
CollabFuzz: A Framework for Collaborative Fuzzing
Sebastian Österlund

∗

Vrije Universiteit Amsterdam

s.osterlund@vu.nl

Elia Geretto
∗

Vrije Universiteit Amsterdam

e.geretto@vu.nl

Andrea Jemmett
∗

Vrije Universiteit Amsterdam

a.jemmett@vu.nl

Emre Güler

Ruhr-Universität Bochum

emre.gueler@rub.de

Philipp Görz

Ruhr-Universität Bochum

philipp.goerz@rub.de

Thorsten Holz

Ruhr-Universität Bochum

thorsten.holz@rub.de

Cristiano Giuffrida

Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

Herbert Bos

Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

ABSTRACT

In the recent past, there has been lots of work on improving fuzz

testing. In prior work, EnFuzz showed that by sharing progress

among different fuzzers, they can perform better than the sum of

their parts. In this paper, we continue this line of work and present

CollabFuzz, a collaborative fuzzing framework allowing multiple

different fuzzers to collaborate under an informed scheduling policy

based on a number of central analyses. More specifically, Collab-

Fuzz is a generic framework that allows a user to express different

test case scheduling policies, such as the collaborative approach

presented by EnFuzz. CollabFuzz can control which tests cases are

handed out to what fuzzer and allows the orchestration of different

fuzzers across the network. Furthermore, it allows the centralized

analysis of the test cases generated by the various fuzzers under

its control, allowing to implement scheduling policies based on the

results of arbitrary program (e.g., data-flow) analysis.

CCS CONCEPTS

• Security and privacy → Software security engineering; •

Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

fuzzing, parallel fuzzing, collaborative fuzzing, ensemble fuzzing,

automated bug finding

ACM Reference Format:

Sebastian Österlund, Elia Geretto, Andrea Jemmett, Emre Güler, Philipp

Görz, Thorsten Holz, Cristiano Giuffrida, and Herbert Bos. 2021. Collab-

Fuzz: A Framework for Collaborative Fuzzing. In 14th European Workshop

on Systems Security (EuroSec ’21), April 26, 2021, Online, United Kingdom.

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3447852.3458720

∗
Equal contribution joint first authors.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

EuroSec ’21, April 26, 2021, Online, United Kingdom

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8337-0/21/04.

https://doi.org/10.1145/3447852.3458720

1 INTRODUCTION

In recent years, fuzzing has become an essential tool for finding

bugs and vulnerabilities in software. Fuzzers, such as AFL [26] and

Honggfuzz [13], have successfully been applied to generate inputs

and find bugs in a large number of applications [22]. Recent work

in fuzzing [1, 5, 25] has focused on improving the fraction of the

target application covered by the fuzzer by implementing new input

mutation techniques and branch constraint solving strategies.

Since it is common to use automated bug finding tools to find new

bugs in software development scenarios (on every new commit/re-

lease), in pentesting scenarios (to find evidence of vulnerabilities),

or in server consolidation scenarios (where spare CPU cycles can be

dedicated to fuzzing), producing results in bounded time is crucial.

Consequently, we target practical use cases where the time budget

available for fuzzing is limited and it may be difficult to saturate

coverage within that budget. It is, thus, important to look at how

existing tools can be utilized in a more efficient way. Large-scale

fuzzing efforts, such as OSS-Fuzz [22], have shown that fuzzing

scales well with additional computing resources in order to find

security-relevant bugs in software. Moreover, researchers further

improved the speed of fuzzing by parallelizing and distributing the

fuzzing workload [17, 18, 26]. Typically, in these setups, multiple

instances of the same fuzzer run in parallel and their results are pe-

riodically synchronized [22]. In contrast, EnFuzz [7] demonstrated

that running combinations of different fuzzers in parallel leads to

a noticeable variation in performance, paving the way for further

improvement. Intuitively, this makes sense as fuzzers that have

different properties and advantages in some areas often come with

disadvantages in others. Hence, a collaborative fuzzing run using

a combination of fuzzers with different abilities can outperform

multiple instances of the same fuzzer.

Given a set of COTS (commercial-off-the-shelf) fuzzers and a

number of cores, collaborative fuzzing has two possible ways to

improve beyond simply running the fuzzers as independent tasks

in a predetermined configuration. First, we can synchronize the

fuzzers so that a good input found by one can benefit the others.

