
SOMA: Solving Optical Marker-Based MoCap Automatically
Supplementary Material

Nima Ghorbani Michael J. Black
Max Planck Institute for Intelligent Systems, Tübingen, Germany

{nghorbani,black}@tuebingen.mpg.de

Figure 1: Attention span as a function of layer depth in me-
ters. The grey area indicates 95% confidence interval.

SOMA labels raw and noisy “mocap point clouds” at
scale, without requiring subject calibration, and across var-
ious capture technologies. Here we provide more details as
referenced in the main paper. Additionally, we encourage
the reader to watch the supplementary video. Since mocap
is inherently about motion, it is very difficult to convey the
quality of the results in a static format. The video provides
a much clearer picture of what SOMA does and the quality
of the results. All supplementary material can be accessed
in the project website https://soma.is.tue.mpg.
de/

1. Self-Attention Span
As explained in Sec. 4.1 of the main paper, to increase

the capacity of the network and learn rich point features
at multiple levels of abstraction, we stack multiple self-
attention residual layers. Following [11], a transformer self-
attention layer, Fig. 3 of the main paper, takes as input two
vectors, the query (Q), and the key (K), and computes a
weight vector W ∈ [0, 1] that learns to focus on different
regions of the input value (V), to produce the final output.
In self-attention, all the three vectors (key, query and value)
are projections of the same input; i.e. either 3D points or
their features in deeper layers. All the projection operations
are done by 1D-convolutions, therefore the input and the
output features only differ in the last dimensions (number
of channels). Following notation of [11]:

Attention(Q,K, V) = softmax(
QKT

√
dmodel

)V. (1)

In a controlled experiment on the validation dataset,
HDM05 with marker layout presented in Fig. 9d, we pass
the original markers (without noise) through the network
and keep track of the attention weights at each layer; i.e.
output after Softmax in Eqn. 1. At each layer, the tensor
shape for the attention weights is #batch × #heads ×
#points × #points. We concatenate frames of 50 ran-
domly selected sequences, roughly 50000 frames, and take
the maximum weight across heads and the mean over all
the frames to arrive at a mean attention weight per layer;
(#points × #points). In Fig. 4 of the main paper, the
weights are visualized on the body with a color red inten-
sity for 3 markers. In the first layers, the attention span is
wide and covers the entire body. In deeper layers, the atten-
tion becomes gradually more focused on the marker of the
interest and its neighboring markers on the body surface.
Fig. 2 shows the attention span for more markers.

To make this observation more concrete, we compute
the euclidean distance of each marker to all others on a
A-Posed body to create a distance discrepancy matrix of
(#points ×#points), and multiply the previous mean at-

https://soma.is.tue.mpg.de/
https://soma.is.tue.mpg.de/

tention weights with this distance discrepancy matrix to ar-
rive at a scalar for attention span in meters. On average we
observe a narrower focus for all markers in deeper layers;
Fig. 1.

2. Implementation Details

Through model selection, Sec. 3, we choose 35 itera-
tions for Sinkhorn and k = 8 as optimal choices and we
empirically pick cl = 1, creg =5e-5, dmodel = 125, h = 5.
The model contains 1.44 M parameters and full training on
8 Titan V100 GPUs takes roughly 3 hours. We implement
SOMA in PyTorch [9]. We benefit from the log-domain sta-
ble implementation of Sinkhorn released by [10]. We use
ADAM [7] with a base learning rate of 1e − 3 and reduce
it by a factor of 0.1 when validation error plateaus with pa-
tience of 3 epochs and train until validation error does not
drop anymore for 8 epochs. The training code is imple-
mented in PyTorch Lightning [1] and easily extendable to
run on multiple GPUs. For the LogSoftmax experiment, we
replace the optimal transport layer and everything else in
the architecture remains the same. In this case, the score
matrix, S in Fig. 3 of the main paper, will have an extra
dimension for the null label. Fig. 3 shows a detailed archi-
tecture of the SOMA model.

