approximate solution. Much of the research done in approx-
imate dynamic programming focuses on how to generate
these approximate solutions, which will be denoted in this
paper by J̃µ.

The accuracy of an approximate solution J̃µ generated
by a reinforcement learning algorithm is important to the
ultimate performance achieved by the algorithm. A natural
criterion for evaluating solution accuracy in this context is
the Bellman error BE:

BE ≡ ||J̃µ − TµJ̃µ||p =

(∑
i∈S
|J̃µ(i)− TµJ̃µ(i)|p

)1/p

,

(2)
where ||.||p is a suitably chosen p-norm. The individual terms
J̃µ(i)− TµJ̃µ(i) which appear in the sum are referred to as
the Bellman residuals. Designing a reinforcement learning
algorithm that attempts to minimize the Bellman error over
a set of candidate solutions is a sensible approach, since
achieving an error of zero immediately implies that the exact
solution has been found. However, it is difficult to carry
out this minimization directly, since evaluation of Eq. (2)
requires that the Bellman residuals for every state in the state
space be computed. To overcome this difficulty, a common
approach is to generate a smaller set of representative sample
states S̃ (using simulations of the system, prior knowledge

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB02.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 745

about the important states in the system, or other means)
and work with an approximation to the Bellman error B̃E
obtained by summing Bellman residuals over only the sample
states [2, Ch. 6]:

B̃E ≡

∑
i∈ eS
|J̃µ(i)− TµJ̃µ(i)|p

1/p

. (3)

It is then practical to minimize B̃E over the set of candidate
functions. This approach has been investigated by several
authors [4]–[6], resulting in a class of algorithms known as
Bellman residual methods.

The set of candidate functions is usually referred to as
a function approximation architecture, and the choice of
architecture is an important issue in the design of any
reinforcement learning algorithm. Numerous approximation
architectures, such as neural networks [7], linear architec-
tures [8], splines [9], and wavelets [10] have been investi-
gated for use in reinforcement learning. Recently, motivated
by the success of kernel-based methods such as support
vector machines [11] and Gaussian processes [12] for pattern
classification and regression, researchers have begun apply-
ing these powerful techniques in the reinforcement learning
domain (see, for example, [13]–[15]).

In [16], we proposed an approximate dynamic program-
ming algorithm based on support vector regression that is
similar in spirit to traditional Bellman residual methods.
Similar to traditional methods, our algorithm is designed
to minimize an approximate form of the Bellman error as
given in Eq. (3). The motivation behind our work is the
observation that, given the approximate Bellman error B̃E
as the objective function to be minimized, we should seek
to find a solution for which the objective is identically
zero, the smallest possible value. The ability to find such
a solution depends on the richness of the function approxi-
mation architecture employed, which in turn defines the set
of candidate solutions. Traditional, parametric approximation
architectures such as neural networks and linear combina-
tions of basis functions are finite-dimensional, and therefore
it may not always be possible to find a solution satisfying
B̃E = 0 (indeed, if a poor network topology or set of
basis functions is chosen, the minimum achievable error may
be large). In contrast, our algorithm explicitly constructs a
solution for which B̃E = 0. As an immediate consequence,
our algorithm has the desirable property of reducing to exact
policy iteration in the limit of sampling the entire state space,
since in this limit, the Bellman residuals are zero everywhere,
and therefore the obtained cost function is exact (J̃µ =
Jµ). Furthermore, by exploiting knowledge of the system
model (we assume this model is available), the algorithm
eliminates the need to perform trajectory simulations and
therefore does not suffer from simulation noise effects. We
refer to this approach as Bellman residual elimination (BRE),
rather than Bellman residual minimization, to emphasize the
fact that the error is explicitly forced to zero. To the best
of our knowledge, [16] was the first to propose Bellman

residual elimination as an approach to approximate dynamic
programming.