Second, we can determine the right mix of fuzzers to run to com-

bine their strengths—e.g., one fuzzer may be better at solving some

constraints and another may be better at solving others. While the

second direction has already been explored in the literature [11], to

our knowledge, optimally sharing test cases represents a resource

https://doi.org/10.1145/3447852.3458720
https://doi.org/10.1145/3447852.3458720

allocation problem that has not yet received the attention it de-

serves. Yet, this problem is important, as each fuzzer has its own

strengths and weaknesses that influence the time it takes to get

past specific obstacles in the program. For example, a heavyweight

symbolic execution-based approach might be better at solving cer-

tain constraints, while a lightweight greybox fuzzer might be better

at rapidly exploring a program under test.

In this paper, we investigate whether test case scheduling on a

fuzzer level (i.e., selectively handing out test cases to particular

fuzzers) can improve the overall results of a collaborative fuzzing

campaign. To this end, we introduce CollabFuzz, a collaborative

fuzzing framework capable of orchestrating fuzzing campaigns

of a diverse set of fuzzers and deciding how these fuzzers share

their progress with each other. Using CollabFuzz, we implement

a number of relatively simple test case scheduling policies and

evaluate whether such policies can improve fuzzing performance.

Summarizing, we make the following contributions:

• We present CollabFuzz, a distributed collaborative fuzzing

framework.

• We implement and evaluate a number of test case scheduling

policies on top of CollabFuzz.

• We release CollabFuzz as open source software, available

at https://github.com/vusec/collabfuzz.

2 BACKGROUND

2.1 Fuzzing

Fuzzing is the process of automatically finding bugs by generat-

ing randomly mutated inputs and observing the behavior of the

application under test. Current fuzzers are mainly coverage-guided,

meaning that they try to generate inputs to maximize code cov-

erage. These fuzzers are generally classified into three categories:

blackbox, where the fuzzer has no inherent knowledge of the target

program (with the advantage of being fast and easily compatible,

but with less opportunity for generating high-quality test cases);

whitebox, with a focus on heavyweight and high-quality input gen-

eration (but suffering from scalability and compatibility issues); and

greybox, which combines the strengths of the first two, trying to be

compatible while still using some lightweight analysis to produce

high-quality test cases.

Besides improving the fuzzing techniques themselves, the grow-

ing code size of projects like web browsers have required developers

to scale performance by running fuzzers in parallel [18, 22, 26].

When automatically testing large applications like Chrome, with

over 25 million lines of code [8], it becomes increasingly clear

that even optimized fuzzing tools need access to multi-core and

distributed systems to maximize code coverage and their likelihood

of finding bugs, as shown e. g. by the ClusterFuzz project [22].

For this purpose, fuzzers like AFL ship with a parallel-mode [18,

26], where multiple AFL instances share a corpus and thus syn-

chronize their efforts. Although this approach does indeed increase

code coverage, it does not solve some of the limitations inherent

to AFL. For instance, whenever AFL has difficulties solving magic

bytes comparisons, multiple instances of AFL will still have a low

probability of solving these conditions.

2.2 Collaborative fuzzing

To counter the limitations imposed by using one single type of

fuzzer, EnFuzz [7] introduces ensemble fuzzing. The authors demon-

strate that combining a diverse set of fuzzers leads to greater code

coverage than running multiple instances of the same fuzzer. The

boost in performance seems to stem from the symbiosis of the dif-

ferent fuzzing techniques, where the combination of fuzzers are

more likely to cancel out individual disadvantages. Recently, Güler

& al. [11] showed how it is possible to automatically select a good

set of diverse fuzzers to use in such a scenario.

While state-of-the-art fuzzers typically focus on increasing code

coverage, a recent area of research focuses on minimizing the la-

tency of reaching specific or interesting parts of the program [21].

Within such a constrained budget, some combinations of fuzzers

most likely provide a higher return on investment than others.

Besides looking at which fuzzers to run together, there is also

the question of how they should collaborate. Is handing out all the

generated test cases to all the fuzzers always the best choice? Cer-

tain fuzzers, such as QSYM [25], are good at finding new branches,

but their performance can degrade significantly if they get too

many (low-quality) test cases. We thus investigate how selectively

handing out test cases—or, in other words, test case scheduling—can

improve the performance in a collaborative setting.

