CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor's Thesis

Graphical RISC-V Architecture
Simulator

Memory Model and Project Management

Jakub Dupak

dev@jakubdupak.com

May 2021
https://github.com/cvut/qtrvsim
Supervisor: Ing. Pavel Pisa PhD.

https://github.com/cvut/qtrvsim

cTu BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N
Student's name: Dupak Jakub Personal ID number: 483785

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics
Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science

Il. Bachelor’s thesis details
4 N
Bachelor’s thesis title in English:

Graphical RISC-V Architecture Simulator - Memory Model and Project Management

Bachelor’s thesis title in Czech:

Graficky simulator architektury RISC-V - pamétovy model a vedeni projektu

Guidelines:

RISC MIPS architecture simulator has been developed to teach the Computer Architecture (B35APOQ) subject. It allows
the visualization of both simple and pipelined processor variants and activity including cache and peripherals visualization.
RISC-V architecture is becoming the future choice for computer architectures education. The architecture is open from
the very moment of design and its authors are authors of the textbook that is considered the standard of quality in computer
architecture education.

1. Familiarize with RISC-V processor architecture and respective standards and actual textbook.

2. Redesign simulator memory model to allow its use for littleendian architecture, mapped filesystem files and 64-bit targets.
3. Update visualization of the processor core.

4. Update documentation and packaging of the project.

Bibliography / sources:

[1] Patterson, D. A., and J. L.: Computer Organization and Design RISC-V Edition, The Hardware Software Interface 1rd
ed. Morgan Kaufman, 2017, ISBN: 9780128122754

[2] Patterson, D. A., and J. L.: Computer Organization and Design RISC-V Edition, The Hardware Software Interface 2nd
ed. Morgan Kaufman, 2021, ISBN: 9780128203316

[3] Waterman, A., Asanovic, K.: The RISC-V Instruction Set Manual Volume I: Unprivileged ISA, CS Division, EECS
Department, University of California, Berkeley, 2020 https://riscv.org/technical/specifications/

[4] Koéi, K.: Graphical CPU Simulator with Cache Visualization, Master's Thesis,Czech Technical University in Prague
[5] QtMIPS - MIPS CPU Simulator for Education Purposes, https://github.com/cvut/QtMips/

Name and workplace of bachelor’s thesis supervisor:

Ing. Pavel PiSa, Ph.D., Department of Control Engineering, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 01.02.2021 Deadline for bachelor thesis submission: 21.05.2021

Assignment valid until: 30.09.2022

Ing. Pavel Pisa, Ph.D. prof. Ing. Toma$ Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgement / Declaration

I would like to thank my supervisor
for continuous help and support, my
colleague Max Hollmann, who worked
in parallel on different parts of the
simulator, for theoretical consultations,
Frantisek Vacek for an introduction into
the swvgscene and libshv libraries, and
Matéj Kafka for our discussions about
code style and code organization and
his comments on this text.

In addition, I would like to acknowl-
edge our entire study group, Max Holl-
mann, Matéj Kafka, Vojtéch Stépancik
and Jachym Herynek, for endless tech-
nical discussions, mental support, and
motivation always to try harder.

Finally, I would like to mention
my high school informatics teach-
er, Vladimir Drapalik, who initially
sparked my interest in computers.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague 21.5.2021

Abstrakt

Predméty spojené s architekturou
pocitaci vyucCované na Fakulté elek-
trotechnické CVUT vyuzivaji MIPS
jako modelovou architekturu pro de-
monstraci principti ¢innosti pocitact.
Divodem je jeji jednoduchost a také
fakt, ze autorem je jeden z autoru
celosvétové uznavané ucebnice. Tito
autori se svymi studenty navrhli no-
vou architekturu — RISC-V, ktera lépe
spliuje pozadavky pro Siroce pouzitel-
nou a vykonnou architekturu a ktera
je zaroven pod publikoviana otevienou
licenci. Cilem této prace je navrhnout a
implementovat zmény vhodné k preve-
deni aktudlné pouzivaného simulatoru
QtMips na instrukéni sadu RISC-V.
Préce se zabyva predevsim pamétovym
modelem, vizualizaci jddra procesoru a
spravou projektu.

Kli¢ova slova: RISC-V, architektura
pocitacu, CPU simuldtor, memory-
model, SVG, Qt, QtRVSim, QtMips

/ Abstract

Vi

Computer architecture lectures at the
Faculty of Electrical Engineering CTU
are using MIPS ISA to demonstrate
the internal principles of computers.
This is due to MIPS simplicity and
the fact that it was designed by one of
the authors of a worldwide recognized
textbook. Those authors, together with
their students, have designed a new
architecture, RISC-V, which not only
satisfies requirements for usable and
performant ISA but is also published
under an open license. This thesis
aims to design and implement simu-
lator changes desirable to switch the
currently used simulator QtMips to the
RISC-V ISA. It focuses on the memory
model, core visualization, and project

management.
Keywords: RISC-V, computer ar-
chitecture, CPU simulator, memory-

model, SVG, Qt, QtRVSim, QtMips

Contents

1 Introduction 1

2 RISC-VISA 3

2.1 Brief RISC-V ISA Overview..... 3

3 Memory Model Redesign............ 5)

3.1 Original Model 5
3.2 Modified Memory Hierarchy

OVerviewcoovvniiininnan... 5

3.3 Load / Store APT 6

3.3.1 Endian Simulation 7

3.3.2 32-bit Accessible Pe-

ripherals.................... 8

3.4 Refactoring.................... .. 8

3.4.1 Address Data Type 8

3.4.2 RegisterValue Data Type ..9
3.4.3 Cache Replacement

Policy............ooil L 9
3.4.4 Extended Testing 10
3.4.5 Qtb5 Signal-Slot Syntax .. 10
3.5 Backporting 10
4 Core View Update (GUI)........... 12
4.1 RISC-V Differences 12
4.2 QtMips C++-based Visual-
ization Framework 13
4.3 Svgscene Library and Its Us-
A e 14
4.3.1 Document Traversing
APT...... 14
4.3.2 Error Handling........... 15
4.4 Core Diagram and SVG Im-
AZC et 15
5 Project Management 17
5.1 Project Structure and Com-
mon Libraries 17
5.2 CMake Build System Gener-
ator ... 18

5.2.1 Qt Switch to CMake..... 18
5.2.2 Build Targets Rela-

tionships.................. 18

5.2.3 Configure-time choice
of dependencies 19

5.2.4 Config Defaults And
Overrides 19
5.2.5 Build and Run Tests..... 19
5.2.6 Learning CMake 20
5.3 GitHub CI Tests 20
5.4 Logging Library................ 20

/

Vii

6 Packaging and Documentation .. 22

6.1 QtMipsooovviiiii 22
6.2 Linux Distributions Cover-
age Analysis.................... 22
6.2.1 NIX Package 23
6.3 Implementation 23
6.3.1 Fallbacks 24
6.3.2 Distributions Excluded
From Support 24
7 Conclusion 25
A SourceCode....................... 27
A.1 QtRvSim (CTU official) 27
A.2 QtMips (CTU official) 27
A.3 Development Repository....... 27
B QtMips Download Statistics...... 28
CGlossary........................... 29
References 30

B.1.

B.2.

Tables / Figures

Release download statistics

on GitHub L.

Release download statistics

on Launchpad

viii

. RISC-V pipeline data path

from the coursebook 12
. Original QtMips core view at

maximum complexity setting .. 13
. New SVG-base coreview 15
. Diagrams.net editor............ 16

Chapter 1
Introduction

The Computer Architectures course at the Faculty of Electrical Engineering CTU has
been using MIPS architecture to demonstrate processor operations for more than a
decade. The MipsIt! simulator provided with the selected textbook[3] was used at the
beginning. However, it became outdated, and no alternative capable of pipeline and
cache visualization, which would be suitable for the course practices, was found. There-
fore, Ing. Karel Kod¢i started a thesis project[1] to develop an up-to-date replacement
and finally, he released a MIPS simulator QtMips, which is currently in use. He started
the thesis with these words: “Computers are dominating a lot of industry sectors, in-
cluding engineering as they are essential production tools. At least basic knowledge of
the inner working of a processor and ability to predict its influence on performance,
security and safety consequences is important for each programmer expert, computer,
processor and embedded systems designer and advanced user.” Since then, the impor-
tance of computer architecture knowledge has kept increasing. Many fields that require
a more profound understanding of hardware principles are growing fast:

m The Internet of Things (and embedded development in general) now affects almost
every sector of the economy|[17]. Miniature computers are being incorporated in al-
most every new consumer product—from cars through washing machines and electric
kettles to special water pipes[18]. Work with embedded computers cannot rely on
vast layers of abstraction, and significant knowledge of hardware is necessary.

m After many years of x86_64 supremacy, Apple presented an ARM-based laptop CPU
with surprising specifications[19], raising new challenges in the processor design, op-
erating systems, drivers, and compilers.

m The design of domain-specific chips is also a growing market, where RISC-V found
its place. Even here, in the Czech Republic, many companies including Honeywell?,
S33, Codasip* and Expressif® are offering jobs related to processor chip and ASIC
design. Codasip and Expressif are known to work with RISC-V chip designs.

