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Abstract

In this thesis, we designed a formal language, called Trane, for describing prediction problems
over relational datasets, implemented a system that allows humans to specify problems in
that language, and allows them to build models that solve them using real data. We show
that this language is able to describe all 54 prediction problems on the Kaggle data science
competition website[14] and so is comprehensive.

The implemented system consists of a web application connected to a server-side inter-
preter, which translates input from the web application into a series of transformation and
aggregation operations to apply to a dataset in order to generate labels that can be used to
train a supervised machine learning classifier. Using a smaller subset of this language, we
developed software that enumerated 1077 prediction problems automatically for the Wal-
mart Store Sales Forecasting dataset found on Kaggle[16], and built models that attempted
to solve them, for which we produced 235 AUC scores.

The web application also allowed us to collect 157 ratings from humans on the mean-
ingfulness of randomly-generated prediction problems. We used these ratings along with
an enumeration of 6105 prediction problems and 7 datasets to train a collaborative-filtering
based recommendation system to propose meaningful prediction problems on new, unseen
datasets.
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Title: Principal Research Scientist
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Chapter 1

Introduction

In this thesis, we provide a framework for categorizing analytics problems, and an algorithm

for automatically generating these problems from raw data. We then provide a method for

identifying meaningful subsets of these problems from the large pool of possible ones, and

some initial results using both supervised and unsupervised learning techniques on a set of

590 data sets found online. Lastly, because our learning algorithm will only get better with

more training data, we present a web-based system that allows anyone to add their own data

set to our repository, which will then trigger an online update of our learning algorithm.

1.1 Motivations for prediction problem automation

Data science has traditionally been motivated from a top-down perspective. A data scientist

has a particular question she wants answered, and attempts to design a predictive modeling

question and apply algorithms to data in order to answer that question. Unfortunately, while

scientific in nature, this approach is increasingly taxing the data scientist’s time and effort

by requiring her to define the predictive question ahead of time. In our current data-clogged

world, where much more data exists than systems to make sense of it, this top-down way of

approaching data science is severely limiting its potential.

An alternative way of thinking about data science that lends itself well to automation

is that of solution-selection. Instead of relying on the human data scientist, whose time is

incredibly valuable, to produce the right questions to ask from raw data, we could instead

19



present her with all the meaningful questions up front, and, coupled with the ability to

automatically solve it, show her the solution. We could then ask her to pick questions from

these to study.

This way of thinking forces data science to automate, since it relies on machine under-

standing of data at a higher level than is currently the norm. An automated system would

need to know all the possible ways data is organized, and all the possible combinations of

data that an algorithm could model. Much more challenging, it would need to understand

what aspects of data are meaningful to humans, in order to reduce the solution space it

presents to a human data scientist.

Automating data science in this manner is currently possible, yet not yet adopted by

the scientific community. We believe this is because data science is still performed too

haphazardly. There is no agreed upon standard for data categorization. Instead, each

analytics problem is treated as a unique application, generally all the way up until it is ready

for machine learning (the quintessential feature matrix). Recent advances by the auto-ML

community have made generalization possible one step further, and have automated feature

extraction itself [18], [10]. However, the basic problem of identifying what types of questions

are meaningful to ask about data is strictly left to the human domain.

1.2 Outline of Thesis

In chapter 2, we describe prior research on data and dataset categorization, as well as mention

some notable limitations of the current literature and state of the field. We then proceed

to make formalized definitions of fundamental data science concepts that will help motivate

the later contributions.

In chapter 3, we introduce a language for describing prediction problems on time-varying

relational datasets. We call this language Trane, and it enables the definition of an almost

arbitrary set of questions to ask about data in this form, thus enabling brand new sets

of meta-machine learning algorithms that break away from the theoretical machine learning

researcher’s obsession with the numeric feature matrix. We describe two subsets of the Trane

language, called BigTrane and LittleTrane. BigTrane is a larger version of the language
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that enables the definition of almost any prediction problem that is meaningful to define.

LittleTrane is a much smaller subset that is much easier to present in a bite-sized form and

which is much easier to actually develop learning algorithms to learn common patterns in

the language. It still encompasses a large swath of possible prediction problems, including

the most common ones in the wild.

In chapter 4, we present a web application that allows humans to directly interact with

LittleTrane. We built a Interpreter for Trane, and include a backend feature-engineering

and machine learning library, so that users of the web application can interactively build

prediction problems using LittleTrane, and then simply click a button to run those problems

on a dataset and view the resulting AUC. As we will see in later sections, this system is

incredibly powerful, as it enables an entirely new form of interacting with and annotating

data. One important aspect of this is the ability for users to rate algorithmically generated

prediction problems, and to use these ratings as labels for performing machine learning on

the prediction problems themselves.

In chapter 5, we demonstrate the power of Trane on a real dataset: the Walmart Store

Sales Forecasting dataset available from Kaggle[16]. We generate hundreds of prediction

problems for each one, and then generate features and run these problems to investigate

their predictive accuracy.

In chapter 6, we show that automatically learning which prediction problems in Little-

Trane are meaningful is a tractable learning problem, and present an algorithm to solve it.

We call this algorithm Pernican. We also describe how we are able to use the web appli-

cation from section 3 to collect ratings from humans about which prediction problems in

LittleTrane are actually meaningful.

In chapter 7, we discuss our contributions as well as future directions in which to proceed

with this work.

21



22



Chapter 2

Laying the Groundwork: Data Set

Categorization

2.1 Prior Work

There is a dearth of formality with regards to defining what data fundamentally is and how we

store it at an abstract level. Formal definitions of data are needed at some level in the fields

of data mining, statistics, machine learning, and database management systems, as well as

others that are less relevant to this thesis. Database management systems (DBMS) research

references data at the level of abstraction needed for computer programs, and so defines

specific types that mirror programming language types (i.e. integers, floating point numbers,

strings, dates, etc.) [30]. This is very close to the level of abstraction we will be working with

in this thesis. DBMS also introduced a concept called the Entity-Relationship model, which

helps define database schema that can then be translated to a canonical relational database

[9]. Relational databases are ubiquitous, and lend themselves well to analytics problems

because they can easily be translated into a single data matrix that machine learning and

statistics problems always assume as input [43]. Machine learning and statistics textbooks

typically brush over real definition of the nature of data, and skip right to application-specific

data sets, where the data is either a standard feature matrix where each row corresponds to

a unique entity and associated attributes [39]. In many cases they will go one step further

and define the difference between numeric and categorical data, and for application-specific
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research like Natural Language Processing or Computer Vision they will assume data to be in

strings of words or matrices of pixels [24], [37]. Smola [35] does a particularly comprehensive

job at describing fundamental data types before diving into math and algorithms. Data

mining textbooks come closest to the formal definitions and characterization of data that is

necessary to build up a structure and language to describe analytics problems. Aggarwal

[3] provides the best introduction we have found to data and data set characterization.

The textbook carefully describes the entire data mining process, from data collection to

interpretation of analytical results, and carefully describes the differences between data types,

and between data sets that include dependencies between entities. We will first build on the

definitions laid out by Aggarwal.

2.2 Fundamental Data Types

Fundamentally, structured data consists of one or more variables of definite types. While

these types can in theory all be represented as binary strings of information, we can apply

standard human categories that work in almost all cases. These categories are presented in

the following table. There are two base types: Numeric and Categorical, sometimes called

Quantitative and Qualitative. Different authors differentiate the two in different ways[44],

[3]. Generally, Numeric data is defined as that with a definite ordering, such as numbers

in R. Sometimes this type is instead labeled Continuous and so does not include integers,

which would fall into the Categorical class [44]. However, in this thesis both integers, and any

ordered type that can be represented by numbers fall into the Numeric class. Categorical

values are those that are distinct, and do not have a natural ordering. An example of

categorical set is the set of items purchased at a grocery store. There may be similarities

between different items, but there is no intuitive ordering between them. Clearly we could

be more precise about these categories, and discuss the fundamental mathematical relations

between pairs of items but for our purposes that is unnecessary.

From these, we can derive other, possibly compound, types that mirror some aspect

of the real world. For instance, we define a date/time type, which is just a numeric type

that acts as a time axis. Similarly, we can define a spatial type, which consists of pairs
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of numbers (latitude & longitude) that act as a location axis. We also define a text type,

which is an ordered sequence of categorical values, each representing a character in a human

natural language. We could go on and define Image, Video, and Audio types, and continue

to build up more and more complex types, but for our use case in understanding the types

of questions that are asked about data these are unnecessary. We restrict ourselves to

Numeric, Categorical, and Date/Time, leaving out Text-based data for simplicity as well as

the spatial type mentioned above out because we will be focusing on temporal prediction

problems, which are more natural than spatial prediction problems due to the inherent arrow

of time that prevents prior knowledge of the future.

1. Numeric

-subtype: integer, real number, complex number

2. Categorical

-subtype: general, boolean, hash-string

3. Date/Time

-desc: numeric type as a time axis

4. Text

-desc: natural human language like English

2.2.1 Theoretical Aside: Implied Data Dependencies

Another way to think of the more complex types (and indeed, the order present in numeric

types as well) is in terms of implied dependencies between values [3]. At the simplest level

we have standard categorical data, which can only be represented numerically as completely

orthogonal one-hot vectors of dimension 𝑑, the total number of elements. There is no relation

between each value. Every other type comes about due to an added implied dependency

between values. The numeric type includes prior information about the ordering of elements,

and in the case of the real numbers and the integers, the distances between each element.

Another common dependency is the graph model, where different values have arbitrary

relationships defined as (potentially directed or weighted) connections between them. For
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instance, a social network data set contains undirected, generally unweighted connections

between individual values which can be thought of as nodes in the graph.

These relationships can be arbitrarily complex. Since we restrict ourselves to temporal

predictions problems, we do not consider arbitrary dependencies between data, though that

could be a good direction for future work. The data we work with must fall into the three

types defined above- numeric, categorical, date/time.

2.3 The Relational Dataset

For the context of this thesis, we also restrict ourselves to data that can be represented

relationally. Let us define relational data as data that can be represented in table-like

structures, linked by numeric indices or categorical hash-strings serving as the "relations".

Each table contains a definite number of columns, each with a predefined data type, and

an indefinite number of rows, where each row contains not more than one value for each

column [9]. The vast majority of information collected today to be used for data science,

aside from audio, images, and video, can be represented relationally, even though it may

not be stored that way [30]. Much of the useful information for data mining and analytics

from web logs, key-value databases in a NoSQL format, and raw documents can be extracted

from these databases into relational tables [4]. Relational datasets works well as a bridge

between storing data collected from the real world and providing a numerical matrix as input

to machine learning applications.

For the purposes of this thesis, we also distinguish between datasets and databases. From

now on, a dataset is defined as a set of schema for organizing data as well as the data itself,

while a database is a particular stored instance of that data in a database management

system on a computer somewhere. We mainly deal with the more abstract dataset for the

rest of this thesis.

2.3.1 Relational Entities

In dealing with relational datasets, we can also define the notion of an entity [9], [30]. An

entity is a categorical column representing some distinct object or idea. This definition is
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purposefully vague, because almost any categorical column can be thought of as an entity.

In most cases, the designer of the data set had some subset of columns in mind as those

representing entities, and thought of the rest of the columns as descriptive features of the

entity, potentially changing in time. Entity instances are defined as the values present in

that entity column. An example makes this concept more clear.

Date
2010-2-5
2010-2-12
2010-2-19

....

Temperature
42.31
38.51
39.93
....

Fuel-Price
2.572
2.548
2.514
....

CPI
211.096
211.242
211.289

....

Type
A
B
A
....

Size
151315
202307
37392

....

Store
1
1
1
2
2

Date
2012-2-5
2010-2-12
2010-3-5
2012-2-5
2012-2-12

Dept
1
1
2
1
1

Weekly-Sales
8112.27
28176.35
16244.14
916.25
1426.47

Store
1
2
3
....

Stores Features

Sales

Store
1
1
1
....

Figure 2-1: Simplified version of the Walmart Store Sales forecasting dataset, with links
connecting columns in different tables. Store and Dept are both entities, and the Store
entity connects all three tables together. The Date column defines a time axis, which we can
use for prediction.

Entities can function as identifiers or keys, and in general some combination of entities

and a time axis should uniquely identify a table. In the Walmart dataset in 2-1, the Store

entity uniquely defines the Stores table, the Store entity and Date column uniquely identify

the Features table, and the Store entity, Dept entity, and Date column uniquely define the

Sales table. Entities also provide the relationships between tables. Each Store entity in the

three tables above describe the same underlying values, namely different physical Walmart

stores. Each row in the Sales table describes the Weekly Sales for a given week, store, and

department. By consulting the row in the Stores table with the same value for the Store

column, we can find additional information about that store, such as its size.
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2.3.2 Squashing Relational Tables Together

A nice property of relational datasets is that multi-table datasets are no more expressive

than single-table datasets. Any multi-table dataset can be "squashed" into a single, larger

table by following relational links [9], [30], [41]. Furthermore, thinking about data in terms of

a single-table matrix lends itself well to machine learning problem formulation, and indeed is

how almost all of the input data in the literature is defined [24], [43]. Multi-table datasets are

more desirable for storage due to their ability to reduce redundancy, and when redundancy

is eliminated, these tables are referred to as a normalized dataset. Similarly, a redundant,

single-table version is called denormalized [41], [9].

