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Introduction

Hindi is listed as one of the official languages of India. It is often claimed to
be the most widely spoken in the country, especially in North India, with the
latest census showing 43.63% of Indians that have Hindi as their mother tongue.1
However, this figure counts speakers of the languages of the Indo-Aryan dialect
continuum that stretches from Rajasthan in the West to Bihar and Jharkhand in
the East, called the Hindi Belt, or the Hindi-Urdu Belt, of which modern standard
Hindi2 is only a part.

This continuum, spread out over North and Central India, contains a wide
variety of languages and dialects that are often mutually unintelligible, and form
subgroups of their own. For example, we have the Rajasthani languages, including
Marwari, Mewari, Nimaadi, and others; the Bihari languages, such as Bhojpuri,
Magahi, or Awadhi; the Pahari languages, like Nepali, Garwali, Kumaoni, and so
on.3 Many of the languages we work with are not used in primary or higher edu-
cation institutions, and lack support from the state governments where they are
spoken. This has also culminated in the perception of local languages as “rough”,
unsophisticated, and associated with uneducated populations. The official lan-
guage of the following states: Bihar, Rajasthan, Haryana, Himachal Pradesh,
Madhya Pradesh, Uttarakhand, Uttar Pradesh, Delhi, Jharkhand, and Chattis-
garh, is Hindi, sometimes in conjunction with some native variants (Chattisgarhi
is recognized as a co-official language of Chattisgarh, similarly for Maithili in
Bihar); native languages are not given any official status and are usually clubbed
together as “Hindi”. This has led to protest for language recognition in some
states e.g. for Maithili in Bihar, resulting in official recognition and support for
Maithili in 2003.4

1See here for the 2011 census:
https://en.wikipedia.org/wiki/2011 Census of India.
This is the latest census because the 2021 census was delayed due to the COVID-19 pandemic.

2Hindi and Urdu are political variants with mainly lexical differences, with Urdu showing
more Persian influence in its vocabulary. The term “Hindi-Urdu” (usually used in linguistics)
refers to the language “Hindustani”, which is a blend of Hindi and Urdu, used widely as the
lingua franca of North India and Pakistan and given official recognition as late as in the 20th

century. Around the time of the Partition of India, India and Pakistan chose to recognize
Hindi and Urdu separately as (lexically) Sanskritized and Persianized versions of Hindustani
respectively, although they are largely mutually intelligible. Note that while Hindustani was
written in the Devanagari, Kaithi as well as Perso-Arabic scripts, Urdu is written in the Perso-
Arabic script and Hindi in Devanagari. For our purpose, we use the terms Hindi and Hindi-Urdu
interchangeably.

3See https://glottolog.org/resource/languoid/id/indo1321 for the full language
tree.

4See an overview of the Maithili Movement here: https://frontline.thehindu.com/boo
ks/article24200882.ece.
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This political-linguistic situation means that NLP resources for these lan-
guages are sorely lacking or non-existent; most of these languages, despite having
millions of speakers (e.g. Marwari) have little or no monolingual data, or other
basic resources such as lexicons, grammars, taggers, embeddings, etc. Collecting
data from the web can be tricky for a few reasons: firstly, digital presence for
many of these languages is low, and secondly, we lack good quality language iden-
tification tools to automatically differentiate between closely related languages,
written in the same script, in crawled text.

This project works with 26 languages, all written (primarily) in Devanagari,
with the exception of Sindhi, which is written primarily in the Perso-Arabic or
Naskh script, but also in Devanagari. We categorize them as Band 1, 2 or 3, ac-
cording to how well-resourced they are and how much attention is given to them
in NLP, with Band 1 consisting of the best resourced languages, and Band 3 con-
taining previously “zero-resource” languages. By this term, we mean languages
for which it is virtually impossible to find standardised NLP datasets. Our main
contributions consist in collecting monolingual resources for the languages under
consideration, as well as presenting a novel strategy for unsupervised bilingual
cognate/borrowing lexicon induction in low-resource scenarios, taking on this
problem for the first time with the Indic dialect continuum. Note that while we
do have lexical resources for Band 1 and 2 languages including WordNets for some
Band 1 languages that can provide some supervision, we simulate low-resource
unsupervised settings for these languages consistent with the truly low-resource
Band 3 languages, using the WordNets when available only for evaluation.

Note that in this work, we do not distinguish between cognates, which are
words in related languages with shared etymology, usually descended from a single
ancestor, and borrowings, which are words that have simply been adopted as are
from any language regardless of the genealogy of either language; henceforth,
we use the term “cognate” as including borrowings. This is because our main
concern is to build bilingual lexicons that are as large as possible, regardless of
the reason for or type of lexical equivalents contained in them.

First, we gather monolingual data for these languages, forming the largest
collection (in the number of languages) of a dialect continuum as far as we know.
This also introduces the first ever monolingual data for 16 zero-resource languages
to the NLP community - 15 Indic/Indo-Aryan (IA) languages, and Korku. In
general, such a corpus has wide applications for work in crosslingual transfer
of NLP tools and models, historical linguistics, dialect continua, and building
language support for these communities. We probe the resulting multilingual
collection at a character, subword and lexical level, finding a general link between
relatedness and genealogically and geographically proximal languages.

We use the corpus for cognate induction (CI) for each target language with
Hindi. We identify cognates from monolingual corpora containing fully inflected
word forms5 in a completely unsupervised manner. We also assume asymmetric
data scarcity; i.e. we have abundant monolingual resources for Hindi, but perhaps
only a few thousands or ten thousands of tokens in monolingual data for the target
language. These constraints set this task apart from most previous literature in
cognate identification [List, 2014, Fourrier et al., 2021, List, 2019, Artetxe et al.,

5While most literature assumes lemmatized word lists as input for this task, we do not have
lemmatizers for these languages.
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2018]; however, they are highly realistic when attempting to build resources for
truly low-resource languages.

We present two strategies for cognate identification, evaluating on synthet-
ically created test sets. In the first approach, we experiment with iteratively
learning substitution probabilities within an edit distance paradigm. Our sec-
ond approach combines noisy semantic signals from a subword embedding space
with orthographic distance measures. reporting qualitative improvements over
the baseline. As a byproduct of the work, we also make available to the commu-
nity the first collection of bilingual embeddings for 16 languages (with Hindi), as
well as evaluation data for 20 languages.

In summary, our main contributions for research for the Indic dialect system
are the following: we contribute data in the form of monolingual corpora for 26
languages and evaluation lexicons for cognate induction for 20 languages. We
present strategies for cognate induction adapted to an asymmetric low resource
scenario, potentially useful for other NLP tasks. This work may also be relevant
to research in other low resource dialect continua around the world6 for which
we not as yet have bilingual resources. Finally, we make bilingual embeddings
available for the languages under consideration. We hope that this study kick-
starts research into the Indic dialect continuum, potentially providing language
support to hundreds of millions of speakers.

We release our collected monolingual data in the form of a new dataset called
“HinDialect” here:
http://hdl.handle.net/11234/1-4787.
All our code and results are available here:
https://github.com/niyatibafna/north-indian-dialect-modelling.

6See https://en.wikipedia.org/wiki/Dialect continuum for more examples of dialect
continuua, such as the Turkic and Arabic languages.
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Chapter 1

The Indic language continuum

See a map of the Hindi Belt languages in Figure 1.1.1 See Table 1.1 for a list of
the languages we are working with, including information about where they are
spoken, and they phylogenetic subcategorization in the Indo-European family.
While we collect data for a few other languages as well and include them in our
exploratory experiments on the continuum, this is the set of languages for which
we perform cognate induction.

There are 26 languages listed in total. These languages were chosen according
to availability in our data source (discussed in Chapter 3. Further, we filtered
languages by script; those written in Devanagari were given preference; we chose
to exclude languages such as Gujarati or Bengali. Given this consideration, Sindhi
provides an interesting case since it is written both in Devanagari and in the
Perso-Arabic script depending on where it is being used, with most of its NLP
resources in the latter; however, we finally chose to include this language.

The language Korku is also an outlier: Korku is the western-most member of
the Austro-Asiatic Munda group of languages in India, and the only non-Indic
language that we consider. We only retain it as a sanity check in our experiments;
we expect this language to do badly on many similarity metrics, against which
we can contrast the performance of genealogically related languages. Note that
Korku is different from Koraku (also written as “Kodaku”), which is a term for
a related Austro-Asiatic Munda group of languages. We have no data for and
do not work with Koraku; in the following sections and figures, we are always
referring to Korku.

1.1 Notes on terminology

1.1.1 Umbrella languages
Some of the languages listed in Table 1.1 we are working with can be consid-
ered a group of different dialects; e.g. Rajasthani is a term used to refer to a
group of languages spoken in Rajasthan, including Marwari, Mewari, and oth-
ers. Similarly, Bhili and Chattisgarhi are also groups of dialects/languages within
themselves. We use these terms as referring to a single language due to lack of a
finer-grained classification in available data.

1This map contains most of the languages we are working with but not all; e.g. Angika.
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Figure 1.1: Showing the different languages of the Hindi Belt. Taken from https:
//titus.fkidg1.uni-frankfurt.de/indexe.htm

1.1.2 “Hindi” and related terms
The term “Hindi” has a narrow sense as in “modern standard Hindi”, which is
largely a political and educational construct, and a broad sense which encom-
passes many other languages and dialects such as Brajbhasha, Haryanvi, Bho-
jpuri, and others, as in the “Hindi” belt. Sometimes, eastern languages such
as Bhojpuri and Magahi are excluded from this umbrella, in which case “Hindi”
refers to the phylogenetic sub-family of Western Hindi languages. The term “Hin-
dustani” is equivalent to “Hindi-Urdu”, referring to the blend of Hindi and Urdu
resulting from a 18th century fusion of Khadi Boli (an ancestor of Hindi), and
the Persianized Awadhi during the Mughal rule. Finally, “Khadi Boli” can be
considered the prestige dialect of Hindi, and is closest to what we think of as
modern standard Hindi. However, the term “Hindi” is obviously sociopolitically
and linguistically distinct from “Khadi Boli”; we will not use the two interchange-
ably. In the following sections, we will do our best to make our meaning as clear
as possible when using the above terms.

1.1.3 The “Indic dialect continuum”, or the “Hindi Belt”
The term “Indic” may be used both to refer to Indo-Aryan languages, as well
as all languages spoken in the Indian subcontinent regardless of their genetics.
In the work, we always apply the former sense of this term. We use the term
“Indic dialect continuum” to refer to the Indo-Aryan continuum across North
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India and parts of Nepal and Pakistan. The part of this continuum that has
to do with Hindi and so-called dialects of Hindi is sometimes referred to as the
“Hindi Belt”, although the latter term may also have political implications. Most
of the languages we work with are generally considered part of the Hindi Belt,
but not all (e.g. Nepali). There are also several related Indic languages that we
do not work with, such as Gujarati, Assamese, and Odiya; these languages are
written primarily in different scripts, and are more distant relatives to Hindi than
languages such as Bhojpuri or Rajasthani, which are the focus of this work. In
summary, either term “Indic dialect continuum” and “Hindi Belt” do not exactly
describe our set of languages, and we use both only as approximations.

1.2 Classification
Since the languages we are dealing with cover a range of resource situations, we
divide them into three categories, based not only on the amount of resources they
have but also the amount of attention given to them in NLP research.

• Band 1: This contains the best resourced languages, i.e. Hindi, Nepali,
Sindhi, and Marathi. These languages have pre-existing corpora containing
gigatokens of monolingual data, pretrained embeddings, tokenizers, and
basic evaluation resources. They also usually have focused NLP research
concerning improvement of these resources. However, note that some of
these languages are often considered mid-to-low resource languages on an
absolute or global scale, for the reason that they often lack labelled corpora,
crosslingual data, and other more advanced resources that we have for some
European languages. [Joshi et al., 2020]

• Band 2: This contains languages in our list for which we have monolingual
data ranging around tens of thousands of sentences, and some annotated
corpora for basic tasks, namely, Bhojpuri, Magahi, Awadhi, Maithili, and
Braj. While there is some research for these languages, it is still in a fetal
stage, generally focusing on developing basic resources and/or describing the
relationship of these languages to Hindi or other more prominent languages.

• Band 3: This comprises the other 16 languages, such as Himachali, Baiga,
and Nimaadi, for which we have no systematic resources available to the
NLP community. By this, we mean to exclude one-off content such as
bloggers, native speakers providing manual translations of words from their
language, etc. Such information is difficult to organize and collate, besides
concerns about legitimacy. Note that while Table 1.1 lists 17 Band 3 lan-
guages, we only talk about 16 Band 3 languages in the rest of this work.
This is because the status of one of these langauges: Khadi Boli, is ambigu-
ous in this regard. Khadi Boli is considered very close to modern Hindi, for
which, of course, we have abundant data. While we maintain the distinc-
tion between Hindi and Khadi Boli in our experiments, we cannot claim to
have collected the first monolingual data for this variety; therefore, we only
talk about 16 Band 3 previously zero-resource languages.
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Language Primary Regions Language
(Sub-)Family

Data
(Tok.)

Native
sp.

BAND 1

Hindi Uttar Pradesh*, Bi-
har*, Rajasthan*, 13
others

IA Central, Western Hindi 1.86B1 250M†

Marathi Maharastra*, Goa* IA Southern, Marathic 551M1 73M
Sindhi Sindh*, Pakistan, Ra-

jasthan Gujarat,
IA Northwestern, Sindhi-
Lahnda

61M5 25M

Nepali Nepal*, West Bengal* IA Northern, Eastern Pahari 14M2 16M

BAND 2

Bhojpuri Bihar, Jharkhand* IA, Bihari 259K3 40M
Magahi Bihar, Jharkand* IA, Bihari 234K3 40M
Awadhi Bihar IA, Bihari 123K3 38M
Maithili Bihar*, Jharkhand* IA, Bihari 300K4 14M
Brajbhasha Uttar Pradesh IA Central, Western Hindi 249K3 1M

BAND 3

Rajasthani Rajasthan IA Central, Gujarati-
Rajasthani

- 50M

Chattisgarhi Chattisgarh* IA Central, Eastern Hindi - 18M
Angika Bihar, Jharkhand* IA, Bihari - 15M
Hariyanvi Haryana, Rajashtan IA Central, Western Hindi - 13M
Bajjika Bihar IA, Bihari - 12M
Kannauji Uttar Pradesh IA Central, Western Hindi - 9.5M
Garwali Uttarakhand IA Northern, Central Pahari - 6M
Bundeli Madhya Pradesh, Uttar

Pradesh
IA Central, Western Hindi - 5.6M

Malwi Rajasthan, Madhya
Pradesh

IA Central, Bhil - 5M

Bhili Rajasthan, Gujarati,
Madhya Pradesh

IA Central, Bhil - 3M

Himachali Himachal Pradesh IA Northern, Himachali - 2M
Kumaoni Uttarakhand IA Northern, Central Pahari - 2M
Nimaadi Rajasthan, Madhya

Pradesh
IA Central, Bhil - 2M

Korku Madhya Pradesh, Ma-
harashtra

Austro-Asiatic, North Munda - 0.7M

Bhadavari Jammu Kashmir IA Northern, Western Pahari - 0.1M
Baiga Chattisgarh IA Central, Chattisgarhi - UNK
Khadi Boli Delhi IA Central, Western Hindi - UNK

Table 1.1: Language bands. “Regions spoken” only mentions places in the Indian
subcontinent; * indicates official status. Speaker counts taken from (latest) 2011
census. 1[Kakwani et al., 2020], 2[Yadava et al., 2008], 3[Zampieri et al., 2018],
4[Goldhahn et al., 2012] 5[Conneau et al., 2019]. †: probably inflated
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Chapter 2

Background and Related Work

We describe related work in different areas of NLP and linguistics that are relevant
to our project.

