
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-010 February 13, 2007

Automatic shaping and decomposition of
reward functions
Bhaskara Marthi

Automatic shaping and decomposition of reward functions

Bhaskara Marthi bhaskara@csail.mit.edu

CSAIL, MIT Cambridge, MA 02139, USA

Abstract

This paper investigates the problem of au-
tomatically learning how to restructure the
reward function of a Markov decision process
so as to speed up reinforcement learning. We
begin by describing a method that learns a
shaped reward function given a set of state
and temporal abstractions. Next, we con-
sider decomposition of the per-timestep re-
ward in multieffector problems, in which the
overall agent can be decomposed into multi-
ple units that are concurrently carrying out
various tasks. We show by example that to
find a good reward decomposition, it is often
necessary to first shape the rewards appropri-
ately. We then give a function approximation
algorithm for solving both problems together.
Standard reinforcement learning algorithms
can be augmented with our methods, and we
show experimentally that in each case, signif-
icantly faster learning results.

1. Introduction

Reinforcement learning is a popular approach to creat-
ing autonomous agents. In the RL framework, rather
than being explicitly programmed, the agent is allowed
to act in the environment, and receives numerical re-
wards at each step. RL algorithms attempt to learn
a policy that maximizes the total expected reward (or
some related criterion). Thus, the reward function im-
plicitly describes optimal behaviour. Conversely, given
any definition of optimality (or more precisely, a sep-
arable utility function on state–action trajectories),
there are infinitely many reward functions that are
consistent with it. As practitioners have long recog-
nized, the choice of reward function can have a strong
effect on how long it takes to learn an optimal pol-
icy (Mataric, 1994; Alstrom, 1998). Intuitively, a good

This work has been submitted as an MIT technical report
as a proof of authorship. It is possible that it has been
superseded by later conference or journal papers. Please
check for the existence of these on my home page before
citing this particular version.

reward function is one that gives the agent useful feed-
back about an action soon after it is performed. In
many goal-based problems, however, the most obvious
reward function is the one that gives a reward upon
reaching the goal state, and either discounts the fu-
ture or charges a cost for each nongoal state. Such a
reward function gives very delayed feedback, leading
to slow learning. This realization led to the idea of
a shaping reward added on to the original one, which
rewards intermediate progress towards the goal. (Ng
et al., 1999) proved the basic theoretical result that
a shaping reward preserves the optimal policy if and
only if it can be written as a difference of some poten-
tial function evaluated at the source and destination
states.

Unfortunately, all the above approaches require as in-
put either a shaping function or a potential function.
These quantities, which will usually depend on the nu-
merical magnitude of total expected rewards, are not
always easy for the system designer to estimate. Fur-
thermore, consider the transfer learning setting, where
an agent makes use of experience in one problem to
learn faster on a second. One might imagine using
shaping rewards as a mechanism for transfer. But,
even in MDPs that are “structurally” similar, the ideal
potential function, which equals the true value func-
tion, might be quite different. In Section 3, we show
a way around these problems. Our algorithm takes as
input a state abstraction function. This could, for ex-
ample, be represented by a list of the state variables
that are considered most relevant to the task. It also
accepts a set of temporally abstract actions (although
this is optional). It then solves the resulting abstract
MDP, and uses its value function as a potential.

Next, we consider the class of multieffector environ-
ments, in which the overall agent is decomposed into
units and an action is a vector containing a com-
mand to each unit. Recent theoretical and practical
work (Bagnell & Ng, 2006; Russell & Zimdars, 2003;
Schneider et al., 1999) suggests that learning in such
domains can be sped up given an additive reward de-
composition across units; intuitively, such a decompo-
sition lets each unit know the portion of the observed
rewards for which it was responsible.

Automatic shaping and decomposition of reward functions

Additive reward decompositions are often easy to spec-
ify if the activities of the different units are fairly inde-
pendent. If, on the other hand, the units are working
towards some joint goal, there may be no appropri-
ate decomposition. In Section 4, we first argue that
even if the original reward function cannot be usefully
decomposed, a shaped version of it often can. Such de-
compositions are rarely exact, so we describe an algo-
rithm that finds the best approximate decomposition
in a linear family.