Understanding computer design is not only important for developers working close to
the hardware. David Patterson and John L. Hennessy, laureates of the Turing Award
2017 for pioneering a systematic, quantitative approach to the design and evaluation
of computer architectures with enduring impact on the microprocessor industry, say
that anybody who aims to write performant software should learn the internal princi-
ples of computers: “ While programmers could ignore the advice and rely on computer
architects, compiler writers, and silicon engineers to make their programs run faster or
be more energy-efficient without change, that era is over. For programs to run faster,
they must become parallel. While the goal of many researchers is to make it possi-
ble for programmers to be unaware of the underlying parallel nature of the hardware

https://www.eit.lth.se/fileadmin/eit/courses/eit090/MipsIt/MipsITEnvRef . .html
https://www.honeywell.com/cz/en

https://www.s3connectedhealth.com/s3-group

https://codasip.com/

https://wuw.espressif.com/

TR W N =

https://www.eit.lth.se/fileadmin/eit/courses/eit090/MipsIt/MipsITEnvRef.html
https://www.honeywell.com/cz/en
https://www.s3connectedhealth.com/s3-group
https://codasip.com/
https://www.espressif.com/

they are programming, it will take many years to realize this vision. QOur view is that
for at least the next decade, most programmers are going to have to understand the
hardware/software interface if they want programs to run efficiently on parallel com-
puters”[6, pg. xi] Performance is important in many kinds of modern software, from
realistic games, real-time high-resolution multimedia processing, virtual reality and
server applications to complex scientific simulations and machine learning.

RISC-V architecture is becoming the future choice for computer architecture educa-
tion. The architecture is open from the very moment of design. It was designed by
PhD students of David Patterson and John L. Hennessy; the authors of the textbook
that is considered the standard of quality in computer architecture education. Both
Faculty of Electrical Engineering and Faculty of Information Technology intend to start
teaching their computer architecture lectures using RISC-V shortly. I have joined this
effort with my bachelor’s thesis. My task was to help switch the currently used MIPS
CPU simulator to RISC-V. As stated in the formal assignment, my primary focus was
on memory subsystem simulation and project management.

The thesis is structured according to the subtasks of assignment guidelines. Given
that the subtasks are mostly unrelated subproblems, analysis and solution descriptions
are provided for each subtask individually.

The text begins with a brief overview of the RISC-V ISA, followed by the core part
of the thesis — the redesign of the memory model. The memory subsystem has been
reworked to support more CPU configurations and memory-mapped files. The next
chapter focuses on a new approach towards core visualization and differences in the
typical RISC-V core organization CPUs that had to be addressed. The graphics of the
CPU core is newly based on SVG files, which are interpreted by the simulator. The final
two chapters present changes to the project structure, build system and packaging. The
project was restructured and upgraded from deprecated QMake to CMake. The testing
suite was extended and automated using GitHub continuous integration. Packages and
building service configuration have been updated for the CMake build and RISC-V
edition of the simulator, and two new packages have been introduced.

Chapter 2
RISC-V ISA

RISC-V has been designed for education since day one. The first line of the first speci-
fication version states: “RISC-V is a new instruction set architecture (ISA) designed to
support computer architectures research and education”[9,8]. No previously available
[SA was well-fitting for teaching. x86, ARM, and MIPS are too complex for teaching
examples, and they are protected by intellectual property. Designing a new processor
core using these architectures poses a great legal (and financial) challenge. That is not
true for RISC-V. It starts from a simple set of instructions and extends it orthogo-
nally. It is open-source and royalty-free. Anyone can design a RISC-V core, even a
high school student[7, 8:12], and publish it freely'?3 or profit from a proprietary de-
sign[10]. The article [10] clearly shows that major world companies see RISC-V as
something worth investing in. Alibaba, Amazon, AMD, Google, Hewlett Packard En-
terprise, IBM, Microsoft, NVIDIA, Qualcomm, Samsung, and Western Digital are all
members or sponsors of the RISC-V foundation.[6, pg. xiii]

B 2.1 BriefRISC-VISA Overview

RISC-V is a load-store reduced instruction set computer architecture. It provides a
set of basic integer instruction sets with different register widths (32bit, 64bit, 128bit,
and reduced 32bit for embedded computers). Those are the minimal mandatory sets
of instructions for any implementation. It provides basic ten ALU operations with
register and immediate operands, load and store instructions, jumps and conditional
branches relative to the program counter, memory fence, ECALL* and EBREAK. The
instructions operate on 32 (reduced: 16) general-purpose registers, where the zero reg-
ister is hard-wired to zero value. For simplicity, integer operations cause no arithmetic
exceptions, and all operations are defined. A program can check for all problematic
situations simply itself. All other instructions are optional extensions. Some opcode
ranges are guaranteed to be kept free for custom domain-specific extensions. This or-
ganization is advantageous in multiple ways. Students can work with a minimal and
simple, yet complete, set of instructions. For industry, this allows designers to put on
the chip only needed circuits, saving silicon, power and potentially improving safety by
reducing the attack surface. Standard extensions (some of them not stable yet) include
[EEE 754-2008 floating-point operations, bit operations, a vector extension, a com-
pressed (16bit) instructions extension, and even a JIT and a cryptography extension.
Such combinatorial variety would significantly complicate compiler support. Therefore
RISC-V International provides “architectural profiles” that designate the most common
configurations.|[7, 12:27]

https://github.com/1owRISC/rocket

https://github .com/riscv-boom/riscv-boom
https://github.com/chipsalliance/Cores-SweRV-EH2
Call to the execution environment, e.g., system call.

=W N =

https://github.com/lowRISC/rocket
https://github .com/riscv-boom/riscv-boom
https://github.com/chipsalliance/Cores-SweRV-EH2

The instruction formats are optimized for simple instruction decoding. Here is an
example from the specification: “The RISC-V ISA keeps the source (rsl and 1s2),
and destination (rd) registers at the same position in all formats to simplify decoding.
Ezcept for the 5-bit immediate used in CSR instructions (Chapter 9), immediate is
always sign-extended and is generally packed towards the leftmost available bits in the
instruction and allocated to reduce hardware complexity. In particular, the sign bit for
all immediate is always in bit 31 of the instruction speed sign-extension circuitry.”[2,
pg. 15]

Instruction encoding is ready for variable length instructions (arbitrary multiples of
16 bits). The standard[2, pg. 8] provides encoding rules for up to 176bit. Longer
instructions have reserved instruction space, but the encoding has not been defined yet.

Chapter 3
Memory Model Redesign

Task 2 of the thesis assignment required me to redesign the memory system to support
simulation of little- and big-endian, 32- and 64-bit targets, and the usage of memory-
mapped files'. To satisfy the requirements, the memory hierarchy and the read/write
API had to be reworked. New types and classes have been introduced to produce
cleaner and safer API. Finally, a considerable amount of refactoring and documenting
was needed.

B 3.1 original Model

The MIPS simulator emulates only 32-bit big-endian CPUs. It uses word-sized? func-
tions for all memory-related operations. This way, it can transfer data through return
values. The main memory is naturally represented by an array of words. In the case of a
read, the memory subsystem always loads the whole word. Smaller reads are extracted
from it. When data write size is not a complete 32-bit word, the whole word containing
the current value has to be read first. Then the new value is packed into it, and it is
written back. Given that offset accesses and memory map are not supported, the main
memory can internally have the same endianness as the host machine (the computer
running the simulator). When the simulated and the host system endianness mismatch
and the access size is smaller than a word, the top-level functions compensate for the
difference.

The memory subsystem consists of components, e.g., cache, memory (RAM), address
space mapping component and peripherals. All components implement a MemoryAccess
interface which defines the read/write API. Some components can form chains by ac-
cepting another instance of MemoryAccess as their backing memory (multi-level cache,
cache and RAM). A component that receives a request either resolves it or invokes its
backing component. Memory is addressed by a 32bit integer. The CPU core typically
has data memory and program memory entry points.

I 3.2 Modified Memory Hierarchy Overview

The new model recognizes two types of memory interfaces: FrontendMemory and
BackendMemory. Every CPU core configuration has three mandatory frontend memory
components. Two of them are the entry points for memory operations for the program
and the data, respectively. The entry point starts a chain of memory components of
arbitrary length, each backed by the next one. For the core, the chain is invisible, and
it only interfaces with the top-level component. The chain is terminated by a memory
data bus. The data bus for the data memory is the third component mentioned. The
frontend memory has three characteristics. Except for the memory bus, each frontend

! https://www.man7.org/linux/man-pages/man2/mmap.2.html
2 32-bit integer

https://www.man7.org/linux/man-pages/man2/mmap.2.html

component must have a frontend component backing it. The memory bus is backed
by zero or more backend devices (explained later). All addresses used in the frontend
are full memory addresses. By the word full, I mean the numerical value observable
by a C program (up to address translation'), in contrast to a local relative offset. The
Address datatype is used to store the address and pass it as an argument. Finally,
frontend memory instances are likely those found on the CPU chip itself (cache, TLB).