2.1 Data and Resources
As we mentioned, Band 1 languages have relatively high amounts of data and
resources. AI4Bharat [Kunchukuttan et al., 2020] is one of the largest projects in
this regard, that releases monolingual corpora and embeddings for 14 prominent
Indian languages. We also have other corpora for individual languages, of course,
e.g. HindMonoCorp [Bojar et al., 2014] for Hindi. Further, we have WordNets
for Hindi, Marathi, and Nepali, included in the IndoWordNet effort for 18 Indian
languages1 [Sinha et al., 2006, Debasri et al., 2002]. While we list Sindhi as
a Band 1 language, note that existing Sindhi resources may be in the Naskh
(Perso-Arabic) script; it is also not included in the above IndoWordNet project.

For Band 2 languages, we have some collection efforts, mostly crosslingual
but including some parallel data. Zampieri et al. [2018] presented a shared task
for language identification for Awadhi, Braj, Bhojpuri, Magahi, and Hindi with
15k sentences for each language; Ojha [2019] presents monolingual 45k monolin-
gual sentences in Bhojpuri as well as English-Bhojpuri parallel data. We have
similar works for Magahi [Ojha et al., 2020]. We have 10k sentences in Maithili
crawled by Goldhahn et al. [2012] as part of a mass collection effort, as well
as a corpus collected by the Linguistic Data Consortium of Indian languages2,
unfortunately not freely available; we also have a translation lexicon to English
given by TDIL-DC3 containing technical internet terms. Mundotiya et al. [2021]
collect monolingual corpora4 for Bhojpuri, Magahi, and Maithili, as well as POS-
tagged annotated corpora and WordNets aligned with the larger IndoWordNet
effort, presenting baseline tagging accuracies and analyses of crosslingual simi-
larity of these languages compared to Hindi; Mundotiya et al. [2020] presents
NER-annotated corpora and trained NER models for the same 3 languages.

1See http://www.cfilt.iitb.ac.in/WordNet/webmwn/
2https://www.ldcil.org/resourcesTextCorp.aspx
3https://tdil-dc.in/index.php?option=com download&task=fsearch&lang=en
4These resources are not publicly available yet.
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2.2 Dialect continua
The evolution of and cross-lingual interactions in dialect continua have of course
been the object of study of many works of linguistics [Williamson, 2000, Jeszen-
szky and Weibel, 2015, Heeringa and Nerbonne, 2001]. There are two primary
methods of structuring such languages: a phylogenetic tree mode, which is gener-
ally the traditional perspective through which language families are viewed, and
a wave model, which argues that that the importance of vertical inheritance is
inflated, and that it is more principled to model language change using horizontal
transfer between proximal languages or dialects [François, 2015]. Much work in
computational phylogenetics subscribes to either or both of these models; e.g.
Rama and Singh [2009] (arranging Indian languages in phylogenetic trees), and
Yamauchi and Murawaki [2016] (contrasting the tree and wave models of flow of
typological features).

There is a rich literature in linguistics research, mostly evolution-based, of the
Indo-European language family [Egorova and Egorov, 2019, Garrett et al., 2018,
Garre, 2006] as well as the Indo-Aryan branch [Li et al., 2018, Allassonnière-
Tang and Dunn, 2020]. Recent methods also apply NLP tools for dialectology;
Cathcart [2019] and Cathcart and Rama [2020] work with deep neural models of
dialectology and wordform prediction respectively for over 50 languages of the
Indo-Aryan branch, including 4 Band 3 languages.5

Some works also focus on synchronic grammatical or phonological aspects of
this continuum, e.g. Phillips [2012] work on grammatical aspects of the Bhil tribal
continuum, Mishra and Bali [2011] work on vowel inventories and phonological
comparative study of 7 Hindi belt dialects, and Mishra and Bali [2010] work
on describing phonological transfer rules from Hindi to some of these languages.
Kumar et al. [2018] train language identification for Bhojpuri, Magahi, Awadhi,
Braj, and Hindi (Band 2 except Hindi); the VarDial 2018 task on the same also
prompted many works for this task and language set. However, in general, there is
a paucity in NLP research in Band 2 languages, from the perspective of developing
corpora or tools for them. Such research is non-existent for Band 3 languages.

2.3 Contextual LMs for Indian languages
The advent of large transformer-based pre-trained language models i.e. BERT
and multilingual BERT [Devlin et al., 2018] opened many possibilities for low-
resource languages to ride on data in other languages [Pires et al., 2019, Wang
et al., 2020] Kakwani et al. [2020] presented “Indic BERT” pre-trained on 11 In-
dian languages, which have similar orders of magnitude as our Band 1 languages.
Dhamecha et al. [2021] investigate how BERT-like models that have been pre-
trained on a particular subset of Indo-Aryan languages respond to finetuning
on another related language, showing that low-resource languages like Punjabi
benefit most, and for each language, the most beneficial pre-trained subset dif-
fers. Note that Punjabi is still a Band 1 language; however, relative to European
languages, many Indic Band 1 languages are considered low-resource languages.

Most research in large multilingual LMs is in Band 1 languages since these lan-
5The data used is unfortunately not available.

12



guages have the data and (for some languages) the evaluation resources to support
this research. While it is feasible that Band 2 languages will soon gain attention
in this context given the recent development of corpora for these languages, Band
3 languages are entirely out of the picture even for zero-shot approaches, as far
as we know, due to a combination of factors, including low digital presence and
lack of any organized data in these languages.

2.4 Multilingual Lexicon Induction

2.4.1 Non-neural methods
Much previous work has been based in non-neural methods. Batsuren et al.
[2019] use semantic relationships from the Universal Knowledge Core [Giunchiglia
et al., 2018] which is built from existing WordNets,6 gold annotations as well
as geographical-orthographic similarity measures for cognate identification. List
[2012] induces cognate sets over aligned word lists of languages in a language fam-
ily by an iterative approach that learns phonological rules from current cognate
set, which is implemented in the software LingPy [List, 2014]. Hall and Klein
[2010] works with unaligned word lists for languages in the same family, mod-
elling transfer within a tree-based framework and learning edit-distance based
transformation matrices for each vertical edge (representing inheritance) via a
similar iterative approach; char-gram models are used to smooth word form pre-
dictions from this model. Nicolai et al. [2018] introduce a new system using a
character-level transducer to perform several tasks such as cognate identification
and morphological inflection; Çöltekin [2019] compares linear and neural mod-
els to predict the next edit-distance based transducer action to the related task
of crosslingual morphological inflection. Kanojia et al. [2019] identify cognate
sets for (Band 1) Indian languages using the IndoWordNet combined with lexical
similarity measures, training neural models over the resulting data. In earlier
works, Scherrer and Sagot [2014], inspired by the seminal work by Koehn and
Knight [2002], induced cognates sets in a completely unsupervised manner using
orthographic similarities leveraged by a character-based alignment algorithm, as
well as context vectors based on co-occurrence counts in monolingual corpora.
Although the idea of learning edit distance matrices is quite old [Bilenko and
Mooney, 2003], it has not been used in combination with modern embeddings-
based methods for cognate identification as far as we know.

2.4.2 Neural and embeddings-based methods
Conneau et al. [2017] was one of the earliest works to link bilingual lexicon in-
duction with bilingual embedding spaces, or the alignment of monolingual em-
beddings. This idea has since then been explored by other works that seek to
adapt it to low-resource settings or relax its strong isometry assumption [Dou
et al., 2018, Patra et al., 2019],7 sometimes using a bootstrapping strategy for

6CogNet contains only Band 1 Indic languages.
7Isometry is a property of two graphs by which they have the “same shape”, which is to say

that they can be rotated to map onto each other perfectly. With respect to embedding spaces,
it is used more as an approximation to describe different language spaces that have equivalent
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embeddings alignment and bilingual lexicon induction [Artetxe et al., 2018, Cao
and Zhao, 2021]. More recently, we also have works using contextual embeddings
for bilingual lexicon induction (BLI); Schuster et al. [2019] averages the contex-
tual embeddings of a word over different context to form anchor vectors for words,
Zhang et al. [2021] take this idea further to combine static and contextual vectors
for BLI. Fourrier et al. [2021] frame cognate detection as a machine translation
problem, finding that SMT still beats NMT over smaller datasets; Kanojia et al.
[2019] identify cognate sets for (Band 1) Indian languages using the IndoWord-
Net combined with lexical similarity measures, training neural models over the
resulting data.

2.5 Other related work
Hedderich et al. [2021] survey strategies for low-resource NLP, such as data aug-
mentation, transfer learning, and others, in the context of machine learning and
deep learning. Joshi et al. [2020] provide a taxonomy of languages based on
their data availability and survey the inclusivity of NLP conferences to different
languages types.

Many works dealing with low-resource dialects or variants focus on neural
or statistical machine translation. We have several such studies for the Arabic
language continuum; these works focus on creating parallel corpora [Meftouh
et al., 2015], solving script problems [Guellil et al., 2017], and multitask and
unsupervised setups for shared representations and transfer [Baniata et al., 2018,
Farhan et al., 2020]. Lakew et al. [2018] experiment with translation from English
into two varieties each of Portuguese and French given data in each variety, either
labelled for variety or not. Wan et al. [2020] train neural dialect translation
from Mandarin to Cantonese using the concept of pivot (shared) and private
(dialect-specific) dimensions of word embeddings. There is some research in this
genre for Band 1 and 2 Indian languages; Madaan and Sadat [2020] attempt
data augmentation for MT from Sindhi, Bhojpuri, and Magahi to English by,
for example, switching source and target side. Kumar et al. [2020] present zero-
shot approaches to NMT between Hindi, Bhojpuri, and Magahi as part of the
LoResMT 2020 shared task Ojha et al. [2020].

Research in subword-based neural strategies are also relevant to us since we
are dealing with data-scarce low-resource languages; Faruqui et al. [2016] perform
morphological inflection using a char-level encoder-decoder model with grammat-
ical features as well as the lemma as input. Jha et al. [2018] perform incorporate
word transduction from Hindi to Bhojpuri as an attempt to deal with OOV words
in NMT. Ataman et al. [2019] present a strategy to deal with OOV words in mor-
phologically rich languages by character-level decoding with explicit architecture
for inflection-handling.

words roughly the same distance from each other.
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Chapter 3

Data collection

The objective of this stage is to collect a multilingual corpus with data labelled
for the dialect/language that it is in. We would like to have enough languages to
reasonably represent the Indic continuum.

3.1 Is there anything out there?
Searching the web for content in individual Band 3 languages yielded some blogs
and YouTube song videos (with presumably same-language associated comments)
for a handful of languages, and nothing for most of them. For example, for
Rajasthani, we have https://www.maruwani.com, containing 18 articles in
Rajasthani,1 as well as a Rajasthani-English bilingual dictionary.2 In general, we
face the following problems:

• Such material seems to be scantily available over our 16 languages of in-
terest. It’s possible that focused searches will yield better results; however,
automating that for all languages (for example, with some kind of a boot-
strapping strategy) in a manner that preserves quality of results would be
a difficult task in itself.

• Automated crawling from website such as YouTube or personal blogs will
require sophisticated language identification, especially since all these lan-
guages are written in the same script (i.e. Devanagari). Scraping a good
quality monolingual corpus for any language would therefore entail distin-
guishing between closely related dialects; of course, building such a tool
would require data in the first place.

3.2 Kavita Kosh
Kavita Kosh: http://kavitakosh.org/kk/, translating roughly to “poetry
collection”, is an online collection of folksongs and poems in 31 languages from

1As we have mentioned, Rajasthani is a collection of languages, traditionally associated
with Marwari and Mewari, but including the Bhil tribal languages and several others spoken
in nearby states. We assume that the author means “Marwari” going by one of their posts.

2Interestingly, it also contains an English post:
https://www.maruwani.com/2009/11/are-you-rajasthani.html about the employment-
related ill-effects of Hindi hegemony over local languages such as Marwari in Rajasthan.
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Figure 3.1: Layout of Kavita Kosh website. Green arrows represent links we
would like to follow, that adhere to an easily exploitable structure, whereas red
arrows represents links that form cross or back edges, interfering with the above
structure, or lead to irrelevant content. Links leading out of irrelevant parts of
the website may lead to any or all webpages that we are interested in.

on the IA continuum, from Sindhi and Rajasthani in the West, to Marathi in the
South, Kashmiri and Himachali in the North, and Bengali in the East. Content
is manually curated; the folksongs were collected by the organization, whereas
the poetry consists of works by early contemporary writers, mostly from the late
twentieth century.

3.3 Format of the website
• Script: The Kavita Kosh website is written entirely in the Devanagari

script, and all non-content material is in Hindi. Most of the languages that
it has poetry for are also written in Devanagari; however, when that is not
the case (such as with Gujarati or Bangla), the poems may be written either
in transliterated Devanagari or in the original script. Some pages have the
option of toggling between different scripts; however, in general, the default
is Devanagari.

• Layout and navigation: Content on Kavita Kosh is separated into two
primary categories i.e. folksongs and poetry, and further segregated by lan-
guage and author. The basic layout of the website is as shown in Figure 3.1.
For folksongs, some pages may have further thematic or other classifications;
for example, the Angika folksongs have a preliminary classification by the
occasion it is associated with or sung at,3 and each such occasion may have
a page of its own, listing the relevant songs. For poetry, we may also have
deeper structure, for example, an author may have written an anthology as

3E.g. there are more than 15 genres of wedding songs, to be sung at every stage of the
wedding
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opposed to individual poems, in which case the website will have a separate
page for poems in that anthology.

• Naming conventions: Folksong pages are often titled in the style
<title of folksong>/<language>; however, there are exceptions, and some-
times the language suffix may be different or absent.
Poetry pages are usually titled <title of poem>/<author>, although, again,
there are exceptions when the author is unknown, or if the poem belongs
to a named collection, or is one of several parts (where it may be suf-
fixed by a simple numeral index). The leaf webpages i.e. containing the
poetry/folksongs do not contain any other information pertaining to the
language of the content.

• Other information: For poetry, author webpages listing all associated
poetry may have basic information about the author e.g. date of birth
and (if applicable) death and place of origin. This is left blank for many
authors, of course, for whom the relevant information may not be known.
For folksongs, we do not have dates or exact places of origin.

3.4 Crawling the website
We implement a standard BFS-based crawler with certain modifications to suit
our purpose. Crawling the website entails two basic tasks. Firstly, we must
retrieve all poetry/folksong content from the website; i.e. we need to ensure
we collect all literary content but avoid other pages such as “About” or other
functional pages, empty pages with some explanation given,4 or other parts of
the website, such as author descriptions, discussions of some of the poetry, etc.
We address this issue by manually pre-specifying constraints over the links to be
explored, as well as the some string matches to exclude recurring Hindi material.
This, along with the conservative specification of HTML tags used for poetry
content, is enough to keep unwanted material from leaking into the dataset.

Secondly, we must correctly associate each piece with its language; this is
only non-trivial because as mentioned, the leaf links with the actual content
do not contain language tags or language information anywhere in their HTML
description. In order to know which language a poem is in, it is necessary to
traverse the path from the central page of the website down to the particular
poem page and note its ancestor at the level of the tree which groups all content
language-wise. Note that, since the poetry, language, and author nodes are also
interlinked with each other, there will be several paths to a given leaf node along
almost any language-subtree; however, we observe that the shortest path from the
root to the leaf should have the correct language node ancestor. This is simply
a heuristic given the generally uniform structure of the website and the nature
of cross-links (authors to other authors, links heading back to the root, to other
languages, etc.), meaning that it is quicker to traverse directly to a given leaf via
its correct language node ancestor rather than first to another leaf/intermediate

4This is because everything other than the folksongs and poems on the website is in Hindi,
meaning that if we run into an empty link while crawling for another language and collect the
“missing poem” message, we will be introducing Hindi impurities in the dataset.
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node, which would link to an ancestor intermediate node (via a cross edge), and
then down that path to the target leaf. This is visible from Figure 3.1.