2. Markov Decision Processes

We use the standard Markov decision process (MDP)
formalism for representing fully observable environ-
ments (Bertsekas & Tsitsiklis, 1996). Here are our
notation and assumptions. We define an MDP to be a
5-tupleM = (S,A, P,R, d) where S is a set of states, A
is a set of actions, P (·|s, a) is the transition probability
distribution upon doing action a in state s, R(s, a, s′)
is the resulting reward, and d(·) is a probability dis-
tribution over the initial state. A (stationary) policy
is a function on the state space such that each π(s) is
an action, or more generally, a probability distribution
over actions. We work with undiscounted value and Q-
functions. 1 To ensure well-definedness, we make the
usual assumption that the MDP has at least one pol-
icy that is proper, i.e., eventually reaches a terminal
state with probability 1, and every nonproper policy
has value −∞ at some state.

3. Learning shaping functions

3.1. Background

Reward shaping refers to the practice of replacing the
original reward function of an MDP by a shaping re-
ward R̃(s, a, s′) in the hope that this will make the
problem easier to solve. Let M̃ be the modified MDP,
and Ṽ refer to the value function in M̃. One would
like to know what types of shaping reward functions
preserve the optimal policy of the original problem.
(Ng et al., 1999) answered this question by showing
that if there exists a potential function Φ(s) such that
R̃(s, a, s′) = R(s, a, s′) + Φ(s′) − Φ(s), then, for any
policy π, Ṽ π(s) = π(s) − Φ(s). In particular, (near)
optimal policies in M̃ correspond to (near) optimal
policies in M. The condition is also necessary: given
any shaped reward that does not correspond to a po-
tential, there is some set of transition probabilities for
which optimal policies in the shaped MDP are subop-
timal in the original problem.

1The results can be extended to the discounted case as
well.

Having characterized when shaping is correct, the next
question is when and how it speeds up learning. (Ng
et al., 1999) argue that the ideal shaping function is
based on the potential Φ = V . In this case, the value
function in the shaped MDP is identically 0, which we
might expect to be quite easy to learn. Shaping also
reduces the amount of exploration required. (Laud &
Dejong, 2003) analyse the benefits of shaping in terms
of the horizon, which is a bound on how far one has
to look ahead to act near-optimally. They provide an
algorithm that finds an optimal policy while essentially
only exploring the portion of the state space that is
visible within the horizon of states occurring on an
optimal trajectory. A shaping function is therefore
capable of speeding up learning if the shaped MDP has
a short horizon. For example, using the value function
as a potential leads to a horizon of 1.

3.2. Our approach

Existing approaches to shaping require the shaping
function or potential function to be provided as input.
These quantities are based on the numerical magni-
tude of total rewards, and may be difficult to estimate.
We would therefore like an algorithm that takes input
of a more qualitative nature.

The ideal shaping function is the value function, but
this is as hard to compute as the optimal policy. Our
approach is to find an approximation to the true value
function by solving a simpler abstract problem. Given
an MDP M with the usual notation, let z be a func-
tion that maps each state s to an abstract state. We
will identify an abstract state z with the set of states
that map to it. Also, let O be a set of temporally
abstract options (Sutton et al., 1999) where, for our
purposes, an option o consists of a policy πo and a ter-
mination set Go ⊂ S. Given an option o, define the
transition probability P (s′|s, o) where s′ is obtained
by doing actions according to o starting at s until a
termination state of o is reached. Similarly, define the
reward R(s, o) to be the expected total reward until s′

is reached.

The set of options O thus defines a new MDP over the
original state space, in which the action set is replaced
by O. We would like to turn this into an MDP over the
abstract state space. To do this requires finding a way
of weighting the states that correspond to a given ab-
stract state. Consider a policy π that always chooses
an option uniformly at random. π results in a distribu-
tion P(ω) over state trajectories ω = (s0, s1, . . . , sT)
corresponding to sampling from the initial state dis-
tribution d, then following π until termination. Note
that the trajectories only include the terminal states of

Automatic shaping and decomposition of reward functions

the options, and not the intermediate states. Let the
random variable Cx(ω) denote the number of times
some state or abstract state x occurs along ω. We can

now define the weight ws of s in z to be EP [Cs]
EP [Cz] . In

words, the weight of a state is the proportional to its
expected frequency of occurrence.