We will not describe denormalization algorithms in detail that enable the conversion from

a multi-table format into a single-table one, and instead refer the reader to [33]. However,

for simplicity we will generally refer to denormalized single-table datasets in this thesis.

2.4 Classes of Expressive Power

Traveling further in our categorization of data, we can separate relational data sets by their

expressive power, which fundamentally reduces to the number of entities and time axes.

Object Descriptions: Single Entity, No Time Dependence

The simplest case is a dataset with only a single entity, and no time axis. Intuitively,

this type of dataset is a list of things (objects, concepts, or basically anything that can be

represented by a noun), and columns describing that thing (think of these as adjectives).

Call the dataset consistent if each entity is on its own row, because any duplicate rows are

unnecessary, and non-duplicate rows of the same entity contain competing descriptions. If

the descriptive column is allowed to contain multiple values for the same entity, then it can

instead be represented as multiple columns with a single value for each entity.

The only type of supervised machine learning we can define on this type of dataset is a

classification or regression over operations on the values in each row, possibly with a filter

to specify which rows to include in the learning algorithm. The simplest case is that of

predicting a binary descriptive column for each entity instance, effectively each row in this
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Fruits Glycemic Index Average Weight (lb) Average Width (cm) Tons Consumed per Year
Apple 39 0.33 8.0 80.8𝑒106

Table 2.1: Fruits schema

case. A more complex case is a series of operations defined over each row. Imagine the

schema is defined as in 2.1.

A more complex problem could be defined as predicting whether the following equation

is greater than 1
2
:

√︀
Glycemic Index2 + Average Weight2 + Average Width2

Pounds Consumed per Year

This problem is probably totally meaningless, but is well-defined, and it is easy to think

of simpler, more meaningful problems, such as predicting the Pounds Consumed per Year

column. In English, we label the verb associated with identifying unknown data as predict,

yet here we are not exactly predicting since there is no time-component. A better verb is

classify, and indeed that is why these problems are called classification problems.

To be complete, we could add one more level of complexity by allowing operations over

all the values for a single column. However, these operations would operate over multiple

entity instances and could potentially violate the ability to separate the data into training

and testing sets for accurate estimations of the true error, and in deployment we would have

no way of applying these operations except on the data already seen. For instance, a common

operation that does this is normalization, where the values of each column are normalized

to the interval [0, 1]. This is impossible to do if the maximum or minimum is unknown. We

ignore these types of operations for the rest of this thesis, although later on we do define

operations over multiple rows and columns, but for individual entity instances.

Graph Descriptions: Multiple Entity, No Time Dependence

A slightly more expressive dataset is one that contains multiple entities in the table. In

this case, a consistent data set is one in which in each combination of entities is a unique

row. We call this kind of dataset a graph description since it describes both attributes of

the entities themselves as well as connections between entities. There are a few additional
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User Movie Rating
1 Honey, I Shrunk the Kids 5
1 Pitch Perfect 2
1 Inception 4
2 Shawshank Redemption 1
2 The Godfather 1
2 Pitch Perfect 5

Table 2.2: Multiple entity table: Users and Movies.

complexities introduced by this type of dataset in terms of defining prediction problems.

The first is which entity to define the problem over. If defined for a single entity or for

a combination of entities fewer than the total number of entities, then all of the rows for

each instance of that entity (of which there are multiple now that the uniqueness of a row is

determined by all of the entities) need to be aggregated together in some way. This could be

through a sum, an average, a separation into multiple columns, or some thing more complex.

However, if the problem is defined for a combination of all the entities (i.e. if there are two

entities E1 and E2, then each instance is a unique combination of an E1 value and an E2

value). If the additional entities are aggregated into a list, then one can define another type

of machine learning problem: that of recommending instances of other entities. Without

loss of generality, if the problem is defined for a single entity, then for each additional entity,

one can recommend instances not present in the main entity instance’s list. For instance

consider the classic problem of movie recommendation, made famous by the Netflix prize

[19]. We show a visualization of the dataset in 2.2. The task is to recommend movies for

each user. There are thus two entities, users and movies. A (user,movie) pair is present in

the dataset if the user has rated that movie. We can aggregate over each movie the user

has rated to produce a list of movies and ratings, and use that list to recommend additional

movies that we determine the user would rate highly.

We still do not consider this predictive analytics even though we are inferring movies

that the user would rate highly. If there was an additional time column detailing the time

at which the user rated the movie, then this we could predict future ratings and this would

become a prediction problem.
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Simple Time Series: Single Entity with Time Dependence

An even more complex case is one where we consider one of the columns as a time axis. Now

we have the power to predict values for an entity at future points in time. Current values and

the way they are distributed in time can be used to build a model of the underlying time-

dependent distribution of the data points, and if we assume continuity of the mechanism

for that distribution in time, then we can use the model to predict future values (results

from the online learning community show that we even model time-distributed data when

the data generation mechanism changes over time, [7].

A consistent time-dependent single-entity data set is one where each combination of entity

instance and time point is a unique row. That is, each instance can have multiple values so

long as they are each unique points in time. If we aggregate all the timestamped rows for a

single entity instance into a single row, we regress to the simple object description case and

can perform correlative classification and regression.

In this thesis we neglect the possibility of multiple time axes because only one will be

considered the predictive axis. Different time axes can be used for different entities, but

considering multiple axes as orthogonal makes little intuitive sense for prediction (i.e we live

in a world with a single time axis).

Dynamic Graph Description: Multiple Entities, Time Dependence

The final case is where the data set contains multiple entity columns as well as a time axis.

A consistent time-dependent multi-entity data set is one where each combination of time

point and an instance of each entity is a unique row. In this case we can think of the dataset

as a dynamic graph, where each row identifies connections, or links in the graph, between

entities. These connections change over time according to the time axis.

In this case, we could regress to the stationary graph description model by combining all

the rows for each combination of entities into a single row and performing classification or

regression on some operation of the columns. We could choose a single entity and aggregate

the rest of the entities and descriptive columns in some fashion to regress to the single entity,

time dependent model.
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An interesting problem that arises form data in this form is recommendation, where we

select an entity, and for each instance of that entity we predict which instances of other

entities we believe will be associated with the original entity instance in the future. For

instance, the dataset might contain entities for users and movies, and for each pairing it

contains a rating indicating the rating that the user gave to the movie, and a timestamp.

We can use past ratings of a user, as well as the ratings of other users, to predict which

movies the user will rate highly in the future, and thus recommend those movies to the user.

2.4.1 Predictive vs. Correlative Analytics

The classes of expressive power of a data set described above limit the types of analytics

problems that can be performed over that data set. More concretely, we define two classes

of analytics problems: correlative and predictive.

Any of the above-mentioned relational data sets can be used to perform correlative ana-

lytics, which ignores implied dependencies between rows other than simple case of numeric

data (in the context of this thesis this dependence between rows means a time-axis, since we

are not considering spacial- or graph-type data). Correlative analytics consists of predicting

attributes of an entity. These attributes can be derived from multiple operations over the

data set and need not be present in their own right as columns in the data set. However, this

type of problem assumes a stationary data set. The distribution of the underlying data does

not change in time, and so we cannot predict multiple values of the same attribute for the

same entity. In data sets that include a time axis, the attributes for which the correlative

analytics problem is looking for need to be stationary values that do not depend on time.

These can be actual columns that remain the same for any one entity across time, or can be

some derived aggregate value that is assumed to be constant, such as the mean or maximum

of a value across time.

Only data sets with a time axis can be used for predictive analytics. Predictive analyt-

ics problems are ones where known values of a single entity are used to predict unknown

(generally future) values of the same entity. In predictive analytics we need not assume

the underlying distribution of the data is stationary, and we can actually model the way it

changes in time. Many times we will not need to (for instance if we assume an I.I.D. gen-
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erating process for the data), but we can if we feel inclined. There are more subtleties and

complexities associated with these types of problems, and in general we can easily regress to

the stationary, correlative case using a simpler, modified version of the language and automa-

tion described later in this thesis. Therefore, from here on we only consider the predictive

case.

Theoretical Aside: Different Types of Predictive Axes

A theoretical issue at play here is the notion of general human intuition for data and how

it affects the way we collect and understand data sets. Theoretically any numeric column,

column with an implied dependency, can be used as an axis for performing predictive an-

alytics [5]. Our assumption behind the ability to predict unknown (larger) values on the

axis is the underlying continuity of the data-generating mechanism, or at least the ability

to model the change of the mechanism using known data. This assumption holds in the

time domain in many cases because of the real-world "arrow" of time. It also may hold in a

graph domain, where individual data points are connected arbitrarily through nodes, when

that graph represents real world networks like connections between humans or or groups of

people. An example where it might not hold at the scales and applications we typically care

about is the space domain. To illustrate this, let us run through an example of where the

continuity assumption holds and does not hold for the time and space domains.

First, we start with a data set recording levels of traffic on major highways in a city.

Because the number of cars passing through any one location over the course of a day or

a week is a function we can model that will probably remain more or less constant longer

scales of time (like over multiple months or years), we can use the time axis as our predictive

axis and predict future levels of traffic in say, one month’s time.

In the space domain, the equivalent problem is using the number of cars that pass through

one stretch of highway over time to estimate the number of cars that pass through a different

stretch of highway over time. In this case, the numbers of cars passing through the two

highways are probably not highly correlated and so the continuity principle does not hold.

It would hold if these stretches of highway were part of the same road or were very close to

each other.
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Clearly, there are cases where different predictive axes can be used, and cases where

the standard time axis is not useful for predictive analytics, but those cases are much less

ubiquitous or useful to automate in the data science community. Hence for this thesis, we

restrict ourselves to the time axis.

2.5 Predictive Analytics: The Prediction Problem

At the core of predictive analytics is the actual question being asked. That question typically

takes the form of:

"What quantities can we predict in the future, given the data at hand?"

From here on, we refer to this question as the prediction problem. We would like to

formalize the structure of this problem, automatically generate many of them, and learn

which ones are meaningful. As a first step, we define here the attributes that make up a

prediction problem.

2.5.1 Feature-Generating and Label-Generating Data

we need an entity column along with attributes that change over time. For each entity, we

predict some future value, which could be the value of one or more attributes or an operation

on some subset of all the attributes. Typically these problems require building a model that

is trained via supervised learning [5]. Therefore, we need to define operations that split

our dataset into two parts: features and labels. We assume both features and labels can

be computed from columns in the data, and furthermore that both of them are computed

from multiple rows of data, due to the time dependence. Therefore, we need to define one

or more periods in time to use as label-generating data, and for each of these periods we

also define earlier blocks of time to use as feature-generating data. We can usually think

of this separation as that of a cutoff point, potentially defined uniquely for each entity,

where rows with a timestamp that belongs to the period of time prior to the cutoff point is

set aside as feature-generating data, and rows with a timestamp after the cutoff is used as

label-generating data. There may also be a lead time defined, where some amount of data

near the cutoff point is left out and not used for either feature- or label-generation.
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In some cases it may make sense to periodically hold out data, and break up entities into

multiple (feature, label) row pairings. As an example, imagine heart-rate ECG data, where

we want to build a model that can predict heart-beat frequency in one hour’s time. The scale

of recordings allow entities to be broken up over longer periods of time. We may split up

the data into periods of three hours at a time, so that we can use the first hour to generate

features, the third hour to generate labels, and the second hour as ignored lead-time data.

2.6 What sorts of things can we predict?

The data science literature typically describes three types of supervised time-sensitive pre-

diction problems: regression, classification, and recommender systems (one can argue that

reinforcement learning is also time-sensitive but it is not predictive in the same way) [6],

[5], [40], [24], and [35]. Regression problems consist of predicting numeric values; classifica-

tion problems consist of predicting categorical values; recommendation problems or systems

consist of predicting subsets of entities, possibly with an ordering defined on them. These

are not specific enough for our use case, as we want to be able to generate many different

prediction problems per data set.

As first step, we present a hierarchy of prediction problems in 2-2 based on the values we

are predicting. Each of these problems is defined for each entity instance. For instance, if the

entity column is "Houses", and we are predicting a numeric variable like "Market Value",

then for each house we predict a different number that represents the "Market Value" for

that house. We do not claim this is a complete list, but it represents a wide enough swath

of problems with which to further develop a formalized language to describe them.