In summary, CollabFuzz is a framework that allows multiple

fuzzers to collaborate on a large scale, while a central scheduling

component can optimize the fuzzing process by improving the

exchange of information between fuzzers—in other words improve

resource allocation.

3 DESIGN

Since fuzzing is a parallelizable task, it is reasonable to run several

fuzzers collaboratively to improve code coverage and bug finding.

Without test case scheduling, a large fraction of each fuzzer’s ex-

ecution is spent to just get to a point in the target program that

another fuzzer may have already found. This is true not only for

several instances of a fuzzer, despite the randomness involved in

fuzzing, but even for different fuzzers. Indeed, different fuzzers have

different strengths that influence the time it takes for them to get

past specific obstacles in the program, but are inherently similar.

With CollabFuzz, we want to implement a generic, flexible fuzzer

orchestration framework that can be be used for large-scale fuzzing

campaigns as well as fuzzer evaluation. In contrast to prior fuzzer

orchestration efforts, such as OSS-fuzz [22] and FuzzBench [20],

CollabFuzz allows multiple different fuzzers to collaborate while

supporting the user in running fine-grained analysis during the

fuzzing campaign.

In this paper, we showcase how we can use CollabFuzz to

implement a number of test case scheduling mechanisms, allowing

the manager to selectively hand out test cases according to an

informed scheduling policy.

We identify three main critera for CollabFuzz’s design:

(1) Flexibility. We want a framework that can easily be extended

by future work. As such, we design the different components

to also be reusable for other uses than presented here.

https://github.com/vusec/collabfuzz

Seeds

Fuzzer container

Driver

Fuzzer

Fuzzer

target

Manager container

Storage

Analysis

states

Scheduler

Analysis

workers

Analysis

programs

Source

code

Figure 1: An overview of CollabFuzz and its components.

(2) Reproducibility. In fuzzing, being able to reliably repeat ex-

periments is paramount. CollabFuzz uses Docker to achieve

a reproducible environment for all the fuzzing targets.

(3) Scalability. We want to support large-scale fuzzing. As such,

CollabFuzz allows the framework to run in a distributed

setting, making it easy to scale fuzzing campaigns to large

clusters.

At a high level, the central scheduling manager interacts with

the fuzzer drivers to control the fuzzers. The manager hands out

test cases to the different fuzzer drivers that interact with the fuzzer

in question, in turn allowing the fuzzer to mutate the input trying

to increase coverage. When a fuzzer finds a new test case, the driver

sends this test case back to the manager. The subsequent action

is determined by the scheduling policy and informed by various

analyses. In a typical scenario, if the generated test case provides

new coverage (as decided by an analysis pass), the scheduler will

hand out the new test case to one or more fuzzers or cache it for

scheduling at a later stage.

Specifically, for a single run, CollabFuzz has to be provided

with the source of the program under test, a set of seeds for that

program, a combination of fuzzers to run, and a policy to coordinate

them. As shown in Figure 1, the source will be compiled into several

instrumented binaries (which will be used to analyze test cases) and

all the binaries each fuzzer requires. At this point, the framework

can be started. While running, the following three components are

of interest:

(1) Central manager. This component schedules test cases to

the different fuzzers, depending on the scheduling policy set

by the user. We discuss a number of scheduling policies we

implemented in CollabFuzz in Section 5.

(2) Fuzzer. We can add any off-the-shelf fuzzer to the mix. The

fuzzer fetches test cases and mutates them, typically opti-

mizing for finding new coverage.

(3) Fuzzer driver. The driver interacts with the off-the-shelf

fuzzer, handing it new test cases when the manager needs

to schedule them and reporting new findings back to the

manager.

Upon receiving a new test case from one of the drivers, the

manager first places the incoming test case in storage, after which it

starts up a number of analysis jobs that are defined by the scheduler.

For example, a scheduler might require coverage analysis, in which

case the manager would start up a coverage-gathering job on an

analysis worker for the incoming test case. The results of these

jobs are stored as analysis states, which can later be queried by the

scheduler when making a scheduling decision.