3. Hyper-parameter Search

To choose the optimum number of attention layers and
iterations for Sinkhorn normalization we exploit the valida-
tion dataset HDM05 to perform a model selection experi-
ment. We produce synthetic training data following the pre-
scription of Sec. 4.4 of the main paper for the marker layout
of HDM05 (Fig. 9d) and evaluate on real markers with syn-
thetic noise as explained in Sec. 5 of the main paper. For
hyperparameter evaluation, we want to eliminate random
variations in the network weight initialization so we always
use the same seed. In Fig. 4, we train one model per given
number of layers. Guided by this graph we choose k =8
layers as a sensible choice for adequate model capacity, i.e.
1.44M , and generalization to real markers. In Fig. 5, we
repeat the same process, this time keeping the number of
layers fixed as 8, and varying the number of Sinkhorn iter-
ations. We choose 35 iterations that seem a good trade-off
between computation time vs performance.

4. Standard Deviations

In Tab. 1, we report accuracy standard deviation of Tab.
2 of the main paper as complementary material. We observe
lower variation for the model trained on synthetic data using
AMASS bodies. The model trained on synthetic data of
limited number of bodies shows the largest variation.

Method Number of Exact Per-Frame Occlusions
0 1 2 3 4 5 5+G

SOMA-Real 1.76 1.90 2.03 2.22 2.44 2.73 3.08
SOMA-Synthetic 4.68 2.89 3.25 3.54 4.10 4.62 5.92
SOMA * 1.59 1.76 1.91 2.12 2.34 2.59 2.85

Table 1: Accuracy standard deviation corresponding to Tab.
2 of the main paper.

5. Marker Layout Variation of HDM05
In Fig. 8 we visualize the marker layout modifications

for the experiment in Sec. 5.3 of the main paper.

6. Stability of the Training Process
We consistently observe stable runtime and training pro-

cesses. In Fig. 6, we provide training curves for more “ex-
treme” ghost point distributions. Specifically, we add a uni-
form distribution in a cubic volume in the range of [−2, 2]
meters and skewed Gaussian with a mean location sampled
uniformly from the same random volume and a random co-
variance matrix. We also drastically increase the number
of ghost points to up to 60 per-frame. As suggested by the
figure, training is stable and converges from early iterations
on.

7. Processing Real MoCap Data
Here we elaborate on Sec. 4.5 of the main paper, namely

on real use-case scenarios of SOMA. The marker layout of
the test datasets, Sec. 5 of the main paper, are obtained by
running MoSh on a single random frame chosen from the
respective dataset. Fig. 9 demonstrates the marker layout
used for training SOMA for each dataset.

In addition to test datasets with synthetic noise, pre-
sented in Sec. 4.5 of the main paper, we demonstrate the
real application of SOMA by automatically labeling four
real mocap datasets captured with different technologies;
namely: two with passive markers, SOMA and CMU-II [4],
and two with active marker technology, namely DanceDB
[2] and Mixamo [3]; for an overview refer to Tab. 6 of the
main paper.

For proper training of SOMA we require one labeled
frame per significant variation of the marker layout through-
out the dataset. Most of the time one layout is utilized to
capture the entire dataset, yet as we see next, this is not al-
ways the case, especially when the marker layout is adapted
to the target motion. To reduce the effort of labeling the
single frame we offer a semi-automatic bootstrapping tech-
nique. To that end, we train a general SOMA model with
a marker layout containing 89 markers selected from the
MoSh dataset [8], visualized in Fig. 7; this is a marker
super-set. We choose one sequence per each of representa-
tive layouts and run the general SOMA to prime the labels;

Name # Frames # Motions Acc. F1 V 2V mean
mm V 2V median

mm

Clap 7572 6 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.08 0.00
Dance 15023 8 99.78 ± 0.87 99.68 ± 1.29 0.15 ± 1.76 0.00
Jump 9621 6 99.99 ± 0.13 99.99 ± 0.25 0.03 ± 0.72 0.00
Kick 10787 6 99.59 ± 1.18 99.48 ± 1.50 0.75 ± 6.92 0.00
Lift 16932 6 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.06 0.00