This paper extends the work of [16] in two ways. First, in
many applications, the kernel function employed may have
a number of free parameters. These parameters may encode,
for example, characteristic length scales in the problem. In
[16], these parameters were required to be set by hand;
this paper shows how they may be learned automatically
by the algorithm as it runs. Second, this paper explains
how error bounds on the resulting cost-to-go solution can
be computed. The key to achieving these goals is the use
of Gaussian process regression, instead of the support vector
regression formulation used in our previous work. This paper
first explains the basics of Gaussian process regression, and
shows how the problem of forcing the Bellman residuals
to zero can be posed as a regression problem. It then
develops a complete approximate policy iteration algorithm
that repeatedly solves this regression problem using Gaussian
process regression, and proves that the cost-to-go function
learned by the algorithm indeed satisfies B̃E = 0. Finally,
computational results for a classic reinforcement learning
problem are presented.

II. GAUSSIAN PROCESS REGRESSION BASICS

In this section, Gaussian process regression [12] is
reviewed. Gaussian process regression attempts to solve
the following problem: given a set of data D =
{(x1, y1), . . . , (xn, yn)}, find a function f(x) that provides
a good approximation to the training data. Gaussian process
regression approaches this problem by defining a probability
distribution over a set of admissible functions and performing
Bayesian inference over this set. A Gaussian process is
defined as an infinite collection of random variables, any
finite set of which is described by a joint Gaussian distri-
bution. The process is therefore completely specified by a
mean function m(x) = E[f(x)] and positive semidefinite
covariance function k(x, x′) = E[(f(x) − m(x))(f(x′) −
m(x′))]. (This covariance function is also commonly referred
to as a kernel). The Gaussian process is denoted by f(x) ∼
GP(m(x), k(x, x′)). For the purposes of regression, the
random variables of a Gaussian process GP(m(x), k(x, x′))
are interpreted as the function values f(x) at particular
values of the input x. Note the important fact that given
any finite set of inputs {x1, . . . , xn}, the distribution over
the corresponding output variables {y1, . . . , yn} is given by
a standard Gaussian distribution: (y1, . . . , yn)T ∼ N (µ,K),
where the mean µ and covariance K of the distribution are
obtained by sampling the mean m(x) and covariance k(x, x′)
functions of the Gaussian process at the points {x1, . . . , xn}:

µ = (m(x1), . . . ,m(xn))T

K =

 k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

The Gaussian process GP(m(x), k(x, x′)) represents a

prior distribution over functions. To perform regression, the

746

training data D must be incorporated into the Gaussian
process to form a posterior distribution, such that every
function in the support of the posterior agrees with the
observed data. From a probabilistic standpoint, this amounts
to conditioning the prior on the data. Fortunately, since the
prior is a Gaussian distribution, the conditioning operation
can be computed analytically. In particular, the mean f̄(x?)
and variance V[f(x?)] of the posterior distribution at an
arbitrary point x? are given by

f̄(x?) = λT k? (4)
V[f(x?)] = k(x?, x?)− kT? K−1k? (5)

where λ = K−1y and k? = (k(x?, x1), . . . , k(x?, xn))T .
As long as the Gram matrix K is strictly positive definite,

a solution for λ can always be found, and the resulting
function f̄(x?) satisfies f̄(xi) = yi ∀i = 1, . . . , n ; that
is, the learned regression function matches the training data,
as desired. Finally, drawing on results from the theory of
Reproducing Kernel Hilbert Spaces (RKHSs) [17], we can
equivalently express the result as

f̄(x?) = 〈Θ,Φ(x?)〉, (6)

where Φ(x?) = k(·, x?) is the so-called reproducing kernel
map of the kernel k, Θ =

∑n
i=1 λiΦ(xi) is a weighting

factor learned by carrying out Gaussian process regression,
and 〈·, ·〉 denotes the inner product in the RKHS of k. The
representation given by Eq. (6) will be important for con-
structing our Bellman residual elimination (BRE) algorithm.