The scheduler is invoked both periodically (with a user config-

urable interval) and in an event-driven fashion when a new test

case arrives at the manager, allowing for maximum flexibility when

implementing scheduling policies. When the scheduler is invoked,

it can reason over the stored analysis states and then make an in-

formed decision on whether to hand out zero or more test cases to

any running fuzzers. When the scheduler makes its decision, the

selected test cases are sent out to the corresponding fuzzer drivers.

The new test cases are then inserted into the fuzzer queue. We

further discuss the design choices and implementation details in

the following sections.

4 IMPLEMENTATION

CollabFuzz consists of three components to facilitate the collab-

oration between fuzzers: the scheduling manager, to coordinate

and schedule different fuzzers and inputs; the fuzzer drivers, to

allow the fuzzers to interact with the scheduling manager; and the

(off-the-shelf) fuzzers.

We implemented the scheduling manager in Rust (about 6k LOC)

and C++ (about 1k LOC), while the fuzzer drivers are written in

Python (about 2k LOC). Each fuzzer runs in its own Docker [19]

container and communicates with the scheduling manager over

ZeroMQ [12] sockets, allowing the whole setup to run in a large-

scale distributed setting. The framework is designed in an extensible

way, allowing developers of new fuzzers to easily add support by

simply creating a new container image.

Scheduling Manager. The central scheduling manager listens for

incoming new test cases from the fuzzers. When a test case arrives,

a scheduler is invoked, which decides how to react to the event. It

is also possible to let the manager invoke the scheduler periodically,

allowing for a flexible way to implement different schedulers. When

a scheduler is invoked, it typically selects one or more test cases to

send out to a group of fuzzers.

The scheduler registers a number of analyses that are executed

for incoming test cases. These analyses (such as coverage tracing)

are performed by analysis workers (which can be distributed over

the network) and stored globally in analysis states that the scheduler

can query. This design allows for flexible and possibly heavyweight

analysis without a significant performance penalty. For example,

some schedulers might require data-flow analysis as part of their

scheduling decision-making. In such cases, the scheduler would

register a data-flow analysis pass, which is run on every incoming

test case which is deemed interesting by one of the fuzzers.

Fuzzer Driver. We implemented a generic fuzzer driver (using

Python), which listens to files created in a number of directories

(e.g., queue, crashes, hangs for AFL). When a new inotify event is

dispatched, the driver sends the new test case to the scheduling

manager over a ZeroMQ socket. In a similar fashion, the driver also

listens for incoming messages from the scheduling manager, plac-

ing these incoming test cases in a specified directory. This generic

design allows this single driver to work with a variety of fuzzers.

CollabFuzz currently supports AFL, AFLFast, FairFuzz, QSYM,

radamsa, Honggfuzz, and libFuzzer. We extended libFuzzer and

Honggfuzz with an AFL-style synchronization mechanism to al-

low all fuzzers to share test cases. Each target application for a

particular fuzzer is based on a Docker image. Each fuzzing cam-

paign is configured using a YAML file, allowing for repeatable runs

of the campaign.

Analyses. As mentioned before, each scheduler bases its deci-

sions on data produced by a series of static and dynamic analyses.

These analyses are implemented as LLVM [15] passes and thus

require source code. Despite the absence of technical limitations in

implementing them at the binary level, we chose this approach to

ease development.

As an example, we implemented the following analyses:

Global coverage Extracts the exact edge coverage of a test case

and then aggregates it during a single campaign.

Test case benefit Implements the design described in Section 5

using DataFlowSanitizer and a static interprocedural control

flow graph.

Instruction count Uses a modified version of DataFlowSanitizer

to dynamically compute the length of the dynamic backward

slice for each instruction, storing the minimum.

New analysis passes can easily build on top of the individual

building blocks in our existing passes. The data generated by the

analysis passes and all scheduler events are stored in a SQLite

database, which can be queried for further analysis.

Patches for compatibility. CollabFuzz includes fuzzing targets

as Docker containers. We include containers for every target binary

in LAVA-M [9], Binutils, and Google fuzzer-test-suite [10] for every

fuzzer that we used (AFL, AFLFast, FairFuzz, QSYM, Honggfuzz,

libFuzzer, radamsa, lafIntel), allowing for a consistent envi-

ronment when performing our benchmarks. To make the target

programs compatible with our DFSan-based analysis passes, we

had to patch a number of issues in the build systems (e.g., of the

Google fuzzer-test-suite), as well as in DFSan. We compiled all C++

programs against LLVM’s libcxx to be able to get adequate DFSan

coverage. Furthermore, we had to patch a number of fuzzers to

allow for external test case syncing at runtime.