Therefore, we need to account for the following things while crawling:
• We need to have filters for both daughter links as well as collected content.

• We should know at any given state of the BFS which language node ancestor
AL it is descended from. We use a pre-compiled list of languages as written
on the website to simplify the recognition of a new language subtree. Given
this, we simply link any collected leaf content with AL.

• We need to have pre-identified “danger zones”, in the form of a list of links
that the BFS should not explore. This could be because they do not contain
pieces (and have material in Hindi), and would lead to time-consuming and
non-fruitful exploration of irrelevant parts of the website. It could also be
because they ruin the nice structure of the website by providing shortcut
paths to other content. Discussion pages may behave in this manner, refer-
ring and linking to content or authors from several languages, potentially
wreaking havoc with our content-to-language association.

• Since collection is time-consuming (taking about 2 days in total), we also
save the BFS state, including all internal variables regularly while crawling;
this ensures that in case of interruption, the crawling can resume from where
it left off.

Our crawlers are available here:
https://github.com/niyatibafna/north-indian-dialect-modelling/tree
/main/crawlers

3.5 Crawled data
We store each collected piece in a separate JSON file, with a layout as shown in
Figure 3.2. The files are stored in a directory format that is a flatter version of Fig-
ure 3.1 for ease of navigation, segregating all files first by genre (poetry/folksongs),
then by language. Each poetry/<lang> directory, therefore, contains all poetry
files in that language; similarly for folksongs. This format throws away groupings
by author and publishing information; we considered this as reasonable in order
to have a simple a structure as possible. We collect folksongs for 26 languages,
and poetry for 18 languages; the number of distinct languages is 31.5 Poem and
token counts are reported in Table 3.1

We collect an average of roughly 100K tokens for Band 3 languages; however,
we see wide variation over these languages, with Angika having 1M tokens, and
Himachali, Kannaji, and Bhadavari with less than 1K tokens.

We are authorized to release only the folksongs data from this collection: this
is available at
http://hdl.handle.net/11234/1-4787.

5This counts the language Hindi-Urdu as separate from Khadi Boli. While, as we have
mentioned, modern Khadhi Boli remains the dialect that is closest to modern Hindi, we preserve
the distinction made by the website. Further, we note that Hindi-Urdu refers to Hindustani
or the blend of vocabulary and other aspects from Khadi Boli with those of Farsi given the
Persian influence in the Mughal rule.
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Language Folk-
songs

Poetry Folksongs
tokens

Poetry
tokens

Total
Pieces

Total
tokens

BAND 1

Hindi-Urdu 1 54408 100 7127897 54409 7127997
Nepali 0 4753 0 692657 4753 692657
Gujarati 14 624 1795 73363 638 75158
Punjabi 754 0 69595 0 754 69595
Sindhi 0 500 0 51458 500 51458
Marathi 5 30 1412 1915 35 3327
Bangla 12 0 838 0 12 838

Avg. 1,145,861

BAND 2

Awadhi 47 1333 4942 495137 1380 500079
Maithili 0 1552 0 218339 1552 218339
Bhojpuri 131 1275 20350 177289 1406 197639
Brajbhasha 83 1441 8883 151156 1524 160039
Magahi 340 376 37587 47167 716 84754

Avg. 232170

BAND 3

Angika 96 6773 21419 1243727 6869 1265146
Hariyanvi 554 930 49122 183881 1484 233003
Rajasthani 67 1790 7404 180320 1857 187724
Sanskrit 2 248 184 95450 250 95634
Garwali 128 449 33380 59288 577 92668
Chattisgarhi 92 378 33504 49722 470 83226
Bhil 155 0 27326 0 155 27326
Bundeli 326 0 26928 0 326 26928
Korku 177 0 15509 0 177 15509
Nimaadi 157 0 14056 0 157 14056
Baiga 35 0 13848 0 35 13848
Malwi 129 0 9626 0 129 9626
Bajjika 0 71 0 7414 71 7414
Pali 0 27 0 5859 27 5859
Khadi Boli 42 0 4507 0 42 4507
Kumaoni 9 0 1028 0 9 1028
Bhadavari 8 0 990 0 8 990
Himachali 3 0 466 0 3 466
Kannauji 6 0 327 0 6 327

Avg. 109,751

Table 3.1: Showing crawled corpus counts for all collected languages.
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Figure 3.2: File layout for stored pieces
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Chapter 4

Probing the data

The data is cleaned at a character-level, by filtering out any (letter) characters
that do not fall within a specified UTF-8 code-point range, as well as punctu-
ation (both Roman and Devanagari script punctuation marks.) Tokenization is
performed by simple white-space splitting.

4.1 Character-level probes
While the languages under consideration are written in the Devanagari script,
a language may use certain extra characters to describe a sound perhaps not
covered by the Devanagari script; alternately, some characters from the Devana-
gari script may not be used in certain languages. Further, since Devanagari is
orthographically shallow - meaning, that the spelling of a word in Devanagari is
closely representative of its pronunciation, inspecting character distributions of a
language may give us a fairly good idea of the general usage of consonants and
vowels in the language.

We inspect a table of (Devanagari) character distributions over the languages
post-cleaning. Here, we talk about these characters transcribed into IPA. As ex-
pected, the commonest and most widely used consonants and vowels in the IA
family form the bulk of the distributions of most languages, e.g. letters repre-
senting /t/, /D/, /a/, /e/. We see some conspicuously low numbers for some
characters in certain languages, e.g. letters representing /S/, /v/, and /ï/, fairly
common consonants in the rest of the languages, seem to be very little used (in
this corpus) in Kannauji. This observation is in part supported by Dwivedi and
Kar [2016], who say that the first two are not native to Kannuaji but borrowed
from Hindi.

We also see spikes in more endemic consonants as expected, for example, the
letter representing /í/ - which is not used in Hindi and most of the languages
under question - only shows considerable usage in Marathi and Nimaadi. Finally,
the “avagraha” symbol “s”, used in Sanskrit to denote the deletion of the inherent
vowel of the previous consonant, has only been inherited into the scripts of certain
languages like Nepali and Magahi; in Hindi, it is sometimes used to denote the
elongation of the previous vowel, especially in lyrical texts.

We calculate symmetric KL-divergence metrics for these character distribu-
tions, smoothing zero-figures if any. See Figure 4.1. Interestingly, Sanskrit and
Pali (both dead languages) show the most difference from the other languages.
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We notice that the eastern cluster of languages, from Brajbhasha to Angika, show
high similarity to each other as well as the north-western cluster i.e. Sindhi to
Bhili. Kannauji shows a rather sharp shift in similarity with the eastern languages
as compared to the others.

Figure 4.1: Character-level symmetric KL-Divergence for all languages

4.2 Lexical Similarity

4.2.1 Filtering
We wish to investigate the exact-match lexical overlap between each pair of lan-
guages as an initial indication of similarity. Note that since we comparing fully
inflected word forms, we may miss several nearly perfect matches that differ in
their inflection or due to spelling variations. We account for this in later experi-
ments.

Given the range of dataset sizes as seen Table 3.1, we need to account for
data scarcity as well as noise in larger datasets. That is, we do not wish to
count a word that is regularly used in language X but appears only as a one-off
occurrence in language Y as evidence of lexical overlap between X and Y. One
solution is to this problem, of course, is to smoothly handle word frequencies in
the two corpora by looking at measures such as cross-entropy or KL-divergence
over word distributions instead of exact word counts. However, such a measure
would disguise the relatively simple and interpretable quantity we are seeking
to measure: that is, how many lexical items do two languages exactly share?
Instead, we choose to discard all words that occur below a certain frequency in
the language datasets. This threshold is naturally different depending on the size
of the dataset; in specific, we discard all words in language L that occur with a
frequency less than:

T (L) = log100(NL) − 1 (4.1)
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Figure 4.2: Pairwise lexical overlap for all languages

NL is the total number of tokens in the dataset of language L. This expression
roughly models the growth of the preferred threshold with the growth of the
dataset size. The exponent 100 and the constant −1 were chosen to best fit the
data; specifically, we wished not delete any words from languages with less than
a thousand tokens.

4.2.2 Measures
Suppose L1 and L2 are the filtered lexicons of two languages, we want to find :

Oij = |Li ∩ Lj|
norm12

(4.2)

For the normalization factor norm12, we tried both of the following:
1. min(|L1|, |L2|) : This is the natural choice; the maximum possible similarity

in this case for two datasets of any sizes is 1. However it does have the
following minor issue: since this denominator throws the size of the larger
dataset out of consideration, it ignores the fact that a language A for which
we have more data has better coverage over its own vocabulary and therefore
a better chance of showing lexical overlap with a much smaller language B
as compared to another language C for which we have more data than B
but much less than A.

2. |L1| + |L2| : We also tried this normalization factor to hold both dataset
sizes accountable, as it were. This would cap the possible lexical similarity
between the two languages at min(|L1|,|L2|)

|L1|+|L2| ; this naturally has the opposite
issue as above; it treats languages with larger datasets unfairly.

We use the first normalization method as listed, since the benefit and easier
interpretability of a [0, 1] metric perhaps outweighs the discussed issue. We ex-
clude certain languages from these experiments; namely: Sanskrit and Pali (since
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they are both dead languages), and Gujarati and Bangla (since they are primarily
written in different scripts). Although we leave Marathi in the mix, its results
are not particularly representative - although Marathi is a Band 1 high resource
language in general with a high influence on nearby languages and dialects, it has
very few pieces on this website; further, many of them are from non-contemporary
authors. These results, therefore, should not be taken seriously for Marathi.

4.2.3 Results: Pairwise lexical similarity
See the pairwise results for all languages in Figure 4.2. The clearest dark patch is
the bottom right square, i.e. the Purvanchal and eastern languages from Kannuaji
to Angika. This is expected and confirms that the corpus is representative of the
close linguistic, cultural, and geographical ties between these languages.

We also see that Hindi-Urdu has high lexical similarities with almost every
language. This could be the result of a few of factors: (i) actual linguistic close-
ness due to the widespread use of Hindi-Urdu, which absorbs dialectical usage
as well as forming a large source for borrowings into different dialects (ii) the
large dataset size for Hindi-Urdu, possibly including noise even after filtering
(iii) Inclusion of non-Hindi pieces clumped into Hindi-Urdu, either because the
poet wrote in several languages, or since Hindi-Urdu forms the “default” label for
many works in related IA languages. The last of these is unlikely to be a large
contributing factor given that the website is curated with the express purpose of
documenting the literary and linguistic diversity in this continuum.

We also notice that some languages have consistently low lexical similarities
with others, especially those with little data, such as Malwi. This is probably
because the collected dataset is too small to be representative of the vocabulary
of these languages. Finally, we observe that Korku shows very low similarity
numbers with the other languages; as we have mentioned, it is not an IA language
and therefore lacks the genealogical similarities of the others.

We also construct a dendrogram based on this lexical similarity measure; see
Figure 4.3. We include some languages such as Gujarati and Bengali (excluded
for cognate induction due to reasons mentioned) as a sanity check: we would like
to see whether the measure accurately represents the fact that these languages
are distant relatives of the Hindi-related languages and dialects under focus.

We see that some languages expected to be similar are grouped in the same
subtrees e.g. Haryanvi and Rajasthani, {Awadhi, Angika, Bhojpuri}, as well
as {Nimaadi, Malwi, Bhili, and Baiga}. More distantly related languages like
Gujarati, Pali, Bangla and Sanskrit are placed on the outer parts of the tree
as expected. However, we would have also expected to see Khadi Boli closer to
Haryanvi, and Bajjika closer to Angika and Bhojpuri.

4.2.4 Language clusters
We also take a “close-up” look at sections of the pairwise results for language
clusters that we expect to have closer relationships within the cluster. See Fig-
ures 4.5,4.4,4.6. There are 3 such geographically motivated bands that we are
interested in.

Firstly, we observe the “north” band, including Sindhi, Haryanvi, Punjabi,
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Figure 4.3: Dendrogram based on lexical similarity.
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Figure 4.4: “North central” cluster of languages. Numbers in cells of this figure
as well as following figures represent values of the metric being scored - in this
case, the lexical overlap metric.

Figure 4.5: “Central” cluster of languages
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Figure 4.6: “Northern” cluster of languages

and the Pahari languages. Then we have the “north-central” band, which follows
the heartland of the Gangetic plains, from Rajasthan (Rajasthani) across Delhi
(Khadi Boli), Uttar Pradesh (Awadhi, Kannauji), Chattisgarh (Chattisgarhi),
and Bihar (Bhojpuri, Magahi, Angika). Finally, we have the “central” band across
southern Rajasthan (Bhili), Madhya Pradesh (Nimaadi, Malwi) and Maharashtra
(Marathi).

We see that the “north-central” band indeed has the higher inter-similarities
with some pairs (even excluding Hindi-Urdu) showing similarities at around 70%
(Bundeli-Angika, Kannauji-Awadhi). The “north” band follows; we see that
Haryanvi and Nepali generally have high overlap with surrounding languages.
Finally, the “central” band shows Rajasthani as having high lexical similarity
with languages spoken in nearby regions e.g. Bhili and Nimaadi. Baiga shows
generally low similarities except with Chattisgarhi, of which it is supposed to be
a variant.1

4.3 Subword-level Probes
Since IA languages are in general morphologically rich, we also calculate some
pairwise subword-level overlap measures, captured by character grams of length
2, 3, and 4. There are two main angles to these experiments; we describe each
below.

4.3.1 Subword-level Overlap
Firstly, we want to capture overlap in the same way as we did for lexical simi-
larity, thinking of subwords as approximating morphemic units of the language.
Therefore, suppose Lic is the inventory of c-length char-grams for language i, then
we calculate c-char-gram overlap for languages i and j as:

1https://glottolog.org/resource/languoid/id/baig1238
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Oijc = |Lic ∩ Lic|
min(|Lic|, |Lic|)

(4.3)

While calculating subword similarity over different char-grams lengths, we
would like to weight Oijc according to c, capturing the idea that is more of a
similarity signal for two languages to share c-char-grams with greater c. For
this purpose, we calculate the “universe of possibilities” for each c; i.e. the total
number Uc of unique c-char-grams that occur in the entire corpus. Since we would
like to have normalizing weights that are inversely related to the probability of
an accidentally shared c-char-gram, we use the following expression for the final
subword similarity:

Oij =
∑︂

c

(Oijc.
Uc∑︁
c Uc

) (4.4)

4.3.2 Distributions over subwords
We also want to capture and compare languages’ usage of character sequences;
that is, not just the occurrence of a common particular sequence in two languages
but also how frequently it is used in either.2 This is essentially the same idea
as in Section 4.1, but extended to character grams rather than single characters;
accordingly we use the symmetric KL-Divergence once more to calculate this.
The final metric is simply the average of the individual figures for divergence for
each char-gram length.

Figure 4.7: Overlap-based similarity over i-chargrams

We also tried different ranges for both of the above types of measures; in
general, they follow the same trend. We only present representative heatmaps
here; see Figures 4.7 and Figure 4.8 for the overlap-based and KL-Divergence-
based measures respectively. As we saw in previous experiments, the eastern

2Remember that a sequence of characters in Devanagari is likely to correspond very closely
with the way it is spoken.
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Figure 4.8: Pairwise KL-Divergence over distributions of i-char-grams. Lower is
better.

cluster as well as the western cluster of languages show close relationships with
each other; we have some positive outliers such as Hindi-Urdu, and some negative
ones such as Korku and Himachali.
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Chapter 5

Cognate Induction: Backgroud,
Potential Approaches, and
Baselines

5.1 Introduction: Bilingual Lexicons and Cog-
nate Induction

A bilingual lexicon is one of the most basic bilingual resources one can have for
a given language (with some anchor language). Bilingual lexicons are especially
useful in low-resource scenarios to enable cross-lingual transfer of tools or re-
sources; for example, they can be used as reference for word to word translation,
or as seeds for building multilingual embeddings. This is true especially if the
anchor is a high-resource language, with tools that can potentially benefit the
low-resource target. In our situation, a natural choice is to choose Hindi for
the anchor. Bilingual lexicons also have applications in historical linguistics, in
helping linguistics to understand the evolution of a linguistic system. Finally,
in the case of severely under-supported languages such as the languages under
consideration in this work, they can be used for building dictionaries and aids for
speakers and language learners.