Example. In the simplest CPU with no cache and joint memory address space, all
three components coincide. They are all references to the same object, the data bus.
It is both the entry point and the exit point of the chain.

Example. A more common configuration is a split single-level cache with a single
memory bus (joint memory address space). The caches are the entry points here, and
both of them are backed by the bus. With multi-level caches, we only have to add
more cache objects to the chain. If we were to implement a TLB, it would become the
top-level component of the chain.

Example. When simulating a CPU with the program and the data memory split,
we create them with separate memory buses and pass the data one to the core. The
core needs an access to the data memory data bus to emulate functionalities like file
access using memory map at runtime. The separate program memory is read-only at
the simulation runtime.

The other part of the memory model is the backend memory. Real-world examples
are the main memory, memory-mapped I/O peripherals, and in our simulation also
memory-mapped files from the host system. I often call backend memory instances
devices as, in the real world, they are not permanent parts of the machine. Backend
memory devices generally do not form chains. They can internally consist of multiple
layers, but that behaviour is not a part of the backend memory interface. They connect
to a memory data bus, listening for operation on a certain address range. In contrast
to a typical simple hardware implementation, the address range filtering is performed
by the memory bus rather than the components. In modern computers the situation
is more complex (e.g. PCle). Each component is addressed by a local relative offset
starting at zero for each component. To refer to this offset, a type alias 0Offset is used
for 64bit unsigned integer. The address to range conversion is a responsibility of the
bus. Devices can be inserted or removed at any time, for example, by an operating
system emulation.

B 3.3 Load/store API

The requirement to simulate both 32- and 64-bit machines makes the simple solution
of fixed-width accesses unusable. Using a wider access and ignoring part or multiple
narrower accesses would produce misleading statistics, mainly in caches. It would also
pose a problem for the compressed instruction extension and the vector extension.
Based on the suggestion of my supervisor, I have designed the API inspired by the
semantics of POSIX functions read, write and memcpy. It takes a destination, a source,
a size, and, in addition to memcpy, also an options struct and returns a result struct.
The API ensures that size bytes will be transferred from the source to the destination.
In particular, a read transfers data from a simulated location specified by the source
to a buffer pointed to by the destination and write transfers data from a source buffer
to a simulated destination location. This way, arbitrary-sized types can be transferred,

! https://en.wikipedia.org/wiki/Memory_management_unit

https://en.wikipedia.org/wiki/Memory_management_unit

ranging from a single byte to whole cache lines. Transfers larger than 64 bits are,
however, more complex due to endian issues. For convenient use, the FrontendMemory
interface provides simplified value-passing-based entry points for basic integral types.
They provide a temporary buffer and handle the endianness internally. The complexity
of the endianness simulation is discussed later.

uintl6_t value = 42;
Write result res = some_frontend memory.write(
Oxff_addr,
&value,
sizeof (value),
WriteOptions ()
)8
// or for common integer types
some_frontend_memory.write_ul6(0xff_addr, 42);

Example. Demonstration of the new API usage.

The special types ReadOptions, ReadResult, WriteOptions and WriteResult keep
the API simple and extensible. Separating parameters and return values (in contrast
to returning multiple values using side-effects) produces a much simpler and more pre-
dictable data flow. Both result types contain information on the successful access size.
An access can happen on a boundary of some form of a region (a page, a physical RAM
module) and succeed only partially. For more advanced uses, like a vector extension,
partial success is a necessary feature. Write result struct also contains the informa-
tion on whether the write changes the affected memory. The options struct currently
only contains a flag determining the intended effects of the read. Internal reads should
not cause any side effects, and their repetition should always return the same values.
Internal reads are used, for example, by the GUI to display current memory data.

B 3.3.1 Endian Simulation

There are eight possible combinations of endianness for each memory data path. The
host system, the simulated machine, and the final backend device can have any en-
dianness. The tricky part is maintaining the correct results for unaligned and offset
accesses.

The aim is to make the host and the simulated main memory equivalent, when they
are interpreted as arrays of bytes. When the stimulated and the native endiannesses are
the same, the situation is trivial, and no swaps are needed. Otherwise, we need to store
the value to memory the same way the simulated machine would. When simulating
little-endian on big-endian, we need to swap the value as it would be swapped when
written by the simulated little-endian machine. Conversely, when simulating big-endian
on little-endian, pre-swapping results in the value being stored in big-endian order as
the host machine swaps the value again. (See the example below.)

All nonperipheral components (cache and main memory) store data in the same en-
dianness. Therefore, no swap is required between them, and data can be copied fast.
That is enforceable as the data is only accessible via the memory API. Peripherals
have to behave in this manner externally, but they might be forced to use a different
endianness internally. The reason may be that their internal registers are directly ob-
servable by the UI or entirely out of simulator control. The internal storage can be a

BIG on LITTLE

REGISTER: 12 34 56 78

PRE-SWAP: 78 56 34 12 (still in register)
NATIVE ENDIAN MEM: 12 34 56 78 00 00 (native is LITTLE)
READ IN MEM: 56 78 00 00

REGISTER: 00 00 78 56

POST-SWAP: 56 78 00 00 (correct)

LITTLE on BIG

REGISTER: 12 34 56 78

PRE-SWAP: 78 56 34 12 (still in register)
NATIVE ENDIAN MEM: 78 56 34 12 00 00 (native is BIG)
READ IN MEM: 34 12 00 00

REGISTER: 34 12 00 00

POST-SWAP: 00 00 12 34 (correct)

Example. Correct handling of 4 bytes write followed 4 bytes read offset by 2 bytes. I
assume memory to be zeroed initially. The visual offset represents the address offset.
(This snippet is also a part of the inline code documentation.)

memory-mapped file from the host system, or it can even lead to a real memory-mapped
hardware, which dictates the endianness. As a proof of concept, I have created a back-
end device that uses an anonymous memory map to simulate the main memory instead
of a malloc! allocated tree [1, pg. 26]. Another option is to map an executable in this
way. Each backend memory device has a public simulated machine endian property
for easier orientation. It can be constant (LCD), set according to host endianness (main
memory), or set dynamically at initialization (mapped executable).

B 3.3.2 32-bit Accessible Peripherals

When switching to the new model, modifying the peripherals to be internally byte-
addressable would be too complicated. Section 2.6 of the standard[2] allows declaring
that some regions only support word access and raise an exception on a misaligned
access. However, it was decided to keep the behaviour simple for a user and emulate
the misaligned access within the peripherals.

I 3.4 Refactoring

To implement the new model, I had to perform a large amount of refactoring. I mainly
intended to simplify the data flow, break the code into smaller components, introduce
new types and type aliases, rename too short names to more descriptive ones, and
provide more comments. In the following sections, I present the most conceptually
essential changes.

B 3.4.1 Address Data Type

Prior to these changes, a 32-bit integer was used to store and pass a frontend memory
address. This is problematic for three reasons. It is fixed to 32-bit and hard to change.

! https://man7.org/linux/man-pages/man3/malloc.3.html

https://man7.org/linux/man-pages/man3/malloc.3.html

QMap<std::uint32_t, hwBreak *> hw_breaks;
// vs
(QMap<Address, hwBreak *> hw_breaks;

Example. This collection controls program locations, where CPU core should stop exe-
cution and notify the execution environment. This feature is used mainly by debuggers.

It provides no documentation (see example below). Also, the compiler cannot check
its usage. Now, if a function requires a simulated address, either you already have an
Address, or you have to construct it explicitly and take responsibility for its correctness.

The type checking is extra helpful when using slots!. The functions being connected
are often from distant parts of the codebase (e.g., simulation and GUI), which might
even be maintained by different developers.

void fetch_inst_addr_value(machine: :Address);
void fetch_jump_reg_value(uint32_t);

void fetch_jump_value(uint32_t);

void fetch_branch value(uint32_t);

void decode_inst_addr_value(machine: :Address);

Example. Some of the 58 lines declaring slots in the machine core.

