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An Analysis of Wind Field Estimation and Exploitation for Quadrotor
Flight in the Urban Canopy Layer

John Ware and Nicholas Roy

Abstract— Although unmanned air vehicles’ increasing
agility and autonomy may soon allow for flight in urban
environments, the impact of complex urban wind fields on
vehicle flight performance remains unclear. Unlike synoptic
winds at high altitudes, urban wind fields are subject to
turbulence generated by the buildings and terrain. The resulting
spatial and temporal variation makes inference about the global
wind field based on local wind measurements difficult and
prevents the use of most simple wind models. Fortunately,
the structure of the urban environment provides exploitable
predictability given a suitable computational fluid dynamics
solver, a representative 3D model of the environment, and an
estimate of the expected prevailing wind speed and heading.
The prevailing wind speed and direction at altitude and com-
putational fluid dynamics solver can generate the corresponding
wind field estimate over the map. By generating wind fields in
this way, this work investigates a quadrotor’s ability to exploit
them for improved flight performance. Along with the wind
field estimate, an empirically derived power consumption model
is used to find minimum-energy trajectories with a planner
both aware of and naive to the wind field. When compared
to minimum-energy trajectories that do not incorporate wind
conditions, the wind-aware trajectories demonstrate reduced
flight times, total energy expenditures, and failures due to excess
air speed for trajectories across MIT campus.

I. INTRODUCTION

With unmanned aerial vehicles (UAVs) becoming more
prolific and capable, and regulations evolving, their even-
tual operation in urban environments seems all but certain.
As UAVs begin to fly in these environments, they will
be presented with a host of unique challenges. One of
these challenges will be the complex wind fields generated
by urban structures and terrain. Although much effort has
been directed towards developing planning and estimation
strategies for wind fields at high altitudes or in large open
spaces [1]-[7]], these approaches contain an implicit assump-
tion that the wind field evolves over relatively large temporal
and spatial scales. Given this simplification, a history of
local measurements can be used to estimate the global
wind field with sufficient accuracy. However, urban wind
fields are highly variable in both space and time and are
therefore resistant to this estimation method and require an
approach that models the complex interaction between the
flow and surrounding environment. We seek to show that
rotary wing vehicles, such as the quadrotor seen in figure [T}
can significantly improve its energy consumption over a
trajectory through the urban environment by incorporating
the wind field estimate into the planner. Beyond reduced
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Fig. 1: The quadrotor was flown in the wind tunnel chamber
with a Vicon motion capture system in order to measure
power consumption as a function of air speed. It executed a
position hold command for up to 5 minutes over a range of
wind speeds and logged battery voltage and current data, as
well as the wind speed within the tunnel.

total energy consumption, we also attempt to demonstrate
a reduced failure rate and improved time to goal in some
instances.

In order to assess the potential benefits of planning over
urban wind fields, this work uses minimum-energy trajec-
tories to characterize the quadrotor’s energy consumption
between two points with respect to a representative, static
wind field within a complex urban environment. An existing
computational fluid dynamics (CFD) solver [8] is used to
compute the wind field estimates and they are incorporated
into a minimum-energy trajectory planner along with an
empirically derived quadrotor power consumption model.

This paper proceeds as follows. First, a short summary of
related work concerning UAV flight performance in urban
environments is presented. This is followed by a summary
of the minimum-energy planning problem being solved in
order to evaluate the benefit of incorporating urban wind field
estimates into quadrotor flight plans. The approach to wind
field estimation is then presented along with a validation
study of the wind model. This is followed by a discussion of
the quadrotor power consumption model, along with a more
detailed description of the planning task. Finally, the results
from a series of simulations are presented. We also present
validations of the power consumption, wind field models,
and hover tests of in sitfu measurements, but FAA regulations
disallowing urban UAV flights prevent in situ validation of
the final set of campus-wide flights.



II. RELATED WORK

Three notable efforts have been made to characterize UAV
flight in urban environments while using wind models to
obtain wind field estimates. Orr et al. [9], [[10] used a compu-
tational fluid dynamics (CFD) solver to generate static wind
fields and assess the waypoint following performance of a
fixed-wing UAV. Another effort was made by Galway [11]],
[12] to simulate an autonomous helicopter in a sparse urban
environment. Galway used a CFD model to compute wind
fields around cross sections of individual and small groups
of buildings for a spanning set of prevailing wind speeds
and headings. The resulting library of wind fields was used
to construct more complex environments by combining these
primitives. Cybyk et al. [13]] employed a more sophisticated
unsteady wind model for the analysis of fixed wing flight
performance in an urban environment with dynamic wind
fields. Although Orr et al., Galway, and Cybyk concluded
that the resulting wind fields had a significant effect on
performance, neither considered the potential benefits of
planning over them.