5 CASE STUDY: TEST CASE SCHEDULING

As a case study of applying CollabFuzz, we evaluate whether

coarse-grained fuzzer-level scheduling (i.e., the scheduler has no

insight into the fuzzer’s internal queue) of test cases can be utilized

to improve the overall results of a collaborative fuzzing campaign.

We consider EnFuzz as a baseline, and see whether other strategies

of synchronizing (i.e., scheduling) the corpus yields a noticeable

effect on the overall result of the fuzzing campaign.

To showcase how CollabFuzz allows for diverse scheduling

policies, we implemented four relatively simple test case scheduling

policies. We believe that more informed and effective policies are

possible, but leave this as future work. Our goal is to demonstrate

that CollabFuzz can be used as a platform for reasoning about

such scheduling and resource allocation policies.

EnFuzz scheduler. This scheduler is a reimplementation of the

approach described by Chen & al. [7]. The scheduler continuously

receives new test cases from each single fuzzer and, every 2 min-

utes, it forwards them to all the other fuzzers participating in the

collaboration.

Broadcast scheduler. This second scheduler is a simple optimiza-

tion over the one employed by EnFuzz. It simply eliminates the

synchronization delay by forwarding test cases as soon as they

are received by the coordination server. The intuition behind this

approach is that the 2 minutes delay may build up over the run

and thus negatively influence the increase in global coverage over

time. Since CollabFuzz is continuously analyzing new incoming

test cases and caching the analysis results, there is no need for a

2-minute delay for coverage information analysis.

Benefit scheduler. In contrast to the previous scheduler, the ben-

efit scheduler introduces a synchronization delay in order to focus

the fuzzers on important test cases and delay less interesting ones.

In detail, the benefit scheduler fills a priority queue with all the

received test cases, but flushes only 1% of it every 5 seconds (these

parameters ensure a continuous small stream of test cases).

The prioritization happens based on benefit, a novel metric that,

given a test case, we define as the count of unseen basic blocks in

the program that are reachable from the frontier of the test case. In

turn, we define the frontier of a test case as the set of basic blocks

in the trace for that test case which match the following criteria:

(1) They have at least one unseen basic block as neighbor in the

interprocedural CFG.

(2) The terminator instruction of the basic block from which

they can be reached is tainted by the input given by the

fuzzer.

The intuition behind this scheduler is that focusing the fuzzing

effort on test cases with a high benefit can potentially increase the

global coverage more rapidly. This is particularly important for

fuzzers that employ heavyweight analyses and thus have a lower

execution count, like QSYM, since they can be focused on impor-

tant test cases first, without wasting cycles on fuzzing, for example,

Figure 2: Distribution of the cost metric at the end of a run

on objdump. While a lot of basic blocks have a cost of 1,

there still exist plenty of harder blocks to solve.

error-handling code. An approach, similar in nature, which priori-

tizes certain test cases based on some heuristic has been previously

presented by DigFuzz [27].

Cost-benefit scheduler. This last scheduler partially overlaps with

the previous one because it uses the same priority queue system,

but it changes the way in which the priority is calculated. Apart

from the benefit metric defined before, it also relies on cost, another

novel metric that, given a basic block, we define as the minimum

number of instructions in the trace for that test case which match

the following criteria:

(1) They manipulate their arguments in some way, e.g. arith-

metic operations, and do not just move them around in mem-

ory, e.g. store instructions.
(2) They belong to the dynamic backward slice of the terminator

instruction of the basic block for which the cost metric is

being computed.

These two metrics are then aggregated in the following way:

cost_benefit(𝑡) =
∑
𝑏∈frontier(𝑡) benefit(𝑡)/cost(𝑏)

|frontier(𝑡) | (1)

The intuition behind this scheduler is that the benefit that can

be produced when solving a specific branch constraint needs to be

weighted against the difficulty to solve that constraint, which is

approximated with the cost metric. For example, a very beneficial

constraint that is almost impossible to solve is probably not worth

focusing on. In turn, the intuition behind the cost metric is that the

more instructions concur to the computation of a single value, the

more complex the constraint will be. An example of the distribution

of the cost metric at the end of a run is shown in Figure 2.