Definition 1. The abstract MDP corresponding to an
MDP (S, A, P , R, d), state abstraction z, and option
set O is defined as M̄ = (S̄, Ā, P̄ , R̄, d̄) where:

• S̄ = z(S)
• Ā = O
• P̄ (z, o, z′) =

∑
s∈z ws

∑
s′∈z′ P (s′|s, o)

• R̄(z, o) =
∑

s∈z wsR(s, o)
• d̄(z) =

∑
s∈z d(s)

Algorithm 1 Potential function learner. z is a state
abstraction function, O is a set of options, and T is a
nonnegative integer. The update procedure on line 9
maintains a simple running average, and assumes that
unseen state–action pairs lead to a dummy terminal
state with a very negative reward.

1: function Learn-Potential-Function(z, O, T)

2: Initialize transition, reward estimates P̂ , R̂
3: repeat
4: s← current environment state
5: Sample o randomly from O
6: Follow option o until it terminates
7: s′ ← current environment state
8: r ← be the total reward received while doing o

9: Update P̂ , R̂ using sample (z(s), o, r, z(s′))
10: until T actions have been taken in the environment
11: Solve MDP M̂ = (z(S), O, P̂ , R̂) exactly

12: return value function of M̂
13: end function

Algorithm 1 estimates the abstract MDP from sam-
ples, then solves it using, e.g., policy iteration. We will
show experimentally in Section 3.3 that even when the
original MDP is very large, the abstract MDP can be
made small enough to solve feasibly. The algorithm
satisfies the following consistency property:

Theorem 1. In finite MDPs, as the number of sam-
ples T tends to ∞, the potential function returned by
Algorithm 1 when run in an MDP converges almost
surely to the value function of the corresponding ab-
stract MDP.

Proof. (sketch) The estimated transition and reward
distributions converge almost surely to those of the
abstract MDP (for the same reason that importance
sampling converges). In the finite case, the conver-
gence is also uniform. The value function depends
continuously on the MDP parameters in nondegener-
ate cases, so it converges as well.

One can also show that if the option set allows near-
optimal behaviour, for example, if it includes the prim-
itive actions, and if the state abstraction approxi-
mately respects the transition and reward functions
of the original MDP, i.e., z is an approximate model-
irrelevance abstraction (Li et al., 2006), then the re-
turned potential function will be close to the true
value function. Regardless of the accuracy, though,
the shaping rewards will always preserve optimality
because they are based on a potential function. A
poor set of abstractions will only affect the sample
complexity.

Several extensions to the basic algorithm are possible:

• The procedure could be run in parallel with a
control learning algorithm, and the learnt opti-
mal policy could be used as one of the options, so
that the potential function will gradually become
a better estimate of the true value function.

• If no options are available, it is always possible
to use a trivial option that randomly chooses an
action and terminates in one step.

• Any approximate planning technique, e.g., value
function approximation, can be used to solve the
abstract MDP more efficiently.

• The method can be applied to partially observable
MDPs, so long as the abstraction is a function
only of observable quantities. In particular, given
a filtering algorithm, any function of the belief
state estimate, such as the most likely physical
state, can be used.

3.3. Experiments

Our goal in the experiments is to determine whether
the samples spent on learning a potential could have
been more usefully spent on standard reinforcement
learning. As a baseline, we use Q-learning with func-
tion approximation, which may seem superficially sim-
ilar to Algorithm 1 since both are learning an ab-
stracted value function. The test domain is the game
of Othello (VanEck & VanWezel, 2005). To turn Oth-
ello into a Markovian environment, we assume a fixed,
materialistic opponent who always makes the move
that captures the largest number of pieces. Reward
is only received when the game ends: 1 for winning, 0
for tying, and −1 for losing.