2.6.1 Human-Annotated Problems

Lastly, before we present our language for describing prediction problems, we mention that

many problems exist in which the label is not calculated but instead collected from humans

who are treated as oracles. For instance, imagine a setting where doctors are asked to label

the point in time at which an ECG recording reads that a patient has entered cardiac arrest,

or in the strictly correlative and non-predictive setting, humans may be asked to identify
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– Numeric Variable

1. Value itself

2. Threshold of that variable, possibly with an any/all clause

3. Operation on variable

4. Operation on variable → threshold, possibly with an any/all clause

– Categorical Variable (or Boolean)

1. Value itself

2. Any/all of multiple Boolean values

– Count or Exists

1. Number of rows that exist (regression)

2. Thresholded number of rows that exist (classification)
– typically whether or not the count is greater than 1, as in a customer churn example

– Other Relational Entity(s)
– Each of these defines a type of recommendation problem

1. Unordered
–select a subset of entity instances

2. Order by a numeric variable
–select an ordered list of entity instances

3. Associate with a numeric variable
–select a subset of entity instances along with a numeric value

– Date at which Numeric Variable Attains a Threshold
– predict when something happens

– Categorical Value at which Numeric Variable Attains a Threshold
– predict descriptors of the situation when something happens

– Operation on a Time Axis – predict the average time between recordings in the future

– Time Axis Itself
– predict how long until next recorded value

Figure 2-2: Simple hierarchy of prediction problems which answers the question: what can
we predict? In the next chapter we will codify these intuitions into a formal language that
can actually be run implemented automatically.
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objects that are present in images, or parts-of-speech of words within sentences [36], [32]
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Chapter 3

Trane: A Language to Formally Express

Prediction Problems

In this chapter, we describe a language that allows us to formally express numerous prediction

problems given a time varying relational dataset. With this, we can then create algorithms to

enumerate a number of prediction problems. We do not claim that this space is complete, or

that all possible prediction problems can be defined this way; however, almost any problem

that we have encountered can map to this space, and we believe the space is large enough

to be practically useful. Later in this chapter, we show that every time-dependent problem

on the data science competition website, Kaggle, can be mapped to this expressive language

[14].

3.1 On the name

We named our language Traneafter the late John Coltrane, legendary jazz saxophonist and

improviser. We like to think that Traneallows us to improvise over data. With a formally

defined language, we can now arbitrarily construct predictive modeling problems that ef-

fectively ask questions about data. If the operations we define in this language are musical

notes, then defining a prediction problem in Traneimplies stringing those operations together

like a John Coltrane saxophone solo.
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3.2 Two necessary components

A typical data set contains an entityand many instances of this entity. The entitymay have

numeric or categorical values associated with it that change or vary with time. For example,

let us consider a data set that records several taxis’ locations at different time points during

a typical day. In this example, “taxi” is an entity, and it appears repeatedly. Each data

point has < 𝑡𝑎𝑥𝑖_𝑖𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 >, where 𝑡𝑎𝑥𝑖_𝑖𝑑 uniquely identifies

each individual taxi.

Each prediction problem needs a set of data points that can be used for making the

prediction, and the value (called labels for classification problems) it needs to predict. To

fully define a predictive problem, the language needs to define two things:

1. Data segments for each entity-instance : In the language, we have to define two

segments of data (portions of the entity-instancedata). The first segment is used for

learning the model, and the second is used for generating a label. There may be

overlap between these two segments. To divide the data pertaining to these segments,

we define multiple time points and a logic to choose them. Section 3.3 details the

process of defining the time points.

2. The sequence of operations that computes the label(s) for each entity-

instance. The labels or values we are interested in predicting are often derived from

the data set itself, and may make use of all the values of each entity. For instance,

one may want to predict the total distance traveled by taxis. In this case, the labels

would be calculated by applying the following operation: subtract the final location

from the initial location. We call these operations label label-computing operations and

the columns they are derived from label-generating columns.

In the next subsections, we describe how cutoff and end points can be defined, and the

ways in which transformation operations can be designed and applied to an entity-instance’s

data to generate labels.
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3.3 Segmenting the data

Our first step in defining a prediction problem is to define both the segment of data that can

be used to build a prediction model and the segment of data that would be used to generate

a label we are trying to predict. Before we present the logic for defining each of these two

segments, we define the different time points that bound these segments.

Cutoff point: The last time point at which we allow data to be incorporated in the

predictive model.

End point: The last time point we allow in our label computation.

Black-hole point: The time point for each entity instance at which the label is deter-

ministically known.

3.3.1 Determining the slice for learning the model

This segment is the data prior to the cutoff point. We can define the cutoff point either:

1. as an explicit point in time

2. as a point in time for each entity instance

3. as some percentage of the total duration for each entity instance or overall duration

4. as some amount of time after the first recorded time or before the end point

To be able to define the cutoff point using 2, 3, 4, one needs to define the end point and

start point for an entity instance’s data. Since all instance’s may not start and end at the

same time points, we define a number of additional time points as shown in Fig. 3-1. Fig.

3-1 shows possible time points from which to define a single, overall cutoff (or end point -

however, for the purposes of explanation, we assume the end point is the last recorded time

point). We define three different start constants and three different end constants. Start 1 is

the earliest first recorded time out of all entity instances, Start 2 is the latest first recorded

time among all instances, and Start 3 is the median first recorded time. End 1, End 2, and

End 3 are defined similarly for the last recorded times. We define Durations 1-5 as differences

between various end and start times. The constants are listed and explained in table 3-2.
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Cutoff point examples

1. Single cutoff at 10% of Duration 1 This means we would first find the last recorded

value out of all the instances: End 2, as well as the first recorded value out of all

instances: Start 1. We subtract them to produce a timedelta object, multiply it by

10%, and add to Start 1. Imagine we are predicting student dropout from an online

course, and we want to allow the model to use the first 10% of recorded data in order

to predict which students had dropped out at 20%.

2. Cutoffs per entity at 10% This means that we take the first 10% of recorded time

for each instance instead of calculating a single cutoff threshold. This value for cutoff

works better for the taxi dataset, where each instance’s start and end times might be

wildly different.

3.3.2 Determining the slice for computing the label

The slice of data used to compute the label for an entity instance is the data between the

cutoff point and the end point. However, in some cases, it is necessary to use data prior to

the cutoff point. This applies to some problems where the final label is dependent on the

entire time series. Consider, for instance, the problem of predicting whether taxicab ride

length was greater than a certain threshold. This would require computing how far the taxi

traveled in meters. In order to compute this metric, an algorithm needs access to the starting

location. Lastly, we define a use_known flag as a compiler directive to the Tranecompiler

to use pre-cutoff data when calculating labels, and so for this problem the use_known flag

would be set to True.

3.3.3 Adjusting the cutoff based on the Black Hole Point

For some classification problems, we also need to find the time point for each entity at which,

if any subsequent data were included in learning the predictive model, it would be easy to

directly calculate the label. Call this the Black Hole Point, or BH-point.
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Figure 3-1: Visualization of ways to define cutoff (and end) points. One can either define a
single cutoff or end point for all instances, or can define separate points for each instance.
Per instance cutoffs are calculated in terms of the each per instance start and end values.
If defining a single cutoff, one can define it in terms of various start, end, and duration
constants. We visualize these constants here. Start 1 is the first recorded value out of all
entity instances, while Start 2 is the last recorded starting point out of all entity instances.
Similarly, End 2 is the last recorded value out of all entity instances, while End 1 is the
earliest last value out of all entity instances. Start 3 is defined as the median of instance
start times, and End 3 is defined as the median of instance end times. Durations are defined
as differences between End constants and Start constants.

43



Constant Name Explanation
overall_start1 First recorded value out of all entity instances.
overall_start2 Last recorded starting value out of all entity instances.
overall_start3 Median of entity instance start times.
overall_end1 Earliest last value out of all entity instances.
overall_end2 Last recorded value out of all entity instances.
overall_end3 Median of entity instance end times.
overall_duration1 overall_end2 - overall_start1
overall_duration2 overall_end2 - overall_start2
overall_duration3 overall_end1 - overall_start1
overall_duration4 overall_end1 - overall_start2
overall_duration5 overall_en3 - overall_start3
per_instance_start First recorded value, separately defined for each instance.
per_instance_end Last recorded value, separately defined for each instance.
per_instance_duration per_instance_end - per_instance_start

Figure 3-2: Listing of constants available for defining cutoff and end points. Constants
prefixed with overall imply that they are constants to be used for a single defined cutoff
or end point over all instances. Constants prefixed with per_instance imply that they are
defined per instance.

Let us consider the problem of predicting whether a user of a website will become a repeat

customer by making additional future purchases. Assuming the data consists of user website

interactions (clicks), the BH-point is precisely the last interaction before the one in which

the user pressed the “Buy” button for the second time. In this case, the entire data set is

used to compute the label. In this example, the label-generating function is a step-function,

meaning that if we plot the binary True/False label against the endpoint, the graph remains

True for all time once it has switched from False. If the label-generating function is a step-

function, then it never switches from True to False as time progresses. Therefore, if any data

where the label-generating function evaluates to True is given to a learning system, that

system can immediately determine the label. We consider this cheating, since we assume

the label-generating function is known beforehand, and so we define the BH-point such that

this knowledge is not revealed. Thus in this case, if the cutoff point is after the BH-point,

we shift it to before the BH-point.

Customer churn is another example of a non-trivial BH-point. Typical available data

again consists of user-website interactions, with churn ordinarily defined as inactivity, en-
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t= 1/1/2012  1/2/2012  1/3/2012      ..... ....

1 Day
Customer 1

Customer 2

Churned

Not Churned

Not ChurnedCustomer 3 3 Days

3 Days

4 Days < 10 x 3 Days

13 Days > 10 x 1 Day

Figure 3-3: Visualization of the customer churn example. The points in time that each
customer interacted with the website are shown as circles laid out horizontally over the time
axis. We assume in this example that no data points were collected after the dotted line. We
can see that Customer 1 has churned by the end point indicated by the dotted line, since his
or her last recorded value was 13 days prior, and the maximum delay between two previous
recorded values was a single day. Customer 2 has not churned, since her last recorded value
was only a day prior to the end point, and Customer 3 has not churned since his last recorded
value was 4 days prior to the end point.

acted when the user stops visiting the website. Unless the necessary length of inactivity is

predefined, this example requires knowledge of the entire data set to determine with 100%

certainty that a user has indeed churned. However, because our confidence that a user has

churned increases as his or her last interaction grows more distant, we can define it approxi-

mately. We label an instance as False (churned) if the amount of time between the instance’s

last recorded value before its end point and the end point itself is significantly greater (10x)

than the largest spacing in time between two previously recorded values for that instance.

Figure 3-3 makes this more specific.

3.3.4 Setting different time points in Trane

Let us now make explicit how various settings for the cutoff and end point are defined in

Trane. These are defined by setting some flags. Below, we show these options.

cutoff_settings = {

explicit: Boolean

specific_date: Datetime

offset: Timedelta

offset_from: String
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percentage: Float[0->1]

percentage_of: String

}

endpoint_settings = {

explicit: Boolean

specific_date: Datetime

offset: Timedelta

offset_from: String

percentage: Float[0->1]

percentage_of: String

}

misc_settings = {

lead: Timedelta

step_function: Boolean

}

Cutoff and end point settings are very similar to each other.

Cutoff from Settings

1. If explicit is True, then we define the cutoff according to the following options,

otherwise we pick the maximum cutoff before the black hole point

2. If specific_date is True, then we simply cut off at that date (if an instance has no

values before that date, we ignore it).

3. Else if offset is True, then we check the offset_from flag to see where to calculate

the offset. If offset_from is a start constant, we add it to the start constant to create

the cutoff. If it is an end constant, or the explicitly defined end point, we subtract the

offset to create the cutoff. This flag cannot be a duration constant.

4. Else if percentage is True, then we calculate the percentage of the constant defined

by percentage_of, which must be a duration.
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Endpoint from Settings

1. If explicit is True, then we define the endpoint according to the following options,

otherwise we pick the last recorded value for each entity.

2. If specific_date is True, then we simply pick the end point at that date.

3. Else if offset is True, then we check the offset_from flag to see where to calculate

the offset. If offset_from is a start constant, we add it to the start constant to

create the end point. If it is an end constant, we subtract the offset to create the end

point. This flag can also be defined as the cutoff point, in which case the end point

is determined by adding the offset to the cutoff point. This flag cannot be a duration

constant.

4. Else if percentage is True, then we calculate the percentage of the constant defined

by percentage_of, which can be either a duration constant, or an end constant. If

labeled as end constant, the end point is calculated through the following operation:

(cutoff point + end constant)* percentage.

3.4 Label Computing Operations

A Trane problem also consists of a sequence of operations applied to a set of columns in order

to generate the labels for each entity-instance. We define the two main types of operation

on a table: Row Operations and Column Operations.

Row Operations take in a single row as input, and output a new row, possibly with a

different number of columns. We define one input parameter for the list of columns the Row

Operation operates over, and another to specify whether the names of any of the columns

change. As an example, the GT, or greater than, operation compares its input to a threshold

given as a parameter. It outputs a single Boolean value for a single input row.

RowOp:

-inputs:

--optype (can be a list of types where each index refers
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to a different column)

--columns (relevant columns to operate over, use * for all columns)

--as_names (list of names to rename the columns to, defaults

to the same as the input column names)

--args (additional arguments such as threshold values, optional)

-outputs:

--new row

Column Operations take in a whole table as input, as well as an entity column, a Row

Operation to apply on each row, and a Filter function that specifies which rows to include

in the calculation. These operations group the table by entity, and apply themselves to each

group separately. Each entity contains the information needed to produce the output label

(or labels, for a multi-label problem) for a single input data point.