B 3.4.2 RegisterValue Data Type

RegisterValue type was introduced to abstract away the width of the simulated ma-
chine registers. All arithmetic operations are performed on a private 64-bit internal
storage, regardless of the simulated machine’s configuration. From the type safety
point of view, RegisterValue is considered the most general integral value. All inte-
gers can implicitly degrade to it (i.e., implicit construction is allowed). In the other
direction, we are assuming some interpretation of the value, and we have to do that
explicitly. FEzxplicit static casts to common integer types are implemented. All con-
structors, getters, and cast operators ensure proper sign extension as required by the
RISC-V standard Section 5.2:

These *W instructions ignore the upper 32 bits of their inputs and always produce 32-
bit signed values, i.e., bits XLEN-1 through 31 are equal.[2]. (In the 64bit instruction
set, *W stands for instructions postfixed with W. Such instructions operate on 32bit
values in 64bit registers.)

When simulating a 32-bit machine, we behave as if all instructions were of the *W

type.

B 3.4.3 Cache Replacement Policy

Cache policy replacement handling was previously tightly integrated into the cache
code. I have separated it into a decoupled component with no knowledge of the cache
except its dimensions. Now every policy consists of tiny blocks of code, which can be
tested separately. They are also much simpler to verify by reading. These advantages
are desirable as the cache simulation is likely to be extended in the future.?

1 Qt component communication primitive. Primarily used for asynchronous updates of the GUI.
2 Even at this time, a Greek colleague is adding L2 cache simulation to the QtMips.

l 3.4.4 Extended Testing

Given the increased complexity of the memory subsystem, the current testing suite,
which tested only a few configurations, seemed unsatisfactory. I have built a test
generator, which tests the full cartesian product of the cache configurations. This turned
out to be a good decision as it helped me discover and debug multiple serious problems.
The execution time of all machine unit tests is still under one second, which is entirely
negligible compared to the compilation time. To test the correct offset behaviour, I have
devised a mechanism that decomposes a 64-bit integer to all subcomponents (32, 16, 8)
as if they were read on each simulated endianness regardless of the native endianness.
Automation of cache performance testing is problematic. Therefore, I have decided to
only test for future changes. I have saved the current results to an array, and I compare
them based on the order. Any change of the configuration matrix invalidates these
values, and they have to be regenerated.

H 3.4.5 Qt5 Signal-Slot Syntax

This part is closely related to the introduction of the address data type. The original
Qt4 string-based system has proven very error-prone, and it made it hard to track all
code paths, where Address should replace uint32_t. With Qt4 syntax, type checks are
performed when the connect function is called, and type errors only result in runtime
warnings. Qt5 syntax' replaces the string names with C++ method referencing. Usage
of the language native features instead of meta-object compiler immediately enables
standard C++ compiler type checking. I have upgraded all connections to Qt5 syntax
to benefit from the extra type checking. Fortunately, QtCreator? has a semi-automatic
way of converting those syntaxes, and it worked most of the time.

connect (
sender, SIGNAL(valueChanged(QString, QString)),
receiver, SLOT(updateValue(QString))

);

Example. Old syntazx.

connect (
sender, &Sender::valueChanged,
receiver, &Receiver::updateValue

)

Example. New syntax.

A minor disadvantage of the new syntax is that it does not support implicit over-
loading. It has to be done explicitly in quite a wordy way.

I 3.5 Backporting

All the changes described here are compatible with both, QtRVSim and QtMips. The
git branch has been kept separate from all RISC-V-related changes. With minor mod-

! https://wiki.qt.io/New_Signal_Slot_Syntax
2 An official Qt integrated development environment.

10

https://wiki.qt.io/New_Signal_Slot_Syntax

connect (ser_port, &machine::SerialPort::tx_byte,
this, QOverload<unsigned int>::of (&TerminalDock::tx_byte));

Example. Problematic overloading.

ifications to the core that Ing. Pisa offered to implement on his own, the new memory
model can be backported to the CTU/QtMips repository. We intend to keep it in the
main development branch for anyone who would contribute to the QtMips.

After a discussion among QtMips/QtRVSim developers, it was decided that it did
not make sense to release the changes to students in the master branch. The gain for
current teaching is minimal, and there is a risk of new bug introduction. We intend to
concentrate our efforts on the QtRVSim.

11

Chapter 4
Core View Update (GUI)

The differences in the instruction sets of MIPS and RISC-V cause significant differences
in a typical core organization. Task 3 of the assignment required me to reflect them
in the core view. As part of those changes, I have implemented a long-planned switch
to a system that builds the scene by interpreting an SVG file. I have recreated the
visualization as a vector diagram with hooks to inject data from the simulator. To
achieve a usable visualization and scene modification API, I have extended the SVG
handling library. Now, a developer can edit the scene in a GUI editor and pay more
attention to visual details.

I 4.1 RISC-V Differences

PCSrc

ID/EX
e EXIMEM
ws
Control M —L MEMWE

EX M wB
IF/ID —

Shift Branch
left 1
ALUSTC D

B

RegWrite

0 2
v s 9
u PC [-@—|Address c Read £ 4
x k register 1 Read | 2 £
-1 data 1 = ;
Read(N [~ =
Instruction register Read
—> (- Regist | 1
memory Write egist ersRead . OM Address data > "
———»-| register data 2 u Data u
—»| Write x memory X
data >\l 0
Write
) data
Instruction ‘
31-01 32 [ymm |64
Gen — MemRead

Instruction
(30, 14-12]

control

Instruction ALUOp
[11-7]

Figure 4.1. RISC-V pipeline data path from the coursebook. You can compare it with the
original visualization of QtMips on the next page. (Source: [5, figure 4.49])

MIPS pipelined CPUs can branch directly from the decode stage using equality com-
parison on the register values. Meanwhile, RISC-V provides more branch instructions
and uses ALU to determine whether they should be taken. Because ALU is in the
execute stage, the whole branching mechanism occurs in later stages. Control signals

12

4.2 QtMips C++-based Visualization Framework

and branch destination address bus need to be delayed (saved to interstage registers).
Forwarding to the decode stage, previously required by the jump and link instruction,
is no longer needed in RISC-V. To replace the decode stage comparator, a zero signal
from the ALU was added.

RISC-V ISA encodes the destination register number always to a constant location.
This fact makes one multiplexer and its control signal redundant. RISC-V does not
have a delay slot, and it has complex immediate decoding [2, section 2.3].

NOP NOP NOP NOP
NOP

IF/ID ID/EX EX/MEM MEM/WB
~ ~ ~ v

=

——o} —

0001 o]
0
s - ol
0 0
Cache RsD 0 0
Hito L 0 — 00000000 0 g g
e —] ALU h 0
Miss: 0 RtD 0 Cache
0 — 00000000 _ g o Hit:0 g
Registers o o 0 Miss: 0 0
0 0 o]
Program : 0 0 m 8
Memory — g 0 0 0
0 Data 0 0
0
0
0 9 Memory 0
0 0 0
NORMAL I' [l:l 0 °
O Peripherals
0
o]

RESTO
RiD l—|0 RIE 0
ROD Tt ROE e W] 0
LOoJ 0 (o] —J
Sign Termina L
extension 00000000 | 00000000

<<2

NORMAL NONE

[NORMAL Hazard Unit Cycles 0 Stalls 0]

Figure 4.2. Original QtMips core view at maximum complexity setting.

I 4.2 QtMips C++-based Visualization Framework

The core view is described entirely in the C+4 code. Ing. Karel Ko¢i created a frame-
work of objects representing individual parts of the CPU core and macros used to
assemble a core visualization from them. An example of such object is a multiplexer:
It has a method to paint itself, it exposes points to connect wires, and it has a slot to
update its state (in this case, which input is the output connected to). Then, macros
are used to add the component to the screen. The macro allocates the object, connects
it to signals, and saves a pointer to the component. Later, wires could be connected.
Aside from the lack of documentation and occasional unclear naming, the framework
seems well built. However, modification of the layout is not a simple task. The first
problem is to match objects with components on the screen. The second problem is that
every movement requires recompiling to ensure that the changes were correct. Adding
simple details to the image means creating a class, allocating an object, and positioning
it manually.

13

I 4.3 Svgscene Library and Its Usage

As a replacement for the direct creation of Qt objects, QtRVSim builds the Qt scene by
parsing an SVG file. Dynamic values are updated using a custom API similar to XML
Document Object Model (DOM)[15]. The library created for this purpose is based on
svgscene!, 1libshv? and QtSVG3.

First, SVG is parsed, and each SVG element is translated to a Qt object with cor-
responding styles while preserving XML attributes. Then, the elements of interest are
retrieved using the document traversing API. Then, one proceeds as with any other Qt
graphics items and objects.

In the next section, I describe how the SVG files themselves are created. Before that,
I present the document traversing API.