Our approach is similar in that it uses a CFD solver
to compute the resulting global wind field given a map
of the environment. In contrast to these approaches, the
wind model used here will be QUIC-CFD, a lightweight
implementation of standard Navier-Stokes based CFD solver
capable of generating wind field estimates of large, complex,
urban environments. This work also differs in that it focuses
on flight within the urban canyon.

III. PLANNING PROBLEM

In order to characterize the potential utility of incorporat-
ing urban wind fields into planned trajectories, a method
of finding minimum-energy trajectories must first be dis-
cussed. Given a map of the environment and a wind field
estimate, we seek to efficiently compute the minimum-
energy, collision-free trajectory between fixed start and goal
locations subject to constraints imposed by the quadrotors
capabilities and the operator’s notion of safety. In order to
minimize energy consumption over the trajectory, our cost
function, C(-), is defined as the change in platform energy
between two states, x; and x;. The vehicle state, x;, is defined
as the vehicle’s zy position and ground velocity, v,. The zy
position of each state also has a corresponding planar wind
vector, v, (x;), from the precomputed wind field estimateﬂ
Because we wish to analyze near-terrain flight in the urban
environment, we assume the vehicle is flying at a constant
altitude close to the ground, and is therefore forced to fly
around obstacles rather than over them.

C(Xir Xi—1, Yw(Xi)) = DBt (Xis Xi—1: Vw(Xs)) (D)

Given this cost function and the following set of con-
straints, the planner attempts to find a trajectory between
the fixed start and goal locations that minimizes total energy

'In this paper, we assume energy is always expended at each time step.
Different forms of soaring might allow for energy to be harvested, and
would therefore require a different objective, but not fundamentally different
strategy to the one we use here.

consumption over some continguous set of edges in the graph
leading to the goal.

N
ZC(Xi,Xzel, Vw(Xi))

argmin
X0:N i=0
sub.]eCt to: ngm < Vg,’i < nguz (2)

Vai < Vamae
Vgi — Vgi—1 < Vstep

In order to guarantee progress towards the goal and define
a window of safe operating speeds, the ground speed, v, is
constrained to be greater than 0.5 m/s and less than 8 m/s.
The air speed, v,, is also subject to a maximum value of
either 10 or 20 m/s, representing the vehicle’s thrust limits
for each set of simulation results. Finally, the instantaneous
change in velocity between two adjacent grid points, vg; —
Vg t—1, is constrained to 0.5 m/s. With every iteration, the
planner can move in the zy grid along 8 possible headings
and can increment or decrement its ground velocity, vg4, by
Vstep-

As of yet, we have not discussed an approach to find the
energy consumption, AFE}.(-), for a quadrotor moving in a
known wind field. We also have not shown how to obtain
that wind field in a known map of an urban environment in
order to provide the planner with an estimate of the wind
speed, 1, at each location in the map. Although both of
these issues are addressed below, the latter will be discussed
first for clarity.

IV. URBAN WIND FIELD ESTIMATION

Unlike wind fields found at high altitudes, the dense struc-
ture of an urban environment makes wind field estimation a
significant challenge. Urban wind fields are largely defined
by the aerodynamic boundary layers that form over a city and
separate its turbulent interior from the laminar atmospheric
flow [14]. The inner-most layer, its height defined by the
average height of the terrain features and buildings, is called
the urban canopy layer (UCL). Wind fields within the UCL
are mostly governed by environmental features which impose
a length scale that is often between one and hundreds of
meters. Despite the influence of the environmental structure,
the general flow pattern in the UCL is still driven by the
prevailing wind in the upper boundary layers. Given the
strong dependence of the UCL on the conditions in the upper
layers, prevailing wind measurements from the roughness
sublayer (the next layer in the UCL, just above the roof line)
can be used along with a map of the environment, as inputs
to a CFD solver. The resulting wind field estimates provide
a useful approximation of the wind field created by a given
wind condition.