A bilingual lexicon may take many forms. It may vary in its type of linguistic
unit (word-form, lemma), format type (unit-unit, unit-description, and other),
type of equivalence (one-to-one, one-to-many), domain, length, and so on. For
traditional dictionaries used as language aids, we may have canonical word forms,
or citation forms, and part-of-speech tags on the source side, and more than one
possible translations including multi-word phrases and explanations, as well as
examples of usage, on the target side. For computational usage in NLP or lin-
guistics research, however, we would perhaps prefer a much simpler mapping-type
structure: lemmas on both source and target side, without complex explanations
or examples.

In the following approaches, we build a collection of bilingual lexicons with
the following properties for every (non Hindi) target language target: it is in
the direction Hindi - target, with a one-to-many setup, dealing in word
forms on both sides, with maximum length 5000. Source words from Hindi are
selected according to frequency; target side frequency constraints may or may
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not be applied. The reason we work with word forms is because we do not have
lemmatizers for our target languages. We use a one-to-many setup simply to
increase the chances of an accurate prediction for a given source word. Finally,
we use the same maximum lexicon length, implying an identical set of Hindi
source words, for all approaches and language pairs to maintain comparability
across approaches and languages.

Note that so far we have talked about bilingual lexicon induction, rather than
cognate induction. When talking about bilingual lexicons for closely related low-
resource dialects, our first target is cognates and borrowings across the languages;
these are easy targets in languages with shared scripts since they tend to share
a considerable part of their orthography. In this work, we do not attempt to
discover lexical equivalents that are neither cognates nor borrowings, although
this is an active problem in recent literature (as we mention in Chapter 2). In-
stead, we focus on using the relationships between these languages to build basic
cognate/borrowing lexicons. We also do not distinguish between cognates and
borrowings; for our purposes, both are instances of related vocabulary that come
from a common origin and share some semantic and phonological characteristics.1
Henceforth, we use the term “cognate” to include borrowings; further, the term
“lexicon” or “bilingual lexicon” refers to cognate lexicons. Finally, we are also
not concerned with the question of the direction of borrowing between the two
languages; the origin of the borrowed lexical item may also be a third language
altogether.

5.2 Background work
We give a general overview of the the literature for bilingual lexicon induction and
cognate detection/induction in Chapter 2. In this section, we describe represen-
tative works in a little more detail to understand the broad kinds of approaches
to the problem of cognate induction.

The field of historical linguistics has long been concerned with the question of
cognate identification from semantically-aligned word lists. This is traditionally
performed by trained experts, by exploiting patterns of regular sound change.
Regular sound change is phenomenon by which a certain sound in one language
might correspond to another sound in cognates contained by a sister language,
across the map and given the correct phonological conditions. Today, automatic
methods of cognate identification are being used to aid linguists in this task, for
example, with the software LingPy [List, 2014].

Working explicitly with phonology/orthography: Works that deal ex-
plicitly with orthography (often transcribed into the IPA alphabet) usually deal
with modelling regular sound change, similar to what linguists would do. While
all the following approaches must in some way deal with orthography, these ap-
proaches work by explicitly mimicking what a linguist might do, for example,
phonetic alignment (aligning what phones in two words may “correspond” to
each other in case of cognacy) [Kondrak, 2000], followed by identifying cognates.

1In related languages with the same or similar script, shared phonologies of cognates often
result in similar orthographic characteristics, as in our case. When the scripts used are dif-
ferent, transliteration may be used to discover correspondences, or a third script such as the
International Phonetic Alphabet (IPA).
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The first step can be performed with something as simple as normalized edit
distance (henceforth NED), as well as more complex algorithms, whereas the sec-
ond step can be (for example) performed by clustering methods that partition a
set of semantically equivalent words into (cognate) clusters based on previously
computed distance measures; see List [2014] for an illustration and explanation
of both these steps. List [2014] also present LingPy, a library for historical lin-
guistics that can run different algorithms within this paradigm and for related
historical linguistics tasks such as constructing phylogenies. See List [2012] for
the LexStat algorithm implemented in this library for cognate identification.

An evolutionary approach: Hall and Klein [2010] present an approach
for identifying cognates from an unaligned collection of word lists of related lan-
guages, given the language family tree. This is the closest setup to ours in that
we do not have semantically aligned word sets. This work uses a generative model
to model three subprocesses: i.e. survival (whether the daughter language has a
cognate for a given cognate set), evolution (sound changes), and alignment (which
words in the observed languages are cognates with each other).

The basic idea of the algorithm is to model the evolution of words through
the language family tree (note that we only have observed word lists for the
leaf languages), with transducers along the tree edges. These transducers are
simultaneously learnt with leaf-level alignment of cognates in an iterative manner;
see Figure 5.1. The final goal is to learn the alignment parameters (i.e. which
words in each language belong to which cognate set) - all other parameters are
marginalized, such as reconstructed words in intermediate nodes.

MT-like approaches: In recent times - i.e. the last decade or so, different
studies have applied feature learning approaches to cognate detection [Beinborn
et al., 2013, Hauer and Kondrak, 2011, Fourrier et al., 2021]. These works (and
many others) model cognate prediction as a low-resource machine translation
task, using statistical as well as neural methods for the task of predicting likely
cognates in a bilingual setup. To take one of these, Fourrier et al. [2021] compare
SMT (statistical machine translation) and NMT (neural machine translation)
approaches to cognate prediction, and also explore the effects of pretraining a
language model on monolingual data. For SMT, they use Moses [Koehn et al.,
2007], aligning the bilingual data with Giza++ [Och and Ney, 2003]. For the
NMT approaches, they use two strategies: the RNN (bi-GRU) with attention
[Bahdanau et al., 2014] and a Transformer model [Vaswani et al., 2017]. All
approaches work at a “character” level - in specific, the words are transcribed
into IPA, and segmented into phones; therefore, the unit of MT is the phone.
They find that SMT still performs the best for smaller datasets, in line with
the findings of previous works. They also find that multilinguality with the
NMT setup, with the encoder seeing many languages, and a different decoder per
language, helps to boost results; however, “pretraining” on monolingual lexicons
makes no difference.

While the approaches adopted in these works hold great potential, they con-
cern the supervised task of cognate prediction, with the smallest cognate dataset
containing 1804 cognate pairs; these methods are therefore unavailable in our
situation. However, it is interesting to note that machine translation is a vi-
able perspective through which we can look at cognate lexicon induction given
the very rich literature in machine translation, including unsupervised machine
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Figure 5.1: Taken from Hall and Klein [2010]
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translation [Lample et al., 2017].

5.3 What kind of multilingual lexicon do we want?
This section discusses our design decisions for cognate lexicons that we wish to
induce, both with repsect to induction as well as with the collection of evaluation
data in mind. We use the term “equivalent set” to mean a set of words, each
from a different language, that are “equivalent” to each other or correspond to
each other, in the sense of being cognates with a shared semantic “concept” or
meaning. We use the term “lexical relationship” to mean the correspondence
between equivalent words.

5.3.1 Bi- vs. multi-lingual
The phrase “multilingual lexicon” in its robust form implies that, for N languages,
we should have

(︂
N
2

)︂
lexical relationships for a single equivalent set. Any evaluation

data we use must verify each of these lexical relationships. Clearly, this is very
resource intensive, and infeasible in our current situation. In this work, we allow
a “transitivity” assumption i.e. if we have (x, y) in some bilingual lexicon for
languages (L1, L2), and (y, z) for (L2, L3), then we can assume (x, z) for (L1, L3)
and list (x, y, z) as an equivalent set. We therefore use the term “multilingual
lexicon” for two slightly different underlying structures, i.e.

• A collection of bilingual lexicons for N languages, for some subset of the(︂
N
2

)︂
possible language pairs. Preferably, we would have a single “anchor”

language against which we have bilingual lexicons for all other languages.

• A list of N -aligned equivalent sets: for a single “concept”, we have attested
cognates from all N languages.

(︂
N
2

)︂
lexical relationships are attested and

can be inferred from each equivalent set. For example, we have a potential
equivalent set p with English-French-Italian: attack-attaque-attacco, with(︂

3
2

)︂
= 3 lexical relationships: attack-attaque, attack-attacco, and attaque-

attacco. Each of these should be verified for p to be an attested equivalent
set.

Note that the latter requires at least the former, as well as common words
across all bilingual lexicons in order to induce equivalent sets across the languages.
In our search to create a multilingual lexicon, therefore, we have greater chances
of success with bilingual lexicons from one source with parallelization into N
languages, as compared to isolated bilingual lexicons from different sources and
probably different domains and formats; in addition, we also avoid the problem
of harmonizing possibly conflicting relationships extracted from multiple sources.
Using a single source with 1 : N format for lexical equivalents, with the transitiv-
ity assumption, is thus much more likely to facilitate the creation of a multilingual
lexicon over the given bilingual lexicons, due to shared vocabulary and probably
shared linguistic decisions for the presentation of word forms across all languages.
The price that we expect to pay in using this format is the introduction of some
bias due to the choice of the single source language, as well as noise introduced by
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possible failures of the transitivity assumption we described above, when looking
to infer lexical equivalents between two non-source languages.

We may go back and forth between the two above implicit structures of a
“multilingual lexicon” in usage as well as creation, depending on the data available
or the evaluation task at hand. However, for the most part in this work, we use
the term “multilingual lexicon” to mean a collection of bilingual lexicons,
anchored against the same set of source words in a common anchor
language.

5.3.2 Format decisions
We face certain problems of principle in setting out to assemble a multilingual
lexicon, or in fact, any kind of lexicon. Here are the most relevant ones for
this work; we discuss each of these problems in detail below with respect to our
collected lexicons.

1. What is the linguistic unit that constitutes the entries in the lexicon (on the
source side)? This is directly concerned with question of dealing with the
morphological richness of these languages and data scarcity both in corpora
and evaluation data.

2. In the case of bilingual dictionaries, what is the format of the target side
entries? That is, are they direct equivalents, or explanations including
phrases and/or sentences?

3. How do we deal with synonymy and polysemy/homonymy?

Source-side linguistic unit

Lexicons may have different entry types: e.g. fully-inflected lexemes/word forms,
lemmas, morphemes, morphs. In standard dictionaries for a general public, we
usually see lexemes in a citation form, such as the infinitive form for verbs, and
the singular nominative form for nouns. Of course, conventions regarding these
defaults may differ across languages as well as dictionaries for the same language.
This format is naturally intended for the ease of comprehension of lay language
learners.

For lexicons collected for a computational purpose, our design decisions are
mainly targeted towards dealing with morphological explosion, ease of program-
matic processing, as well as ensuring a balance between complexity (for a good
evaluation signal) and simplicity (to enable wider and more general usability) -
constrained, of course, by the available human-labour and raw resources.

Indic languages are generally morphologically rich, to varying degrees. Fur-
ther, given the nature of a dialect continuum, we expect that we will observe
many shared roots overlaid with language-specific inflection paradigms, some of
which can be rather extensive. This setup points to an ideal multilingual lexicon
design with (linguistically motivated) morphs/morphemes as entries, although
the resulting lexicon may look unnatural and be unhelpful for a language learner;
not only would such a design facilitate identification of cognates but it would also
allow the matching of inflection paradigms (i.e. finding equivalents for pluralising
morphs, case markers, and so on).
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This would, in fact, be the ideal design for a multilingual lexicon for a morpho-
logically rich set of languages from a dialect continuum; however, in practice, the
creation and usage of such a resource present several problems both for induction
and in the search for gold evaluation data.

The most glaring of these obstacles is that we do not have morphological
segmenters for these languages; we have, therefore, no way of going from an
(evaluation) lexicon of fully inflected word forms (such as we are most likely to
find in the linguistic wild), to a list of morphemes or morphs. This problem is
itself is not insurmountable; we have, of course, methods of unsupervised mor-
phological segmentation (such as Morfessor [Smit et al., 2014]) that seek to deal
with exactly this situation. However, our problem is exacerbated by the scarcity
of data - attempting to train such a morphological segmenter would require train
and evaluation data of its own. Unsupervised morphological segmenters rely on
word lists that contain adequate repeated occurrences of morphemes; this would
require more data than we are perhaps capable of collecting [Žabokrtský et al.,
2022]. Note that we cannot use our monolingual corpora for the purpose of train-
ing a segmenter which is then applied to the evaluation data; this necessarily
contaminates the evaluation data.

Further, we would not be able to claim anything about the quality of the
segmented evaluation data (since we have no segmented gold data to gauge the
quality of segmentation; such an effort would require human annotation). Such an
attempt would run the risk of damaging the “gold” signal under noise introduced
by segmentation in our current situation of unattested segmentation methods.

For the above reasons, we decided to work with fully inflected word forms
on both source and target sides..

Target-side entry type

Once again, we note that our decision with regard to what target-side entry type
we use may be different from that made by standard dictionaries. While the
purpose of those dictionaries is explaining a given word in a lucid manner, we
are concerned with finding equivalents, regardless of their abstruseness. That
is, a standard dictionary might prefer to explain a rare Maithili word in simple
Hindi; however, we would prefer to have the equally rare Hindi cognate on the
target side, or a single unit equivalent (in case of no cognacy). In general, we
prefer to maintain symmetry, i.e. use word forms across the two sides so that
correspondences between the languages is the clearest.

Synonymy and Polysemy

Ideally, we would like to allow multiple entries per language in an equivalent set
(to allow for synonymy); as well as multiple entries with different target mappings
for any source word if required (to allow for polysemy/homonymy in the source).
Of course, this increases the complexity of such a lexicon; we therefore seek a
balance regarding the number of possible entries that respects complexity as well
as the need for simplicity. In this work, we allow a one-to-many structure for
both induced and evaluation lexicons, capping the number of target side entries
to 5 for the induced lexicons. However, we do not allow different sets of target
mappings for a single source word (to record polysemy or homonymy).
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5.4 Potential approaches
This section contains outlines of possible approaches inspired from the above lit-
erature, both as starting points for experiments in this work, as well as directions
for future investigation. Here are some plausible directions:

• GIZA++ subword-level pairwise alignment

• NMT-like setup using a shared encoder and multiple decoders

• Evolutionary approach inspired from Hall and Klein [2010]

The first two approaches leverage shared phonology in the current data with-
out positing or using the idea of shared genealogy or inheritance.

Since the Devanagari script is orthographically shallow,2 as mentioned, we
use orthography as a stand-in for phonology in the following approaches. An
alternative would be automatic transcription into the IPA for the purpose of
the following approaches. However, we only have such tools for Hindi; while
these tools may work relatively well for related languages, we would like to avoid
potential noise propagation in the pipeline.

5.4.1 Subword-level pairwise alignment
We treat corresponding/cognate words as parallel data, and use them to learn
subword-level alignments in an iterative manner, with a similar approach as, for
example, GIZA++ Och and Ney [2003]. As a result, we can find the probability
that two words are “translations” i.e. cognates, using the distributions learnt for
alignment.

We can also try adapting this idea to multilingual alignments, with the goal
of simultaneously optimizing over all the alignment score over all language pairs
to find a cognate set over all languages. However, we will have to ensure we are
able to sidestep combinatorial explosion when looking for new aligned words in
this step. An alternative is to find a flatter loss for multiple languages rather
than summing pairwise losses.

The advantages of this approach include the fact that the end parameters
will give us insight into phonological correspondences between languages in the
continuum. It is also more or less controllable because we start with interpretable
priors (such as known correspondences if any.) Associated problems include that
it is highly dependant on a good seed. Further, there needs to be a good way
to find equivalent sets above a threshold during search, since trying all sets is
exponential in the number of languages: it is V N given that the vocabulary size
of a language is V , and therefore intractable.