The output of a column operation is a new table, generally with a smaller number of

columns, also grouped by entity. One can further divide column operations into aggregation

operations and transformation operations. Aggregation operations combine all rows into a

single row, while transformation operations return at least two rows as output, and generally

do not change the number of rows from their input to their output. Count, which counts the

total number of rows, is an example of an aggregate operation, while Diff, which returns

the difference between neighboring row values, is an example of a transformation operation.

Lists of possible operations are provided in the following section. Since transformation

operations return multiple rows, it sometimes makes sense to chain these operations together.

Aggregation operations cannot be chained in this way.

We therefore include in the language an argument to each operation naming the data

source, which might be the output of a previous transformation operation.

AggOp:

-inputs:

-- entity
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-- time_axis

-- data_source (either "base" or output of previous column operation)

-- optype (which operation to use)

-- col (relevant columns to operate over,

optional if only one column in input)

-- RowOp

-- FilterOp

-- args (additional arguments such as threshold values, optional)

-outputs:

--single table row, potentially with multiple columns

TransOp:

-inputs:

-- entity

-- time_axis

-- data_source (either "base" or output of previous column operation)

-- optype (which operation to use)

-- col (relevant columns to operate over,

optional if only one column in input)

-- RowOp

-- FilterOp

-- as_names (list of names to rename the columns to,

defaults to the same as the input column names)

-- args (additional arguments such as threshold values, optional)

-outputs:

-- new table
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3.5 Filters

Additionally, we define Filter operations, which take in some subset of columns in each row,

perform an operation on them, and output True or False, which signifies whether to include

that row. Filter operations can be arbitrarily complex in theory. Here we limit them to

essentially the form: [OP]([COL]) == [VALUE], where each element in COL is applied an

operation and compared to VALUE. We also allow, for a limited set of operations like MAX and

MIN, [OP]([COL]) == [OP]([COL]), where the right hand side looks over the whole column

first to find the MAX or MIN. A special case is the ALL filter, which returns True for every

row. We also define JOIN type filters, where the input is two separate filter operations and

a Boolean operation to compare the two, like

(HOUR(col1) == 3:00) && (IDENTITY(col2) > 5))

. See 3-4 for details.

3.6 Language Syntax

The full syntax of the prediction problem language requires at least one column operation,

at least one row operation, and a filter operation, applied to the original data set. However,

all of these could simply be IDENTITY, or, for the filter operation, ALL.

Because they only return a single row, the output of aggregation operations cannot be

fed as input to additional column operations, but the output of transformation operations

can.

We also allow an optional final row operation at the end of each prediction problem,

generally a thresholding operation like GT (greater than) or EQ (equal to). This is useful

for converting regression problems into classification problems with a threshold.

Lastly, we allow Boolean combinations of several sub-prediction problems, provided the

output of the sub-prediction problems is binary. For instance, one might want the label to

be True if all the values of a column are above a threshold and all the values of a different

column are below a threshold.
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3.7 Possible Operations

Many more operations are possible, but listed in tables 3-5, 3-6, 3-7 and 3-8 are all those

we needed to define the Kaggle data sets in this language, as well as a few additional ones

to define some internal data sets we were familiar with. The tables also explain the output

types and allowed input types of each operation.

3.8 BigTrane and LittleTrane

We distinguish between two subsets of the Trane language: BigTrane and LittleTrane. Big-

Trane includes the entire language, while LittleTrane includes a simpler subset to enable

easier learning of meaningful problems.

3.8.1 LittleTrane

LittleTrane is much simpler than BigTrane, yet still potentially defines thousands of predic-

tion problems per dataset (as opposed to potentially hundreds of millions in BigTrane).

∙ We cap the nesting of transformation operations at two levels, so that there is either

a single aggregation or transformation operation, or there is one transformation oper-

ation followed by one aggregation operation. This means we have a fixed number of

operations: there are only five, with three row operations in positions 0, 2, and 4 and

two column operations in positions 1 and 3. We allow the last two operations to be

"NOP" (no-operation) for simplicity of compilation, instead of requiring them to be

IDENTITY.

∙ We restrict LittleTrane to operate over single label-generating columns, which leaves

out the IDENTITY_ORDER_BY and NORM_DIFF transformation operations.

∙ We disallow filters.

∙ We disallow combinations of multiple sub-problems.

∙ We do not define arguments/thresholds for the operations.
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Comparators = > < ≤ ≥
Joins OR: || AND: && NOT: !
Operations on LHS DAY_OF_WEEK HOUR IDENTITY
Operations on RHS MIN MAX MEAN
Special Operations ALL

Figure 3-8: Listing of available filter operations. Comparators are used to compare
(scalar) operations on columns to either threshold values or (vector) operations on whole
columns. The syntax is either [OP]([COL1]) [COMPARATOR] [THRESHOLD] or [OP]([COL1])
[COMPARATOR] [OP2]([COL2]), where COL1 and COL2 could be the same column, but do not
have to be. In the table, "Operations on LHS" denote the scalar operations applied to COL1
and "Operations on RHS" denote the vector operations applied to COL2. The Joins row just
display the possible ways of combining multiple filter operations.

∙ We do not define cutoff points.

∙ We restrict the output to binary classification, i.e. True/False, single row output for

each entity instance.

3.8.2 Motivation: A Case for Simplicity

Out of 54 prediction problems defined on Kaggle and converted into Trane, 51 were able to be

defined using only a single column operation. The other three were able to be defined using

only two column operations. These problems represent a wide swath of possible business and

research applications, and so we believe it is reasonable to value simplicity as germane to the

meaningfulness or usefulness of a prediction problem. In Table A.1 we present a sampling

of 10 of these problems converted into Trane (See appendix A).

With that said, this is a limited sample, and many of these data sets were at least partially

formatted or simplified to make them easier to use in a competition setting. We can easily

come up with data sets where it is meaningful to define a prediction problem with three

layers of column operations.

More important is the ease with which we can build a user interface to interact with

LittleTrane, and thus generate ratings for these prediction problems from humans and feed

them into a machine learning system to learn which ones are meaningful. While BigTrane

is a language unbounded in complexity, LittleTrane is effectively just a sequence of five
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operations, allowing us to convert every problem defined in it to a format that humans can

understand. As we will see in chapter 4, LittleTrane still enables us to define thousands of

prediction problems per dataset.

3.8.3 Limitations

Obviously, with just 5 operations, LittleTrane is not nearly as expressive as BigTrane, and

there are many useful problems we cannot define in LittleTrane. A real-world example is

the Donor’s Choose Competition on Kaggle [15], which requires Boolean joining of multiple

binary sub-problems.

Furthermore, problems in LittleTrane are not actually executable, since they do not

define arguments and thresholds or flags for cutoffs. We cannot actually run these problems

without manually inputting these additional features.

3.9 Examples of Prediction Problems in Trane

It helps to illustrate this syntax with some examples, along with their intuitive meanings.

We do not include cutoff flags for these examples, since those flags are set more or less

independently from the problem. However, note that examples 7 and 8 need access to data

from before the cutoff point, so they need the "use_known" cutoff flag set to True.

3.9.1 BigTrane Examples

See A.4, in Appendix A.

3.9.2 LittleTrane Examples

Examples in LittleTrane are much easier to digest, especially since we have a script that

converts them into English sentences.

1. Predict whether the last value of the differences between consecutive "Weekly_Sales"

column values is less than some user-defined threshold.

57



Label-generating column "Weekly_Sales"

Time axis "Date"

Entity "Store"

Operations

DIFF → IDENTITY → LT → LAST → NOP

2. Predict whether any of the "Bank" column values are equal to some argument, for

example "JP Morgan Chase".

Label-generating column "Bank"

Time axis "Date"

Entity "LoanId"

Operations

EQ → ANY → NOP → NOP → NOP

3. Predict whether the number of "Transaction_Amount" values that are greater than

some threshold is greater than some other threshold.

Label-generating column "Transaction_Amount"

Time axis "Timestamp"

Entity "TransactionId"

Operations

GT → SUM → GT → NOP → NOP
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Chapter 4

Interacting with Trane

4.1 Trane Interpreter

We built a Trane interpreter, which takes as input

∙ a prediction problem specified in Trane

∙ a relational dataset in the form of Comma Separated Values (CSV) files

∙ a dictionary of metadata associated with the dataset in the form of either a JSON or

Python file

This interpreter applies the operations defined in the prediction problem to the dataset,

and returns a new table with the labels for each instance, as well as the black hole point

of that instance. Recall that the black hole point is defined for each entity instance as the

latest date/time in the data before the label can be deterministically inferred. See 4-1 for a

visual of how data passes through the Trane interpreter.

The interpreter was implemented in Python, using the Pandas data science toolkit [21].

4.1.1 Interpreter Input

The input to the interpreter is a JSON object or Python dictionary specifying separately the

dataset configuration and the prediction problem configuration. The dataset configuration
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table 1 table 2

Denormalizing

Grouping 

Transformation

Cuto�

Columns 1, 2
Columns 1*, 2*

Output

①

②

③ ④

⑤

Aggregation

Recombination

table 3

Original Relational Dataset

entity

entity 0

0
1
2
0
0
...

1/3/2014
11/1/2014
12/22/2014
4/6/2014
7/14/2014

...

timestamp

tim
es

ta
m

p

tim
es

ta
m

p

cols

entity
0
1
2
...
...

3/4/15
5/5/15
5/6/15

...

...

True
False
True
...
...

BH-point Final Output
Feature Engineering,
Learning,
Prediction

Figure 4-1: Visual representation of the Trane model. Data is first denormalized into a single
table. Then it is grouped by entity, and cutoff at some time point, possibly a different point
per entity. Transformation and aggregation operation operations are applied to each entity
instance in order to produce labels, and BH-points are calculated for each label as well. The
final output can be sent downstream to further data mining and machine learning tools.
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settings are defined in Table 4-2, while the prediction problem dictionary is shown in figure

4-3.

We limit the interpreter input to something in between BigTrane and LittleTrane. For

instance, we allow various filter operations, as well as most of the settings for the cutoffs and

arguments/thresholds (exceptions are detailed in Table 4-2), but we assume a single label-

generating column, only problems with maximum depth two (i.e. two column operations),

and we disallow logical combinations of multiple problems. This is purely for simplicity as a

first pass. The next version will include these features.

4.1.2 Interpreter Output

The interpreter outputs a Pandas dataframe indexed by the entity, where each row includes

two columns, the label and the BH point. This output can then be fed into a feature

engineering system along with the original training data in order to build a predictive model.

To generate this output, the interpreter does the following.

Step 1: Cut off Data

The first job of the interpreter is to cut off data at the points specified by the flags in

the input. Before calculating any labels, the interpreter finds the points in the data for each

instance after which we can use for label calculation. This point includes the lead time, if

defined. The internal view of the data seen by the label calculating subsystem is devoid of

any points in time prior to this cutoff. Depending on the input settings, the cutoff points

will be different, see 3.3.1 for more detail on how the cutoffs are defined.

Step 2: Calculate Labels

The interpreter then parses the input dictionary to produce the sequence of five row or

column operations (some may be NOP’s) and two filter operations. It will first apply the

filter operation at the lowest depth to discard unwanted rows, then it will apply the first

row operation to each row in the data, and then the first column operation grouped by each

entity instance. Recall that this first column operation can either be a transformation or

an aggregation operation. If it is a transformation operation and there is an additional row

and column operation defined in the 3rd and 4th positions, then it applies the second filter

operation (which might just be ALL) and the second row and column operations. Lastly, if
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Figure 4-3: This dictionary defines an input to the Trane interpreter. The sequence of
operations defined is [POW(2), LAST, LT(100), NOP, NOP], over the "Weekly_Sales" column.
This translates to "For each Store, Dept instance, using the Date column as a time axis,
predict whether the value of the Weekly_Sales column, to the power of 2, is less than 100".
There is an initial filter that only looks at rows whose Date is between Tuesday and Friday.
We include the original_table value for feeding into a downstream machine learning system
that needs to know which table the label-generating column originated from (while the Trane
interpreter uses the single denormalized table and does not need this value).
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there is a final row operation (either the 3rd operation or the 5th operation), it applies that

to each row in the transformed data.

Step 2.5: Generate Arguments for LittleTrane Problems

To enable direct compilation of prediction problems in LittleTrane, we additionally in-

cluded functions to automatically generate a list of reasonable arguments or threshold values

to use for the operations. These should be different depending on the column type, yet are

somewhat difficult to intelligently guess since the types of the input to each operation de-

pends on the output from the previous operation. We guess combinations of the following

argument/threshold choices:

∙ powers of 10 from 1 up until the log of the number of rows in the dataset

∙ the top 5 most frequent values of the column

∙ mean of the column ±[0, 0.5, 1, 2]*(standard deviation) of the column

∙ mean of the differences of the column ±[0, 0.5, 1, 2]*(standard deviation) of the column

Step 3: Calculate the BH Point

The last step is to calculate the BH points for each instance, if the problem is a classi-

fication problem. In the usual case this is just the last recorded time point minus the lead.