5.1 Evaluation of schedulers

We performed experiments on 32-core/64-thread AMD ThreadRip-

per 2990WX processors with 128GB of RAM. For each experiment,

we allocated 4 hardware threads (running 4 fuzzers + framework/-

drivers). We ran the fuzzers inside Docker containers and enabled

core pinning for AFL. We ran each experiment for 10 hours with

10 repetitions. We show the median of the branch coverage count

and the area-under-the-curve (AUC) of the branch coverage at the

end of the campaign. We also indicate whether the results are sta-

tistically significant using the Mann-Whitney U-test as suggested

by Klees et al. [14].

We evaluate our Cost-Benefit against the EnFuzz scheduling

policy on the Google fuzzer-test-suite with the well-performing

diverse selection of fuzzers suggested by Cupid [11] (AFL,FairFuzz,

libFuzzer, QSYM). The results are presented in Table 1. We ob-

served similar initial results for the other scheduling policies.

Not surprisingly, our results show that, with the given selection

of fuzzers, the coverage at saturation is typically similar regardless

of the scheduling policy, with no statistically significant difference

for the overwhelming majority of our target programs. In the end,

the achieved coverage that a set of fuzzers reaches is determined

by the individual mutation techniques of the fuzzers. As such, the

manner in which they share their progress (as long as it is shared

somehow) has little influence on how much of the target program

can possibly be explored, if coverage saturation is reached within

the time limit.

Despite the achieved coverage being the same, we also inves-

tigate whether scheduling policies can improve how quickly said

coverage is reached. In other words, can different scheduling poli-

cies affect the latency of reaching a certain amount of coverage?

The AUC metric shows the evolution of coverage over time. The

more coverage is found earlier on in the campaign, the higher the

AUC will be. On the other hand, reaching the same end coverage

at a later time will result in a lower AUC metric. To make the AUC

metric somewhat more tangible, we derive some samples from it.

Namely, looking at the latency of achieving a partial amount of

coverage is a useful indication of the real-world speedup a user can

expect when fuzzing with limited time and resources. We show the

difference in latency to achieve the 90, 95, 97, and 99th percentile

of the total coverage. For example, as shown in Table 2, the EnFuzz

scheduler reaches 90% of its end coverage 13% faster than Cost-

Benefit.

At a first glance, the differences appear significant. Namely, the

EnFuzz scheduler seems to outperform the Cost-Benefit scheduler

in every case. However, after some more thorough analysis of the

data obtained through CollabFuzz, we can conclude that there is

no statistical significant difference in the AUC between the different

schedulers (as can be seen in Table 1) and thus the aforementioned

latency deviations can likely be attributed to randomness. Latency-

wise there can be a large difference in when the different setups

reach a particular milestone. However, in practice, this large differ-

ence in latency might simply be due to a very small skew (even due

to a single branch) in the distribution of when coverage is found.

For example, our broadcast scheduler performs similar to the En-

Fuzz scheduler, despite it cutting out the 2 minute synchronizationb

time-window of EnFuzz.

Overall, our results show that the different schedulers we have

presented do not significantly affect the overall achieved coverage

of a fuzzing campaign, nor do they affect the AUC of the coverage.

As such, we can conclude that a fuzzer-level coarse-grained sched-

uling of test cases is unlikely to yield any significant performance

improvements. Nonetheless, we believe our analysis is an impor-

tant first step to study scheduling policies in a collaborative fuzzing

scenario and CollabFuzz can serve as a basis to quickly evaluate a

variety of more sophisticated policies in future work.

Table 1: Median branch coverage for different scheduling

policies. ↑ indicates that Cost-Benefit was significantly bet-

ter than EnFuzz; ↓ indicates that EnFuzz performed better;

✗ means no statistically significant difference.

Binary Cost-Benefit EnFuzz 𝑝-val AUC 𝑝-value

c-ares 45 45 ✗

guetzli 5047.5 4983.5 ✗ ✗

json 1544 1545 ✗ ✗

libarchive 5264 5424.5 ↓ ✗

libpng 1514 1516.5 ✗ ✗

libxml2 5407.5 5354.5 ↑ ✗

openssl-1.0.2d 1442 1442 ✗

openssl-1.1.0c 1281 1281 ✗ ↓
openthread 1915.5 1912.5 ✗ ✗

proj4 5773 5882 ✗ ✗

sqlite 1733 1733 ✗

woff2 2950.5 3021.5 ↓ ↓
Geomean final coverage 1847.23 1855.05

Table 2: Speedup in achieving partial coverage compared to

the EnFuzz scheduler.