5.4.2 NMT-like approach
As in above, the idea is to treat known lexical equivalents as parallel data; how-
ever, we now use and encoder-decoder setup to learn the translation parameters,
similar to Fourrier et al. [2021]. In specific:

2While this is true also for Hindi-Urdu and Marathi, it is especially true for other languages
which standardized spelling relatively recently (or not at all) and are written as they are spoken.
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• We embed the input character by character and pool to produce a word
embedding.

• The decoder takes this word embedding to produce a character by character
output.

• The decoder can also perform attention over input character embeddings

• The final output sequence can be used as is (allowing the capability to
produce unseen words and generalize over morphological endings), or re-
embedded and fed into a softmax which chooses a word in the known vo-
cabulary of the target language. That is, we can choose to have either a
sequence-to-sequence or classification task (or a ranking task).

We can experiment with which parameters should be shared over languages in
order to best benefit from high-resource pair lexicons and generalize over the con-
tinuum. We may also decide to always perform translation from Hindi (meaning
that we use a single encoder) to other languages.

The advantage of this approach is that it is probably capable of learning more
sophisticated alignments than a subword alignment tool. However, this comes as
usual with decreased interpretability, both in terms of the fact that we cannot
explicitly control the algorithm with prior knowledge as well the fact that post-
learning, we cannot look into the model and interpret what it has learnt about
the continuum. Finally, this approach requires much more data for supervision
and to learn something useful than the above; it is probably not amenable to
iterative learning in the manner mentioned above.

5.4.3 Evolutionary model-based
The approach explicitly uses the fact that these languages share common ancestry
that resulted in cognates, as well borrowing between proximal languages.

The setup is inspired from Hall and Klein [2010] but adapted to a wave model
of language continua. The main difference is that we will not consider a phyloge-
netic historical language tree, but rather a distribution of observed languages in
space. The main consequence is that the “root” language is also a contemporary
language (and therefore we have data for it), and that we will consider borrowings
across sister languages in a horizontal fashion as well as a vertical fashion. Our
constructed graph is certainly simplified in the sense that we consider only one
“center of innovation” from which words are borrowed or “inherited”; this does
not match the true complexity of a wave model system; however, it is not difficult
to extend this to a graph with multiple such centers.

We arrange the languages in a graph, with edges flowing outwards from the
“root” (or more accurately, the centre). We can set the number of intermediate
nodes (for unobserved languages) as a hyperparameter; in essence, the structure of
the graph is a critical structural prior. It can be inspired from known phylogenies,
as well as geographical proximity. Also note that observed languages should
always be leaves of the current tree (since we haven’t added horizontal edges
between sisters, our graph is still a tree.)

Each edge has an edit-distance based function that contains insert/delete
probabilities from character to character. These are vertical edges; corresponding
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closely with the setup in Hall and Klein [2010]. In this approach, we will probably
consider Hindi to be the centre, since it has the most data and is a good candidate
for an anchor language.

Forward pass: starting with a word at the root, traverse each edge by

• Sampling from a survive/die binary random variable (RV) along each edge.
If the word survives (i.e. gets passed on), we move forwards to the next
steps; else we end.

• Sample operations from the transformation matrix to produce a trans-
formed string.

• With the final wordform in the leaf, look for the closest word from it by
edit distance in the current vocabulary of the language.

Backward pass: Starting from a leaf node, we traverse upwards to the root,
updating the model parameters that were used for its “evolution”. At every node,

• construct the “reconstructed” posited word at that node based on its (k)
children. Do this by finding an “edit-distance” mean of the k strings.

• once we have the hypothesis words at all nodes, update the edit distance
transformation matrices for all edges based on the least-distance transfor-
mations from node to child along that edge. (i.e. we increase counts and
therefore probabilities of whatever operations were used)

We also want to incorporate horizontal transfer as posited by the wave model.
We do this by adding horizontal (directed) edges between (geographically) prox-
imal languages. Each such edge has a binary “transfer” RV for whether a word
in the first node is transferred (in its current form) to the second node. See Fig-
ure 5.2 for an example structure. In theory, we could allow horizontal transfer
between any two languages, no matter where they are placed in the tree; in our
example figure, we have restricted this to sister languages in the tree.

The forward pass and backward pass are then modified as follows:
Forward pass: if the transfer binary RV is activated, the whole word is

transferred to the sister node as is, and continues a path downwards (including
being transferred to other sisters). In this case, we may of course end up with
more than one outcome at any given leaf. We evaluate and perform a backward
pass for each of them.

Note that we need to remember at which nodes the transfer happened for any
specific outcome; this can be made computationally easier and less noise-prone
by restricting the “window length” of transfer.

Backward pass: If a transfer outcome is “successful” i.e. the outcome at the
leaf finds a match in the target language, then we backtrack upwards vertically as
usual until the we arrive at the transfer node (which we keep track of). We update
the transfer variable by increasing transfer probability (e.g. by incrementing “yes”
count and re-normalizing).

Advantages of this approach include its flexible transformation matrix and
again, its initial and post-facto interpretability. However, it has several downsides.
Firstly, this kind of model introduces many more parameters to be correctly
estimated (an edit-distance cost function per edge, transfer RVs, survival RVs)
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Figure 5.2: An example graph. The blue edges represent vertical i.e. tree edges,
whereas the orange edges allow transfer between sister nodes. Hindi is shown
as the centre here. The intermediate nodes i.e. Purvanchal, Western, etc. are
genealogically motivated posited nodes that help to exploit shared relationships
in certain more closely related dialects.

if we are to get accurate outputs. Once again, we require a good seed for this
to work; the structure of the graph also presumably will have a high impact on
the results. Finally, in an entirely unsupervised scenario such as ours, we have
no way to gauge success of a hypothesised evolutionary path for a source word
than crude measures such as edit distance at the leaves. This is perhaps the
largest weakness of the model, making it vulnerable to noise at the crucial point
of feedback.

5.4.4 Semantic spaces
Many of the align-and-cluster3 cognate identification algorithms assume that we
have semantically aligned word sets in the first place. One way to obtain such
word sets is to use bi/multilingual word embeddings for this purpose. Training
and evaluating these embeddings is a task in itself, since quality comes into
question with low-resource settings; however, it is possible that even a noisy
signal can be useful.

This idea captures an orthogonal aspect of cognacy as compared to previ-
ous approaches: shared meanings as opposed to shared phonologies with sound
change. We can think of ways to use orthography-based ideas as a check to
semantics-based alignments; or even semantics-based alignments as complement-
ing evolutionary trees in order to identify matches at the leaves.

3Here, “align” refers to aligning phones, and “cluster” refers to clustering words into equiv-
alent sets
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5.5 Approach: Baseline

5.5.1 NED/JW
For a baseline, we use orthographic distance as a stand-in for phonological dis-
tance as mentioned before. We build a collection of bilingual lexicons for each
language against an anchor - in our case, Hindi-Urdu. Source words are chosen
from Hindi, and the best cognate candidate is chosen by minimizing orthographic
distance. We try both normalized edit distance (NED) and Jaro-Winkler metric
(JW) for the distance/similarity metric.

Implementation details: We use hyperparameters as follows:

• Minimum Hindi-Urdu frequency: 5. This is in place because the Hindi-
Urdu corpus is indeed quite noisy as previously discussed; it is important
to maintain the quality of the source words.

• Minimum target frequency: according to logarithmic threshold described in
Section 4:

T (L) = log100(NL) − 1

• Number of targets: 5. This is the number of top candidates that we retrieve
per source words.

• Maximum lexicon length: 5000. This means that we pick the top K (here,
5000) frequent words in the source lexicon, maintaining minimum frequency
constraints. This number is not highly relevant to evaluation except for re-
call purposes i.e. we may cover more source words from the test lexicons
if we increase this number. However, we maintain this hyperparameter
through all our approaches to keep recall constant so that precision is com-
parable.

We maintain most of these when applicable, such as number of targets, mini-
mum source frequency, and maximum lexicon length as constant through all our
approaches to preserve comparability; in specific, the last two ensure that we
have identical recall for all approaches that have the same anchor language.
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Chapter 6

Approach: Expectation
Maximization over orthographic
score function

6.1 Introduction
A limiting theoretical deficiency in the previous approach is that it deals naively
with orthographic distance, treating substitutions of any two characters equally
(similarly for insertions and deletions). This is of course not what we want;
we may know, for example, that a vowel-consonant replacement is much more
unlikely than a vowel-vowel change. While one could attempt to solve this issue
with a carefully constructed custom cost matrix for calculating edit distance,

• It is implausible to “guess” optimal scores for each operation in a roughly
50x50 matrix.

• This matrix may differ over different language pairs

The first of these issues can be mitigated by sound classes, implemented in
LingPy [List, 2014], reducing the size of this matrix at the cost of detail. These
sounds classes consist of equivalence classes of phones to which words are first
rewritten. However, even with these, we will still have at least a 15x15 matrix. In
any case, this does not address the second issue i.e. we want to apply language-
pair-specific score functions.

In this approach, we try to optimize substitution probabilities iteratively while
simultaneously learning cognate pairs, given two lexicons, in an expectation-
maximization style algorithm. We call this approach EMT, EM for “Transform
probabilities”. A detailed explanation of the algorithm along with implementation
choices is given below.

6.2 Algorithm

6.2.1 Setup
Given two word lists (that may overlap) WLs and WLt, we wish to learn cognates
between them. Let the set of all characters of the source and target side be χs

42



and χt respectively. We use a scoring function S(ci, cj), that contains a “score”
for replacing any character ci ∈ χs with cj ∈ χt; we model insertion and deletion
as special cases of replacement, by introducing a null character in χs and χt

as being “replaced” or “replacing” another character respectively.1 For a given
source character, S is modelled as a transformation probability distribution over
χt. S is initialized by giving high probability (in practice, 0.5) to self-transforms
and distributing the remaining probability mass equally over other characters.

The score for any pair of characters is modelled as a transition probability
distribution; i.e. we must have

∑︂
i

S(c, ci) = 1

We aim to learn the optimal S for explaining the cognates in the data.
Given that C(a, b) is the number of times we have seen a → b, and T (a) is

the total number of times we have seen a on the source side, our score is the
frequentist probability:

S(ci, cj) = C(ci, cj)
T (ci)

(6.1)

We also maintain a list of found cognates, so that we only update model
parameters once per cognate pair. Note that a word may appear in many different
cognate pairs in this setup.

6.2.2 Initialization
A good initialization is of paramount importance for such an approach. There are
many possibilities for initializing C and T according to the following principles:

• The self-transform should have a high probability. That is, S should re-
flect that at least at initialization, it is “good” for a character to remain
unchanged. This is the core assumption we make when applying ortho-
graphic distance measures to identify cognates. Of course, if a language
pair overwhelmingly shows that a certain character nearly always changes
to something else in the target language, this can be learnt in the course of
training.

• “Similar” sounds should have a high transform probability within them-
selves. For example, consonants pronounced in the same place in the mouth
might be expected to have a higher chance of inter-conversion.

The second of these is rather tricky to incorporate without hand-waviness.
In the current run of this algorithm, we give the same initial probability to all
non-self-transform operations. In specific, we initialize T (a) = 2, ∀a ∈ χs

(i.e. we pretend we have already seen a on the source 2 times.) If a ∈ χt, we
set C(a, a) = 1. We then distribute the remaining probability mass (i.e. 0.5)
over χt a uniformly. We tried initializations with heavier T priors, e.g. with
T (a) = 100, and C(a, a) = 80, but the algorithm has trouble learning anything
new with these settings, since the prior for the self-transform is too strong.

1This also incidentally introduces a null-to-null operation, which does not have any meaning.
This cell will be unused in the algorithm, since we only consider transformations with one non-
null side.
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6.2.3 Expectation step
In the expectation step, we are trying to find new cognates given current model
parameters. Given a candidate source and target pair (s, t), we can find Ops(s, t),
which is the minimal list of the operations we need to perform to get from s to
t; therefore, each member in Ops is of the type (ci, cj). In addition to “insert”,
“delete”, and “replace” operations, we also use a “retain” operation, for characters
that remain the same in source or target. This is because we also want to estimate
S(a, a)∀a to get a good estimate of the distribution over target characters for a
given source character.

The score for the pair (s, t) (lower being better) is computed as

ζ(s, t) = −
∑︂

(a,b)∈Ops

log10(S(a, b)), (6.2)

where the lower the ζ the more probable a pair is a cognate. For a given s,
we can then always find the word that is the most probable cognate as t =
argminti ̸=s(ζ(s, ti)).

Note that in the training phase, we disallow s = t, to mitigate exploding
self-transform probabilities. This artificial restraint should perhaps be softened;
however, in the current run we still have this as a hard constraint.

Finally, we choose the best K of all cognate pairs i.e. those with the high-
est confidence, equivalent to the lowest ζ-values. These cognates are used for
updating the model parameters.

6.2.4 Maximisation
In this step, we update model parameters based on newly identified cognates in
the previous step. This is performed by increasing the counts of all observed edit
distance operations. That is, we set:

C(a, b) := C(a, b) + 1 ∀(a, b) ∈ Ops(s, t)

T (a) := T (a) + 1 ∀(a, b) ∈ Ops(s, t)
Remember that a or b here may be the null character in case of an insertion

or deletion.

6.2.5 Building a lexicon
We build a lexicon by selecting each source word and choosing the best target
candidate by minimizing ζ(s, t) as described above. The main difference from
training is that we now allow identical word matches as candidates.

6.2.6 Hyperparameters
These are the hyperparameters we use for the above algorithm:

• iterations = 500

• updates = 10 : This is the number of best scoring word pairs we choose per
iteration to update the model parameters.
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• batch size = 100

• init total = 2: This is the total number of counts we “distribute” over
transducer operations as a prior.

• init self count = 1: This is the count given to the self-transform; we
initially have 50% weightage given to the self-transform, and the remaining
probability mass is equally divided among the other operations.

• minimum source frequency = 5

• minimum target frequency: This is decided by the threshold given in
Equation 4.1 we have used for other experiments.

6.3 Pitfalls of this approach
There are a few problems with the above approach:

• Ideally, it requires a good seed that can set the EM process on the right
track. Note that the seed cannot be identical words - the algorithm does
not learn anything from identical word matches. Unfortunately, we do not
have a good seed, either in terms of a weight matrix or with pre-existing
word equivalents.

• It only deals with single character substitutions. We hope that longer equiv-
alences will be learnt over multiple iterations; however, this is certainly a
problem with the current implementation.

The latter problem can be dealt with some additional work in the following
manner: Suppose we want to work with bigrams in addition to unigrams. We
construct a new bigram alphabet, consisting of all possible bigrams as individual
characters (for example, we can map bigrams to integers). When updating our
weight matrix, we can now count two consecutive edit distance operations as a
bigram change, and use our bigram alphabet as a valid entry in the weight matrix.
However, in this work we only experimented with a simple unigram weight matrix.

Finally, the primary flaw of such an approach when it comes to cognate in-
duction is that it pays no heed to the meanings of words; this ignores an essential
characteristic of cognates i.e. they mean similar things in the two languages. Our
next approach attempts to take this into account.
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Chapter 7

Combining weak semantic and
phonological signals

7.1 Idea and Algorithm
We mentioned in the previous chapters that orthographic matching, even with
tailored and learnt substitution matrices for a given pair of languages, may be
inherently incomplete is because it ignores the semantics of candidate words. In
our next idea, we use bilingual subword embeddings to address this problem; that
is, we use the semantic space to narrow down possible candidates, and then use
orthographic matching in order to select the top K candidates for a given source
word a.

We think of this as a two-stage approach that relies on two separate met-
rics: firstly, the quality of semantic similarity judgments provided by a semantic
embedding space, and secondly, orthographic similarity judgments provided by
the distance/similarity metric we choose to use. We optimize these two stages
separately; they are described below.