In order for any wind field estimate to be useful for a
planner, it must reflect the conditions during the flight. Both
work by Van der Hoven [[15] and a database of historical
wind measurements from the MIT weather station show that
although turbulence introduces noise to the prevailing wind
conditions, the distribution can be considered stationary over
periods of several hours. Given this, trajectory planning can



be done in the wind field corresponding to the expected
prevailing wind speed and headindﬂ In this work, we use a
set of representative prevailing wind conditions derived from
the past year of wind speed and heading data from the MIT
weather station.

Fortunately, the structure of a dense urban environment
imparts some predictability that can be exploited by a com-
putational fluid dynamics (CFD) solver. For example, wind
tends to be channeled down an aligned urban canyon and
over a perpendicular one. The most common approach to
estimating a wind field in a complex environment is to use
CFD solvers to find approximate solutions to the Navier-
Stokes equations. This work uses QUIC-CFD, a lightweight
CFD solver developed at Los Alamos National Labs. Origi-
nally developed to quickly solve for contaminant dispersion
in urban environments, it is based on the work of Chorin [|16]]
and uses the steady Reynolds-Averaged Navier-Stokes turbu-
lence model to generate a time-averaged solution. Although
QUIC-CFD emphasizes solution time over absolute accuracy,
it matched the abiilty of more complex models in its ability
to recreate wind conditions at in-situ measurement locations
during a large field trial in Oklahoma City [[17].

Given the guidelines presented by Franke et al. [18] and
Tominaga et al. [19]], and the solver’s inability to vary grid
size over the map, the grid size was fixed at | m X 1 m
x 1 m. Further work presented by Oke et al. [20]] informs
the selection of map size. Given the dimensions and spacing
of buildings, the incoming flow regime is considered to be
skimming flow and predicts little disturbance by the urban
canyons. The boundary conditions are the Monin-Obukhov,
logarithmic boundary conditions found in Oke [20] with
neutral stability.

Figure 2] shows the x-component of the velocity for a
representative wind field generated with a 10 m/s wind speed
measured at 100 m and an Easterly wind heading of 90
degrees. Note the higher wind speeds in the aligned canyons
and wake regions behind structures.

V. CFD MODEL VALIDATION

To validate our wind model, a series of in sifu wind speed
and heading measurements were taken with a LCJ Capteurs
CV7 ultrasonic anemometer at an altitude of 2 meters and a
rate of 4 Hz. Each measurement period was approximately
20 minutes, and all measurements were done within a 2
hour period. The prevailing wind was measured to have an
average speed and heading of 2.9 m/s at 100 m and 102
degrees, respectively, and was compared against a steady
wind field generated using QUIC-CFD with a prevailing
wind speed of 5 m/s at 100 m and a heading of 90 degrees.
The measurement locations can be seen in figure [3]

A table of the average anemometer and model speed,
S, and average anemometer and model heading, ©, can
be seen in table [l The heading values are in the standard
meteorological form of degrees North with clockwise as

’In our model, turbulence is a form of uncertainty, along with other
possible sources of uncertainty. Incorporating uncertainty in general may
further improve performance, but is outside the scope of this paper.
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Fig. 2: A visualization of the x-component of the velocity
in a planar slice of the three-dimensional wind field for a
prevailing wind speed of 10 m/s measured at an altitude of
100 m and a prevailing wind heading of 90 degrees.
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Fig. 3: In situ measurement locations across MIT campus.
The measurements were taken over the course of 2 hours
with an ultrasonic anemometer.

positive. Note also that heading refers to the source of
the wind, and not to the direction of flow. To account
for uncertainty in the test location, the model average was
computed over a 5 m X 5 m area. So as to value the model’s
ability to capture the bulk advection effect over its ability to
recreate a particular flow feature at a specific position, the
measurement location was adjusted within several meters for
a more favorable comparison. Given these allowances, the
model performs similarly to the results shown in [§]], with
approximately 36% of measurement locations showing wind
heading errors of less than 15 degrees, and 72% less than
45 degrees. Approximately 36% of measurement locations
show wind speed errors of less than 10%, and 81% show
wind speed errors of less than 50%. Also, the magnitudes
of the speed error’s standard deviation suggests that our
ground velocity, v4, discretization of 0.5 m/s was appropriate.
Although the magnitudes of the heading error’s standard
deviation are large, this is to be expected in the turbulent
urban canyon and reinforces the approach of planning over
the expected wind conditions.