Bl 4.3.1 Document Traversing API

The key component of the API is SvgDomTree, which wraps the QGraphicsItems in
SVG aware wrapper. SvgDomTree has methods to read XML and CSS attributes and
their values and methods for searching the scene/document tree. Methods find and
findAll search child elements using a naive depth-first-search® and return first, and all
matching elements, respectively, wrapped as SvgDomTrees. The find methods accept
the type of searched element as a template parameter, and the XML attribute name
and value to search as function parameters. All parameters are optional. The default
value for the template parameter is QGraphicsItem. The wrapped Qt object can be
obtained by a call to the getElement method.

document
.getRoot ()
.find<QGraphicsItem>("data-component", "data-cache")
.find<SimpleTextItem>()
.getElement () ;

Example. Finds the element corresponding to the cache components and finds a text
element inside.

for (auto hyperlink : document.getRoot().findAl11<HyperlinkItem>())
{

this->install_hyperlink (hyperlink.getElement()) ;
+

Example. Real snippet from QtRVSim: This code searches all elements corresponding to
XML hyperlinks[16, section 14] and calls a method to install them (bind them to Qt
slots).

https://github .com/fvacek/svgscene
https://github.com/silicon-heaven/libshv
https://github.com/qt/qtsvg
https://en.wikipedia.org/wiki/Depth-first_search

=W N =

14

https://github .com/fvacek/svgscene
https://github.com/silicon-heaven/libshv
https://github.com/qt/qtsvg
https://en.wikipedia.org/wiki/Depth-first_search

Il 4.3.2 Error Handling

It can often happen that no element is found. Returning a null pointer would require
an enormous amount of checks which would significantly complicate the API usage.
Therefore, SvgDomTree can never contain a null. Any attempt to create SvgDomTree
from null results in an exception being raised.

For compatibility with WASM, this safe behavior is only used at the top level. In-
ternally, the find method, searching a single item, returns a null pointer when nothing
is found. This is because WASM does not support exception handling.!

I 4.4 Core Diagram and SVG Image

Given that most parts of the image never change, it felt natural to replace them with a
static vector image. SVG fits very well this use; however, direct use of an SVG was not
ideal from a maintenance point of view. The advantage of a specialized diagramming
tool over an SVG editor is that it provides better support for working with connection
lines. This includes forced orthogonal lines, automatic line crossing, connection points
for custom shapes, and moving the lines together with objects.

[ADD $0, $1, $3] [ADD $0, $1, $3]

@1
1oF

IF/D IDEX EX/MEM MEM/WB
™M M M ™

ADD $0, $1, $3 —i—Om— 00 o =
MemRead o—] @ o
et

[oo000000

Rs1 [
Cache e e 0300000 s
3 n Rs2
s 0 S S @ SaeHe
Registers ™ L ol e
o0 = Hit: 0
0x00000000 Program A e o
Memory
Data
Memory
y Y e w
] o) L
Terminal
- o 00000000
decode
) ADD $0, $1, $3
4
'L—l‘
Rd 1 | §
r 00 I

(Exception: NONE Hazard Unit: NORMAL Cycles: 0 Stalls: 0)

Figure 4.3. New SVG-base coreview.

I have decided to use diagrams.net (formerly known as draw.io). It is a free, open-
source, and well-documented tool working in a browser or locally. Diagrams.net has
many useful features and plugins. It allowed me to keep all configurations (single cycle
CPU, pipelined CPU, and pipelined CPU with forwarding) in a single diagram, reusing

! https://emscripten.org/docs/porting/exceptions.html

15

https://emscripten.org/docs/porting/exceptions.html

the common parts. I have annotated every part to belong to a subset of the listed
configurations. It can easily display each of them or all at once (for layout debugging

purposes).

Hyperlinks are used to open related sections of the GUI (for instance,

memory view by clicking on memory). Data attributes are used to annotate components
with updatable values and their data sources. A downside is that I cannot modify all
objects of the same “class” at once. I have to replace each instance separately or copy-
paste the style. Furthermore, the options to control the resulting SVG are limited. For
example, the cache statistics had to be created as a custom element to ensure that all
text elements are children of the cache component.

diagram.drawio

File Edit View Arrange Extras Help

- 120%~
Search Shapes Q

Scratchpad ?

General

A e = O
OOoodo
o gaor
i) BYmYA
Oas 1D
pDas/ s
S S

Tags (=[]

[Ceewe]

miagen rags =)

Hide Show

|Type in the tags and press Enter to add the |

Or add/remove existing tags for cell(s)

| hazardunit ||)

+ More Shapes...

Unsaved changes. Click here to save. (The request is not allowed by the user agent or the platform...)

) ° o

®| ADDS0,$1,$3 |®

3
000000000

o]

.

C

ADD $0, $1, $3

tags
forwarding simple pipeline
component

instruction-value,

source

& share

style Text

[| .
L]

Arrange

Fill
} O Gradient

Line

v

Perimeter

Opacity

[—
| —
1pt

[J shadow
[sketch

Rounded
[Glass

Edit Style Edit Image
Copy Style |[_Paste Style

Set as Default Style

Property Value

ADD %0, $1, $3
| _:—[/ I | | Laers O
r - cpu v
{00}
Background A

Hazard Unit: NORMAL

cyctes: © Stais; 0

)

Figure 4.4. Diagrams.net editor.

The diagram source file is located in extras/core-graphics. The usage of dia-
grams.net and the exporting process is documented in docs/developer/coreview—
graphics/using-drawio-diagram.md.

All shapes that I have used (fully custom or compositions of simpler shapes) are
available on the GitHub!.

! https://github.com/jdupak/Diagrams.net-CPU-scheme-kit

16

https://github.com/jdupak/Diagrams.net-CPU-scheme-kit

Chapter 5
Project Management

The title of the thesis makes me responsible for project management. This chapter
discusses various subtasks not fitting under task four of the assignment. Task four
(packages and documentation) is covered by the next chapter.

This part mainly relates to the directory structure and the process of building. The
chapter starts with project structure changes, aiming to keep unrelated files in sepa-
rate directories, especially in the project’s root directory. Source code has been sep-
arated from support files, and a new subproject for shared code with a new internal
compiler-compatibility library has been introduced. The project has been upgraded
from deprecated QMake to CMake. Finally, a CI multi-platform testing procedure was
set up.

I 5.1 Project Structure and Common Libraries

I have moved all source subprojects to the src directory, 3rd party code, and git sub-
modules to external directory, and support content to extras. In src, I have intro-
duced a new subproject, common, for small custom libraries shared between the sub-
projects. Previously, such code was placed in the machine (previously qtmips_machine)
subproject, which was already conveniently included in other subprojects. However,
I found this to be problematic. The concerned code had no direct bindings to the
machine, and it should have been tested separately.

One of the libraries I have created in common is called polyfills. Its purpose is
to abstract away compiler API differences for nonstandard features. Having compiler
detecting ifdefs within the project code is hard to read, debug and test. Instead, the
code is placed in a header file in polyfills directory, all compiler-dependent intrinsic
are unified under a common interface and tested. In addition to development testing,
these tests allow users compiling the code themselves to verify proper support on their
current platform.

Example: mulh64. in polyfills/mulh64.h contains a set of functions calculating
high bits of 64-bit multiplication. These functions are required to implement the RISC-
V multiplication extension. However, the functionality is not directly available in the
C or C++ standard. The implementation uses 128-bit integers on GCC compatible
compilers (if available), intrinsic for some sign combinations on MVSC and manual
fallbacks otherwise. This functionality is platform dependant, and as such, it must be
covered by testing.

Example: Byteswap. polyfills/byteswap.h provides integer byte-swapping func-
tions. For GCC (and compatible compilers, e.g., Clang) and MVSC, compiler builtins
are used. Otherwise, optimized fallbacks are provided. I have considered using the
fallbacks only; however, swapping is necessary on hot code paths, and experiments at
https://godbolt.org showed that some major compilers could not optimize it prop-
erly.

17

https://godbolt.org

Example: Endian detection. Including the file polyfills/endian_detection.h en-
sures that either macro __LITTLE_ENDIAN_ _or __BIG_ENDIAN_ _ is defined. If detection
fails, the compilation immediately stops with a clear error message.

Example: Endian utils. common/endian.h library wraps the low-level C functions
(unified in polyfills) into a better abstracted C++ and provides additional function-
alities, e.g. conditional byte swap byteswap_if (T value, bool cond).

Polyfills library is considered low-level, and it does not introduce any new behavior.
It only unifies the interfaces. More high-level libraries are placed elsewhere in common.

I 5.2 CMake Build System Generator

As part of project changes, I have suggested moving from QMake to CMake. QMake is
now deprecated and is no longer developed. Qt itself moved to CMake. CMake is the
most widely used build system generator for C++. It is well supported by development
tools (IDEs, GitHub Actions, Nix), and it can generate various kinds of build files. Even
though the CMake syntax contains many historical relicts, I believe that the current
configuration is more straightforward to maintain than the QMake one.

In the following paragraphs, I provide some details on QMake deprecation, present
some problems that CMake helped me solve more elegantly, and in the end, I provide
sources I found helpful when learning CMake.