Marginal Likelihood and Kernel Parameter Selection

In many cases, the covariance (kernel) function k(i, i′)
depends on a set of parameters Ω. Each choice of Ω defines
a different model of the data, and not all models perform
equally well at explaining the observed data. In Gaussian
process regression, there is a simple way to quantify the
performance of a given model. This quantity is called the
log marginal likelihood and is interpreted as the probability
of observing the data, given the model. The log marginal
likelihood is given by [12, 5.4]

log p(y|Ω) = −1
2
yTK−1y − 1

2
log |K| − n

2
log 2π. (7)

The best choice of the kernel parameters Ω are those which
give the highest probability of the data; or equivalently, those
which maximize the log marginal likelihood [Eq. (7)]. The
derivative of the likelihood with respect to the individual
parameters Ωj can be calculated analytically [12, 5.4]:

∂ log p(y|Ω)
∂Ωj

=
1
2

tr
(

(λλT −K−1)
∂K
∂Ωj

)
. (8)

Eq. (8) allows the use of any gradient-based optimization
method to select the optimal values for the parameters Ω.

III. FORMULATING BRE AS A REGRESSION PROBLEM

This section explains how policy evaluation can be per-
formed by formulating BRE as a regression problem, which

can be subsequently solved using Gaussian process regres-
sion. The problem statement is as follows: assume that
an MDP specification (S,A, P, g) is given, along with a
fixed policy µ of the MDP. Furthermore, assume that a
representative set of sample states S̃ is given. The goal is
to construct an approximate cost-to-go J̃µ of the policy µ,
such that the Bellman residuals at all of the sample states
are identically zero.

To begin, according to the representation given in the pre-
vious section [Eq. (6)], the approximate cost-to-go function
J̃µ(i) is expressed as an inner product between a feature
mapping Φ(i) and a set of weights Θ:

J̃µ(i) = 〈Θ,Φ(i)〉, i ∈ S. (9)

The kernel k corresponding to the feature mapping Φ(·) is
given by

k(i, i′) = 〈Φ(i),Φ(i′)〉, i, i′ ∈ S. (10)

Now, recall that the Bellman residual at state i, denoted
by BR(i), is defined as

BR(i) ≡ J̃µ(i)− TµJ̃µ(i)

= J̃µ(i)−

gµi + α
∑
j∈S

Pµij J̃µ(j)

 ,

where gµi ≡ g(i, µ(i)) and Pµij ≡ Pij(µ(i)). Substituting
the functional form of the cost function, Eq. (9), into the
expression for BR(i) yields

BR(i) = 〈Θ,Φ(i)〉 −

gµi + α
∑
j∈S

Pµij〈Θ,Φ(j)〉

 .

Finally, by exploiting linearity of the inner product 〈·, ·〉, we
can express BR(i) as

BR(i) = −gµi + 〈Θ,

Φ(i)− α
∑
j∈S

PµijΦ(j)

〉
= −gµi + 〈Θ,Ψ(i)〉, (11)

where Ψ(i) is defined as

Ψ(i) ≡ Φ(i)− α
∑
j∈S

PµijΦ(j). (12)

Intuitively, Ψ(i) represents a new reproducing kernel map
that accounts for the structure of the MDP dynamics (in
particular, it represents a combination of the features at i
and all states j that can be reached in one step from i under
the policy µ). The definition of Ψ(i) and the corresponding
expression for the Bellman residual [Eq. (11)] now allow
the BRE problem to be formulated as a regression problem.
To specify the regression problem, the set of training data
D must be specified, along with the kernel function to use.
Notice that, from Eq. (11), the desired condition BR(i) = 0
is equivalent to

W̃µ(i) ≡ 〈Θ,Ψ(i)〉 = gµi . (13)

747

Therefore, the regression problem is to find a function W̃µ(i)
that satisfies W̃µ(i) = gµi ∀i ∈ S̃, and the training data of
the problem is given by D = {(i, gµi) | i ∈ S̃}. Furthermore,
given the functional form of W̃µ(i), the kernel function in
the regression problem is given by

K(i, i′) = 〈Ψ(i),Ψ(i′)〉. (14)

We shall refer to K(i, i′) as the Bellman kernel associated
with k(i, i′). By substituting Eq. (12) into Eq. (14) and
recalling that the original kernel k can be expressed as
k(i, i′) = 〈Φ(i),Φ(i′)〉, we obtain the following expression
for K(i, i′):

K(i, i′) = k(i, i′)− α
∑
j∈S

(
Pµi′jk(i, j) + Pµijk(i′, j)