7.2 Training embeddings: JOINT
Providing static embeddings for these language is in itself a valuable outcome.
The main obstacle to training word embeddings for these languages is the same
as before, i.e. data scarcity for most Band 3 languages makes it unlikely that
a trained space will be of high quality. While it seems that we can exploit the
shared genealogy of these languages to train bilingual embeddings, leveraging
the relatively abundant resources of Hindi-Urdu, it is still unclear as to whether
bilingual transfer of embeddings can be achieved with drastic data asymmetries.

There are several possibilities, across different dimensions, for building a se-
mantic space for our data. Here are some questions we must answer:

• Should we build work with bilingual embeddings or multilingual embed-
dings? On the one hand, it will be simpler to deal with evaluating bilingual
spaces, and applying them to bilingual lexicon induction for each of our
languages separately; on the other hand, the languages may benefit from
shared knowledge across all languages, given that they are all related.
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• If we are working with multilingual embeddings, should we work with sub-
sets of related languages? We see some definite groups within our 26 lan-
guages, e.g. the Purvanchal languages (Bhojpuri, Magahi, Maithili) seem
much more interconnected at a subword level than with other languages,
and so on. Perhaps it may be beneficial to use these subgroups to train dif-
ferent multilingual spaces to reduce noise from less related languages and
maximise gains from related languages.

• How can we deal with data asymmetry when working with Hindi-Urdu as
the anchor in a bilingual space?

• What sort of model should we work with, i.e. static/contextual embeddings,
word level/subword level embeddings, Word2vec, GloVe, or other models?

Of course, it would be difficult to explore the entire space of these possibili-
ties. For initial experiments, we train bilingual static embeddings for each target
language with Hindi-Urdu. We use fastText [Bojanowski et al., 2017] for this
purpose, hoping to leverage its usage of subword level information, given that
that we are dealing with data-scarce morphologically rich languages. We use 300
dimensions, although a lower number may result in better representations for
lower-resource languages, and we use a minimum corpus frequency threshold of
5.

7.2.1 Improving embeddings: UPSAMPLE
One of the problems with the above joint setup is the large disparity in the
amount of data used for each language in the joint approach. In specific, we are
applying the same minimum frequency threshold (that a word must have to be
embedded by the model) for both languages by mixing the data: this threshold
is more suited to the high resource language. Clearly, this is unfair to the target
language data.

In order to mitigate this problem, we oversample the target language data
to bring it to the same order of magnitude as the Hindi data; by artificially
multiplying the frequencies of target language words, we ensure that a fairer
threshold is applied to them. Note that of course this is not a real solution to
the data disparity; after all, the Hindi language words are seen by comparison in
many more different contexts and therefore have a better chance of being modelled
correctly. However, we hope to address the basic problem of frequency thresholds
by this trick, and hope that once the target language words are seen, we will
observe better results. In addition, we also reduce the number of dimensions of
the model to 150.

7.2.2 Visualizations
We use TSNE [Gisbrecht et al., 2015] to obtain the visualizations for joint
models of Hariyanvi, Bhojpuri, and Rajasthani, Magahi, and Korku (with Hindi-
Urdu). We present the Hariyanvi visualizations in Figures 7.1; see Appendix A
for visualizations of the Bhojpuri and Rajasthani spaces.

The main observations we can make for this type of model, common to all the
plots, is that the low-resource target language words seem to be clustered around
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each other, whereas Hindi-Urdu words and words belonging to both languages
are better situated according to their semantics. For example, in the Hariyanvi-
Hindi/Urdu space, we see some unrelated words very close together, such as the
bottom left cluster containing words for “business”, “king”, “pot”, “change”, “no”
- a seemingly themeless cluster of words.

We also see that despite using frequency thresholds for labelling the language
of the words, the “both” category is noisy and inflated, containing words that
may not belong to either of the languages despite appearing above the frequency
threshold.

The isolation of the target language words as observed above may have a
couple of reasons. It may be that the joint training we employ is simply not good
at capturing cross-lingual similarities. However, it seems that shared vocabulary
and subwords across the two languages should counteract this and push towards
a more integrated space. Another possible diagnosis is an effect pointed out by
Gong et al. [2018]; this paper shows that low-frequency words tend to cluster
together regardless of their semantics. Due to our data-assymetric situation with
low frequency LRL words and high frequency Hindi words, this scenario is directly
applicable to our training setup.

In response, we trained the upsample models as described above; we visu-
alize the same words per language for the same three languages i.e. Hariyanvi,
Bhojpuri, and Rajasthani. As before, see Figure 7.1 for the Hariyanvi plot, and
Appendix A for the Bhojpuri and Rajasthani plots. While it is not clear from the
visualization that the upsample models are less language-wise clustered than
the joint, the target language words seem at least much better distributed, and
we see more meaningful collocations (both monolingual in the target language,
and cross-lingual) that we did not see before. For example, we see:

• “pot” (Hariyanvi), “fill” (Hindi)

• “change” (Hariyanvi), “change” (Hindi)

• “imagination” (Hariyanvi), “mind” (Hindi)

• “vedas”, (Hariyanvi), “words” (Hindi), “text” (both)
However, it is difficult to say from such visualizations which space is better

embedded.

7.2.3 Tests and evaluation
Integration

We would like to evaluate the bilingual quality of our embedding spaces; however,
we do not of course have labelled test sets usually used for this purpose, such as
word similarity datasets containing annotated similarities for word pairs, or gold
bilingual lexicons. We use a rough heuristic cl integ as a measure of how well the
two language words are collocated. To calculate this measure, we simply sample
from a source language lexicon, find K nearest neighbours of each word in the
sample, and calculate the macro percentage of all such neighbours that belonged
to the other language (either exclusively or as a shared vocabulary item). We
calculate this both ways i.e. with either language as the source. See Table 7.1
for the results for the joint and upsample models.
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Figure 7.1: Visualization of Hariyanvi-Hindi bilingual space, joint (up) and
upsample (down)
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J 12 J 21 U 12 U 21
sindhi 0.53 0.23 0.31 0.33
rajasthani 0.78 0.33 0.62 0.40
punjabi 0.58 0.19 0.40 0.27
hariyanvi 0.75 0.30 0.66 0.36
khadi boli 0.99 0.18 0.76 0.13
sanskrit 0.33 0.28 0.12 0.26
bhil 0.92 0.24 0.53 0.34
koraku 0.59 0.13 0.34 0.10
baiga 0.97 0.21 0.73 0.31
nimaadi 0.87 0.16 0.47 0.21
malwi 0.88 0.14 0.45 0.13
marathi 0.95 0.20 0.32 0.15
bhadavari 1.00 0.12 0.81 0.30
himachali 1.00 0.07 0.48 0.07
garwali 0.64 0.25 0.25 0.39
kumaoni 0.97 0.09 0.74 0.05
kannauji 1.00 0.04 0.66 0.14
brajbhasha 1.00 0.32 0.74 0.38
bundeli 0.99 0.21 0.58 0.36
awadhi 0.69 0.34 0.45 0.43
chattisgarhi 0.86 0.29 0.51 0.36
nepali 0.37 0.39 0.31 0.48
pali 0.57 0.11 0.07 0.10
bhojpuri 0.91 0.32 0.74 0.41
bajjika 1.00 0.20 0.74 0.30
magahi 0.84 0.21 0.44 0.42
maithili 0.85 0.38 0.57 0.49
angika 0.63 0.44 0.50 0.40

Table 7.1: cl integ values reported as 0-1 measure for both sets of embedding
spaces, in both directions. The suffix “12” indicates that we consider the non-
Hindi language as source, and look for the fraction of nearby Hindi words, “21”:
vice versa.
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Figure 7.2: Prec@K for the bilingual fastText Nepali embeddings

Nepali Bilingual Lexicon evaluation

As mentioned before, we do in fact have WordNets from the IndoWordNet project
[Kakwani et al., 2020] for Nepali and Marathi, from which bilingual lexicons with
Hindi can be extracted. While the Marathi dataset in our current collection is
small and not very representative as previously discussed, we evaluate the Nepali-
Hindi bilingual space using the Nepali WordNet. We used the WordNet to extract
a Hindi-Nepali bilingual lexicon, and we calculated Prec@K, in the following way:

For each Hindi-Urdu word, we extract its K nearest Nepali neighbours. If
any of those are the gold target, we count a full point for that word. Finally, we
report the total such points as a percentage of the length of the gold bilingual
lexicon.

Note that recall is 100%, since any Hindi word can be embedded with the
fastText embedding space; Prec@K measures what percentage of words are ac-
curately mapped to a Nepali equivalent, when retrieving K nearest neighbours
for every query.

See the results for the joint Nepali model in Figure 7.2, showing how precision
varies with K.

Nepali is in the highest range of availability in our current dataset, so we do
not expect these results to be representative for other languages with less data.
We therefore also look at these results over artificially smaller cuts of the Nepali
dataset. See Table 7.2. We also report these numbers for the upsample Nepali
model in the same table.

7.2.4 Discussion
There are a couple of interesting things to note about the above results. We see
that cl integ shows high values from the LRL to Hindi/Urdu direction, but not
vice versa. Nepali happens to be an outlier in this case, which is unfortunate
since it is unlikely to be representative of the other languages, and it is the only
language we can evaluate with more detail.

We notice in Table 7.2 that the results for the WBST bilingual lexicon test
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# tokens cl integ 12 cl integ 21 bl 12 bl 21
Joint

5000 0.43 0.37 0.30 0.21
50000 0.33 0.38 0.29 0.21

100000 0.29 0.37 0.29 0.20
500000 0.33 0.44 0.29 0.20

upsampled
500000 0.29 0.42 0.33 0.15

Table 7.2: Results for K= 50 for Nepali data splits of different sizes. 12: Nepali as
source, 21: Hindi as source. cl integ test checks integration of the two languages,
in both directions, bl shows results on the bilingual lexicon test against the Nepali
WordNet. We also show results for cl integ and the bilingual lexicon test for the
upsample Nepali model

seem to be stable across different data splits, and if anything, decreasing with
more data. This is rather suspicious; however, a possible explanation is that the
positives accrue from frequent words anyway, present in all splits and possibly also
present in the Hindi-Urdu data; therefore, reducing the number of Nepali tokens
does not seem to affect this number. Note that this is not at all an indication that
the resulting embeddings are of the same quality across different splits, simply
that this metric is not able to capture possible underlying damage.

The main observations regarding the upsample models are:

• The visualizations show the target language words to be better distributed

• The cl integ values seem more uniform for both directions, and higher for
the Hindi-< target > direction (which is the relevant one for our approach)

• The Nepali WBST shows better recall (for all data) for the upsample
model in one direction, but worse in the other direction.

These are good indications that upsampling did indeed improve the quality
of the bilingual embedding space.

7.3 SEM JW: Semantic similarity with Jaro-Winkler
In this approach, we retrieve K nearest neighbours of each source word. These
candidates are scored by an interpolation of orthographic distance and semantic
similarity. In specific, we use JW for the former, and cosine similarity for the
latter. We use K = 50; we want to have a large dragnet in order to increase
the probability of “catching” the accurate map. Note that all words that are
not within the K nearest neighbours are discarded from consideration no matter
their orthographic similarity score. The idea is to mitigate the effect of chance
orthographic similarities.

For all target candidates (i.e. the nearest neighbours), we minimize:

D(a, b) = 1 − scos(a, b) · J(a, b), (7.1)
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where scos(a, b) captures the cosine similarity between the respective vectors
scaled to [0, 1], and J(a, b) is the JW similarity.

7.4 SEM EMT: Semantic similarity with EMT
Finally, we seek to combine the benefits of iteratively learning an edit-distance
cost function with those of using semantic spaces. This approach is almost iden-
tical to that in Chapter 6, except for the fact that only K nearest neighbours of
a source word in the semantic space are used as potential cognate candidates for
that source word, both during training and inference; these candidates are then
scored as usual using the learnt transform probabilities. We use the upsample set
of embeddings spaces, and K = 50 as before. All EMT-related hyperparameters
are the same as mentioned in Chapter 6.
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Chapter 8

Collecting Evaluation Data

8.1 Introduction
As mentioned before, our 16 Band 3 languages are zero-resource; this implies
not only that we have no previous collection of monolingual data available for
the NLP community, but also that we lack any evaluation resources for cognate
induction (or any other task). We accordingly seek to collect evaluation data
ourselves in the form of gold parallel lexicons for as many of these languages as
possible.

Like corpus collection, this is a challenging task due to the paucity of online
material and previous research in Band 3 languages. That is to say, such a “gold”
lexicon must be created from human-annotated material; however, there are no
pre-existing curation of lexical equivalents across our 25 languages. In this work,
we hope to adapt information found on the web to our purposes, preserving its
“gold” quality as best as possible. The data thus collected will be used solely for
evaluation.

8.2 Existing resources

8.2.1 Looking in the wild
For some Band 1 languages (specifically, Hindi, Nepali, and Marathi), we have
WordNets from the IndoWordNet project [Sinha et al., 2006, Debasri et al., 2002],
from which we can extract equivalents across languages. We are not concerned,
therefore, with searching for lexical resources for Band 1 languages. For some
Band 2 languages (Bhojpuri, Magahi, and Maithili), WordNets are under way
[Mundotiya et al., 2021] but as yet unavailable.

For Band 3, as discussed, we do not have any pre-existing bilingual or multi-
lingual lexical resources in a convenient format. We therefore look for bilingual
lexicons in the “wild”; that is, blogs, websites, scanned dictionaries, etc. We
list all such raw material that we found that could be potentially useful for this
purpose in Table 8.1.

The names of these resources are listed separately in Table 8.2.
We exclude a few other resources we found due to too small a length (< 30),

or too unstructured a format, as unlikely to be of much help to computational
linguists.
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Page Languages Anchor
language

Content notes Format Approx.
length

1 Rajasthanir Eng.r Explanations
in English

Simple list >500

2 Rajasthanid Hind, Engr Hin equiv-
alents, Eng
explanation

Webpages
by initial
letter

> 500

3 Angikad Hind, Engr Explanations Each word
on diff.
page,
disabled
copying

102

4 Bundelid Hind Equivalents Simple
listing,
disabled
copying

Few 100s

5 Haryanvid Hind Equivalents Simple list < 100
6 Chattisgarhid Hind Explanations Webpage

per word,
disabled
copying

< 100

7 Chattisgarhid Hind Equivalents List, dis-
abled
copying

Few 100s

8 Kumaonid r Hind, Engr Equivalents,
categorized by
themes

Simple list < 100

9 Brajbhashad Hind Equivalents/
explanations

Mixture of
paragraphs
and lists,
rather dis-
organized

Few 100s

10 Bhojpurid Hind Mostly equiv-
alents, also
Hindi syn-
onyms

Simple list 400

11 Hin.r, Mar.i,
Nep.i,
“Bihari”i,
Mag.d,i,
Marwarii

- Cognates Swadesh
list

207

12 {Bhoj., Gar.,
Hin., Mar.,
Nep., Mag.,
Mai., Sin.}d,i

Engr Short phrase
translations

Simple list 45 phrases
(on avg.)

Table 8.1: Raw resources found for different languages. The superscripts d, r

and i indicate that the script used for the language is Devanagari, Roman or IPA
respectively. The length given is an approximation because some of these formats
make it difficult to get the exact number of entries.
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Page Name
1 Rajasthani Language Dictionary —

Rangrasiya
2 Glossary of Rajasthani Language - Jat-

land Wiki
3 Angika Shabdkosh
4 Bundeli Shabdkosh
5 (Blog post) Learn Harayanvi Language

Through Hindi Language
6 Chattisgarhi-Hindi online dictionary
7 (Post) HS MiXX Entertainment
8 Kumaoni Boli
9 (Blog post) Learn Brajbhasha Vocabu-

lary
10 (Blog post) Bhojpuri dictionary
11 (Blog post) Swadesh Word List of Indo-

European languages
12 Omniglot

Table 8.2: Resource websites

8.2.2 Overview of existing resources
All listed resources together cover 4 Band 2 languages and 7 Band 3 languages:
this is counting “Bihari” as the same as Bhojpuri, and Rajasthani the same as
Marwari. (Note that these resources may cover more languages; we have only
listed the ones relevant to this project in the “Languages” column.) However,
these resources have widely different domains, content types, and formats.