TABLE I: Measured and Model Wind Speed and Heading

Point Measured Model Mean Error  Std. Dev. Error

S ) S O s He  Os oy
1 1.17 207 126 220 -0.09 -13 0.62 37
2 1.52 346 1.11 317 041 29 0.52 24
3 1.68 96 1.54 101 0.14 -5 0.60 11
4 1.08 65 1.24 37 -0.16 28 0.56 39
5 094 293 090 289 0.03 4 0.36 18
6 0.87 44 0.81 93 0.06 -50 0.30 26
7 1.01 11 0.77 339 0.24 72 027 15
8 1.11 29 0.78 127 033 99 043 17
9 0.86 198 0.61 158 0.25 40 0.24 15
10 058 232 133 211 -075 21 0.37 103

11 0.87 196 153 203 -0.65 -7 0.31 40
All speed values are in m/s and heading values are in degrees north.

VI. ENERGY CONSUMPTION

In order to find a minimum energy trajectory, it is neces-
sary to compute the quadrotor’s energy consumption between
two points in the map. We can express the vehicle’s total
energy, Fyy, as the sum of the potential, kinetic, and stored
energy as shown in equation 3] The stored energy component,
FE, represents the capacity in J of the on-board battery,

1
Eior = mgh + 5m\u|2 + E.. 3)

Assuming a constant ground velocity, constant altitude,
and no acceleration, the change in total energy, AFE},, is
equal to the change in stored energy, AFE,. The change in
stored energy is the difference in the battery’s stored energy
between two points in time. Note also that we will later
assume no acceleration between nodes in the planning graph.

For a rotary wing vehicle, and especially a quadrotor,
the act of spinning the rotors consumes the vast majority
of the stored energy and a power consumption model of
the controller, motor, and rotor system is required. Huang
et al. [21]] express the power consumption, P, of a single
rotor as a function of induced velocity (v;), air speed (Voo),
rotor thrust (T), angle of attack (o), propeller efficiency (7,),
motor efficiency (7,,), and controller efficiency (7.). The
efficiencies are taken to be 0.6, 0.85, and 0.95, respectively.
T(v; — Voo Sin @)

NpMmTe

The induced velocity is the rate at which the motion of
the rotor moves air perpendicular to the rotor plane. Note
that this power model depends not on air velocity but on
induced velocity which is not directly measured, but requires
solving the quadratic expression found in equation [5} Here,
the free stream velocity, V., is equivalent to the airspeed
of the vehicle, v,. The hover velocity, v, is defined in
equation E] with the hover thrust, 7}, equal to 1/4 of the
vehicle weight, S as the swept rotor area, and p as the air
density.

P= (4)

2

v = Zh ()
V (Voo cos )2 + (v; — Voo sin )2
Th
=1 5,8 (6)

Instead of mounting the vehicle on a sting in the wind
tunnel and introducing significant measurement noise into
the force and moment sensors a motion capture system was
setup within the MIT Wright Brothers Wind Tunnel and
the vehicle was flown in place, as shown in figure [I] The
vehicle maintained position while the air speed was set and
held at 5, 10, 15, 20, and 25 mph for durations between
30 seconds and several minutes. A series of 11, constant air
speed tests were performed over the course of several days.
The vehicle’s battery voltage and current were measured at 1
kHz, averaged, and recorded at 100 Hz. The wind speed was
closely controlled and recorded at 4 Hz by a LCJ Capteurs
CV7 ultrasonic anemometer.

The resulting calculated power consumption and measured
power consumption data, normalized by the hover power
consumption, P, of 247 W, can be seen in figure To
validate the measured power consumption data, a curve was
fit to the average pitch values for all trials to serve as an
input to equations [] and [5| The measured pitch data and
quadratic curve fit can be seen in panel figure [d(a). The
output of this power consumption model, given the fit of
pitch as a function of air speed, can be seen, along with the
measured power consumption, in figure [4(b). Note the initial
decrease in power consumption caused by translational lift
and the steep increase at higher air speeds caused primarily
by the vehicles angle of attack and form drag. Translational
lift is present in all rotorcraft and is a natural result of
the increased flow over the rotors in forward flight which
improves rotor efficiency [22]. The discrepancy between
the measured power consumption and the calculated power
consumption is probably due to a combination of imperfect
modeling of the controller, motor, and rotor efficiencies and
the vehicles difficulty holding position at the higher air
speeds due to controller constraints.