)
+ α2

∑
j,j′∈S

PµijP
µ
i′j′k(j, j′). (15)

With the associated Bellman kernel K(i, i′) and the training
data D specified, the BRE regression problem is completely
defined. In order to solve the problem using Gaussian process
regression, the Gram matrix K of the associated Bellman
kernel is calculated (where Kii′ = K(i, i′)), and the λi
values are found by solving λ = K−1gµ. Once λ is
known, the corresponding weight element Θ is given by
Θ =

∑
i∈ eS λiΨ(i). Note that Θ is a linear combination of

Ψ(i) vectors (instead of Φ(i) vectors), since the regression
problem is being solved using the associated Bellman kernel
K(i, i′) instead of the original kernel k(i, i′). Substituting
Θ into the expression for W̃µ(i) [Eq. (13)] and using
Eq. (14), we obtain W̃µ(i) =

∑
i∈ eS λiK(i, i′). Finally, the

corresponding cost function J̃µ(i) is found using Θ and the
expression for Ψ(i) [Eq. (12)]:

J̃µ(i) = 〈Θ,Φ(i)〉
=

∑
i′∈ eS

λi′〈Ψ(i′),Φ(i)〉

=
∑
i′∈ eS

λi′〈

Φ(i′)− α
∑
j∈S

Pµi′jΦ(j)

 ,Φ(i)〉

=
∑
i′∈ eS

λi′

〈Φ(i′),Φ(i)〉 − α
∑
j∈S

Pµi′j〈Φ(j),Φ(i)〉

=

∑
i′∈ eS

λi′

k(i′, i)− α
∑
j∈S

Pµi′jk(j, i)

 . (16)

IV. APPROXIMATE POLICY ITERATION ALGORITHM
USING BRE

The previous section showed how the problem of elimi-
nating the Bellman residuals at the set of sample states S̃
is equivalent to solving a regression problem, and how to
compute the corresponding cost function once the regression
problem is solved. We now present the main policy iteration
algorithm, denoted by BRE(GP), which carries out BRE
using Gaussian process regression. BRE(GP) produces a

cost-to-go solution whose Bellman residuals are zero at the
sample states, and therefore reduces to exact policy iteration
in the limit of sampling the entire state space (this will
be proved later in the section). In addition, BRE(GP) can
automatically select any free kernel parameters and provide
error bounds on the cost-to-go solution.

Pseudocode for BRE(GP) is shown in Algorithm 1. The
algorithm takes an initial policy µ0, a set of sample states
S̃, and a kernel k(i, i′; Ω) as input. In addition, it takes a set
of initial kernel parameters Ω ∈ Ω. The kernel k, as well
as its associated Bellman kernel K and the Gram matrix
K all depend on these parameters, and to emphasize this
dependence they are written as k(i, i′; Ω), K(i, i′; Ω), and
K(Ω), respectively.

The algorithm consists of two main loops. The inner
loop (lines 11-16) is responsible for repeatedly solving the
regression problem inHK (notice that the target values of the
regression problem, the one-stage costs g, are computed in
line 10) and adjusting the kernel parameters using a gradient-
based approach. This process is carried out with the policy
fixed, so the kernel parameters are tuned to each policy prior
to the policy improvement stage being carried out. Line 13
inverts the Gram matrix K(Ω) to find λ. Lines 14 and 15
then compute the gradient of the log likelihood function,
using Eq. (8), and use this gradient information to update the
kernel parameters. This process continues until a maximum
of the log likelihood function has been found.

Once the kernel parameters are optimally adjusted for the
current policy µ, main body of the outer loop (lines 17-
19) performs three important tasks. First, it computes the
cost-to-go solution J̃µ(i) using Eq. (16) (rewritten on line
17 to emphasize dependence on Ω). Second, on line 18,
it computes the posterior standard deviation E(i) of the
Bellman residual function. This quantity is computed directly
from Eq. (5), and it gives a Bayesian error bound on the
quality of the produced cost-to-go function: for states where
E(i) is small, the Bellman residual BR(i) is likely to be
small as well. Finally, it carries out a policy improvement
step.