Four of the listed websites disable copying and sometimes webpage inspection,
discouraging crawling or re-using their data, and rendering 3 Band 3 languages
once more resource-less. Content-wise, we see that many resources have expla-
nations on the target side (Hindi or English), rather than equivalents. For this
project, that means that the resource is not really ready-to-use as a bilingual
lexicon, but will require further work in terms of extracting equivalents from the
explanations for the target side. Resource 1 for Rajasthani also requires translit-
eration for the source side before it is useful. Finally, we note that even the
resources listed as containing equivalents in Table 8.1 usually contain a mixture
of equivalents, explanations, and examples. That is, each resource would require
considerable processing, possibly manual, to yield a usable set of consistently
formatted bilingual lexicons.

As we discussed, for the purposes of this project, we would like to have not
only bilingual lexicons per language with an anchor (preferably Hindi), but also
considerable intersections between the lexicons to allow the potential of testing
multilingual interactions beyond Hindi-lang tasks. This too, unfortunately, is
likely to be a problem when gathering resources from different sources with rather
small lists.

We decided not to attempt gathering lexicons from these different resources
for individual languages with the intention of putting them together, due to
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the above problems, including potential extensive manual efforts to the above
individual resources usable, probable multilingual mismatch, and low coverage of
Band 3 languages. Instead, we look for a source that is more multilingual in its
scope.

11 is naturally exactly what we would have liked to find, although, again, it
may require transliteration from IPA from most languages to be useful (and for
Hindi, from a “casual” Roman script). The main problem, however, is that it
deals with 3 Band 1 languages (for which we already have lexicons), 2 Band 2
languages, and only 1 Band 3 language, making it a low-coverage resource for our
situation.

12 is another interesting multilingual resource, highly similar to the resource
that we finally decided to use but with lower coverage.

Note that a few of these resources are valuable on their own, e.g. 10 for
Bhojpuri is extensive, simply formatted, and relatively neat and consistent; it
will not require too much manual work to convert it into a usable resource for
linguists. Similarly, 1 and 2 in Rajasthani provide the raw material for good
bilingual lexicons, although they will first require a good quality transliteration
into Devanagari for the Rajasthani side.

8.3 “Languages Home”: Website

8.3.1 Introduction
https://www.languageshome.com is an online language learning website, with
translations of artificially simple sentences into 76 Indian languages (including
Dravidian and other languages), and some foreign languages such as French and
Italian. Of these, 21 languages are of our interest, including Hindi, Marathi,
Sindhi and Nepali, all 5 Band 2 languages, and 12 Band 3 languages. This
resource, therefore, has considerable coverage, more than what we would be able
to achieve by putting together resources for individual Band 3 languages. Its
structure is similar to that of 12 ; however, it is better both as regards coverage
of languages, as well the fact that it has almost double the number of parallel
sentences per language. These are the reasons that we chose to work with this
resource over any of the other listed resources in Table 8.1, individually or in
combination.

8.3.2 Format and Script
The website is arranged in a straightforward manner: each language has a sepa-
rate webpage, that lists sentences in the anchor language followed by a translation
in the target language. Most of our languages of interest are only anchored against
a set of English sentences.

The script used is entirely Roman (for our webpages of interest): the En-
glish sentences uses standard Roman spelling, and the target Indic languages
are transcribed in “casual” Roman transliteration. That is, words in the target
language are transliterated “by ear”, without standardization across languages
or even within the same language, and using no recognizable scheme (such as
ITrans or WX notation). The Devanagari spelling or the pronunciation of the

57

https://www.languageshome.com


word cannot be recovered from this transliteration unambiguously without first
guessing the intended Indic word. For example, both the long and short vowels
/i:/ and /i/ are sometimes transcribed as “i”, whereas they are distinguished in
Devanagari. This is also true for other vowels pairs differing in length. Similarly,
the transcribed “a” might refer to the schwa (inherent to a consonantal character
in Devanagari) or the vowel /a/. The transcribed “n” may refer to nasalization
of a vowel or the alveolar nasal consonant /n/ or its retroflex counter /ï/, all of
which are distinguished in Devanagari.

8.3.3 Content
The sentences and phrases are artificially short, intended to be illustrative to
language learners. For example, “He ate an apple”, “He will come”, “He will go”.
There are also single word translations for pronouns and common verbs such as
“go”, “run”, and others. However, the website is by no means exhaustive over
possible verbal or other inflections.

In total, there are about 80-90 such parallel phrases per language. They are
mostly identical over different languages, with some languages missing a few, or
containing minor variations.

Besides script-related noise, the sentences contain lexical noise, i.e. departing
from a strict translation. This may be in the form of alternate translations sep-
arated by a “/”, inflectional forms explained in parentheses (such as mentioning
gender inflection for verbs), or other such information. Here are two example
pairs verbatim from the English-Hindi set:

English: Open
Hindi: Kholo/ Kholiye (respect)/ Kholna

English: Opened
Hindi: Khola (he)/ Kholee (she)/ Khole (plural)

“Open” is provided with three translations: the imperative “Kholo”, the im-
perative honorific “Kholiye”, and the infinitive “Kholna” (to open). In the next
example, the inflectional endings of the participle are explained by the parenthet-
ical “he” and “she” for gender, and “plural” as applied to a plural object.

Such markings are inconsistently provided over languages and within a single
language. We also note that male pronouns and inflections are considerably over-
represented as compared to female ones. Finally, we see that as with any pair
of parallel sentences, all equivalents to a given word in the source are (naturally)
not represented in the target and vice-versa. That is, the authors have chosen
a single translation, and - unmotivated by linguistic considerations - this choice
may not be the cognate of the source word even if a cognate does exist in the
target language. The chosen target lexical equivalent may even be code-switched
English instead of a word in the Indic language, if code-switching is common in
that context. For example, we see in :

English: Will you give me your pen?
Hindi: Kya tum mujhe apna pen doge?
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Figure 8.1: Pipeline processing raw evaluation data into one-to-many lexicons.
This is a simple example with word-for-word equivalents in Hindi and Chattis-
garhi.

that the word “pen” is code-switched in Hindi, rather than using the Hindi
word “kalam”. However, in other languages such as Bagheli, we see the word
“kalam” used instead.1 Therefore, although the word “kalam” exists in both
languages, this relationship is obscured because the translator chose to use a
different equivalent instead (in this case, code-switched, but not necessarily so in
other sentences).

8.4 Processing pipeline
The data provided on the “Languages Home” website clearly holds potential for
the purpose of extracting “gold” Hindi-parallel lexicons for 20 languages. How-
ever, there are two primary problems to be solved to that end:

• (Content) The most obvious problem is that it consists of parallel sentences,
not bilingual lexicons; we must extract the latter from the former.

• (Script) The data (both the Indic source and English target) are in the
Roman script; further, in a non-standard “casual” transliteration for Indic
languages.

Of course, we also have the general problems of noise, as described above, as
well as lossiness arising from the nature of the casual translations as opposed to
the ideal comprehensiveness and accuracy of a bilingual lexicon.

We pass the above data (consisting of 21 individual English-parallel files, one
per language), through the pipeline as shown in Figure 8.1.

Each step of the process is explained below:
1By itself, this difference is not a bad thing given that the purpose of this website is language

learning. In Hindi, the given parallel sentence is absolutely natural-sounding - people do often
code-switch the word “pen”. Code-switching with English may be less common in less urban
languages such as Bagheli; thus accounting for the use of the native word “kalam”.
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1. Getting the data : The data per language was manually downloaded from
the website. This data is simply a list of sentences, alternating between
source and target.

2. Formatting and Cleaning : The above data was formatted into the fol-
lowing structure : (Indic) source < sep > (English) target, the required
input format of further steps. The data also underwent some cleaning, i.e.
removal of some words manually identified as not part of the translation
(such as “(respect)”, “(he)”/“(she)” and so on. Other standard preprocess-
ing was also applied, such as removal of punctuation and lower-casing.

3. Transliteration : As mentioned, the given data are in the Roman script.
For usage in our project, as well as general usage, we would of course prefer
the evaluation data to be in the Devanagari script. Since we do not have the
resources and human resources to perform a manual transliteration for all
21 languages, we instead use automated transliteration given by the indic-
trans library2 [Bhat et al., 2015]. We also attempted to use the IndicNLP
Library [Kunchukuttan, 2020]; however, the former worked much better
for the Roman spellings we are dealing with; the latter expects certain
transliteration schemes and performs poorly on our data.

4. Parallelizing with Hindi : In this step, we re-parallelize all languages
with Hindi instead of English; this is simple given that we do have the
Hindi equivalents of the English sentences and, as mentioned, the English
sentences remain more-or-less identical over all languages. That is, we ob-
tain the structure (Hindi) source < sep > (Indic) target. The reason for
this step is because we expect that it will be easier and more accurate to
word align Indic languages with Hindi sentences as compared to English
sentences; Indic languages may share syntactic properties with Hindi, in-
cluding particles, function words, inflection types, etc. that English does
not have, and that will help the alignment algorithm to find equivalents
not only for content words such as nouns but also inflected forms, syntactic
function words, etc. Although the majority of the English sentences are
identical across languages, we note data loss of a few sentences per lan-
guage in this step for mismatch of the English targets in the Hindi set as
compared to another language set.

5. Aligning against Hindi : We use the fast align algorithm [Dyer et al.,
2013] to extract word-alignments over the given Hindi-parallel data. We do
this with Hindi as source as well as target; the resulting lexicons may have
different use-cases. In this work, we mainly use the the lexicons with Hindi
as source as the other 20 languages as targets, to allow easy extrapolation
of equivalents for any other language pair.

6. Aligning against English : We do the same for the English-parallel data,
with English as target. However, the quality of these alignments is not so
good, as expected, and we do not use these lexicons in this work.

2https://github.com/libindic/indic-trans
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Figure 8.2: Extract from the Hindi-Awadhi extracted lexicon. The counts shown
are the number of times the target key was aligned with the source over all parallel
sentences. This number can be useful to filter out noisy alignments.

7. Reading alignments : Finally, it remains to read the resulting alignments
and construct a bilingual lexicon. We structure the lexicon as a JSON,
shown in Figure 8.2, allowing a source key with many possible target values.
Each target value is marked with the number of times it was aligned with
the source key in question.

The above pipeline can be run fully automatically, given the path to the raw
data and the path to the cloned fast align directory. An additional step
we attempted to incorporate was in the transliteration stage; hoping to correct
wrong transliterations, we performed the following for each transliterated word:

• Check whether transliterated word exists in collected corpus

• If not, choose the closest word from the corpus by a variant of the normalized
edit distance measure.

We tried a number of variants for this purpose, with phonological motivations.
For example, a variant only allowing vowel changes, a variant disallowing changes
near the beginning of the word, and even a variant only allowing changes to
the (Devanagari) character representing /a/, which is often erroneously added
in transliterations, because of the overloading of the Roman character “a” with
both /a/ and /@/, differently represented in Devanagari. However, even in the
most restrictive variants, we find that the results of this process are too noisy and
error-prone; we decided to remove it from the pipeline.

The above pipeline is available here: https://github.com/niyatibafna/n
orth-indian-dialect-modelling/tree/main/evaluation languages home.
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Language Total in
corpus

Unique
in

corpus

Total in
test

Unique
in test

Common Frac
covered

in
corpus1

Frac
covered
in test2

brajbhasha 156986 30194 613 166 97 0.13 0.65
angika 1253545 91757 691 180 111 0.10 0.60
maithili 218491 41434 627 162 89 0.09 0.54
magahi 79405 16942 667 174 82 0.11 0.65
hindi-urdu 7100394 197355 673 172 165 0.25 0.98
awadhi 490877 53103 603 154 116 0.05 0.82
rajasthani 187708 34360 691 174 131 0.12 0.83
hariyanvi 232526 27431 611 159 125 0.14 0.85
bhil 27246 5557 649 179 69 0.12 0.49
chattisgarhi 83073 14463 591 142 98 0.16 0.75
nepali 688865 104687 517 146 79 0.05 0.61
bajjika 7412 2788 663 151 55 0.13 0.53
koraku 15508 2278 535 135 18 0.04 0.22
malwi 9626 2883 669 169 51 0.12 0.45
sindhi 52659 11850 597 165 60 0.09 0.50
bhojpuri 196513 34051 679 163 120 0.17 0.82
garwali 90234 22655 621 176 91 0.07 0.63
marathi 3109 1685 495 142 31 0.05 0.36
kumaoni 1013 441 557 186 17 0.10 0.15
bundeli 26902 7991 623 167 89 0.12 0.62

Table 8.3: Evaluation data statistics post-transliteration. 1 This reports the
fraction of the corpus (token-wise) that is contained in the test, vice-versa for 2.
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8.5 Collected data

8.5.1 General statistics
The resulting bilingual lexicons may contain a fair amount of noise, mainly due
to the transliteration and word alignment steps. Most importantly, many of the
word correspondences, even if perfectly aligned and transliterated, are not in
fact cognates or borrowings, but simply other lexical equivalents. Although we
would like to ideally perform a post-editing of these lexicons, with native speakers
correcting spellings as well as deleting false word equivalents and adding correct
ones, this is infeasible at the moment.

We would therefore like to gauge the quality of the evaluation lexicons across
two dimensions i.e. firstly, the quality of the transliteration into Devanagari, and
secondly, the word-alignments themselves.

We perform a manual evaluation of the transliteration for two languages:
Hindi and Marathi, and evaluation of the Hindi-paired word alignments for a
single language i.e. Hindi-Marathi.3

We report general statistics of the English-parallel transliterated data in Ta-
ble 8.3, and the equivalent table for the Hindi-parallel data in Table 8.4. The
former is only provided here to observe data loss due to imperfect parallelliza-
tion with Hindi because of variations in the English sentences provided over all
languages; for all further use, we refer to Table 8.4.

8.5.2 Quality testing on Marathi
As mentioned before, we conduct a manual evaluation of the Hindi/Urdu-Marathi
bilingual lexicon. The transliteration was evaluated by simply calculating the per-
centage of Marathi words in the lexicon were (entirely) accurately transliterated.
This percentage is low - only 54.6%, or 71 out of a total of 130 words, were
correctly transliterated.

The word alignments were evaluated in the Hindi (source), Marathi (target)
direction. A single alignment was marked as correct if any one of the listed targets
was accurate. A word in the collected Marathi bilingual lexicon has on average
1.2 targets, and a maximum of 3. We found that 100 of 136, or 73.5% of word-
alignments by this measure are correct. Note that we do not consider whether
the targets are accurately transliterated while evaluating the word alignments.

8.6 Conclusion
Collecting data for evaluation is difficult given the extreme scarcity of basic re-
sources for Band 3 languages. The bilingual lexicons that we have built may be
useful as a first step, if human resources for post-editing the transliterations and
alignments become available.

For the purpose of this project, we will continue to use these lexicons despite
clear problems of noise as evident in the manual examination; however, we will
take the lexicons as a relative rather than absolute indicator of performance,
supplemented with qualitative analysis.