However, for EXISTS or ANY functions, or when the problem is explicitly flagged as a step

function, we need to do something more complex. We mentioned in section 3.3.3 that neg-

ative examples for EXISTS (EXISTS is the customer churn operation) are defined as those

in which the amount of time between an instance’s last recorded value and its end point is

significantly greater the the maximum amount of time between any two of that instances

recorded values. For EXISTS, we thus apply this operation to determine the negative ex-

amples and return the last recorded time points minus the lead. For the ANY operation

or problem flagged as step functions, we instead return the last time point at which the

pre-aggregated time series was still False.
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4.2 Web App to Interact with Trane

We built a web app to directly interact with Trane through the browser. This web app

accesses a database of datasets, and visualizes relevant meta-information about each one,

such as the number of rows, the columns in each table, the number of uniques in each column,

and an example data point from each column. It also color-codes foreign-key relationships

between tables to facilitate understanding of the dataset as a whole.

Below each dataset is a series of reactive dropdown menus, consisting of suitable columns

in the dataset to select for the prediction problem entity, time axis, and label-generating

function.

We show each table in the dataset to the user as a table in its own right with columns on

one axis, and the column name, type, subtype example data, and foreign-key reference on

the other. We made a slightly counter-intuitive decision to lay out the columns vertically as

opposed to horizontally, because otherwise for datasets with many columns the page would

be too wide, and would require awkward horizontal scrolling. A screenshot is shown in 4-4,

as well as a table describing the possible column types and subtypes in 4-5.

The web app serves three purposes.

1. It allows users to specify prediction problems

2. It allows users to annotate prediction problems

3. It allows users to run prediction problems

4.2.1 Prediction Problem Specification

Column Selection

We include dropdown menus for selecting the entity, date, and label-generating columns,

which dynamically change based on which previous columns are selected. For instance, once

an entity column for a particular table is selected, only date and label columns from that

table are shown in the subsequent dropdowns. One can imagine a setup where problems

are able to be defined across different tables, but for simplicity we restrict to a single ta-

ble. Possible entity columns are those whose column type is "categorical", and subtype
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Figure 4-4: Visualization of the Walmart Store Sales Dataset on the Web App. Each column
in the actual dataset is a row here. Notice that the Store column in both tables is highlighted
orange, indicating that there is a foreign key relationship via the Store column between the
two tables. The Date column is highlighted blue because it indexes a different table, not
shown. The Stores table has reduced opacity because it only contains metadata, and no
time-varying columns that could be used for prediction.

Column Type Column Subtype Explanation
Number Integer
Number Float
Categorical Boolean 2 uniques
Categorical Categorical More than 2 uniques: meant as a standard category
Categorical Boolean 2 uniques
Categorical Many_Uniques Many uniques: meant as an entity or id column
Datetime Datetime

Figure 4-5: Listing of column types and subtypes.
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Figure 4-6: Screenshot from the web app showing the column selection dropdowns. When
the user changes the entity column selection, the date and label-generating column options
change to only allow columns from the same table. We allow multiple entities, but only from
the same table, while date and label-generating columns are restricted to a single selection.

Figure 4-7: Screenshot from the web app showing the operation selection dropdowns. When
the user changes an operation, all subsequent dropdowns limit their options according to the
rules defined in the description of the language: 3.6.

is "many_uniques". Possible date columns are those whose column type is datetime, and

label-generating columns can be any column type. Several screenshots are included in 4-6.

Operation Selection

We also include dropdowns for selecting the Trane operations, which are also dynamic.

As soon as a user selects an aggregation operation as the first column operation, for instance,

the rest of the operations are restricted to NOP. A screenshot is displayed in 4-7.

Natural Language Description of Problems

Below the dataset we show a natural language description of the currently selected pre-

diction problem in LittleTrane. Since LittleTrane is limited to 5 operations, we were to write

a simple parsing program to convert a problem to an English sentence. These sentences went

through many refinements upon showing them to people not so familiar with the project, and

we believe they are at a point where even non-data-scientists can understand them with a

few minutes of initial coaching. The sentences include the entity, date, and label-generating
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Figure 4-8: Three screenshots from the web app, showing three different prediction problems
converted to English sentences generated randomly according to the rules described in this
chapter. Notice that the web app allows users to select threshold values, respecting the types
of the underlying operations and columns.

columns the problems are defined over, as well as input boxes for arguments/thresholds.

Several screenshots are included in 4-8.

4.2.2 Prediction Problem Annotation

The web application allows us to collect annotations for prediction problems defined in Trane

in order to actually start to learn which ones are meaningful. To do this, we removed the

ability to manually select prediction problems, and replaced the dropdowns with two 0-5

star rating selectors, along with questions that explain the conditions with which we want

these users to rate problems. A screenshot is shown in 4-9. We ask the following questions.
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Figure 4-9: Screenshot from the web app showing the questions posed to the user to allow
them to rate prediction problems.

1. Does this problem statement make sense?

2. Would anyone want to predict this information?

In the learning system, we combine these two values for each prediction problem using a

weighting scheme, where the weight given to the first question as opposed to the other is a

hyperparameter.

The prediction problem shown to the user is randomly generated from the space of well-

defined prediction problems, some with human-input weights over the columns so that the

system selects prediction problems for certain columns more often than others (We did this

to show more obviously meaningful problems more often and less obviously meaningful ones

less often. These weights play no effect in determining the operations).

This website now allows us to ask non-expert humans, human who have never seen this

dataset before, whether a prediction problem is meaningful or makes sense, and opens up a

whole new class of annotations for much more structured and complex machine learning.

Rules for Randomly Generating Problems

Rules for defining problems in BigTrane and LittleTrane are given in 3.6. Here we define

two additional rules.

∙ Multiple Tables We only allow entity, date, and label-generating columns from the

same table currently. Future work will explore allowing problems defined over multiple
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tables.

∙ Uniqueness of Entities The selection of entities must, along with the date column,

uniquely identify the table. This is a simplification so that we do not have to ask the

user for rules on how to aggregate duplicate rows.

4.2.3 Prediction Problem Execution

One powerful data science tool that this web application and interpreter becomes is a way

to test a large number of prediction problems end-to-end, without having to manually re-

calculating the labels, or spend time thinking about all the possible problems that could

be defined. To this effect, we connected the web application and interpreter to Kanter’s

FeatureTools software, coupled with Python Sci-Kit Learn’s Random Forest implementation

to automatically generate features and weighted predictive AUC for problems defined using

the web application [18],[29]. We explore this in more depth in the following chapter.
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Chapter 5

End to End Examples on Real Data

5.1 Experiment Definition

Using the Walmart Store Sales Forecasting dataset from Kaggle [16], we generated 1077

binary classification prediction problems in LittleTrane, and attempted to run them all on

a scaled-down version of the dataset (to speed up the procedure).

Clearly many of them were ill-defined, so we have results from 407 different prediction

problems. Since these problems were defined in LittleTrane, they did not include argument

settings, and so for each prediction problem we guess between 5 and 20 settings of each

argument. In some cases multiple operations in the problem require arguments, and so we

enumerate all combinations of the possible arguments. We sample from the combination of

arguments until five experiments are run successfully or we run out of arguments possibilities,

which resulted in a total of 1923 experiments run successfully. The most common reason for

a failed experiment is a lack of sufficient number of positive or negative examples.

For each experiment, we use Kanter’s FeatureTools to generate 10 features, and run with

5-fold cross-validation using Sci-Kit Learn’s Random Forest algorithm with 200 estimators.

As a performance measure, we use the area under the ROC curve (AUC), weighted by the

number of class labels.
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5.2 Explanation of Data

This Walmart dataset describes 45 stores, and 99 departments within those stores. The

dataset contains weekly recordings from each department within each store about how many

goods it sold that week, in dollars, over a period of 2 years. These recordings are contained

in the Sales table, which also connects to a separate Features table that contains additional

weekly information recorded per-store, and to a separate Stores table that contains meta-

information about each store (see 2-1). Each column is explained in more depth in 5-1, and

we also detail some information affecting the generation of prediction problems below.

∙ Possible Entities Either the Store column, or a combination of Store and Department

(Dept).

∙ Possible Tables If just a Store, we only allow label-generating columns from the

Features table; if a Store, Dept combination, we only allow label-generating columns

from the Sales table. The Features table is uniquely defined by Store and Date, so if

the entity is just Stores we do not have to define aggregation rules to combine non-

unique rows in the Features table like we would have to in the Sales table. Each Store,

Dept combination with matching Stores contains the same information in the Features

table, and so any prediction problem defined on a column in the Features table using

the Store,Dept entity combination is redundant. We disallow columns from the Stores

table since it only contains metadata.

∙ Possible Columns Any column in the Features or Sales table is fair game. See 5-1

for a reference.

∙ Size of Data The original dataset is around 400, 000 rows. We subsampled the data

down to around 40, 000 rows so that the experiments would run faster.

5.3 Results

We plot the mean of this AUC score against the standard deviation across all experiments in

5-2. There does not seem to be much of a pattern apparent here, however we encourage the
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Figure 5-2: Plot of every successfully run experiment using 5-fold cross-validation with mean
class-weighted AUC on the y-axis and standard deviation on the x-axis.

reader to notice the broad range of AUC scores recorded. We can draw from this result that

some experiments are much harder, or at least more well-defined, than others. Moreover,

we can separate experiments into quantiles based on their AUC and standard deviation, and

select a few examples for further investigation.

5.3.1 Sample Experiments

To pull out example experiments, we do the following.

1. Separate the AUC scores into four quantiles: 0-25%, 25-50%, 50-75%, and 75-100%,

and the standard deviations into two: below and above the median.

2. Find the worst-performing argument setting for the experiment, meaning the lowest

AUC score. Recall that each experiment was run with a number of argument settings.

3. Assign an AUC quantile and standard deviation quantile to the worst-performing ex-

periment.
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4. Sample two experiments from each quantile, yielding 16 total experiments, where each

is a unique prediction problem.

We select the worst AUC, as opposed to the mean or the best, because arguments, and

specifically thresholds, are intuitively more meaningful when they make a problem more

difficult. Imagine trying to predict whether number of tickets a major concert venue sells in

the future is less than 5. Since this is an extremely unlikely result, the AUC score will be

very high. A more meaningful setting is on the order of how many tickets the concert venue

normally sells, and this would produce a harder problem (lower AUC).

Starting with Fig 5-3, we plot AUC against the various argument settings for each of

these 16 problems. The most immediate conclusion is that most of the lines are horizontal!

Looking carefully, we see that in many cases the AUC remains exactly the same across various

argument settings. This is not an error. Recall that we are restricting ourselves to binary

classification, and most of the arguments are threshold values. Changing these threshold

values might produce the exact same output labels, and thus the exact same AUC (up to

some small error due to the randomness of cross-validation). For an example, consider the

ticket sales problem mentioned in the previous paragraph. Assume that in the data there

are five nights where the venue sells under 100 tickets. Every other night it sells greater than

200 tickets. Then for threshold values between 100 and 200 of ticket sales, the number of

positive and negative labels remains exactly the same, and thus the AUC should remain the

same.

These 16 experiments provide with a broad picture of the types of prediction problems

we can come up with, and which of those problems are actually meaningful.

Bin (0,0) AUC < 0.55, Low Standard Deviation

The two problems we sampled from this region are defined as follows.

1. For each Store, Dept combination, predict whether all the future entries for the Store

column are equal to some value.

2. For each Store, Dept combination, predict whether the last value recorded for Store

(the Store ID) is equal to some value.
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These problems are meaningless because the column they are predicting does not change;

it is part of the entity. For each Store we predict the future value of Store. In future versions

of our Trane enumeration script we should leave these types of problems out. However,

because the automated feature engineering library did not extract a feature for the value of

the entity itself, our machine learning algorithm had no way of knowing the future value of

Store, and so we achieve very low AUC and standard deviation. Plotted in 5-3

Bin (0,1) AUC < 0.55, High Standard Deviation

1. For each Store, predict whether the difference between the consecutive values of fuel

price, to the power of X, at the end point is less than Y.

2. For each Store, predict whether the difference between the last and the first value of the

difference between consecutive values of Markdown3 to the power of X, to the power

of Y, is less than than Z. 1

These are just overly complex problems that would be meaningful if the power operation

was not present in both cases. Plotted in 5-5.

Bin (1,0) AUC < 0.65, Low Standard Deviation

1. For each Store, predict whether the last minus the first value of Markdown4 is less

than X.

2. For each Store, predict whether the last value of CPI is greater than X.

These are both well-defined, meaningful problems that are very hard, either due to their

intrinsic difficulty or due to the feature engineering library not adequately generating features

to predict them. Plotted in 5-7.

1At the time of writing this thesis, we are still investigating how to come up with better, unambiguous
natural language interpretations of these complex problems. In English it is very hard to make these sentences
not carry multiple meanings without including parentheticals.
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Bin (1,1) AUC < 0.65, High Standard Deviation

1. For each Store, predict whether the last value of the difference between consecutive

values of the Markdown2 column, to the power of X, is less than some value.

2. For each Store, predict whether the last value minus the first value of the difference

between consecutive values of the Markdown4 column to the power of X, to the power

of Y, is less than Z.

These are very similar to Bin (0,1); they are just overly complex. Like those in Bin (0,1),

they would be much more meaningful (and would probably achieve higher AUC) without

the POW operation. Plotted in 5-9.

Bin (2,0) AUC < 0.95, Low Standard Deviation

1. For each Store, predict whether the sum of the difference of Markdown4 is greater than

X.