A series of outdoor hover tests were performed to compare
the quadrotor’s energy consumption in the field to the con-
trolled tests from the wind tunnel. In order to comply with
FAA regulation, the tests were done on the test frame seen in
figure [5] The wind speed was recorded with a Young 81000
ultrasonic anemometer and the vehicle’s battery voltage and
current consumption were logged. Because multipath error
and obstruction of the horizon prevented accurate localization
with GPS, a downward facing optical flow camera, the 3DR
PX4Flow, was used instead. The magnetometer was used
for the vehicle’s yaw orientation. Although the resulting
power consumption data does capture the downward trend,
it is likely that large deviations in the control effort due
to turbulence cause a back EMF current to the battery that
degrades the measurement accuracy.

VII. PLANNING

Given a planar section of the 3D wind field estimate and
occupancy map, A* search was used to find the minimum-
cost, collision-free trajectory between a start and goal loca-
tion over xy positions and scalar edge velocity. A velocity
discretization of 0.5 m/s allowed for sufficiently fine ad-
justment of the ground velocity. The vehicle’s altitude was
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Fig. 4: Panel (a) shows the mean and standard error of the vehicle pitch along with a quadratic fit to the data. These values
were used to generate the power consumption model, shown in black, in panel (b). Power consumption data was normalized
by the hover power consumption in still air. The blue points denote the results as reported by the current and voltage
sensor with the associated standard error. The red points denote the power consumption during the outdoor hover tests and
their standard error. Note that the standard error for the wind tunnel trials is negligible due to sampling frequency and test

duration.

Fig. 5: A series of hover tests were performed in a
green space within the MIT campus. The vehicle was au-
tonomously holding position, but tethered to comply with
FAA regulations.

fixed to 10 meters and the planning was performed directly
on the zy grid used by the wind model. The vehicle’s air
speed was calculated as the ground speed minus the wind
speed. To find the stored energy consumption between two
states, power consumption as a function of air speed is
multiplied by the edge distance and divided by the current
ground speed. Recall that our model of urban operations
only considers motion at a fixed altitude in the zy-plane, the
energy consumed between two states, x; and x;, can then
be expressed as follows with dist(x;, x;) as the Euclidean
distance function between two nodes and v, as the vehicle
ground speed along the connecting edge.

P(vgi — v i)dist(xi, Xi—1)

Vg,i

AFEot(Xis Xi—1J, Vg(Xi)) =
(N

Two sample sets of 1000 simulated, minimum-energy
trajectories using 500 random start and goal locations were
planned with both the naive and wind-aware planners. In
order to demonstrate the effect of constraining the vehicle’s
maximum air speed, the two sets of simulations had max air
speeds of 10 and 20 m/s, respectively. The minimum distance

between the start and goal locations was 10 m and the 10
wind conditions were comprised of 5 speeds and 2 headings.
In order to represent the vehicles flight envelope, failure is
defined as the case when the planner is unable to lower its
ground speed sufficiently to prevent exceeding the maximum
air speed, while still making forward progress.

To allow for sufficiently long trajectories, a region of the
MIT campus and surrounding city spanning an area of 1100
m x 1100 m was selected. A three-dimensional model of
this region containing 81 buildings, each constrained to be
no taller than 20 m, was created to serve as an input to
the wind model and can be seen in figure [} The domain
height, the maximum height of the model’s air volume, was
constrained to 24 m to minimize computation time and a
xyz-grid resolution of 1 m X 1 m x 1 m was used to
capture the detailed structure of UCL wind fields. Despite
only planning in the plane, the wind model must solve over
the full 3D map to account for the complex flow through
the urban environment. Although constraining the domain
and building height makes for an imperfect model, the focus
of this work was on flight within the urban canyon, and in
situ measurements demonstrate that the resulting wind fields
remain sufficiently accurate.

Fig. 6: The 3D model of the region of MIT campus being
planned over that was used as an input to the QUIC-CFD
wind model along with the prevailing wind conditions.
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Fig. 7: The wind planner significantly outperforms the naive
planner over all prevailing wind speeds tested. The error bars
shown here represent standard error.

As a coastal city, Cambridge typically has either an
Easterly or Westerly wind heading and might only switch
once a day due to the diurnal cycle. With this in mind, wind
fields with both an Easterly and Westerly wind heading were
used here with wind speeds of 5, 7.5, 10, 12.5, and 15 m/s
for a total of 10 wind fields. Given the past year of data
from the MIT weather station, these wind speeds occur in
approximately 27%, 11%, 3.5%, 1.3%, and 0.35% of the
measurements, respectively. A visualization of one of these
wind fields can be seen in figure 2] The resulting trajectories
are used to draw more general conclusions about the benefits
of wind-aware planning in the urban environment.