Theoretical Properties

In this section, we prove that the cost functions J̃µ(i)
generated by BRE(GP) have zero Bellman residuals at the
sample states, and as a result, BRE(GP) reduces to exact
policy iteration when the entire state space is sampled. The
concept of a nondegenerate kernel is important in the proofs
to follow, and is stated here:

Definition A nondegenerate kernel k(i, i′) = 〈Φ(i),Φ(i′)〉
is defined as a kernel for which the Gram matrix K, where
Kii′ = k(i, i′), i, i′ ∈ S̃, is strictly positive definite for
every set S̃. Equivalently, a nondegenerate kernel is one for
which the feature vectors {Φ(i) | i ∈ S̃} are always linearly
independent.

To begin, the following lemma states an important prop-
erty of the mapping Ψ(i) that will be used in later proofs.

Lemma 1: Assume the vectors {Φ(i) | i ∈ S} are linearly
independent. Then the vectors {Ψ(i) | i ∈ S}, where Ψ(i) =

748

Φ(i)− α
∑
j∈S P

µ
ijΦ(j), are also linearly independent.

Proof: Consider the real vector space V spanned by
the vectors {Φ(i) | i ∈ S}. It is clear that Ψ(i) is a
linear combination of vectors in V , so a linear operator Â
that maps Φ(i) to Ψ(i) can be defined: Ψ(i) ≡ ÂΦ(i) =
(I − αPµ)Φ(i). Here, I is the identity matrix and Pµ is
the probability transition matrix for the policy µ. Since Pµ

is a stochastic matrix, its largest eigenvalue is 1 and all
other eigenvalues have absolute value less than 1; hence
all eigenvalues of αPµ have absolute value less than or
equal to α < 1. Since all eigenvalues of I are equal to 1,
Â = I−αPµ is full rank and dim(ker(Â)) = 0. Therefore,
dim({Ψ(i) | i ∈ S}) = dim({Φ(i) | i ∈ S}) = ns, so the
vectors {Ψ(i) | i ∈ S} are linearly independent.

Theorem 2: Assume that the kernel k(i, i′) =
〈Φ(i),Φ(i′)〉 is nondegenerate. Then the associated
Bellman kernel defined by K(i, i′) = 〈Ψ(i),Ψ(i′)〉, where
Ψ(i) = Φ(i)− α

∑
j∈S P

µ
ijΦ(j), is also nondegenerate.

Proof: Since k(i, i′) is nondegenerate, by definition the
vectors {Φ(i) | i ∈ S} are linearly independent. Therefore,
Lemma 1 applies, and the vectors {Ψ(i) | i ∈ S} are
linearly independent, immediately implying that K(i, i′) is
nondegenerate.

Theorem 3: Assume that the kernel k(i, i′) =
〈Φ(i),Φ(i′)〉 is nondegenerate. Then the cost-to-go
functions J̃µ(i) computed by BRE(GP) (on line 17) satisfy
J̃µ(i) = gµi + α

∑
j∈S P

µ
ij J̃µ(j) ∀i ∈ S̃. That is, the

Bellman residuals BR(i) are identically zero at every state
i ∈ S̃.

Proof: Since k(i, i′) is nondegenerate, Theorem 2
applies and K(i, i′) is also nondegenerate. Therefore, the
Gram matrix K of K(i, i′) is positive definite, and thus
invertible. It follows that, in Line 13 of the algorithm, there
is a unique solution for λ. Therefore, the regression solution
W̃µ(i) computed using Gaussian process regression matches
the training data: W̃µ(i) = gµi ∀i ∈ S̃. Eq. (13) shows that
this is equivalent to BR(i) = 0 ∀i ∈ S̃, as desired.
When the entire state space is sampled (S̃ = S), two
immediate and important corollaries of Theorem 3 follow:

Corollary 4: Assume that the kernel k(i, i′) =
〈Φ(i),Φ(i′)〉 is nondegenerate, and that S̃ = S. Then
the cost-to-go function J̃µ(i) produced by BRE(GP)
satisfies J̃µ(i) = Jµ(i) ∀i ∈ S. That is, the cost function
J̃µ(i) is exact.