2. For each Store, Department combo, predict whether all of the Weekly_Sales column

are less than X.

These are simple and somewhat meaningful problems that happen to be easier than

the ones in Bin (1,0). The second seems to be more meaningful than the first, because

Weekly_Sales is semantically a column we are more likely to care about than Markdown4.

Plotted in 5-11.

Bin (2,1) AUC < 0.95, High Standard Deviation

1. For each Store, predict whether any of the Markdown2 column is greater than X.

2. For each Store, predict whether the last minus first value of the difference between

consecutive Markdown3 values is less than x.

These are also simple and somewhat meaningful problems, similar to Bin (1,0) and Bin (2,0)

that happen to be easier than the ones in Bin (1,0). Plotted in 5-13.
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Bin (3,0) AUC > 0.95, Low Standard Deviation

1. For each Store, predict whether the number of temperature recordings is greater than

x.

2. For each Store, predict whether all of the values of the Store column are not equal to

X.

These problems are similar to the (0,0) case but in this case we are able to generate fea-

tures that separate the data. In these cases, the number of temperature recordings probably

does not change much, and all of the store columns are either equal to X if X is the instance

in question, or much more likely not equal to X if they are different. Plotted in 5-15.

Bin (3,1) AUC > 0.95, High Standard Deviation

1. For each Store, predict whether the sum of Markdown3 is greater than x.

2. For each Store, predict whether the sum of Markdown3 is less than x.

This is a simple and easy problem probably because the mean value of MarkDown3 over

does not change that much over long periods of time, and so its sum does not change much

either. The standard deviation may be higher because in some special cases the mean does

change a bit over time, so some training/testing splits produce slightly worse AUC. Plotted

in 5-17.
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Figure 5-3:
Entity (Dept,Store)
Column Store
Problem
EQ(x) → ALL → nop → nop → nop
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Figure 5-4:
Entity (Dept,Store)
Column Store
Problem
EQ(x) → LAST → nop → nop → nop
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Figure 5-5:
Entity Store
Column Fuel_Price
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Figure 5-6:
Entity Store
Column MarkDown3
Problem
POW(x) → DIFF → POW(x) → LAST_MINUS_FIRST → LT(x)
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Figure 5-7:
Entity Store
Column MarkDown4
Problem
IDENTITY → LAST_MINUS_FIRST → LT(x) → nop → nop
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Figure 5-8:
Entity Store
Column CPI
Problem
GT(x) → LAST → nop → nop → nop
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Figure 5-9:
Entity Store
Column MarkDown2
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Figure 5-10:
Entity Store
Column MarkDown4
Problem
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Figure 5-11:
Entity Store
Column MarkDown4
Problem
IDENTITY → DIFF → IDENTITY → SUM → GT(x)
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Figure 5-12:
Entity (Dept,Store)
Column Weekly_Sales
Problem
LT(x) → ALL → nop → nop → nop
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Figure 5-13:
Entity Store
Column MarkDown2
Problem
GT(x) → ANY → nop → nop → nop

3424.1
23216.7

-14055.1

5272.9
1000.0

0.5

0.6

0.7

0.8

0.9

1

Argument Settings

A
re

a
un

de
r

th
e

R
O

C
cu

rv
e

Figure 5-14:
Entity Store
Column MarkDown3
Problem
IDENTITY → DIFF → IDENTITY → LAST_MINUS_FIRST → LT(x)
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Figure 5-15:
Entity Store
Column Temperature
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LT(x) → SUM → GT(x) → nop → nop
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Figure 5-16:
Entity Store
Column Store
Problem
NEQ(x) → ALL → nop → nop → nop
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Figure 5-17:
Entity Store
Column MarkDown3
Problem
IDENTITY → SUM → GT(x) → nop → nop
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Figure 5-18:
Entity Store
Column MarkDown3
Problem
IDENTITY → SUM → LT(x) → nop → nop
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Chapter 6

Pernican: A System That Learns What

to Ask

We have described a language that formalizes the prediction problem space, an interpreter

that can take problems defined in that space and map them into a machine learning system’s

inputs, and a user interface that allows the easy creation, visualization, and annotation of

prediction problems. The next logical question to ask then, is can we build a system that

navigates through this prediction problem space like a human does. In other words, can we

automatically learn which prediction problems make sense (and perhaps useful) and which

are meaningless. Such a system would have to learn across different data sets, transferring

knowledge about which prediction problems are meaningful from one to another. In this

chapter, we describe the challenges in building a learning system, discuss possible ways of

implementing such a learning system, and describe in detail one particular version that we

designed, implemented and tested.

6.1 On the Name

We named our learning system Pernican, after Nicolaus Copernicus, who questioned whether

the Earth actually revolved around the Sun and kickstarted the Scientific revolution. While

the likelihood this system ever generates a question as revolutionary as the one Copernicus

did is vanishingly small, the goal of the system is to learn what are good questions to ask,
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and so conjures up the image of a scientist coming up with new and interesting hypotheses.

6.2 Large search space and complexities of learning

BigTrane is a highly expressive language, where the number of possible predictive problems

that can be defined scales exponentially with the number of available operations, the depth

of the sequence of operations, the number of columns in the dataset, and how many columns

are allowed to be used together for a single prediction problem. Even LittleTrane, which

only consists of a sequence of at most 5 operations applied to a selection of one or more

entities, a single time axis, and a single label-generating column can enumerate thousands

of legal problems for a single dataset. Expanding that space just a hair to two possible

label-generating columns results in hundreds of thousands of problems.

If we try to learn some subset of BigTrane that is larger than LittleTrane, we can apply

some techniques from structured prediction to prune the search space heuristically as we

learn or predict. One method we considered is a probabilistic graphical model, where nodes

in the graph represent entity/time/label-generating column decisions, operation decisions, or

filtering decisions. We encounter a number of problems when designing a learning approach:

∙ Datasets are vastly different: A key problem, irrespective of how we constrain the

language, is that the search space changes for each dataset: datasets contain varying

numbers of columns and types of columns. This results in varying number of prediction

problems and choices.

∙ Prediction problems that are valid in one dataset may not be in another.

For example, a prediction problem may be valid in one dataset because it is defined

for a specific column type which may not exist in the other dataset.

∙ Columns have different semantic meaning: Furthermore, since meaningfulness of

problems is tied semantically to particular dataset columns, there is actually no direct

mapping from one dataset to another. The same syntactic problem of predicting the

future value of a real-valued column might have very different meanings depending on
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the semantic meaning of the column- in one dataset it might be applied to bread prices

in the US, in another to the speed of a motor vehicle at the time of a collision.

6.3 The Pernican Learning System

To build a learning system, that can automatically generate meaningful prediction problems,

we decided to take “recommender system” like approach. The key idea is to be able to

recommend prediction problems for a new dataset based on human annotated ratings for

prediction problems on a previous set of datasets. To set up the problem, we need the

following key ingredients:

∙ A set of datasets

∙ A fixed/standard set of prediction problem definitions that are valid across

the datasets

∙ Human ratings for the standard prediction problems defined over different

datasets

If we achieve the three, we can build a matrix, and associate each prediction problem

with an index into the columns of a matrix, and each dataset with an index into the rows of a

matrix. The value of this matrix at index (𝑖, 𝑗) is the human-generated rating for prediction

problem 𝑖 on dataset 𝑗. With a matrix of this form, the learning problem reduces to that

of matrix completion: given a partially filled matrix of ratings, can we infer the values of

all the other elements in the matrix? We can thus think of the setup as a recommender

system, where we want to recommend prediction problems to a dataset. This setup is typ-

ically solved by assuming that the matrix is low-rank, which means in our case that there

are a few different archetypal datasets and archetypal prediction problems, and each real-

ized dataset/prediction problem is a linear combination of these archetypes. While directly

optimizing for low-rank matrices is known to be NP-Complete, optimizing for low values of

various matrix norms (e.g. trace norm or max norm) has been show to be both efficient and

a good substitute [12].
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In the next section, we describe in detail how we establish these three ingredients and

thus the matrix. Following that, we explain the learning approach.

6.4 Setting up the matrix

Datasets: We have 7 datasets. Their details are given in Table 6-1.

6.4.1 Standardizing the set of prediction problems.

The large search space motivated our decision to stick to LittleTrane for learning. In Lit-

tleTrane, we can actually enumerate every possible prediction problem for every possible

column type. resulting in a total of 407 prediction problems. While we can come up with a

fixed set of prediction problems given possible column types, we still end up with different

number of prediction problems for different datasets because they have different number of

columns. Additionally, the columns, while they match in their type, they differ semantically

as we pointed out before. To address this we first cluster the column names by processing

them via natural language.

Clustering Column Names for Semantic Features As we pointed out, we still have

to deal with the fact that there is no direct mapping between prediction problems defined

over different columns in different datasets. A prediction problem is just a sequence of

operations applied to a column in the data- how can we say that two problems are equivalently

meaningful if the underlying columns have different real-world interpretations?

As alluded to before, if we cluster the column names into a fixed number of semantic

clusters, then instead of defining a prediction problem over the column itself, we define it

over the cluster the column belongs to.

To make our clusters more meaningful, we actually generate the clusters using words

from approximately 582 relational datasets downloaded from various public data hubs on

the web [2], [25], [27], [1], [26], and [11]. More specifically,

∙ We break up column names into individual words using common patterns such as

spaces, underscores, and camel-casing and apply Google Word2Vec to each subword to
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generate a set of high-dimensional vectors [22]. We apply the same procedure to each

word in each dataset described above (i.e. not just column names but also the names

of the dataset and any description provided)

∙ We cluster these vectors using Mini-Batch KMeans algorithm provided by Sci-Kit Learn

into 15 clusters [29]. Furthermore, to increase the size of each cluster so that words

from new datasets are more likely to be present within some cluster, we augment each

cluster with related nouns in the Google News Word2Vec space. We define related

nouns as the 100 most similar words using cosine similarity of the vectors which are

parsed as nouns using the WordNet annotated corpus [22], [38].

∙ There is not a simple way to select the appropriate cluster for the column from the

multiple individual clusters each of its subwords belong to. Currently we just select the

cluster with the greatest number of subwords belonging to it, breaking ties arbitrarily

with the last subword in the column. One could think of more intelligent ways of

selecting the cluster based on distinctness of the cluster, NLP measures like TF-IDF

(Term Frequency-Inverse Document Frequency) [42].

Top 10 words in terms of 𝐿2 distance to the cluster center are shown for each cluster in

6.1

Resulting fixed dimension matrix: Now we have prediction problems defined for each

column type and enumerated for each cluster. There are 407 prediction problems times 15

clusters, so 6105 problems in all. We assign each an index. We also assign each dataset an

index- we currently have annotations for 7 datasets. We can thus define a 7𝑋6105 matrix

with which to train a collaborative filtering algorithm. Additional features about each dataset

and the operations in each prediction problem are provided to the algorithm as well.

6.4.2 Acquiring human ratings

We can generate numerous prediction problem definitions from LittleTrane that do not make

any sense or have any real-world significance. For example, our algorithm that randomly

walks through the space of prediction problems generated a problem that reads like the

following:
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Table 6.1: Top 10 words by distance to cluster center for each cluster.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
zip total tchr the address
go number ball in email
get amount div1 for phone
start proportion horseshoe last telephone
turn nearly lapa this service
pull approximately raquetball after fax
do percentage couverture before information
see million score only notification
back five x9 on services
run cumulative indoor from respond
Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9
ds metrics name education type
addr data date health any
adrian sector location welfare sort
albert growth names children not
ut indicators surname schools do
ple systems dates teachers types
andrew sectors description child or
ans market timestamp population specific
sd infrastructure locale literacy what
howard markets forename mothers if

Cluster 10 Cluster 11 Cluster 12 Cluster 13 Cluster 14
year city leur average approved
month area le rate requested
week district en percentage proposed
days town autres percent allocated
day municipality les per request
time county autre ratio budgeted
months neighborhoods demande rates grant
weeks municipal nouvelles higher requesting
years community niveau lower resubmitted
summer residents ayant level required
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Predict whether the first date recorded (after a cutoff point) is before some threshold date.

In this case, every date was recorded at regular, one-week intervals, so this problem

should be able to be solved with 100% accuracy. However, the problem is so simple that it

is meaningless. In general, our human intuition tells us that meaningful problems are hard

problems, but not so hard as to be impossible. We know of no good way to incorporate this

nuance into a rating scheme for each problem besides asking the experts: real, live humans.

Therefore, a significant chunk of the time and effort expended into this project was

focused on building an interactive application that allows humans, and ideally not just

data science experts, to easily annotate prediction problems with ratings. This system was

described in chapter four, and used to generate 84 unique ratings, and 157 total ratings,

where multiple users were allowed to rate the same problem. In the future we plan on

collecting many more ratings to build a more effective learning system.

Challenges in acquiring human input: A key issue at stake here is making sure to

capture the right quantity. Computer vision researchers and natural language processing

(NLP) researchers also turn to human intelligence to generate labels. They typically can

make use of services like Amazon Mechanical Turk to show images or sentences that they

want annotated, and can ask almost any human whether an image contains an certain

object, or a sentence contains a noun [32], [36]. Here we are asking a more complex question:

meaningfulness of predictive problem generated via a complex sequence of operations applied

to an organized collection of data points.