VIII. RESULTS

A good comparison metric between the two planners is
the mean percentage difference in energy consumption. This
is shown in figure [/| for both maximum air speeds over each
of the 10 wind fields across all 500 trials. For the simulations
with the 20 m/s maximum air speed, the wind planner, as
might be expected, outperforms the naive planner over all
wind conditions and is able to improve its performance with
increasing wind speed. Because a prevailing wind speed of
5 m/s at an altitude of 100 m generates relatively small
wind speeds at an altitude of 10 m, the wind planner is only
able to reduce energy consumption by approximately 0.5%.
Although there is only a small change at 7.5 m/s, the wind
planner’s performance increases significantly with increasing
prevailing wind speed and acheives approximately a 4%, and
10% improvement at 10, and 15 m/s, respectively. This is
likely because it is able to exploit tail winds, while the naive
planner unknowingly flies into headwinds.

The second set of simulations used a maximum air speed
of 10 m/s and resulted in a change in the wind planner per-
formance. Again, the wind planner significantly outperforms
the naive planner in all cases, and is only able to reduce
energy consumption by approximately 0.9% for a prevailing
wind speed of 5 m/s. Demonstrating the additional expense
incurred by the naive planner’s upwind trajectories, relatively
large gains of 7.3% and 9.3% are shown at 10 m/s for
the Easterly and Westerly wind headings, respectively. As
might be expected, the wind planner shows equivalent or
increased gains for 12.5 and 15 m/s in the Easterly wind
fields. Surprisingly, the energy consumption decreases for

Failure Rate for Wind Fields with 10m/s Max Airspeed
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Fig. 8: Neither planner has significant error rates below 12.5
m/s, but the naive planner strongly underperforms the wind
planner for a 15 m/s prevailing wind speed. The error bars
shown here represent standard error.
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Fig. 9: The naive planner failure locations over the 2D map.
Note that a large fraction of them are at corners of buildings
or at the entry points to the structure group near canyons
channeling the wind along their axis.

the Westerly heading. This may be due to the Westerly wind
being channeled down the aligned urban canyons and causing
otherwise costly upwind trajectories to fail. Some evidence
of this failure mode can be found in figure [ by noting
the cluster of naive planner failures for the Westerly wind
heading at the lower left of the map leading into a large
diagonal canyon. Also note that the naive planner fails to
reach the goal location in approximately 55% and 69% of
the 15m/s trials, as shown in figure[§] These incomplete trials
cannot be counted towards the mean energy consumption, but
would likely be some of the highest values in the set.

Looking closer at a specific trial, figure [I0] (a) and [I0]
(b) show the total energy consumption and speeds over
the length of the trajectory for a wind speed of 10 m/s
and Westerly heading. By maximizing its ground speed
without exceeding the maximum air speed, the wind planner
demonstrates a 39.4% reduction in total energy consumption
while traveling 10.8% further with a 22% shorter flight time.
The resulting trajectories in figure [TT] show the wind planner
sheltering next to and downwind from structures, while the
naive planner exposes the vehicle to a strong headwind.
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Fig. 10: Panel (a) demonstrates the wind planner’s ability to reduce energy consumption over the course of a flight. Panel
(b) shows how the naive planner is unable to increase its ground speed due to its own dynamic constraints and the upwind,

exposed trajectory it selected.

Fig. 11: Panel (a) and (b) show the naive and wind planner’s trajectories, respectively, for an example start and goal location.
The trajectories are color coded by ground speed. The green and red circles denote the start and goal locations, respectively.

IX. CONCLUSIONS AND FUTURE WORK

Although the lower wind speeds offer little opportunity for
exploitation within a dense urban environment, those above
10 m/s allowed the wind planner to significantly outperform
the naive planner. Given a complex urban environment with
a wind field estimate, the planner is capable of finding
minimum-energy trajectories such that the vehicle is less
likely to exceed its flight performance envelope given strong
headwinds and more likely to exploit tailwinds for a reduced
time to goal and total energy consumption. More generally,
this initial investigation suggests that UAVs could benefit
from considering wind conditions in complex environments.
Future work will focus on leveraging unsteady wind models,
integrating high frequency prevailing wind updates for online
re-planning, and integrating uncertainty estimates in to the
wind field representation.
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