3This is the only language that I speak and am qualified to evaluate, besides Hindi.
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Language Total in
corpus

Unique
in

corpus

Total in
test

Unique
in test

Common
in

corpus
and test

Frac
covered

in
corpus1

Frac
covered
in test2

brajbhasha 156986 30194 299 161 93 0.12 0.65
angika 1253545 91757 310 165 102 0.09 0.60
maithili 218491 41434 273 147 81 0.09 0.54
magahi 79405 16942 326 172 81 0.11 0.64
hindi-urdu 7100394 197355 336 171 165 0.25 0.98
awadhi 490877 53103 281 145 109 0.05 0.82
rajasthani 187708 34360 312 161 124 0.11 0.84
hariyanvi 232526 27431 298 156 123 0.13 0.86
bhil 27246 5557 319 177 68 0.12 0.48
chattisgarhi 83073 14463 267 134 95 0.16 0.76
nepali 688865 104687 203 118 65 0.04 0.62
bajjika 7412 2788 317 149 55 0.13 0.53
koraku 15508 2278 262 132 17 0.04 0.23
malwi 9626 2883 325 163 51 0.12 0.46
sindhi 52659 11850 250 141 55 0.09 0.51
bhojpuri 196513 34051 303 146 110 0.16 0.83
garwali 90234 22655 275 161 86 0.07 0.64
marathi 3109 1685 230 130 29 0.05 0.37
kumaoni 1013 441 250 171 16 0.10 0.16
bundeli 26902 7991 272 147 82 0.12 0.63

Table 8.4: Evaluation data statistics post-transliteration, after aligning with
Hindi. 1 This reports the fraction of the corpus (token-wise) that is contained in
the test, vice-versa for 2.
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Chapter 9

Results and discussion

9.1 Quantitative results
Our main results are presented in Table 9.1. We report Prec@K over the bilin-
gual lexicons presented in Chapter 8. A precision point is calculated per source
word such that any of the top K predicted targets exist in the evaluation tar-
get set. (Specifically, we report Prec@5.) Note that recall is the same for all
approaches. This is because we used the same set of source Hindi words for the
final lexicon for all approaches; therefore, recall (defined as the coverage of the
predicted lexicon over the evaluation lexicon) is the same regardless of approach.
This allows us to compare precision directly.

There is no clear quantitative winner; SEM JW performs slightly better than
the other approaches on average.

We note that general performance seems low over all approaches. Cognate
identification methods usually work at a much higher accuracy [Beinborn et al.,
2013, Fourrier et al., 2021] in the range of 70-90%. The low accuracies that we
record are due to a number of factors: much lower resource range, lack of aligned
word lists, lemmatizers, or supervision, as well as noise in the evaluation data
itself.

9.2 Qualitative analysis: general overview
We take a high level look at the patterns in the outputs of each of the different
approaches.

9.2.1 NED/JW
The NED/JW approaches are the most transparent. They are often able to
capture the correct answer, especially for longer words, because the closest can-
didate in edit distance is likely to be the right answer, or if even if not exactly
correct, somewhere in the ballpark semantically and morphologically. However,
the outputs of these approaches are of course uninformed by semantics, and we
often get outputs (perhaps the second or third prediction) that are entirely off, as
can be expected from theoretically unmotivated character substitutions. The JW
metric has an edge over NED when it comes to quality of outputs (not always
reflected in the quantitative measure).
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Total Found NED JW EMT SEM JW SEM EMT
angika 141.0 116.0 21.6 20.7 21.6 22.4 21.6
awadhi 148.0 123.0 28.5 26.8 22.0 26.0 25.2
bajjika 149.0 123.0 13.8 15.4 13.8 14.6 11.4
bhil 156.0 128.0 19.5 21.1 17.2 18.8 18.0
bhojpuri 139.0 115.0 31.3 28.7 32.2 30.4 29.6
brajbhasha 155.0 127.0 33.9 34.6 32.3 33.9 32.3
bundeli 139.0 117.0 26.5 25.6 25.6 30.8 26.5
chattisgarhi 136.0 115.0 25.2 26.1 24.3 28.7 26.1
garwali 143.0 120.0 15.8 15.8 15.0 15.8 14.2
hariyanvi 153.0 126.0 38.1 41.3 37.3 43.7 42.9
koraku 140.0 116.0 1.7 0.9 1.7 1.7 0.9
kumaoni 138.0 118.0 5.1 4.2 5.1 5.1 4.2
magahi 159.0 129.0 17.8 20.9 18.6 20.9 17.1
maithili 140.0 117.0 17.9 17.1 16.2 18.8 20.5
malwi 153.0 125.0 24.8 22.4 20.0 20.0 15.2
marathi 138.0 116.0 7.8 5.2 4.3 1.7 3.4
nepali 105.0 95.0 12.6 12.6 9.5 9.5 7.4
rajasthani 144.0 120.0 30.8 29.2 27.5 31.7 30.0
sindhi 134.0 114.0 10.5 13.2 7.9 10.5 9.6
Avg. 142.6 118.9 20.1 20.2 18.5 20.3 18.7

Table 9.1: Prec@5 for all languages, for cognate induction.

9.2.2 EMT
The EMT approach was intended to remedy the above problem, by weighting
the edit distance matrix differentially based on learnt weights. While this seems
like the logical next step, the approach itself does a little worse than the above
approaches. We attribute this to a bad seed; this approach basically depends on
the seed obtained from simple NED to get started, and if it meanders down a
mistaken path, that error tends to magnify itself due to the iterative nature of
the algorithm. Further, the approach needs much more attention to priors; what
should those initial transform probabilities really be? How much probability mass
should we give the self-transform?

Taking a look into the learnt probabilities, we see that it learns sometimes
expected relationships e.g. the relationship between /i/ and /i:/, shifts between
other vowels, or the fact that some rarely used characters are likely to be deleted.
However, while this is a step in the right direction, the approach is not able
to convert this potential into good final outputs; further, magnified errors often
result in even worse final outputs than simple NED/JW.

9.2.3 SEM *
The SEM * approaches are intended to address the fundamental inadequacy in
the above approaches: the fact that they do not exploit the shared semantics of
cognates. SEM JW is accordingly better at producing outputs that are seman-
tically related, besides the required cognates. Top predictions tend to be similar
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to those of NED/JW, but SEM JW produces a better collection of outputs
from the perspective of bilingual lexicons, especially since it is less biased against
a higher number of substitutions. That is to say, if we have two solutions, each
containing K predicted targets, that both lack the accurate target prediction,
we prefer to have a cluster of semantically related target words (as produced by
SEM JW) in a bilingual lexicon rather than words with similar spellings (as
produced by NED/JW); similarly, even if both solutions do include a correct
target, we would like for the other predictions to be semantically rather than or-
thographically related to the source word. However, for many words, the method
produces rather Hindi-like outputs, probably as a result of the persisting problem
of language-wise clustering in the spaces.1 SEM EMT still suffers from the same
problems as before; we see therefore that a stronger orthographic distance metric
such as JW is better able to spot the cognate if any from semantically related
words.

9.3 Qualitative analysis: different aspects
We analyse the performance of the baselines, EMT, and the SEM * approaches
based on how well they capture the different facets of lexical equivalents with a
shared origin (i.e. cognates with a shared genealogy or borrowings with a shared
origin lexeme).

9.3.1 Variant inflectional endings
Learning the different inflectional endings of word classes is a crucial task when
it comes to cognate identification across dialectical variations/closely related lan-
guages. That is, we want the approach to learn the correspondences between
inflections in the two dialects.

This task is not performed well by any of the current approaches, although it
is specifically what *EMT is targeted at. However, *EMT faces the problems
discussed above.

In terms of being able to produce the right answer, we see an intuitive split
between common and rare words when it comes to other approaches. For common
words, SEM JW is likely to perform better than the other approaches because
the word is likely to be well embedded; the right inflection is likely to be near by in
the semantic space, and subsequently selected by the JW metric. In these cases,
especially for shorter words, NED/JW are likely to be derailed by irrelevant
words. We see an example of this situation in with an extremely common verb
“said”, only three characters long. See Figure 9.4 for the outputs of the various
approaches. However, for rare words that are badly embedded, the SEM * may
have irrelevant nearest neighbours, producing incorrect output.

9.3.2 Correct semantics
This refers to getting the general semantics of predictions right, even if the pre-
dicted words are not cognates. Naturally, this is performed best by the SEM *

1This problem may be mitigated with a higher target frequency threshold.
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Figure 9.1: Hindi source word: /ya:t”ra:/ (journey). NED gives /ma:t”ra:/ (mea-
sure) as second guess and /y@nt”r@ïa:/ (strategy) as fifth prediction (unrelated
but similar in spelling). JW also predicts /ma:t”ra:/ but as its fifth option. The
predictions of the SEM * approaches are various inflectal/derivational forms of
/ya:t”ra:/ including “travellers”. The gold in this case is a non-cognate of the
source word in Hindi; this is one of the cases where a cognate does exist but is
not represented by the evaluation data.

approaches, although as discussed before, the NED/JW approaches do better
than expected. For examples, see Figures 9.2, 9.1, and 9.3.

9.3.3 Sound changes
Sound change is one of the fundamental phenomenons of cognacy, and can be
understand in the case of borrowing in the sense of changed pronunciations. Un-
fortunately, we do not have the theoretical data of attested sound changes across
these dialects in order to be best able to check which approach performs best in
this respect.

In general, we face issues of noisy evaluation data as well as scarce theoretical
data, either for good seeds and for evaluation. The SEM JW produces overall
the most respectable outputs as such, although this is more true for common
words.
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Figure 9.2: Source word: /r@sta:/ (road/way). While no approach produces the
gold prediction, SEM * is able to produce semantically relevant words, including
a synonym /rahõ/ (roads) whereas NED/JW produce orthographically similar
but unrelated words such as /rate/ (nights) and /riste/ (relationships).

Figure 9.3: Hindi source word: /mi:tha:/ (sweet). NED produces last two
predictions /mi:ra/ and /mi:na/ (both names of women, unrelated to word).
SEM EMT produces more semantically coherent (if not cognate) predictions,
including /mi:thr@s/ (sweet juice) and /kh@tta:/ (sour).
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Figure 9.4: Hindi source word: /k@ha:/ (said). SEM JW approach performs the
best, resulting in Bhojpuri equivalents (except the third prediction) and inflec-
tions. SEM EMT also results in semantically correct outputs (for all but the
fourth prediction). The NED/JW approaches produce orthographically close
words that are semantically unrelated, e.g. /k@hã:/ (where).
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Conclusion and Future Work

Many North Indian (Indic) languages are entirely lacking resources as well as
attention in NLP: in this work, we consider the “Hindi Belt” dialect continuum
considered to contain several dozens of languages and dialects. The languages
are sociopolitically disadvantaged, many of them without official status or recog-
nition; however, their native speaker count runs up to tens of millions.

Research in these languages has the potential to provide support to a large
speaker base, as well as provide insight into linguistic aspects dialect continua
and computational insights into building tools for closely related languages.

In this work, we work with 26 languages of this Indic dialect continuum asso-
ciated with the Hindi Belt, although we include certain languages not included
under this term, and we do not cover all languages that may be considered part
of it. Our goal is to contribute basic resources such as monolingual data and
bilingual lexicons, conduct preliminary experiments to probe cross-lingual rela-
tionships in the dialect continuum, as well as to explore algorithms that may be
used to exploit the shared lineage of these languages in a relatively fundamental
task of induction of cognate/borrowing lexicons - i.e. finding word pairs across
two languages that are either descended from the same root or are borrowed from
one language into the other (or from a third language altogether).

This work was conducted in four stages:

1. Data Collection: Collecting monolingual corpora

2. Data Probing: Looking into the collected data at the character, subword,
and lexical level to find relationships between different languages and sub-
sets of languages.

3. Evaluation Data Collection: Collecting “gold” lexicons for evaluation of
cognate induction methods.

4. Cognate induction: Experimenting with different methods to induce bilin-
gual cognate lexicons for each language with Hindi-Urdu.

We summarize our contributions and findings in each of these below, along
with outlining work as yet to be done.

9.4 Data Collection and Probing
We crawled monolingual corpora for as many languages of the Indic dialect con-
tinuum under consideration as we could find. We created a collection of folksongs
and poetry in 26 languages, forming the largest collection of data from closely
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related dialects in the number of languages as far we are aware. Of these, 16
languages (not including Khadi Boli) had no preexisting data available system-
atically to the NLP community. We were authorized to make the folksongs in all
languages available, but not the poetry, due to copyright reasons. However, our
crawler is publicly available and may be used to crawl the website under question.

We conducted experiments to gauge pairwise cross-lingual similarities in the
given set of languages, using overlap-based as well as KL Divergence-based metrics
at the character, subword and lexical level. These experiments confirmed some
expectations from prior genealogical knowledge about the languages.

The limitations of the dataset include that it has very little data (just few
hundreds of tokens) for 3 languages. The folksongs contained in the dataset
are difficult to date; therefore, parts of the data may not be representative of
the language as it is spoken today. With Marathi, which has a rich literary
tradition, we also see that its poetry dates back several centuries to an almost
unrecognizable Marathi, although this is rare in the dataset in general.

One of the most crucial tasks remaining to be performed in this regard is the
development of a good quality language identification tool. Our labelled dataset
can be used for this purpose, and the resulting tool can be then be used for
collecting more data from the web.

9.5 Collecting Evaluation Data
We collect evaluation data for the task of cognate induction for 20 languages of
our collection against Hindi-Urdu. Reviewing a wide range of available resources
such as blogs, language learning websites, and others, we choose the website with
the best coverage of languages as well as a decent (overlapping) source vocabulary
that each of the languages can be mapped to.

This resource, consisting of artificially simply English phrases and their trans-
lations into target languages (all in casually transliterated Roman script), re-
quired considerable post-processing and adaptation to make it usable for our
purpose. While we are prohibited from publishing derivative data from this web-
site, our processing pipeline is publicly available to run on raw data from the
website.

This collection of evaluation lexicons has many problems of noise, incomplete-
ness, and transliteration, resulting from errors at different points in the automatic
pipeline. We would like to have post-processing and editing of each lexicon by na-
tive speakers of the respective languages, involving deletion of incorrect options,
spelling correction, and possibly adding cognate equivalents where they exist and
are not listed.

9.6 Cognate Induction
We explore methods of cognate/borrowing induction in a bilingual setup, with
source words from Hindi and target cognates from each of the languages under
consideration. Our baselines consist of optimizing simply orthographic metrics
such as normalized edit distance (NED) and the Jaro-Winkler metric (JW).

72



We try two new methods in order to exploit the two primary aspects of cog-
nacy, i.e. shared orthographic features as well as semantic relatedness. In the first
(called EMT), we implement an expectation-maximization approach in order to
learn sound changes for a given pair of languages. In the second approach (called
SEM JW), we use bilingual embedding spaces to narrow down possible candi-
dates that are then judged by orthographic features. Finally, we also combine
the two approaches (SEM EMT).

We find that the SEM JW does slightly better than the other approaches.
The current implementation of the *EMT approach suffers from a number of
problems, including bad prior initialization. Although it has potential in being
theoretically most capable of learning regular patterns of sound change between
two languages, it struggles to overcome its bad initialization as well as lack of a
good seed, since its initial datapoints are selected by edit distance. We find that
the bottleneck in the SEM JW approach is (naturally) the quality of the learnt
embeddings; this tasks faces the obstacles of a large data disparity between the
two languages, as well as general data scarcity in the target language.

Future work can address the above issues; i.e. honing the EMT approach,
as well as investigating better bilingual embeddings, or experiments with multi-
lingual embeddings for the full set of languages. The primary inadequacy of all
these approaches is their inability to (explicitly) capture language-pair specific
correspondences. An extension of this work could focus on refining something
akin to the SEM EMT. Improvements could include searching the hyperparam-
eter space for better priors, as well as investigating a better bi/multilingual space.
Further, the approach could try to treat words differently based on frequency and
an initial set of outputs.
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Appendix A

TSNE Plots

Figures A.1 and A.2 show TSNE visualizations for the Joint and Upsample
models in the upper and lower plots respectively.

85



Figure A.1: Visualization of Bhojpuri-Hindi bilingual space, joint (up) and up-
sample (down)
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Figure A.2: Visualization of Rajasthani-Hindi bilingual space, joint (up) and
upsample (down)
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