A qualitative piece of prior knowledge about this game
is that the squares on the edges of the board are most
valuable because they are difficult to capture; in par-
ticular, the corner squares can never be recaptured
once a player has occupied them. Define the advan-
tage of a player on a set of squares to be the number
of pieces of that player on that set minus the number

Automatic shaping and decomposition of reward functions

0 1 2 3 4 5 6

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Num steps learning

P
er

ce
nt

ag
e

w
in

s
ag

ai
ns

t g
re

ed
y

op
po

ne
nt

Q−learning + automatic shaping
Q−learning

Figure 1. Learning curves for Othello, averaged over four
runs. Each learnt policy was evaluated by playing 40 games
against a greedy opponent.

of opponent pieces on that set. We divide the game
into three equal-length phases, and the squares on the
board into four sets: corner squares, edge squares,
“precorner squares” (diagonally adjacent to the cor-
ner), and internal squares. For each phase, we have a
feature that equals the advantage on each of the four
sets, as well as a constant feature. The features all de-
pend on the board position immediately after the move
being considered. Second, we tried augmenting this al-
gorithm by first learning a potential function based on
a state abstraction that grouped together states hav-
ing like values of 1) the advantage on corner squares 2)
the phase of the game, and 3) the advantage on non-
corner squares (binned into five equal intervals). We
used two options, both of which terminate after one
step. The first picks a random move, while the sec-
ond makes a greedy move; typically, neither of these
will be optimal. Though the original game has about
1028 states, the abstract MDP has only 135 states, and
so can be estimated and solved reasonably well after
10000 moves, or about 300 games. If a state is en-
countered during Q-learning that is not present in the
abstract MDP, the shaping reward is just set to 0.

The results are shown in Figure 1. As soon as the
potential learning phase is complete, the shaped algo-
rithm jumps ahead of the unshaped one. Furthermore,
the dynamic range of the Q-values learnt by the un-
shaped algorithm is about two orders of magnitude
lower than it should be, whereas the shaped version
has learnt Q-values that appear to be plausible esti-
mates of future reward. 2 The reason for the differ-
ence in performance is that for unshaped Q-learning,
function approximation notwithstanding, information
only flows backward one step at a time from the final
position. In Othello, the corner squares often become

2Details to appear in full paper.

useful several steps after they are first occupied. The
potential learning algorithm is able to realize the value
of the corner squares quickly, as soon as it builds a rea-
sonable model of the abstract MDP.

4. Learning reward decompositions

4.1. Background

Many real-world MDPs have what might be termed
multieffector structure. Formally, a multieffector MDP
(sometimes also known as a cooperative multiagent
MDP) consists of:

• An MDP M;
• A set E of effectors;
• A function c on E , where c(e) denotes the set of

commands that may be sent to effector e;
• A function E from the state space of M to 2E ,

where E(s) denotes the set of effectors present in
state s. We further require that the set of actions
available at s equals

∏
e∈E(s) c(e), i.e., an action

at a state corresponds to giving a command to
each unit present in that state.

The terminology of effectors is borrowed from robotics,
but we use it more generally. For example, in a net-
work routing problem (Littman & Boyan, 1993), each
node would be considered an effector. E(s) would be
the set of nodes active in state s, and the set of com-
mands for a node would be the set of neighbours, so
on each step, each active node is commanded to pass
its current packet to one of its neighbours.

Several practical applications have used fully decen-
tralized learning algorithms for the case when the
reward function decomposes additively across effec-
tors (Schneider et al., 1999; Littman & Boyan, 1993).
(Russell & Zimdars, 2003) described a partially de-
centralized SARSA algorithm. Given a reward de-
composition R =

∑
e Re, the algorithm estimates Q-

components Qπ
e (s, a) = E[

∑
t re,t] where the expecta-

tion is over trajectories that begin by doing a in s then
following π. The algorithm is shown empirically to
work well when the individual Q-components can each
be approximated in terms of a small number of state
and action variables. (Bagnell & Ng, 2006) described a
centralized model-based algorithm whose sample com-
plexity is logarithmic in the number of effectors. The
bound applies to settings where the states and actions
decompose across effectors, each effector’s reward de-
pends only on its local state, and the local transition
models are not too tightly coupled. Overall, there is
plenty of evidence in the literature that reward decom-
positions are capable of improving sample complexity,

Automatic shaping and decomposition of reward functions

but only when each reward component is local, in some
sense, to a particular piece of the problem.