Coverage Cost-Benefit

90% -0.32%

95% -12.75%

97% -18.78%

99% -0.76%

6 RELATEDWORK

Existing work on fuzzing has investigated how prioritizing cer-

tain test cases can improve the performance within one single

fuzzer. FairFuzz [16] prioritizes input mutations, such that “rare”

branches are given priority over commonly exercised branches. In

AFLFast [3], the authors model fuzzing as a Markov model, and

use it to steer fuzzing towards low-frequency paths. In contrast,

CollabFuzz does not look at the individual fuzzers at the queue

level, but rather implements scheduling policies on a global level

over a variety of different fuzzers. CollabFuzz’s scheduling poli-

cies can be applied to any off-the-shelf fuzzer, and requires little

or no modification to the actual fuzzer. In [24], the authors evalu-

ate a large number of scheduling algorithms for blackbox fuzzing.

AFLGo [2], HawkEye [4], and ParmeSan [21] all use static analysis

and instrumentation to allow for prioritization (i.e., scheduling) of

test cases that lead to coverage of pre-specified locations in the

target program.

Hybrid fuzzing [23, 25] shows that augmenting lightweight grey-

box fuzzing with more heavy-weight analysis (e.g., symbolic exe-

cution) can yield more bugs without significantly slowing down

the whole process. This approach can be seen as a type of test

case scheduling, where the hard-to-solve cases are offloaded to

the heavyweight analysis. In fact, these schemes can be easily ex-

pressed as a scheduling policy in CollabFuzz. Recent work by

Chen & al [6] and Zhao & al [27] show how adaptive scheduling

policies can further improve hybrid fuzzing.

EnFuzz [7] introduces ensemble fuzzing, i.e., having a diverse

set of fuzzers collaborate, showing how selecting an ensemble of

diverse fuzzers can increase code coverage. In this paper, we gener-

alize the intuition provided by EnFuzz and present CollabFuzz,

a framework that can model such collaboration between different

fuzzers in a more generic fashion.

7 DISCUSSION & FUTUREWORK

In this paper, we have limited ourselves to COTS fuzzers with the

explicit goal of not making significant modifications to the fuzzers

themselves. We are thus limited to the interface that the selected

fuzzers provide. This means that we can select which test case

to hand out to the fuzzer, but we cannot select which test case

any particular fuzzer should work on at a given moment. With a

more fine-grained interface, the scheduler could have more control

over, for example, the kinds of branches to target. While the sched-

uling policies presented in this paper did not yield a statistically

significant improvement, we see ample opportunity for improv-

ing test case scheduling by introducing such fine-grained control

mechanisms.

Furthermore, in our current implementation, the set of selected

fuzzers is static over the whole run. In some cases, changing the

resource allocation among the fuzzers over the fuzzing campaign

might yield better results. Our current CollabFuzz prototype has

rudimentary support for this, but we have limited the scope of this

study to a static set of fuzzers.

8 CONCLUSION

We have presented CollabFuzz, a collaborative fuzzing framework

that allows multiple fuzzers to share their progress towards one end

goal. By using CollabFuzz’s orchestration of large-scale fuzzing

campaigns on a cluster, we have shown that coarse-grained test

case scheduling between fuzzers has a negligible effect on the re-

sult of the fuzzing campaign. Nevertheless, CollabFuzz enables

developers to easily express different fuzzing techniques by means

of scheduling policies and allows them to easily collect fuzzer sta-

tistics for further analysis. The source code for our CollabFuzz

prototype is available at https://github.com/vusec/collabfuzz.

ACKNOWLEDGMENTS

We would like to thank the anonynous reviewers for their con-

structive feedback. This work was supported by Cisco Systems, Inc.

through grant #1138109 and the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) under Germany’s Excellence

Strategy – EXC-2092 CaSa – 390781972. In addition, this project

has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No.

786669 (ReAct). This paper reflects only the authors’ view. The

funding agencies are not responsible for any use that may be made

of the information it contains.

REFERENCES

[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.