Proof: This follows immediately from the fact that
BR(i) = 0 ∀i ∈ S.

Corollary 5: Assume that the kernel k(i, i′) =
〈Φ(i),Φ(i′)〉 is nondegenerate, and that S̃ = S. Then
BRE(GP) is equivalent to exact policy iteration.

Proof: By Corollary 4, we have that the cost produced
by BRE(GP), J̃µ(i) is equal to the exact cost Jµ(i), at every
state i ∈ S. Since the policy improvement step (Line 19) is
also exact, the algorithm carries out exact policy iteration by
definition, and converges in a finite number of steps to the
optimal policy.

Algorithm 1 BRE(GP)

1: Input: (µ0, S̃, k, Ω)
2: µ0: initial policy
3: S̃: set of sample states
4: k: kernel (covariance) function defined on S × S × Ω,
k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉

5: Ω: initial set of kernel parameters
6: Begin
7: Define K(i, i′; Ω) = 〈Ψ(i; Ω),Ψ(i′; Ω)〉 {Define the

associated Bellman kernel}
8: µ← µ0

9: loop
10: Construct g, the vector of stage costs gµi ∀i ∈ S̃
11: repeat
12: Construct the Gram matrix K(Ω), where K(Ω)ii′ =

K(i, i′; Ω) ∀i, i′ ∈ S̃, using Eq. (15)
13: Solve λ = K(Ω)−1g
14: Calculate the gradient of the log marginal likeli-

hood, ∇Ω log p(g|S̃,Ω), where

∂ log p(g|S̃,Ω)
∂Ωj

=
1
2

tr
(

(λλT −K(Ω)−1)
∂K(Ω)
∂Ωj

)
.

15: Update the kernel parameters using any gradient-
based optimization rule:

Ω← Ω + γ∇Ω log p(g|S̃,Ω),

where γ is an appropriately selected step size
16: until stopping condition for gradient-based optimiza-

tion rule is met
17: Using the coefficients {λi | i ∈ S̃} and kernel

parameters Ω, compute the cost function

J̃µ(i) =
∑
i′∈ eS

λi′

k(i′, i; Ω)− α
∑
j∈S

Pµi′jk(j, i; Ω)

{Policy evaluation step complete}

18: Compute E(i), the 1-σ error bound on the Bellman
residual function

E(i) =
√
K(i, i; Ω)− hTK(Ω)−1h

where hj ≡ K(i, j; Ω)
19: µ(i) ← arg minu

∑
j∈S Pij(u)

(
g(i, u) + αJ̃µ(j)

)
{Policy improvement}

20: end loop
21: End

V. COMPUTATIONAL RESULTS

BRE(GP) was implemented on the well-known “mountain
car problem” [3], [14] to evaluate its performance. In this
problem, a unit mass, frictionless car moves along a hilly
landscape whose height H(x) is described by

H(x) =

{
x2 + x if x < 0

x√
1+5x2 if x ≥ 0

749

Fig. 1: System response under the optimal policy (dashed
line) and the policy learned by the support vector policy
iteration algorithm (solid line).

Fig. 2: Approximate cost-to-go produced by BRE(GP) (left);
exact cost-to-go (right).

The system state is given by (x, ẋ) (the position and speed
of the car). A horizontal control force −4 ≤ u ≤ 4 can
be applied to the car, and the goal is to drive the car from
its starting location x = −0.5 to the “parking area” 0.5 ≤
x ≤ 0.7 as quickly as possible. The problem is challenging
because the car is underpowered: it cannot simply drive
up the steep slope. Rather, it must use the features of the
landscape to build momentum and eventually escape the
steep valley centered at x = −0.5. The system response
under the optimal policy (computed using value iteration) is
shown as the dashed line in Figure 1; notice that the car
initially moves away from the parking area before reaching
it at time t = 14.