Note: [admit that my knowledge of QMake is slim, and I have no base to claim that
the presented problems could not be solved in QMake. However, learning proper use of
QMake seemed to be a comparable task to learning CMake. Given the deprecation of
QMake and better support of CMake, I have decided to favor CMake.

B 5.2.1 QtSwitch to CMake

In 2019, the Qt company decided to switch the build of the Qt framework itself to
CMake. An article[4] published in early 2021 presented the results. The main rea-
son for the switch was the popularity of CMake among Qt project developers. One
example is the KDE community, which is behind many popular Qt programs used on
Linux. Another reason was that Qt did not want to develop and maintain a build tool
and instead focus on the development of the framework. The switch had a noticeable
influence on CMake itself. CMake now supports tools needed by Qt (e.g., the meta-
object-compiler!) out of the box. Qt also influenced support of pre-compiled headers,
Unity builds, and iOS support.

B 5.2.2 Build Targets Relationships

Previously all relationships between build targets were specified manually by relative
paths (see example below) in each built target that used them. Instead, CMake brings
the concept of targets. A target is a collection of information necessary to build (called
PRIVATE properties) and link (called PUBLIC properties.) an executable or a library.
All properties are specified at the point of target creations. In other parts of the build
configuration, targets are only referred by their names.

L Qt C++ preprocessor that enables reflection features and is needed to make most of the Qt function-
alities (like signal-slots) work.

18

LIBS += -L$$0UT_PWD/../os_emulation/$${LIBS_SUBDIR} -los_emulation
LIBS += -L$$0UT_PWD/../machine/$${LIBS_SUBDIR} -lmachine -lelf
LIBS += -L$$0UT_PWD/../assembler/$${LIBS_SUBDIR} -lassembler -lelf

PRE_TARGETDEPS += $$0UT_PWD/../os_emulation/$${LIBS_SUBDIR}/\
libos_emulation.a

PRE_TARGETDEPS += $$0UT_PWD/../machine/$${LIBS_SUBDIR}/libmachine.a

PRE_TARGETDEPS += $$0UT_PWD/../assembler/$${LIBS_SUBDIR}/\
libassembler.a

Example. QMake code used to link dependencies of the gui executable.

target_link_ libraries(gui
PRIVATE machine os_emulation assembler)

Example. CMake alternative to the previous example. Notice that elf is not mentioned
in the new wversion. The LibEIf library is not directly used by the gui target, and
therefore it is mot mentioned in its CMakeLists.txt. It is hidden in the machine target
as a transitive public dependency.

B 5.2.3 Configure-time choice of dependencies

Typically, QtRVSim uses the system LibEIlf library!. However, in special cases, we
want to fall back to a self-build, statically linked version. Originally, this was the case
of the WASM release, which cannot dynamically link libraries. In QtMips, this was not
resolved as the WASM target was new. There was a git branch where LibElf was built
and linked unconditionally. Now in CMake, I have a target interface, which is used
the same way in the whole project. At configure time, the interface either points to
the system library or a local CMake target. Another advantage is that if CMake fails
to find LibEIf in the system, it automatically falls back to a static version. It is also
helpful for Windows and macOS. As my Greek colleague informed me, there no ARM
version of LibEIf in Homebrew. I also expose a CMake configuration option to force
static version usage.

l 5.2.4 Config Defaults And Overrides

CMake provides a mechanism to specify the default properties of the whole project.
I use this to set warning levels, C++ standard, and add runtime sanitizers to debug
builds.

Il 5.2.5 Build and Run Tests

QtMips uses Bash scripts to build and run tests. It has to create a test build directory,
invoke QMake and make, run the tests and determine results. CMake integrates a tool
for test management called CTest. Test run and build tasks are now part of the same
build file (make/Ninja).

LA library for handling ELF executables.

19

B 5.2.6 Learning CMake

My experience with CMake before this project had only been with trivial projects.
Therefore, I had to understand it enough to make the switch possible. Here are some
resources that I found helpful:

Modern CMake online book! provides a complete basic introduction to CMake as
a build system generator as well as a programming language. It highlights modern
features that make development much more effortless.

CMake and Qt article by KDAB? provides more detail on CMake usage with Qt.

C++Now 2017: Daniel Pfeifer Effective CMake?® conference talk presents and explains
the concepts of modern, target-oriented CMake. I found the talk very useful to un-
derstand which parts of CMake I should use. CMake legacy API can sometimes be
confusing.

Mastering CMake: Ken Martin, Bill Hoffman is a reliable resource on CMake. I have
not read it directly, but many helpful StackOverflow posts and blogs cite from it.

B 5.3 GitHub Cl Tests

Providing students with a malfunctional simulator can profoundly affect students’ un-
derstanding of the subject, and their motivation to continue. Every developer makes
mistakes, and therefore our only chance to reduce the risk is proper testing. Given that
GitHub now provides unlimited CPU time to run continuous integration tasks (CI), it
makes perfect sense to automate testing on every push. Moreover, CI can run the tests
on multiple platforms to eliminate accidental platform-dependent code. From the table
with download statistics (B.1 in the appendix), it is evident that we cannot dismiss
proper Windows support.

Therefore, I have implemented a CI testing procedure using GitHub Actions®. It
builds QtRVSim for Ubuntu, macOS, and Windows and runs all tests on every git
push. After examining the download statistics (B.2), Ubuntu 18 was added as a test
platform in addition to Ubuntu 20. In addition, the WASM target is built. It does
not contain tests, but given many specific problems of the WASM compilation, testing
the ability to build it seems appropriate. In case of problems, the author is notified by
email.

The CI manifest can be later used for the continuous delivery of binaries for Win-
dows and macOS. The CI procedure already exposes the resulting files for debugging
purposes, e.g., examining macOS bundle structure or manually testing WASM release.
This topic is also discussed in the next chapter.

I 5.4 Logging Library

The introduction of the library was not intended to be part of my thesis. However,
during my work, I have met and sometimes created many temporary printf state-
ments. Some of them were commented out, some in #if false or if (false). Such a
situation is not ideal for maintenance, so after consulting with my supervisor, I started
searching for a logging library. First, I have collected requirements from my colleague,
my supervisor, and myself:

https://cliutils.gitlab.io/modern-cmake
https://www.kdab.com/wp-content/uploads/stories/KDAB-whitepaper-CMake.pdf
https://www.youtube.com/watch?v=bsXLMQ6WgIk
https://docs.github.com/en/actions

=W N =

20

https://cliutils.gitlab.io/modern-cmake
https://www.kdab.com/wp-content/uploads/stories/KDAB-whitepaper-CMake.pdf
https://www.youtube.com/watch?v=bsXLMQ6WgIk
https://docs.github.com/en/actions

m Lightweight — we only need simple logging with minimal overhead.

m Readable log statements that can serve as comments.

m Runtime filtering by category.

m Crossplatform — e.g., there is no standard output by default on Windows for GUI
applications.

https://cpp.libhunt.com/1ibs/logging provided me with a reasonable listing
of logging libraries. After analyzing the available libraries, I have found that the
main differentiator is the printing mechanism. In C+4++ , there are generally 3 options:
printf, std::iostreams, std::fmt/fmtlib’. std::fmt is only available in C++20.
The fmtlib library is the most performant with very readable printf-like syntax, and
support for C+4 custom object printing; however, it would bring another 16 thousand
lines of code to the project. std::iostreams support C++ object printing; however,
the syntax is highly unreadable, and statefulness makes them hard to use. printf does
not support C++ objects and may be problematic on Windows.

After long consideration, I have chosen the logging library already present in Qt. It
supports printf syntax and provides a function to print Qt types. It is already part
of the codebase. And it has a powerful category filtering mechanism that does not use
program arguments. It is configured to use a native sink on all platforms. It even works
in the WASM release, where it uses the JavaScript console.

I have added simple wrapper macros LOG, INFO, WARN, and ERROR which implicitly
use a category defined in the file.

Other serious candidates were: Necrolog? (very lightweight with regex filtering, de-
veloped by a coworker of my supervisor, std::iostreams) and spdlog®(fmtlib, no
category filtering).

! https://github.com/fmtlib/fmt
2 https://github.com/fvacek/necrolog
3 https://cpp.libhunt.com/spdlog-alternatives

21

https://cpp.libhunt.com/libs/logging
https://github.com/fmtlib/fmt
https://github.com/fvacek/necrolog
https://cpp.libhunt.com/spdlog-alternatives

Chapter 6
Packaging and Documentation

This chapter is related to task four of the assignment. It starts with an analysis of the
QtMips solution and the current package management situation on major operating
systems. Given that we are releasing QtRVSim as a completely new project, package
configuration files had to be modified and building services set up. I have simplified the
release process and made it platform independent and with a single source of truth for
shared information. Based on my analysis and my current knowledge, I have introduced
two new packages. Finally, to build on older distribution, some parts of the code and
CMake scripts needed modifications.