Random 19617 7 100.00 ± 0.05 100.00 ± 0.09 0.00 ± 0.21 0.00
Run 9356 6 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.06 0.00
Sit 9829 6 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.09 0.00

Squat 11287 6 100.00 ± 0.00 100.00 ± 0.00 0.01 ± 0.13 0.00
Throw 9292 6 99.99 ± 0.15 99.99 ± 0.22 0.00 ± 0.09 0.00
Walk 12264 6 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.11 0.00

131580 69 99.94 ± 0.47 99.92 ± 0.64 0.08 ± 2.09 0.00

Table 2: Per-motion-class statistics of the SOMA dataset and performance of the SOMA model.

we choose one frame per auto-labeled sequence and cor-
rect any incorrect labels manually. The label priming step
significantly reduces the manual effort required for labeling
mocap datasets with diverse marker layouts. After this step,
everything stays the same as before.

Labeling Active Marker Based MoCap should be the
easiest case since the markers emit a frequency-modulated
light that allows the mocap system to reliably track them.
However, often the markers are placed at arbitrary locations
on the body so correspondence of the frequency to the loca-
tion on body is not the same throughout the dataset, hence
these archival mocap datasets cannot be directly solved.
This issue is further aggravated when the marker layout is
unknown and changes drastically throughout the dataset. It
should be noted that, for the case of active marker mocap
systems, such issues could potentially be avoided by a care-
fully documented capture scenario, yet this is not the case
with the majority of the archival data.

As an example, we take DanceDB [2], a publicly re-
leased dance-specific mocap database. This dataset is
recorded by active marker technology from PhaseSpace [5].
The database contains a rich repertoire of dance motions
with 13 subjects on the last access date. We observe a
large variation in marker placement especially on the feet
and hands, hence we manually label one random frame per
each significant variation; in total 8 frames. We run the
first stage of MoSh independently on each of the selected 8
frames to get a fine-tuned marker layout; a subset is visual-
ized in Fig. 10. It is important to note that we train only one
model for the whole dataset while different marker layouts
are handled as a source of noise. As presented in Tab. 6,
manual evaluation of the solved sequences reveals an above
80% success rate. The failures are mainly due to impurities
in the original data, such as excessive occlusions or large
marker movement on the body due to several markers com-
ing off (e.g. the headband).

The second active marker based dataset is Mixamo [3],

which is widely used by the computer vision and graph-
ics community for animating characters. We obtained the
original unlabeled mocap marker data used to generate the
animations. We observe more than 50 different marker lay-
outs and placements on the body, of which we pick 19 key
variants. The automatic label priming technique is greatly
helpful for this dataset.

The Mixamo dataset contains many sequences with
markers on objects, i.e. props, which SOMA is not specif-
ically trained to deal with. However, we observe stable
performance even with challenging scenarios with a guitar
close to the body; see the third subject from the left of Fig. 1
of the main paper. A large number of solved sequences were
rejected mostly due to issues with the raw mocap data; e.g.
significant numbers of markers flying off the body mid cap-
ture.

Labeling Passive Marker Based MoCap is a greater
challenge for an auto-labeling pipeline. For these systems,
markers are assigned a new ID on their reappearance from
an occlusion, which results in small tracklets instead of full
trajectories. The assignment of the ID to markers is random.

For the first use case, we process an archived portion of
the well-known CMU mocap dataset [4] summing to 116
minutes of mocap which has not been processed before,
mostly due to cost constraints associated with manual la-
beling. It is worth noting that the total amount of available
data is roughly 6 hours of which around 2 hours is pure
MPC. Initial inspection reveals 15 significant variations in
marker layouts, with a minimum 40 markers and a maxi-
mum 62; a sample of which can be seen in Fig. 11. Again
we train one model for the whole dataset that can handle
variations of these marker layouts. SOMA shows stable per-
formance across the dataset even in presence of occasional
object props as seen in Fig. 1 of the main paper; the second
subject from the left is carrying a suitcase.