4.2. Our approach

We use a very simple navigation problem to build in-
tuition. The problem involves N robots, each on a
separate undirected graph. The MDP state factorizes
as s = (s1, . . . , sn), where each se is a node of the
corresponding robot’s graph. Each graph has a ter-
minal node σe, and the terminal state of the MDP is
(σ1, . . . , σn). Each robot is considered as an effector,
and the available commands for an effector e in a state
s are to move to any of the neighbours of se. A global
cost of −1 is charged per step.

Consider the case where there are two robots, each
robot graph is just the chain 0, 1, . . . , 10, 0 is the
terminal node, and the actions at nonterminal nodes
are L(eft) which moves towards 0, and R(ight) which
moves away from it. First, suppose we just use Algo-
rithm 1 where the state abstractor is the identity func-
tion. The learnt potential is then Φ(s) = −maxe(si).
Suppose action (R,L) is done in state (5, 10). Since
robot 2, which was further from the goal, moved in
the right direction, the potential value increases by 1,
and so a shaping reward of 1 − 1 = 0 is given. But
this ignores the fact that robot 1’s piece of the action
was suboptimal. Of course, in this particular state,
it doesn’t matter what robot 1 does, but the point is
that in a related state, such as (5, 2), robot 1’s action
does matter, and we have lost a chance to give useful
feedback.

On the other hand, suppose we try to decompose the
reward. An obvious choice of reward decomposition
is to have each Re = −1/n until the terminal state
is reached, but such a decomposition is unlikely to be
useful. For example, if we are using the decomposed
SARSA algorithm, each Q-component Qe(s, a) would
equal the distance to the goal of the furthest robot,
and so each component would depend on all the state
and action variables. We could instead only share the
−1 reward among robots that haven’t reached their
terminal node yet, but each Q-component will still de-
pend on the entire state. We could also just give each
robot a constant negative reward till it reaches its goal.
In this case, the Q-components will be local, but the
reward structure of the problem has been changed sig-
nificantly; for example, it will now be preferred to have
two robots finish in 10 steps and the third in 200 steps,
rather than having all of them finish in 100 steps.

The solution is to decompose the shaped reward func-
tion instead. The reward components have to add up
to 0 if the joint action is optimal, which requires each

effector action to be optimal, and −2 otherwise. Also,
we would like to be able to write, for each effector e,
Re(s, a, s′) = Re(se, ae, s

′
e). This leads to a linear sys-

tem with more equations than variables, and so it can
only be solved in a least squares sense. In the solution,
Re is about −.1 whenever effector e’s part of the move
is optimal, and −1.6 otherwise. Note that the reward
decomposition is not exact.

Algorithm 2 Reward decomposition learner. z is a
state abstraction function, O is a set of options, T ,
is a nonnegative integer, each fe is a function from
abstract states to a feature vector, and each ge is a
function from pairs (s, a) to a feature vector.

1: function Learn-Reward-Decomposition(z, O, T ,
{fe}, {ge})

2: Learn abstract MDP M̂ as in Algorithm 1 using z,
O, T .

3: Solve M̂, using linear approximation with the fea-
tures in each fe. Let αe be the weight vector corre-
sponding to fe.

4: Use the samples from step 2 to get a linear least
squares estimate of the original MDP reward function
in terms of the ge. Let βe be the weight vector corre-
sponding to ge.

5: Return weights (α, β) corresponding to reward
components Re(s, a, s′) = βe · ge(s, a) + αe · (fe(s

′) −
fe(s)).

6: end function

Algorithm 2 is based on the above idea. It applies to
general multieffector MDPs—unlike in the example,
the effectors need not be completely decoupled from
each other. It takes in, for each effector, a set of fea-
tures for the original reward function, and another for
the value function in the abstract MDP. The original
reward function is learnt using standard regression,
and the potential function is learnt using any algo-
rithm that finds a linear approximation to the value
function. Now, approximating the potential function
does not change the optimal policy, but approximating
the original reward function might, though the least
squares will try to minimize the L2 norm of the change
in the rewards. There have been previous bounds on
the loss due to approximating rewards (Singh & Yee,
1994), but none, to our knowledge, have dealt with the
undiscounted case, so we give a bound here.

Theorem 2. Let M be an MDP satisfying the condi-
tions in Section 2. Then there exists a constant C
depending only on the transition model of M, and
ε0 > 0, such that for ε < ε0, if a modified MDP M′

with ‖R′ − R‖∞ < ε is solved instead, the resulting
policy will be at most Cε from optimal.