Regarding documentation, I tried to document everything in place of usage with
code comments. For more complex operations, there are new documentation pages in
the docs directory. I have also updated the README.md; however, my information on
simulation itself is limited due to the delay of my colleague working on the core.

B 6.1 atmips

QtMips is built, and its binary packages are distributed using openSUSE Build Ser-
vice (OBS)! for the following Linux distributions: Debian, Fedora, Raspberian, SUSE
Linux Enterprise, and openSUSE. For Ubuntu Launchpad? is used. OBS also builds
distribution-independent Applmage. Binaries for Windows, macOS, and WASM are
built manually and uploaded to GitHub releases.

For Debian, QtMips uses the so-called native format. It requires the debian directory
to be in the project root and source archives. The distribution maintainers disfavor
native package use for software not directly related to the particular distribution. It
is preferred to store package files out of project root, and it is considered during the
quality review. Solving this problem would make it easier to get the package to official

repositories®.

I 6.2 Linux Distributions Coverage Analysis

According to Distrowatch[12], the top ten Linux distributions are based on these in-
dependent* distributions: Debian, Arch, Fedora, and openSUSE. From these distribu-
tions, QtMips omits only Arch Linux.

https://build.opensuse.org/

https://launchpad.net/

An information from my supervisor.

Not derived from another distribution. Packages for the independent distributions will usually work
on the derived ones as well.

1
2
3
4

22

https://build.opensuse.org/
https://launchpad.net/

Another group of package managers, which are currently gaining popularity, is that,
independent of particular distributions. They mainly aim at isolation, reproducibility,
and security. The most known of those are Flatpack!, Snap?, Nix® 4 and Guix ° 6.

Package management on Windows and macOS is currently neglected. Homebrew’
is the primary package manager on macOS. On Windows, official software distribution
channels are Microsoft Store and WinGet. To support Microsoft Store, it would be
necessary to compile QtRVSim as a Universal Windows Platform (UWP)® application.
That is generally not a problem as Qt officially supports UWP. The only problem here
is to fix minor incompatibilities with the MVSC compiler. From unofficial package
managers, the most used is Chocolatey®. Chocolatey is recognized by Microsoft, and
it is even the official way to install software on Windows runners of GitHub Actions'’
which do not yet support WinGet!!.

Given my personal experience with Arch Linux and Nix, I have decided to add those
packages as part of this task. In future work, I intend to add support for more of the
mentioned package managers. Table B.1 in appendix suggests that QtMips has many
Windows users. Therefore, better Windows support might be appreciated.

In the appendix, there are tables of download statistics from GitHub and Launchpad
(B.1, B.2). Unfortunately, it is not possible to obtain statistics from OBS, which would
provide a broader image of the Linux situation.

B 6.2.1 NIX Package

Nix package manager allows users to install software on any Linux distribution, regard-
less of its package and dynamic library management. This is a great advantage for the
project as we can provide a package of which we can be sure that it will work on any
Linux distribution, no matter how minor it is.

To achieve this, the Nix package manager installs and manages all dependencies
(including the required version of the libc, Qt, etc.) in addition to those managed
by the system package manager. The obvious disadvantage of wasting disk space is
negligible given the current capacities of hard disks and their prices. Also, thanks to
Nix design, all of these files are isolated in specialized directories and do not pollute
the system.

I 6.3 Implementation

All package-related files have been moved from the project root to extras/packaging.
They are stored in the form of CMake templates'?. In the configuration phase (the
initial call to CMake), up-to-date information is injected into placeholders within

https://flatpak.org/

https://appimage.org/

https://nixos.wiki/wiki/Nix

Nix comes with Linux distribution NixOS, but given its isolative properties, it is well usable on other
tems as well. I use it on Manjaro alongside the Pacman.

https://guix.gnu.org/en/

GNU package manager based on Nix

https://brew.sh/

https://docs.microsoft.com/en-us/windows/uwp/

http://chocolatey.com/

https: //docs . github . com/ en/actions / using-github-hosted-runners / customizing-github-
hosted-runners

1 https://docs.microsoft.com/en-us/windows/package-manager/winget/

' Text files with CMake variables like this: @A_VARIABLE@

N

Sys
5
6
7
8
9
10

23

https://flatpak.org/
https://appimage.org/
https://nixos.wiki/wiki/Nix
https://guix.gnu.org/en/
https://brew.sh/
https://docs.microsoft.com/en-us/windows/uwp/
http://chocolatey.com/
https://docs.github.com/en/actions/using-github-hosted-runners/customizing-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/customizing-github-hosted-runners
https://docs.microsoft.com/en-us/windows/package-manager/winget/

the templates. After that, an open_build service bundle target makes a directory
with all files necessary to build all supported packages. To distribute a new release,
it is now sufficient to update the changelog and upload the files produced by the
open_build_service_bundle target to OBS. This procedure can be performed on any
operating system with CMake, Git, and XZ. The only limitation is that the file system
where the files are produced must support file permission modification. Debian builds
rely on correct file permission setting. Correct permissions are set automatically during
the build whenever the file system supports it.

I have switched the Debian package to the quilt[11] format, which keeps the source
archive intact and ships Debian-specific files in another tar.

After that, I have created Arch Linux and Nix packages. The Arch Linux package is
now also built by openSUSE Build Service.

Binaries for Windows and macOS can easily be obtained from GitHub actions as
they are built as part of the automatic testing CI procedure. At this point, automatic
release publishing was not a priority, but it can be achieved by extending the CI script
according to this example!.

B 6.3.1 Fallbacks

To make the code compile against older versions of Qt, I had to devise several fallbacks in
the polyfill library. For versions older than 5.10 (Ubuntu 18), QStringView is replaced
by QString. QStringliteral macro is necessary for literals to work with both versions.
Prior to version 5.13, Qt objects cannot be stored in an STL container. However, I need
to store references in the GUI controller. That is not possible in Qt containers, where all
values need to be default-constructible. To overcome this issue, I implement std: :hash
for QString and QStringView manually for older Qt versions.

B 6.3.2 Distributions Excluded From Support

The distributions listed below (previously supported by QtMips) are no longer sup-
ported for not providing required versions of dependencies and build tools:

m Debian 9

m Ubuntu 16 (used minimally, zero downloads of the 2020 version, see B.2)

m openSUSE Leap 15.1

m default OBS Applmage (replaced by Applmage based on openSUSE Leap 15.2)

! https://cristianadam.eu/20191222/using-github-actions-with-c-plus-plus-and-cmake/

24

https://cristianadam.eu/20191222/using-github-actions-with-c-plus-plus-and-cmake/

Chapter 7
Conclusion

QtRVSim, a graphical simulator of the RISC-V computer architecture, was released as
a result of this thesis and the thesis of Max Hollmann, who worked on the CPU core
simulation. The simulator is based on QtMips, MIPS CPU simulator, created by Ing.
Karel Kod¢i in his master’s thesis[1] and extended by Ing. Pavel Pisa. The creation of
QtRVSim is the crucial step to switch teaching computer architecture lectures to the
RISC-V ISA. QtRVSim provides users with the same user interface, providing the same
level of introspection as QtMips but with improved internals and simulation options on
the RISC-V CPU. Unlike QtMips, QtRVSim can simulate both, little- and big-endian
CPUs, and internally it is ready for 64bit CPUs. The memory model supports variable
size, unaligned accesses, which will be needed for compressed instruction extension.

I have extended the svgscene library, which builds Qt scene from an SVG file, and
used it to visualize the CPU core. More complex diagrams can now be created easily
without extra effort. Except for moving to RISC-V, this project did not aim to extend
the simulator capabilities in a way observable by the user but to improve the quality
and capabilities of its internal components and the project’s technical quality in general.

The development of the simulator will continue to provide even deeper insight and
simulate more complex CPU functions. There are many options for extension: branch
predictors, memory management unit, multicore simulation with cache coherence pro-
tocol visualization, etc. I believe that my work will prove valuable to those further
extending the QtRVSim.

25

Appendix A
Source Code

The QtMips and QtRvSim projects are developed as open-source, and therefore the most
up-to-date version of the source code is to be found publicly available on GitHub.com.

B A1 Qtrusim (CTU official)

The new official repository for the RISV-V edition of the simulator.

https://github.com/cvut/QtRvSim

B A2 otMips (cTU official)
The original repository of the MIPS version.

https://github.com/cvut/QtMips

I A.3 Development Repository

A fork containing all immediate work.

https://github.com/hollmmax/QtMips/

27

https://github.com/cvut/QtRvSim
https://github.com/cvut/QtMips
https://github.com/hollmmax/QtMips/

Appendix B

QtMips Download Statistics

release type v0.7.5 v0.7.3 earlier version TOTAL
Applmage 132 42 0 175
Linux x86_64 ZIP 125 189 173 487
macOS app 39 40 15 84
Win ZIP 282 180 235 697

Table B.1. Release download statistics on GitHub. [2019-2020]

release type v0.7.5 v0.7.3 earlier version TOTAL
Ubuntu 21.04 1 0 0 1
Ubuntu 20.10 14 0 0 14
Ubuntu 20.04 113 29 0 142
Ubuntu 19.10 0 33 0 33
Ubuntu 19.04 0 16 9 25
Ubuntu 18.10 0 0 21 21
Ubuntu 18.04 118 177 51 346
Ubuntu 16.04 0 14 13 27

Table B.2. Release download statistics on Launchpad (Ubuntu). [2019-2020].