In order to apply the BRE(GP), an evenly spaced
9x9 grid of sample states was chosen. Furthermore,
a squared exponential kernel k((x1, ẋ1), (x2, ẋ2); Ω) =
exp (−(x1 − x2)2/Ω2

1 − (ẋ1 − ẋ2)2/Ω2
2) was used; here the

parameters Ω1 and Ω2 represent characteristic length-scales
in each of the two dimensions of the state space. BRE(GP)
was executed, resulting in a sequence of policies (and associ-
ated cost functions) that converged after three iterations. The
sequence of cost functions is shown in Figure 2 along with
the optimal cost function (computed using value iteration)
for comparison. The cost functions are shown after the kernel
parameters were optimally adjusted for each policy; the final
kernel parameters were Ω1 = 0.253 and Ω2 = 0.572. Of
course, the main objective is to learn a policy that is similar
to the optimal one. The solid line in Figure 1 shows the
system response under the approximate policy generated by

the algorithm after 3 iterations. Notice that the qualitative
behavior is the same as the optimal policy; that is, the car first
accelerates away from the parking area to gain momentum.
The approximate policy arrives at the parking area at t = 17,
only 3 time steps slower than the optimal policy.

VI. CONCLUSION

This paper has extended the work presented in [16]
by designing a Bellman residual elimination algorithm,
BRE(GP), that automatically optimizes the choice of kernel
parameters and provides error bounds on the resulting cost-
to-go solution. This is made possible by using Gaussian
process regression to solve the BRE regression problem. The
BRE(GP) algorithm has a number of desirable theoretical
properties, including being provably exact in the limit of
sampling the entire state space. Application to a classic
reinforcement learning problem indicate the algorithm yields
a high-quality policy and cost approximation.

VII. ACKNOWLEDGMENTS

The first author is sponsored by the Hertz Foundation
and the American Society for Engineering Education. The
research has also been supported by the Boeing Company
and by AFOSR grant FA9550-08-1-0086.

REFERENCES

[1] D. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA: Athena Scientific, 2007.

[2] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Bel-
mont, MA: Athena Scientific, 1996.

[3] R. Sutton and A. Barto, Reinforcement learning: An introduction.
MIT Press, 1998.

[4] P. Schweitzer and A. Seidman, “Generalized polynomial approxi-
mation in Markovian decision processes,” Journal of mathematical
analysis and applications, vol. 110, pp. 568–582, 1985.

[5] L. C. Baird, “Residual algorithms: Reinforcement learning with func-
tion approximation.” in ICML, 1995, pp. 30–37.

[6] A. Antos, C. Szepesvári, and R. Munos, “Learning near-optimal poli-
cies with bellman-residual minimization based fitted policy iteration
and a single sample path.” Machine Learning, vol. 71, no. 1, pp. 89–
129, 2008.

[7] G. Tesauro, “Temporal difference learning and TD-Gammon,” Com-
mun. ACM, vol. 38, no. 3, pp. 58–68, 1995.

[8] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[9] M. A. Trick and S. E. Zin, “Spline Approximations to Value Func-
tions,” Macroeconomic Dynamics, vol. 1, pp. 255?–277, January 1997.

[10] M. Maggioni and S. Mahadevan, “Fast direct policy evaluation using
multiscale analysis of markov diffusion processes.” in ICML, ser.
ACM International Conference Proceeding Series, W. W. Cohen and
A. Moore, Eds., vol. 148. ACM, 2006, pp. 601–608.

[11] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” in Knowledge Discovery and Data Mining, no. 2, 1998.

[12] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006.

[13] T. Dietterich and X. Wang, “Batch value function approximation
via support vectors.” in NIPS, T. G. Dietterich, S. Becker, and
Z. Ghahramani, Eds. MIT Press, 2001, pp. 1491–1498.

[14] C. Rasmussen and M. Kuss, “Gaussian processes in reinforce-
ment learning,” Advances in Neural Information Processing Systems,
vol. 16, pp. 751–759, 2004.

[15] Y. Engel, “Algorithms and representations for reinforcement learning,”
Ph.D. dissertation, Hebrew University, 2005.

[16] B. Bethke, J. How, and A. Ozdaglar, “Approximate Dynamic Program-
ming Using Support Vector Regression,” in Proceedings of the 2008
IEEE Conference on Decision and Control, Cancun, Mexico, 2008.

[17] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the
American Mathematical Society, vol. 68, pp. 337–404, 1950.

750