Proof. For any proper policy π and state s, the time
till termination starting from s has exponentially de-

Automatic shaping and decomposition of reward functions

creasing tails, so its expectation is finite. Let H be an
upper bound on this expectation over all proper poli-
cies and states. Let R be the original reward function,
and R′ be such that |R − R′| < ε, and let V and V ′

be the corresponding value functions. Given π and s,
let T be the time till termination. By Markov’s in-
equality, P (T ≥ 2H) ≤ 1

2 . Repeating this argument,
P (T ≥ 2kH) ≤ 2−k. On any trajectory of length
less than 2k, the change in reward due to using R in-
stead of R′ is at most 2kε. Summing over trajectories,
|Vπ(s) − V ′

π(s)| ≤
∑∞

k=1 21−kkHε = 4Hε. So given
proper policies π and π′, the loss due to using π′ in-
stead of π increases by at most 8Hε when switching
from R′ to R. Also, for ε small enough, all improper
policies will continue to have reward −∞ given R′.
Thus the optimal policy π′ for the modified problem
has loss at most 8Hε relative to any policy in the orig-
inal problem.

Algorithm 2 will, if implemented naively (as we did
in our experiments), require space and time exponen-
tial in the number of effectors N . We can get around
this by using the algorithm of (Guestrin et al., 2003),
which takes in a DBN representation of an MDP, and
finds a linear approximation to its value function in
time polynomial in the DBN size, given bounds on the
treewidth. The abstract MDP learner would have to
be modified to take in the DBN structure and learn
the parameters.

The results of (Bagnell & Ng, 2006) imply that the
sample complexity of learning a good reward decom-
position is at least linear in N in the worst case. In
many problems of interest, such as search and rescue,
real-time strategy games, and Robocup, there is a rea-
sonable upper bound on N . In large MDPs of this sort,
our own practical experience 3 has been that state-of-
the-art RL algorithms can perform adequately without
a reward decomposition in situations with on the order
of a few dozen effectors; the bottleneck tends to be the
length of the planning horizon. On the other hand, for
MDPs where N is very large, such as sensor networks
or control of traffic signals, it would not be practical
to learn a reward decomposition using Algorithm 2.
Further prior knowledge would be needed, e.g., infor-
mation that allows inter-object generalization.

4.3. Experiments

For our experiments we used a navigation problem in
which four robots are navigating to a goal in a two-
dimensional grid with obstacles. There is a constant
cost of −1 per timestep. Only one robot may be in

3citation omitted for blind review

0 2 4 6 8 10 12 14 16

x 10
4

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

Num steps learning

T
ot

al
 r

ew
ar

d
of

 le
ar

nt
 p

ol
ic

y

Q−learning
Automatic shaping
Automatic decomposition

Figure 2. Learning curves for joint navigation problem av-
eraged over 20 trials. Each learnt policy’s reward was av-
eraged over 10 runs.

a given location at any time. We compared flat Q-
learning, automatic shaping, and automatic decompo-
sition. For automatic shaping, we used the state ab-
straction that mapped a state into the shortest path
distance of each robot from its destination. For the au-
tomatic decomposition, each robot had indicator fea-
tures for its distance to the goal. Thus, at the ab-
stract level, the problem is similar to the earlier exam-
ple, but in the actual problem, there are interactions
that must be taken into account. We used the decom-
posed SARSA algorithm (Russell & Zimdars, 2003) to
learn a Q-component for each robot. Each robot’s Q-
component depended only on its position and action,
and whether another robot was adjacent to the des-
tination square. Figure 2 shows the learning curves.
Both automatic shaping and automatic decomposition
eventually learn an optimal policy, while Q-learning
never does (the asymptote for automatic decomposi-
tion is slightly lower because it failed to find an optimal
policy on one of the 20 trials, and episodes were cut
off after 60 steps). The decomposed method learns
much faster, though—after the initial potential learn-
ing phase, its learning curve increases almost verti-
cally.