28

Appendix C

Glossary
ALU m arithmetic logic unit
API m application programming interface
ASIC m an application-specific integrated circuit
C m the C programming language
CH++ m the C++ programming language
CI m continuous integration
CPU m central processing unit
CSR m control and status register
CSS m cascading style sheet
CTU m Czech Technical University
endian m adjective from endian
endianness m order of bytes of integer value in memory
FEE m Faculty of Electrical Engineering
FIT m Faculty of Information Technology
GNU m the GNU Projecthttp://www.gnu.org
GUI m graphical user interface
IDE m integrated development environment
IEEE m Institute of Electrical and Electronics Engineers
IEEE 754-2008 m IEEE floating-point standard
ISA m instruction set architecture
JIT m just-in-time compilation
libc m the C standard library
MVSC m Microsoft Visual C++
OBS m the Open Build Service (formerly called openSUSE Build Service)
POSIX m the Portable Operating System Interface
Qt m a widget toolkit for creating graphical user interfaces
Qt4 m Version 4 of Qt
Qt5 m Version 5 of Qt
STL m the C++ Standard Template Library
SVG m Scalable Vector Graphics
TLB m translation lookaside buffer
UWP m Universal Windows Platform https://docs.microsoft.com/en—
us/windows/uwp/
WASM m WebAssembly
XLEN m for 64bit system XLEN in 64
XML m Extensible Markup Language
XZ m a LZMA compression algorithm

29

http://www.gnu.org
https://docs.microsoft.com/en-us/windows/uwp/
https://docs.microsoft.com/en-us/windows/uwp/

References

[1] Karel Ko¢i. Graphical CPU Simulator with Cache Visualization. Master’s Thesis,
CTU Prague. 2018.

[2] Andrew Waterman, and Krste Asanovi¢. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA. 2017.
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf. (Accessed
on 2021-02-28).

[3] David A. Patterson, John L. Hennessy, and Alexander Perry. Computer organiza-

tion and design: the hardware/software interface. 5th edition. Amsterdam: Morgan
Kaufmann, 2014. ISBN 9780124077263.

[4] Jorg Bornemann. Qt and CMake: The Past, the Present and the Future. 2021.
https://www.qt .io/blog/qt-and-cmake-the-past-the-present-and-the-future.
(Accessed on 2021-03-29).

[5] David A. Patterson, and John L. Hennessy. Computer Organization and De-
sign RISC-V Edition: The Hardware Software Interface. Elsevier Science, 2017.
ISBN 9780128122761.

[6] David A. Patterson, and John L. Hennessy. Computer Organization and De-
sign RISC-V Edition: The Hardware Software Interface. Elsevier Science, 2020.
ISBN 9780128203316.

[7] Krste Asanovic. RISC-V Summit 2020 The Next Ten Years. 2021.
https://www.youtube.com/watch?v=1g33UqZ_en0. (Accessed on 2021-04-02).

[8] History - RISC-V International. 2019.
https://riscv.org/about/history/. (Accessed on 2021-04-19).

[9] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. The
RISC-V Instruction Set Manual, Volume I: Base User-Level ISA. Techinal report.
EECS Department, University of California, Berkeley.

10] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu

[, y g, g Liu, g, , Donggi Liu,
Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, Chungiang Li, Yu Pu, Jianyi
Meng, Xiaolang Yan, Yuan Xie, and Xiaoning Qi. Xuantie-910: A Commercial
Multi-Core 12-Stage Pipeline out-of-Order 64-Bit High Performance RISC-V Pro-
cessor with Vector Extension. In: Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture. IEEE Press, 2020. 52-64.
ISBN 9781728146614.

[11] Josip Rodin, and Osamu Aoki. Debian New Maintainers’ Guide. 2020.
https://www.debian.org/doc/manuals/maint-guide/. (Accessed on 2021-05-2).

[12] News and feature lists of Linux and BSD distributions.
https://distrowatch.com/dwres.php?resource=popularity. (Accessed on 2021-05-
08).

[13] Patrick Dengler, Chris Lilley, Jonathan Watt, Dean Jackson, Anthony Grasso,
Doug Schepers, Cameron McCormack, Jon Ferraiolo, Erik Dahlstréom, and Jun

30

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://www.qt.io/blog/qt-and-cmake-the-past-the-present-and-the-future
https://www.youtube.com/watch?v=lg33UqZ_en0
https://riscv.org/about/history/
https://www.debian.org/doc/manuals/maint-guide/
https://distrowatch.com/dwres.php?resource=popularity

Fujisawa. Scalable Vector Graphics (SVG) 1.1 (Second Edition). Techinal report.
W3C.

[14] MDN Contributors. SVG: Scalable Vector Graphics. 2021.
https://developer.mozilla.org/en-US/docs/Web/SVG. (Accessed on 2021-04-16).

[15] Philippe Le Hégaret, Lauren Wood, Arnaud Le Hors, Gavin Nicol, Mike Champion,
Jonathan Robie, and Steven B Byrne. Document Object Model (DOM) Level 3 Core
Specification. Techinal report. W3C.

[16] Erik Dahlstrom, Andreas Neumann, Vincent Hardy, Dean Jackson, Antoine Quint,
Chris Lilley, Ola Andersson, Scott Hayman, Andrew Shellshear, Nandini Ramani,
Andrew Emmons, Cameron McCormack, Doug Schepers, Anthony Grasso, Robin
Berjon, Craig Northway, and Jon Ferraiolo. Scalable Vector Graphics (SVG) Tiny
1.2 Specification. Techinal report. W3C.

[17] News and Announcements. IEEE 7th World Forum on Internet of Things. 2021,

[18] Zhiguo Shi, Jingxiong Liang, Jun Pan, and Jiming Chen. How IoT and Blockchain
Protect Direct-Drinking Water in Schools. IEEE Internet of Things Magazine.
2019, 2 (4), 2-4. DOI 10.1109/MIOT.2019.8982735.

[19] Andrei Frumusanu. The 2020 Mac Mini Unleashed: Putting Apple Silicon M1 To
The Test. 2020.
https://www.anandtech.com/show/16252/mac-mini-apple-mi-tested/. (Accessed on
2021-05-03).

[20] C++ exceptions support.
https://emscripten.org/docs/porting/exceptions.html. (Accessed on 2021-05-
17).

[21] GitHub Actions.
https://docs.github.com/en/actions/. (Accessed on 2021-05-17).

[22] Tedhudek. Windows Documentation.
https://docs.microsoft.com/en-us/windows/. (Accessed on 2021-05-18).

[23] John L. Hennessy, and David A. Patterson. A New Golden Age for Computer
Architecture. Commun. ACM. 2019, 62 (2), 48-60. DOI 10.1145/3282307.

31

https://developer.mozilla.org/en-US/docs/Web/SVG
http://dx.doi.org/10.1109/MIOT.2019.8982735
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested/
https://emscripten.org/docs/porting/exceptions.html
https://docs.github.com/en/actions/
https://docs.microsoft.com/en-us/windows/
http://dx.doi.org/10.1145/3282307

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	RISC-V ISA
	Brief RISC-V ISA Overview

	Memory Model Redesign
	Original Model
	Modified Memory Hierarchy Overview
	Load / Store API
	Endian Simulation
	32-bit Accessible Peripherals

	Refactoring
	Address Data Type
	RegisterValue Data Type
	Cache Replacement Policy
	Extended Testing
	Qt5 Signal-Slot Syntax

	Backporting

	Core View Update (GUI)
	RISC-V Differences
	QtMips C++-based Visualization Framework
	Svgscene Library and Its Usage
	Document Traversing API
	Error Handling

	Core Diagram and SVG Image

	Project Management
	Project Structure and Common Libraries
	CMake Build System Generator
	Qt Switch to CMake
	Build Targets Relationships
	Configure-time choice of dependencies
	Config Defaults And Overrides
	Build and Run Tests
	Learning CMake

	GitHub CI Tests
	Logging Library

	Packaging and Documentation
	QtMips
	Linux Distributions Coverage Analysis
	NIX Package

	Implementation
	Fallbacks
	Distributions Excluded From Support

	Conclusion
	Source Code
	QtRvSim (CTU official)
	QtMips (CTU official)
	Development Repository

	QtMips Download Statistics
	Glossary
	References