Due to extreme variation of marker layouts throughout
the dataset we notice failure cases where many points could

Symbol Description
MPC MoCap Point Cloud
L set of labels including the null label
l a single label
v vector of marker layout body vertices corresponding to labels not including null
ṽ vector of varied marker layout vertices
M number of markers
P set of all points
G

′
ground-truth augmented assignment matrix

A predicted assignment matrix
A

′
augmented assignment matrix

S score matrix
W class balancing weight matrix
X markers
V body vertices
d marker distance from the body along the surface normal
J body joints
h number of attention heads
k number of attention layers

Table 3: List of Symbols

not be assigned to a marker on the body, most probably due
to variation from the expected placement. As studied in
Sec. 5.3 of the main paper, this deteriorates the labeling
performance and could result in a failure in solving the body
mainly because of introduced occlusions.

In the second case, we record our own dataset with two
subjects for which we pick one random frame and train
SOMA for the whole dataset. In Tab. 2 we present de-
tails of the dataset motions and per-motion-class perfor-
mance of SOMA. For this dataset, we manually label it
to have ground truth and then we fit the labeled data with
MoSh. This provides ground truth 3D meshes for every mo-
cap frame. The V2V error measures the average difference
between the vertices of the solved body using the ground
truth and using the SOMA labels. Mean V2V errors are
under one mm and usually by an order of magnitude. Sub-
millimeter accuracy is what users of mocap systems expect
and SOMA delivers this.

8. List of Symbols

In Tab. 3, we provide a table of mathematical symbols
used throughout the paper.

References
[1] Pytorch lightning, 2019. 2
[2] Andreas Aristidou, Efstathios Stavrakis, Margarita Pa-

paefthimiou, George Papagiannakis, and Yiorgos Chrysan-
thou. Style-based motion analysis for dance composition.
The Visual Computer, 34:1725–1737, 2018. 2, 3

[3] Adobe Mixamo MoCap Dataset, 2019. 2, 3
[4] Carnegie Mellon University (CMU) MoCap Dataset, 2019.

2, 3
[5] PhaseSpace, Inc., 2019. 3
[6] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-
variate shift. In ICML, page 448–456, 2015. 6

[7] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 2

[8] Matthew Loper, Naureen Mahmood, and Michael J. Black.
MoSh: Motion and shape capture from sparse markers. ACM
Transactions on Graphics (TOG), 33(6):1–13, 2014. 2, 7

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. pages
8024–8035. Curran Associates, Inc., 2019. 2

[10] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In CVPR, pages 4937–
4946, 2020. 2

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, undefinedukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPs, page
6000–6010, Red Hook, NY, USA, 2017. Curran Associates
Inc. 1

Figure 2: Attention span for 14 markers, across all layers. Each row corresponds to a layer in ascending order, with bottom
most row showing the last layer.

(a) Detailed SOMA Architecture (b) Self-Attention block (c) Conv1D-block

Figure 3: Detailed components of SOMA model. fi and fo show the number of input and output features of the layer. nt is
the number of points in a frame of data and |L| is number of all labels including null. IN and OUT in (c) show the number of
input and output features of the block. All convolutions are one dimensional. BN stands for batch normalization [6].

Figure 4: Validation accuracy as a function of number of
attention layers

Figure 5: Validation accuracy as a function of number of
Sinkhorn normalization steps.

Figure 6: Training convergence with extreme ghost point
distributions on the validation dataset for 40 training
epochs; i.e. HDM05.

Figure 7: Marker layout from MoSh [8] dataset with 89
markers. A model trained on this marker layout is used for
rapid automatic label priming for labeling the single frame
per significant marker layout variation.

(a) (b)

(c) (d)

Figure 8: Modified HDM05 marker layout. Number of markers removed: (a) 3 (b) 5 (c) 9 (d) 12.

(a) BMLmovi (b) BMLrub

(c) KIT (d) HDM05

Figure 9: Marker layout of test and validation datasets.

Figure 10: Significant variation of marker placement of DanceDB dataset on hands and foot.

Figure 11: Sample of marker layouts used for training SOMA model for CMU-II dataset.