5. Related work

Aside from the references in Section 3, there have been
several recent papers on reward shaping. (Wiewiora,
2003) showed that in the case of tabular temporal-
difference using an advantage-based exploration pol-
icy, shaping using potential function Φ is equivalent
to initializing the Q-function as Q(s, a) = Φ(s). It
is not known to what extent the equivalence extends
to function approximation or multieffector learning al-
gorithms. (Konidaris & Barto, 2006) considered the
problem of transfer learning. In their approach, the

Automatic shaping and decomposition of reward functions

agent has an internal representation called an agent
space that is shared across environments. After solv-
ing a source environment, they use supervised learning
to project the value function onto the agent space, so
it can be used as a shaping reward in future environ-
ments. The agent space is analogous to an abstract
MDP, but their approach differs from ours in that
the numerical values are learnt in the source rather
than the target problems, which uses fewer samples
but requires that the environments are closely related.
(Laud & DeJong, 2002) solved a robotic walking prob-
lem using a dynamic shaping procedure, in which the
parameters of the shaping function were directly ad-
justed, in contrast to our method, which adjusts the
potential function. Their method requires an approxi-
mate quality function, which serves as a kind of higher
level shaping reward, to be provided as input.

Various types of abstract MDPs have been stud-
ied (Hauskrecht et al., 1998; Steinkraus & Kaelbling,
2004). These methods have typically been based on
directly solving the abstract MDP and bounding the
resulting loss in policy quality in terms of the accuracy
of the abstraction. In contrast, our method does not
sacrifice optimality; the abstraction accuracy will just
affect the speed of convergence. As a result, we can
be more aggressive about the abstractions, like in the
Othello example.

There is a large literature on distributed and cooper-
ative multiagent reinforcement learning. Most of this
work, e.g., (Littman & Boyan, 1993; Stone & Sutton,
2001) assumes that the reward decomposition is pro-
vided as input. (Chang et al., 2004) considers a decen-
tralized algorithm for partially observable multieffec-
tor problems, in which effector views the global reward
as a sum of its local reward plus an underlying Marko-
vian noise process, and estimates the local reward us-
ing a Kalman filter. The QUICR algorithm (Agogino
& Tumer, 2006) uses a decentralized Q-learning al-
gorithm, where each unit’s reward in the Q-learning
backup is defined as the amount by which the reward
would have decreased if the unit had moved into an
absorbing state instead of doing its part of the action.
A merit of QUICR is that it specifies a particular defi-
nition of what it means for a unit to be responsible for
a reward (with respect to a model that allows counter-
factual reasoning). But, unlike our approach, their def-
inition does not minimize the magnitude of the change
in the problem’s reward structure. For example, if sev-
eral units must cooperate to achieve a certain subgoal,
each one would receive the entire resulting reward. As
a result, the subgoal will seem more valuable than it
actually is in the context of the overall problem.

6. Discussion and Conclusions

Several interesting directions remain to be pursued.
There are two inputs to the potential function learn-
ing algorithm: the option set, and the state abstrac-
tion function. The learnt shaping function will work
best when the options allow near-optimal behaviour
(though even if the option set is very suboptimal, the
shaping rewards will often “point in the right direc-
tion”), and the state abstractions capture the main
distinctions made by the true value function. In a
transfer-learning setting, an abstraction function and
set of compactly described options could be induced
from a solution to a source MDP using methods like
those in (Yoon et al., 2002). It may also be possible to
use the method of (Konidaris & Barto, 2006) to guide
exploration when constructing the abstract MDP.

There are also strong connections to hierarchical re-
inforcement learning (Dietterich, 2000; Andre & Rus-
sell, 2002). In our examples, the abstractions are of-
ten based on state variables that correspond to higher
level tasks, while leaving out the low-level details. Au-
tomatic reward decomposition should also be useful
when the hierarchy allows concurrent tasks (Marthi
et al., 2005).

In this paper, we have presented two algorithms for re-
structuring reward functions to make a reinforcement
learning algorithm’s job simpler. The first learns a
shaping function, so that rewards occur closer in time
to the actions that cause them. The second learns a
reward decomposition, so that rewards are assigned to
the effectors responsible for them. These quantities are
learnt based on input knowledge of a qualitative na-
ture. We believe, therefore, that the algorithms repre-
sent a step in the direction of completely autonomous
reinforcement learning systems.

References

Agogino, A., & Tumer, K. (2006). QUICR-learning for
multi-agent coordination. AAAI 2006.