In Symposium on Network and Distributed System Security (NDSS).

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed greybox fuzzing. In ACM Conference on Computer and

Communications Security (CCS).

https://github.com/vusec/collabfuzz

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-

based Greybox Fuzzing As Markov Chain. In IEEE Transactions on Software

Engineering.

[4] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,

and Yang Liu. 2018. Hawkeye: towards a desired directed grey-box fuzzer. In

ACM Conference on Computer and Communications Security (CCS).

[5] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In IEEE Symposium on Security and Privacy (S&P).

[6] Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al. 2020. MEUZZ: Smart

Seed Scheduling for Hybrid Fuzzing. In 23rd International Symposium on Research

in Attacks, Intrusions and Defenses (RAID 2020). 77–92.

[7] Yuanliang Chen, Yu Jiang, FuchenMa, Jie Liang, MingzheWang, Chijin Zhou, Xun

Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchronization

among Diverse Fuzzers. In USENIX Security Symposium.

[8] Chrome25 [n.d.]. The Chromium (Google Chrome) Open Source Project on

Open Hub: Languages Page. https://www.openhub.net/p/chrome/analyses/

latest/languages_summary. Accessed: March 31, 2021.

[9] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,

Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. Lava: Large-scale

automated vulnerability addition. In IEEE Symposium on Security and Privacy

(S&P).

[10] Google, Inc. 2018. fuzzer-test-suite. https://github.com/google/fuzzer-test-suite.

Accessed: March 31, 2021.

[11] Emre Güler, Philipp Görz, Elia Geretto, Andrea Jemmett, Sebastian Österlund,

Herbert Bos, Cristiano Giuffrida, and Thorsten Holz. 2020. Cupid: Automatic

Fuzzer Selection for Collaborative Fuzzing. In Annual Computer Security Applica-

tions Conference (ACSAC). https://doi.org/10.1145/3427228.3427266

[12] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. " O’Reilly Media,

Inc.".

[13] Honggfuzz [n.d.]. Security oriented fuzzer with powerful analysis options. https:

//github.com/google/honggfuzz. Accessed: March 31, 2021.

[14] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In ACM Conference on Computer and Communications

Security (CCS).

[15] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In Iinternational Symposium on Code

generation and optimization.

[16] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: Targeting rare branches to

rapidly increase greybox fuzz testing coverage. In ACM International Conference

on Automated Software Engineering (ASE).

[17] Yang Li, Chao Feng, and Chaojing Tang. 2018. A Large-scale Parallel Fuzzing

System. In International Conference on Advances in Image Processing.

[18] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang

Sun. 2018. Pafl: extend fuzzing optimizations of single mode to industrial parallel

mode. In ACM SIGSOFT Symposium on the Foundations of Software Engineering

(FSE).

[19] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-

ment and deployment. Linux journal 2014, 239 (2014), 2.

[20] László Szekeres Jonathan Metzman, Abhishek Arya, and L Szekeres. 2020.

FuzzBench: Fuzzer benchmarking as a service. Google Security Blog (2020).

[21] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.

2020. ParmeSan: Sanitizer-guided Greybox Fuzzing. In USENIX Secu-

rity. Paper=https://download.vusec.net/papers/parmesan_sec20.pdfCode=https:

//github.com/vusec/parmesan

[22] Kostya Serebryany. 2017. OSS-Fuzz-Google’s continuous fuzzing service for open

source software. In USENIX Security Symposium.

[23] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In

Symposium on Network and Distributed System Security (NDSS).

[24] MaverickWoo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013. Sched-

uling black-box mutational fuzzing. In ACM Special Interest Group on Security,

Audit and Control (SIGSAC).

[25] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:

A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In USENIX

Security Symposium.

[26] Michał Zalewski. [n.d.]. american fuzzy lop. http://lcamtuf .coredump.cx/afl/.

Accessed: March 31, 2021.

[27] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest Problems

My Way: Probabilistic Path Prioritization for Hybrid Fuzzing.. In NDSS.

https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://github.com/google/fuzzer-test-suite
https://doi.org/10.1145/3427228.3427266
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 Collaborative fuzzing

	3 Design
	4 Implementation
	5 Case study: Test case scheduling
	5.1 Evaluation of schedulers

	6 Related work
	7 Discussion & future work
	8 Conclusion
	References