For humans to make this judgement call, they need to understand both the dataset and

problem semantically and syntactically, and to do this they need access to certain features

of the dataset, like the names of the columns, the types of the columns and how they are

organized. To automate this process, we most likely need to provide this same information

in addition to the particular dataset and prediction problem to a learning machine.

6.5 Learning from the matrix

Encoding Side-Information into the Matrix: We would additionally like to encode side

information about both the datasets and the prediction problems.
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For the datasets, an obvious choice is the clusters that the words in each column name

belong to, as well as the other words present in the dataset (such as the name of the dataset

and a provided description). We encode the number of words belonging to each of the 15

clusters as features, as well as the following:

1. Number of Tables

2. Average Number of Columns per Table

3. Maximum Number of Columns per Table

4. Total Number of Columns

5. Average Number of Rows per Table

6. Maximum Number of Rows per Table

7. Average Number of Unique Values per Column

8. Maximum Number of Unique Values per Column

9. Number of Each Type of Column (types are integer, float, datetime, boolean, categor-

ical, categorical with many uniques functioning as an id)

For the prediction problems, we would like to encode information about the individual

operations used. We can simply binarize the type of operation and position within the

prediction problem. Recall that each problem consists of 5 operations (where some of them

may be no-ops). We define features as follows

𝑓𝑖𝑗 =

⎧⎪⎨⎪⎩1 𝑝𝑗 = 𝑜𝑖

0 otherwise

Where 𝑝𝑗 ∈ [𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5] is the sequence of operations in the prediction problem, and

𝑜𝑖 is the 𝑖𝑡ℎ enumerated row or column operation: row if 𝑖 is even, column in 𝑖 is odd. 𝑜1,

𝑜3, 𝑜5 is thus one of

{LT, GT, EQ, NEQ, POW}
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, and 𝑜2, 𝑜4 is one of

{IDENTITY, DIFF, LAST, FIRST, LAST_MINUS_FIRST, ANY, ALL, SUM, COUNT, EXISTS}

.

Feature-based Collaborative Filtering: Normal collaborative filtering only uses values

of the matrix (in our case, the dataset/prediction problem matrix) to train a model and make

predictions. It takes advantage of implicit features defined according to some the singular

values of the matrix, which is assumed to be low-rank. In our case, taking advantage of

additional features is both advantageous and necessary in order to make predictions for a

completely new dataset with no human-annotated ratings defined. There exist methods in

the literature for adding in additional features as an additional term to the loss-optimization

function [31]. These typically take the form of

min
𝑊,𝐻

1

2
‖𝑃Ω

(︀
𝑌 −𝑊𝐻𝑇

)︀
‖2 + 1

2

{︀
tr
(︀
𝑊 𝑇𝐿𝑤𝑊

)︀
+ tr

(︀
𝐻𝑇𝐿ℎ𝐻

)︀}︀
where ‖·‖ is a matrix norm, such as the trace norm or max norm, 𝑃Ω is a projection

operator that retains the observed elements, 𝑊,𝐻 are non-symmetric matrices that represent

factorizations of the dataset/prediction problem matrix, and 𝐿𝑤, 𝐿ℎ are matrices that encode

both regularization terms as well as side information in the form of graph Laplacians. See

[31] for more details.

[8] implemented a version of this algorithm in C++ using a projected gradient descent

method that allows for the easy incorporation of side information into the input feature file.

We use their freely-available library to train Pernican and make predictions.

6.5.1 Learning System Workflow

The standard way of training and testing matrix completion problems involves leaving out

a random portion of the matrix during the training phase, and testing the learning system’s

predictions against the held out data. In our case, since we care about the most meaningful

prediction problems on new, unseen datasets rather than on specific ratings for arbitrary
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prediction problems on arbitrary datasets, we define a slightly different procedure as follows.

1. For each row 𝑖 and column 𝑗 in the matrix

(a) Combine the logical ratings and semantic ratings from each user according to the

linear weighting scheme 𝑐 = 𝛼 * 𝑙 + (1 − 𝛼) * 𝑠, where 𝛼 ∈ [0, 1], 𝑙 is the logical

rating, 𝑠 is the semantic rating

(b) take the median of all the combined ratings 𝑐 collected from multiple users

2. Train the machine with some portion of entire datasets left out.

3. Generate ratings for every possible prediction problem for each of these datasets.

4. Sort these ratings highest-to-lowest

5. Return the highest-rated prediction problem that is defined for the dataset in question.

Step four is necessary because not every prediction problem is allowed for each dataset.

Recall that prediction problems are associated with a column type (e.g. integer, datetime,

categorical), and are enumerated for each semantic column cluster. A prediction problem

is legal for a particular dataset if there is a column in the dataset with the same type and

whose name belongs to the same cluster (more correctly, we break column names up into

possibly several different words, and one of those words belongs to the same cluster as the

one the prediction problem is defined over).

To test the system, we could compare the highest-rated prediction problem computed by

the collaborative filtering algorithm against the highest-rated problem annotated by humans.

We could also compare the whole set of legal prediction problems defined for that dataset

against all of the human ratings. However, a more natural, on-line way of testing the system

is to actually interact directly with the user as follows.

1. Train the machine using all of the currently annotated prediction problems

2. Generate ratings for every other legal prediction problem for the current dataset

3. Present the user with a randomly sampled prediction problem from this set of legal

problems, weighted by the model’s current beliefs about each problem’s rating.
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4. Allow the user to rate this problem

5. Incorporating this rating into the next round

Note that step three is noisy, so that the model can potentially be “surprised” either by

a problem it believes has a high rating yet the user provides a low one, or by the opposite.

Moreover, we can show new users ratings we already have for problems, to bolster our confi-

dence in that rating, or even ask users to tweak problems such that the newer version is more

meaningful, similar to what was done in [34]. As a future step we plan on implementing this

system using methods from the online machine learning literature such as [13]. Additional

theoretical work is necessary before we can directly use such approaches, as there currently

exists no good way to incorporate the side information about each dataset and prediction

problem into the online setting.

6.6 Results

We collected ratings from users on the seven datasets lists in Table 6-1, and trained Pernican

separately using each one as a held-out dataset. The top prediction problems recommended

by Pernican are shown in Appendix A. We also were able to run 55 prediction problems

recommended for the Walmart dataset. We ran each with 5 choices of arguments, with

arguments determined in the same way as Chapter 5, and plot the order Pernican selected

these problems by their worst AUCs (and so the hardest problems) out of the 5 argument

settings in 6-2. This plot is basically random, and suggests either that we do not have

enough data to come to meaningful conclusions, or that predictive accuracy is not at all tied

to meaningfulness.

6.6.1 Top Problems for Each Dataset

In this section we show the top rated legal problems by Pernican for each dataset, where in

each case the dataset in question was left out of training. From this small initial experiment,

we conclude the following, knowing that our confidence in these results is weighed by the

small sample size.
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∙ Simple problems are rated highly

∙ Problems that include a nesting (i.e. a second column operation), a POW operation,

or a DIFF operation are rated very low

∙ Intuitively meaningful problems are near the top, such as, for the same PKDD Loan

application dataset, "predict whether the any of transaction amounts are less than

some threshold" (LT → ANY).

∙ Nonsense solutions very low, such as "last value of the difference in the number of

measurements to the power of some number is less than some threshold" (POW →

DIFF → LT → LAST).

These conclusions are very intuitive, and confirm our initial suspicions that simple prob-

lems would be more meaningful. One exciting conclusion is that the 5th highest rated

problem in the Walmart dataset is a version of the problem presented in the actual Kaggle

competition converted into the binary classification setting using a threshold value. The

problem as presented on Kaggle is to predict future values of the "Weekly_Sales" column

in a regression-type setting, and Pernican’s output is to predict whether any future values

of the "Weekly_Sales" column are greater than some threshold.

The data is organized in Appendix A as follows.

∙ Tables A.8 and A.9 show the top and bottom 10 rated problems by Pernican on the

Czech bank dataset.

∙ Tables A.10 and A.11 show the top and bottom 10 rated problems by Pernican on the

Gas Station Transactions dataset.

∙ Tables A.12 and A.13 show the top and bottom 10 rated problems by Pernican on the

PKDD Loan Application dataset.

∙ Tables A.14 and A.15 show the top and bottom 10 rated problems by Pernican on the

Safecast dataset.

∙ Tables A.16 and A.17 show the top and bottom 10 rated problems by Pernican on the

Shout dataset.
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Figure 6-2: Plot comparing the output order of prediction problems recommended by Per-
nican with their AUC, a measure of predictive difficulty.

∙ Tables A.18 and A.19 show the top and bottom 10 rated problems by Pernican on the

Walmart dataset.

∙ Tables A.20 and A.21 show the top and bottom 10 rated problems by Pernican on the

Social Evolution dataset.

6.6.2 AUC Scores of Top Walmart Problems

As shown in chapter 5, we have already run all the possible Walmart problems using a

Random Forest from Sci-Kit Learn and Feature Tools. We can thus compare the AUC’s

these problems achieved against the order in which Pernican rated the problems on a mean-

ingfulness scale. The results are shown in 6-2. There is no discernible pattern suggested

by the graph, and it seems as though predictive accuracy and meaningfulness are entirely

independent axes. Future work with a larger sample size fed into Pernican and more variety

of compared datasets will confirm whether this hypothesis in indeed accurate.
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Chapter 7

Discussion and Future Work

In this chapter we discuss our contributions at a high level, and present future research

directions.

7.1 Discussion of Results

In this thesis we took automatic data science one step further backward. By creating a way

to define problems automatically, that can then be searched by an intelligent machine to

build up a knowledge base of good questions to ask, we venture a tiny bit farther towards

the eventual goal of understanding human intuition. We hope that in future iterations of

this work we can refine the language enough, gather enough data, and make the underlying

implementation run smoothly enough so that people who may not be strictly-speaking data

scientists can make good use of it.

7.2 Future Work

As alluded to in several sections previously, there are many avenues of future expansions and

improvements to consider. We detail some of them here.
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7.2.1 Large-scale Data Collection and Experiments

The biggest potential for research in the near future involves scaling up the amount of human

annotations we collect so that we can run Pernican with higher volumes of data. We believe

there is much to be learned about the types of questions we as humans think are meaningful,

and we have only scratched the surface.

User-submitted Datasets

Besides just scaling up the number of ratings collected, we would also like to increase the

number of datasets we ascribe prediction problems to. One way to do this is to enable users

to submit their own datasets in the form of structured metadata.

7.2.2 Online-Learning Methods and Algorithms Applied to Perni-

can

Pernican lends itself naturally to an online approach, and we would like to implement the

iterative methods discussed in 6.5.1.

7.2.3 Expanding to Regression and Recommender Systems

Trane applies equally well to regression and recommender systems, and we would like to

expand the web app and the Pernican learning system to include these types of problems.

7.2.4 Learning BigTrane

Eventually we would like to learn prediction problems that are completely defined and

runnable, which would include cutoff flags and arguments. We would also like to expand the

set of currently defined operations, as well as to allow filters in the learning stages.

7.2.5 Applications to Non-relational Datasets

We only define prediction problems on relational datasets, and we only implemented the

Trane interpreter for single, denormalized tables, but we could potentially expand to multi-
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table relational datasets, as well as datasets defined other ways. For instance, we could

incorporate graph data, or some carefully defined NoSQL formats.

MetaTrane: Turning Pernican’s Gaze Inward

One dataset that would be fun to include is our own dataset describing the ways users

interact with the web app, and the ratings they give to prediction problems. If we convert

this dataset into a relational format, we could try to learn prediction problems about our

own users.
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Appendix A

Tables
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Table A.1: Table showing prediction problems from various Kaggle competitions translated
into Trane. Note that we simplify the syntax here for ease of display. Operations are
simply instantiating by their name, entities and time axes are left out. The first five can be
translated into LittleTrane. The next four cannot because of the filter operation, and the
last one cannot because it contains two input columns.

1.

Description
Price of rental properties
URL
https://www.kaggle.com/c/deloitte-western-australia-rental-prices
Problem

LAST(cols=["ren_base_rent"],
filter= "ALL",
row_op = IDENTITY(

cols=["ren_base_rent"]))

2.

Description
Customer churn
URL
https://www.kaggle.com/c/customer-retention
Problem

EXISTS(cols="*",
filter= "ALL",
row_op = IDENTITY(

cols="*"))

3.

Description
Future prescription volume
URL
https://www.kaggle.com/c/RxVolumePrediction
Problem

LAST(cols=["PRESC_VOL"],
filter= "ALL",
row_op = IDENTITY(

cols=["PRESC_VOL"]))
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Table A.2: Kaggle problems in trane 4-7

4.

Description
City bikeshare system demand/use
URL
https://www.kaggle.com/c/bike-sharing-demand
Problem

IDENTITY(cols=["count"],
filter = "ALL",
row_op= IDENTITY(

cols=["count"]))

5.

Description
Short term movements in stock prices
URL
https://www.kaggle.com/c/informs2010
Problem

IDENTITY(cols=["price"],
filter="ALL",
row_op = IDENTITY(
cols=["price"]))

6.