Alstrom, J. R. . P. (1998). Learning to drive a bicycle
using reinforcement learning and shaping. Proceed-
ings of the 15th International conference on machine
learning.

Andre, D., & Russell, S. J. (2002). State abstraction
for programmable reinforcement learning agents.
Proceedings of the 17th National Conference on Ar-
tificial Intelligence (pp. 119–125).

Bagnell, J., & Ng, A. (2006). On local rewards and
scaling distributed reinforcement learning. Neural
Information Processing Systems. MIT Press.

Automatic shaping and decomposition of reward functions

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Athena Scientific.

Chang, Y.-H., Ho, T., & Kaelbling, L. P. (2004). All
learning is local: Multi-agent learning in global re-
ward games. In S. Thrun, L. Saul and B. Schölkopf
(Eds.), Advances in neural information processing
systems 16. Cambridge, MA: MIT Press.

Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the MAXQ value function decompo-
sition. Journal of Artificial Intelligence Research,
13.

Guestrin, C., Koller, D., Parr, R., & Venkataraman,
S. (2003). Efficient solution algorithms for factored
MDPs. Journal of Artificial Intelligence Research,
19, 399–468.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean,
T., & Boutilier, C. (1998). Hierarchical solution of
Markov decision processes using macro-actions. Pro-
ceedings of the fourteenth conference on Uncertainty
in Artificial Intelligence (pp. 220–229).

Konidaris, G., & Barto, A. (2006). Autonomous shap-
ing: knowledge transfer in reinforcement learning.
Proceedings of the 23rd international conference on
Machine learning.

Laud, A., & DeJong, G. (2002). Reinforcement learn-
ing and shaping: Encouraging intended behaviors.
ICML (pp. 355–362).

Laud, A., & Dejong, G. (2003). The influence of re-
ward on the speed of reinforcement learning: An
analysis of shaping. Proceedings of the 20th inter-
national conference on machine learning.

Li, L., Walsh, T., & Littman, M. (2006). Towards a
unified theory of state abstraction for MDPs. Pro-
ceedings of the ninth international symposium on AI
and mathematics.

Littman, M., & Boyan, J. (1993). A distributed re-
inforcement learning scheme for network routing
(Technical Report). Carnegie Mellon University,
Pittsburgh, PA, USA.

Marthi, B., Russell, S., Latham, D., & Guestrin, C.
(2005). Concurrent hierarchical reinforcement learn-
ing. IJCAI 2005.

Mataric, M. J. (1994). Reward functions for acceler-
ated learning. ICML 1994.

Ng, A., Harada, D., & Russell, S. (1999). Policy invari-
ance under reward transformations: Theory and ap-
plication to reward shaping. Proceedings of the 16th
International Conference on Machine Learning.

Russell, S., & Zimdars, A. (2003). Q-decomposition
for reinforcement learning agents. ICML 2003.

Schneider, J., Wong, W., Moore, A., & Riedmiller,
M. (1999). Distributed value functions. Proceed-
ings of the 16th International Conference on Ma-
chine Learning (pp. 371–378).

Singh, S. P., & Yee, R. C. (1994). An upper bound on
the loss from approximate optimal-value functions.
Machine Learning, 16, 227–233.

Steinkraus, K., & Kaelbling, L. (2004). Combining
dynamic abstractions in large MDPs (Technical Re-
port). MIT.

Stone, P., & Sutton, R. S. (2001). Scaling reinforce-
ment learning toward RoboCup soccer. Proc. 18th
International Conference on Machine Learning (pp.
537–544). Morgan Kaufmann, San Francisco, CA.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Be-
tween MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artifi-
cial Intelligence, 112, 181–211.

VanEck, N., & VanWezel, M. (2005). Reinforcement
learning and its application to Othello (Technical
Report). Erasmus University.

Wiewiora, E. (2003). Potential-based shaping and Q-
value initialization are equivalent. Journal of Arti-
ficial Intelligence Research, 19, 205–208.

Yoon, S. W., Fern, A., & Givan, R. (2002). Induc-
tive policy selection for first-order mdps. Proceed-
ings of the 18th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-02) (pp. 569–57). San
Francisco, CA: Morgan Kaufmann.