Description
When flu virus hits
URL
https://www.kaggle.com/c/genentech-flu-forecasting
Problem

LAST(cols=["date"],
filter = "people_infected == MAX(people_infected)",
row_op = IDENTITY(cols=["people\_infected"]))

7.

Description
Where flu virus hits
URL
https://www.kaggle.com/c/genentech-flu-forecasting
Problem

LAST(cols=["location"],
filter = "people_infected == MAX(people_infected)",
row_op = IDENTITY(cols=["people\_infected"]))
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Table A.3: Kaggle problems in trane 8-10

8.

Description
How strong flu virus will be
URL
https://www.kaggle.com/c/genentech-flu-forecasting
Problem

LAST(cols=["people_infected"],
filter= "people_infected == MAX(people_infected)",
row_op = IDENTITY(

cols=["people_infected"]))

9.

Description
Risk of customer credit default
URL
https://www.kaggle.com/c/risky-business
Problem

ANY(cols=["loan_defaulted"],
filter= "is_loan == True",
row_op= EQ(

cols=["loan_defaulted"],
arg=1))

10.

Description
Which songs a user will listen to
URL
https://www.kaggle.com/c/msdchallenge Problem

IDENTITY_ORDER_BY(cols = ["song", "play_count", args=[-1],
filter= "ALL",
row_op = IDENTITY(

cols=["song","play_count"]))
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Table A.4: BigTrane Examples

1. For each type of laptop, predict whether the future sales price will ever be below 1000.
Assume the time axis column is labeled "Month".

AggOp(
entity = "laptop",
time_axis = "month",
data_source="base"
optype="ANY",
RowOp=(

type="LT",
cols=["price"],
args=[10000]

),
cols=["price"],
FilterOp="ALL"

)

2. For each type of laptop, predict whether all future sales prices will be below 1000.

AggOp(
entity = "laptop",
time_axis = "month",
data_source="base",
optype="ALL",
RowOp=(

type="LT",
cols=["price"],
args=[1000]

),
cols=["price"],
FilterOp="ALL"

)
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Table A.5: BigTrane Examples 3-4

3. For each restaurant, predict whether the number of customers inside the restaurant at
one time will ever be above 200 on Tuesdays.

AggOp(
entity = "restaurant",
time_axis = "day",
data_source="base",
optype="ANY",
RowOp=(

type="GT",
cols=["num_of_customers_in_restaurant"],
args=[200]

),
cols=["num_of_customers_in_restaurant"],
FilterOp="DAY_OF_WEEK(timestamp) == 2"

)

4. Predict whether the average number of customers inside the restaurant at one time
will always be above 50 on Tuesdays.

AggOp(
entity = "restaurant",
time_axis = "day",
data_source="base",
optype="ALL",
RowOp=(

type="GT",
cols=["num_of_customers_in_restaurant"],
args=[50]

),
cols=["num_of_customers_in_restaurant"],
FilterOp=

("DAY_OF_WEEK(timestamp) == 2) &&
("num_of_customers_in_restaurant" ==

MEAN("num_of_customers_in_restaurant"))"
)
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Table A.6: BigTrane Examples 5-6

5. Predict whether user exists after certain date. The EXISTS operator returns true if
the number of rows is greater than 1. Notice that we could have used any of the
columns for the RowOp because the AggOp is only counting the number of rows. This
is one example of case where there are multiple ways of defining the same problem
in the language, and highlights the need to specify equivalencies or define a unique
convention. In this particular case, we allow for a "*" column name which implies that
the column does not matter.

AggOp(
entity="user",
time_axis="timestamp",
data_source="base",
optype="EXISTS",
RowOp=(

type="IDENTITY",
cols="*",

),
cols="*",
FilterOp="ALL"

)

6. Date at which flu virus cases in each municipality is greater than 10.

AggOp(
entity="Municipality",
time_axis="Date",
data_source="base",
optype="FIRST",
RowOp=(

type="IDENTITY",
cols=["Date"]

),
cols=["Date"],
FilterOp="Flu_Virus_Cases > 10"

)
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Table A.7: BigTrane Examples 7-8

7. Difference between a taxi trip’s last location in meters and starting location. Notice
here that the order of operation matters. Filters define which rows are used before the
row operation operates over those rows. Here, NORM_DIFF takes the l2 norm of the
difference between its input columns, returning one fewer rows than its input. Since
the input is only two rows, the last and the first, the TransOp’s output is only a single
row (and only a single column). Not that the timestamp column is denoted "ts".

TransOp(
entity="trip_id",
time_axis="timestamp",
data_source="base",
optype="NORM_DIFF",
RowOp=(

type="IDENTITY",
cols=["lat", "long"],),

cols=["lat","long"],
FilterOp="((ts == MIN(ts)) || (ts == MAX(ts)))")

8. Difference between a taxi trip’s last location in meters and starting location is greater
than 50. Note that this problem is nested. We first calculate the NORM_DIFF, and
then we check if that value is greater than 50. Note that we only include entity and
time axis for the outermost TransOp, since each operation must be defined for the
same entity and time axis.

TransOp(
entity="trip_id",
time_axis="timestamp",
data_source=TransOp(

data_source="base",
optype="NORM_DIFF",
RowOp=(

type="IDENTITY",
cols=["lat", "long"]),

as_names=["norm"],
FilterOp="((ts == MIN(ts)) || (ts == MAX(ts)))")

optype="GT",
cols = ["norm"],
args=[50],
FilterOp="ALL")
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Table A.8: Top 10 problems for the Czech bank dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
Party_Client_From_Date LT ALL nop nop nop
Party_Client_From_Date LT ALL nop nop nop
Transaction_Amount_Czk LT ALL nop nop nop
Party_Type IDENTITY ALL nop nop nop
Party_Birth_Date LT ALL nop nop nop
Credit_Debit_Flag IDENTITY ALL nop nop nop
Tax_Flag IDENTITY ALL nop nop nop
Party_Client_From_Date LT ALL nop nop nop
Credit_Debit_Flag IDENTITY ALL nop nop nop
Transaction_Amount_Czk GT ALL nop nop nop

Table A.9: Bottom 10 problems for the Czech Bank dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
Transaction_Amount_Czk NEQ SUM LT nop nop
Transaction_Amount_Czk POW DIFF LT ANY nop
City NEQ SUM LT nop nop
Product_Agenda_Name NEQ SUM LT nop nop
Transaction_Amount_Czk POW DIFF LT ALL nop
Transaction_Amount_Czk POW DIFF NEQ LAST nop
Transaction_Amount_Czk POW DIFF POW LAST NEQ
Transaction_Amount_Czk POW DIFF POW LAST EQ
Transaction_Amount_Czk POW DIFF LT SUM LT
Transaction_Amount_Czk POW IDENTITY LT LAST nop

Table A.10: Top 10 problems for the Gas Station Transaction dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
Amount LT SUM EQ nop nop
Amount LT ANY nop nop nop
Price LT ANY nop nop nop
Timestamp LT ANY nop nop nop
Timestamp LT SUM EQ nop nop
Price LT LAST nop nop nop
Amount LT LAST nop nop nop
Timestamp LT LAST nop nop nop
Price LT SUM GT nop nop
Timestamp LT SUM GT nop nop
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Table A.11: Bottom 10 problems for the Gas Station Transaction dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
Amount POW DIFF POW SUM LT
ChainID NEQ ALL nop nop nop
Amount POW DIFF POW LAST NEQ
Amount POW DIFF POW LAST EQ
Amount POW DIFF POW LAST_MINUS_FIRST LT
Price POW DIFF POW LAST_MINUS_FIRST LT
Price POW DIFF POW FIRST LT
Amount POW DIFF POW FIRST LT
Amount POW DIFF POW LAST LT
Price POW DIFF POW LAST LT

Table A.12: Top 10 problems for the PKDD99 Loan Application dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
amount LT ANY nop nop nop
n0_entrepreneurs LT ANY nop nop nop
n0_entrepreneurs LT ANY nop nop nop
ratio_urban LT ANY nop nop nop
avg_salary LT ANY nop nop nop
birth_date LT ANY nop nop nop
no_small_municipalities LT ANY nop nop nop
amount LT SUM EQ nop nop
duration LT ANY nop nop nop

Table A.13: Bottom 10 problems for the PKDD99 Loan Application dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
ratio_urban POW DIFF LT LAST nop
n0_entrepreneurs POW DIFF LT LAST nop
ratio_urban POW DIFF LT LAST nop
avg_salary POW DIFF LT LAST nop
payments POW DIFF LT LAST nop
duration POW DIFF LT LAST nop
no_crimes_1996 POW DIFF LT LAST nop
amount POW DIFF LT LAST nop
no_small_municipalities POW DIFF LT LAST nop
no_xl_municipalities POW DIFF LT LAST nop
n0_entrepreneurs POW DIFF LT LAST nop
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Table A.14: Top 10 problems for the Safecast dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
number_of_measurements LT SUM EQ nop nop
number_of_measurements LT ANY nop nop nop
value LT ANY nop nop nop
latitude LT ANY nop nop nop
timestamp LT ANY nop nop nop
timestamp LT SUM EQ nop nop
latitude LT ALL nop nop nop
number_of_measurements LT ALL nop nop nop
timestamp LT ALL nop nop nop
value LT ALL nop nop nop

Table A.15: Bottom 10 problems for the Safecast dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
latitude POW IDENTITY LT LAST nop
value POW IDENTITY LT LAST nop
value POW DIFF LT SUM LT
number_of_measurements POW DIFF LT SUM LT
latitude POW DIFF LT SUM LT
value IDENTITY DIFF LT LAST nop
latitude POW DIFF POW LAST LT
value POW DIFF LT LAST nop
value POW DIFF POW LAST LT
number_of_measurements POW DIFF POW LAST LT
latitude POW DIFF LT LAST nop
number_of_measurements POW DIFF LT LAST nop

Table A.16: Top 10 problems for the Shout dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
other_trade_num LT ANY nop nop nop
other_trade_num LT ANY nop nop nop
other_trade_num LT ANY nop nop nop
created_at LT ANY nop nop nop
retweet_count LT ANY nop nop nop
this_trade_num LT ANY nop nop nop
timestamp LT ANY nop nop nop
created_at LT ANY nop nop nop
other_trade_num LT SUM EQ nop nop
this_trade_num IDENTITY LAST_MINUS_FIRST EQ nop nop
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Table A.17: Bottom 10 problems for the Shout dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
language EQ SUM LT nop nop
other_trade_num EQ SUM LT nop nop
original_poster_id EQ SUM LT nop nop
this_trade_num EQ SUM LT nop nop
name EQ SUM LT nop nop
timestamp EQ SUM LT nop nop
retweet_count EQ SUM LT nop nop
other_trade_num EQ SUM LT nop nop
created_at EQ SUM LT nop nop
other_trade_num EQ SUM LT nop nop

Table A.18: Top 10 problems for the Walmart dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
Size POW LAST_MINUS_FIRST EQ nop nop
Date LT SUM EQ nop nop
Date GT ANY nop nop nop
CPI GT ANY nop nop nop
Weekly_Sales GT ANY nop nop nop
MarkDown4 GT ANY nop nop nop
MarkDown4 GT ANY nop nop nop
Temperature GT ANY nop nop nop
Size GT ANY nop nop nop
Unemployment GT ANY nop nop nop

Table A.19: Bottom 10 problems for the Walmart dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
Weekly_Sales IDENTITY DIFF LT LAST nop
Unemployment IDENTITY DIFF LT LAST nop
MarkDown4 IDENTITY DIFF LT LAST nop
Unemployment IDENTITY DIFF LT SUM LT
MarkDown4 IDENTITY DIFF LT SUM LT
Size IDENTITY DIFF LT SUM LT
Temperature IDENTITY DIFF LT SUM LT
MarkDown4 IDENTITY DIFF LT SUM LT
CPI IDENTITY DIFF LT SUM LT
Weekly_Sales IDENTITY DIFF LT SUM LT
Date IDENTITY DIFF LT SUM LT
Temperature IDENTITY DIFF LT LAST nop
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Table A.20: Top 10 problems for the Social Evolution dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
prob2 LT ALL nop nop nop
fever IDENTITY ALL nop nop nop
aerobic_per_week LT ALL nop nop nop
current_smoking IDENTITY ALL nop nop nop
current_weight LT ALL nop nop nop
time_stamp LT ALL nop nop nop
aerobic_per_week LT ALL nop nop nop
open.stressed IDENTITY ALL nop nop nop
current_height LT ALL nop nop nop
survey.date LT ALL nop nop nop

Table A.21: Bottom 10 problems for the Social Evolution dataset.

Column Name Row Op1 Col Op1 Row Op2 Col Op2 Row Op3
current_weight POW DIFF POW LAST LT
aerobic_per_week POW DIFF POW LAST LT
prob2 POW DIFF POW LAST LT
current_height POW DIFF POW LAST LT
aerobic_per_week POW DIFF POW LAST LT
current_height POW DIFF LT LAST nop
current_weight POW DIFF LT LAST nop
aerobic_per_week POW DIFF LT LAST nop
aerobic_per_week POW DIFF LT LAST nop
prob2 POW DIFF LT LAST nop
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